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Abstract.  In this work the chaotic behavior of a micro-mechanical resonator with electrostatic forces on both sides is 
suppressed. The aim is to control the system in an orbit of the analytical solution obtained by the Method of Multiple 
Scales. Two control strategies are used for controlling the trajectory of the system, namely: State Dependent Riccati 
Equation (SDRE) Control and Optimal Linear Feedback Control (OLFC). The controls proved effectiveness in 
controlling the trajectory of the system. Additionally, the robustness of each strategy is tested considering the presence 
of parametric errors and measurement noise in control.  
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INTRODUCTION 

Currently a great deal of research has been 
performed to report chaotic behavior in MEMS 
resonators [1, 2]. In order to drive the chaotic 
movement to a stable orbit, an Optimal Linear 
Feedback Control (OLFC) is used in [3], SDRE 
Control is used in [4] Robust Adaptive Fuzzy Control 
in [5], Fuzzy Sliding Mode Control Design in [6]. 

The SDRE strategy first proposed by [7] and later 
expanded by [8], was independently studied by [9] and 
alluded to by [10]. The SDRE strategy is an effective 
algorithm for synthesizing nonlinear feedback controls 
by allowing nonlinearities in the system states, while 
additionally offering great design flexibility through 
state-dependent weighting matrices [11]. 

The Optimal Linear Feedback Control was 
proposed by [12]. In [12] the quadratic nonlinear 
Lyapunov function was proposed to resolve the 
optimal nonlinear control design problem. The 
theorem formulated by [12] explicitly expresses the 
form of minimized functional and gives the sufficient 
conditions that allow using the Linear Feedback 
Control for nonlinear systems [13, 14]. 

The micromechanical resonator system studied in 
this work is depicted in Figure 1. Considering the 
device of Figure 1 as consisting of two fixed plates 
and a movable plate between them, to which is applied 
a voltage  composed of a polarization voltage 
(DC) , and alternating voltage (AC) . 

 
FIGURE 1.  Micromechanical resonator. 

 
where: d  (distance between the plates), x  (lateral 
movement), m (front panel mass),  DC (polarization 
voltage ) and AC (alternating voltage ). 

MATHEMATICAL MODEL OF MICRO 
ELECTROMECHANICAL 

RESONATOR  

The equation of motion of the plates is given by: 
 

  (1) 
 
where:  is the conservative force of the spring,   
the damping force of the elastic term and  the 
electric force.  
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According to [4] the forces  and  can be 
defined as: 

 
  (2) 
  (3) 

 
According to [5, 15] the force  can be defined 

as: 
  

 (4) 

 
where:  (capacitance of the parallel-plate actuator). 

 
Substituting (2), (3) and (4) in (1) we obtain the 

equation of motion: 
 

  (5) 

 
According to [5] the equation (5) can be 

represented in nondimensional form: 
 

  (6) 

 

where: , , , , 

, , ,  and . 

 
Rewriting equation (6) in state space: 
 

  (7) 

 
where:  and . 

In Figure 2, the displacement, the phase portrait 
diagram, the Lyapunov exponent and the Poincare 
map are shown considering the parameters: , 

, ,  and . 

 

  
                        (a)                                           (b) 

  
                        (c)                                            (d) 

 
FIGURE 2.  (a): The displacement of AFM without control. 

(b): Phase portrait of atomic force microscope. (c):  
Exponents of  Lyapunov:  and . 

(d):  Poincare map. 
 
As can be observed in Figure 2c, the system has a 

positive Lyapunov exponent. The chaotic behavior 
also can be observed in the phase portrait in Figure 4b 
and Poincare map in Figure 4d. 

ANALYTICAL APPROXIMATE 
SOLUTIONS OBTAINED THROUGH 

THE PERTURBATION METHOD  

This procedure is used in order to obtain an 
approximate analytical solution [16].  Considering first 
the rational substitution of the term of the equation (6): 

   and   
 
by a polynomial 

function: , where 
.  

According to [17] one can approximate the two 
functions by least squares method minimizing the 
error:  

 

  (8) 

 
Resulting in the following approximation: 
 

  (9) 

 (10) 

 
Substituting (9) and (10) in (6) we obtain the 

following differential equation: 
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  (11) 

 
where: , , , 

, ,  and . 
 
Now, we will use the method of multiple scales to 

find analytically an approximate analytical solution to 
the above governing equation, this is done for a 
balance of order as follows. Therefore the equation is: 

   

  (12) 

 
Where  is the parameter responsible for this 

balance [16].  Introducing the scales  and 
. Seeking solutions in the following way: 

 
  (13) 

 
As the original independent variable (time scale 

) was substituted by independent scales  and , 
derivatives with respect to should be expressed in 
terms of partial derivatives in respect of   such that: 

 

  (14) 

 
Substituting (13) in (12) and considering the 

derivatives (14), (12) is represented in form perturbed: 

 

 
  (15) 

 
Separating the terms in relation with the potential 

for   and   we have:  
 

  (16) 

  (17) 
 
one possible solution for (16) in polar form is: 
 

  (18) 
where: 
 

  and  (19) 

 
substituting (18) in (17) we obtain: 
 

  (20) 

 
Eliminating the secular terms, of the equation (20) 

as follows: 
 

  (21) 
 
Substituting (19) into (21) and separating real and 

imaginary parts gives: 
 

  (22) 

 
 is calculated numerically integrating equation 

(22). One possible solution for is: 
 

  (23) 

 
where: , ,  and 

. 

NONLINEAR CONTROL DESIGN 

The objective is to determine a signal control , 
which carries the system (6) from any initial state to 
final state: 

 
  (24) 
where: 

 
  (25) 
 
Where  is the vector of desired orbits. 
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Application of Optimal Linear Feedback 
Control  

The equations that describe the motion of the 
system with the control law  are described by the 
following nonlinear equations:   

 

  (26) 

 
with: 
 
  (27) 

 
Where  is the feedback control, and  is the 

feedforward control, for optimal control, given by: 

 
  (28) 

 
Replacing (28) into (26) and considering the 

deviations (25) we obtain:  
 

 

  (29) 
 
Considering the system (29) written in the 

following way: 
 

  (30) 
where: 
 

, ,  and  

 

  (31) 
 
According to [13, 14], if there are an error 

weighted matrix , and the control weighted matrix 
, positive definite symmetric matrix,  and a matrix 

Riccati , such that the matrix: 
 
  (32) 

 
is positive definite matrix  restricted, then the 
control  is optimal and transfers the non-linear 
systems from any initial state, to the final state: 
 
  (33) 
 
minimizing the functional: 
 

  (34) 

 
Then control  can be found by solving the 

equation: 
  (35) 
 

Since the symmetric matrix , can be obtained 
from the Riccati algebraic equation: 
 
  (36) 
 

Using the matrices A and B (31), choosing: 
 

 
 
and  (37) 

 
and using the command  from 
Matlabr, we get: 
 
  (38) 
 

186



For the optimal control verification (38), the 
function (32) is numerically calculated with  

  [13, 14].  The next figure shows the 
trajectory of the periodic function, considering the 
application of control, and the desired orbit ( ) the 
equation (23). 

 

   
                        (a)                                           (b) 

 
(c) 

FIGURE 3. (a): Phase portrait, chaotic (black) and 
controlled orbit (blue) (b): Signal deviations (c):   

calculated in optimal  
 
In Figure 3, it can be seen that the control was 

effective to move the system from a chaotic state to a 
periodic orbit (23).  

Application SDRE Control  

The dynamic system defined by equation (26) can 
be parameterized as a first order state equation and 
written in the state-dependent coefficient (SDC) and 
non state-dependent coefficient in the following way: 
 
  (39) 
 

Where is state time dependent,  
 is the vector of the first order time derivates 

of the states. , where  the feedback 
control,  is the feedforward control, and  is 
the nonlinear vector.  

And the complete system by: 

 and 

  

  (40) 
 

A state feedback instead of output feedback is 
adopted to enhance the control performance. The cost 
function for the regulator problem is given by: 
 

  (41) 

 
Where  is semi-positive-definite matrix and   

 positive definite. Assuming full state feedback, 
the control law is given by: 
 
  (42) 
 

The estate-dependent Riccati equation to obtain 
, is given by: 

 

 

  (43) 
 

Defining the feedforward control as: 
 

  (44) 

 
Replacing (44) into (39), the system (39) can be 

represented in the form: 
 
  (45) 
 

The next figure shows the trajectory of the periodic 
function considering the application of command 

, using the matrices A and B (40), 
choosing   and   (37), and desired orbit   (23). 

 

   
                        (a)                                           (b) 

FIGURE 4. (a): Phase portrait, chaotic (black) and 
controlled orbit (red). (b): Signal deviations. 

 
We can see in Figure 4, that the SDRE control also 

was effective to take the system from a chaotic state to 
a periodic orbit (23). 
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Control System Behavior In The Presence 
Of Parametric Errors And Measurement 

Noise  

The parameters used in the control were obtained 
from a data set. The data set provided parametric 
errors, as measurement errors or model uncertainties. 
To consider the effect of parameter uncertainties on 
the performance of the controller U, the parameters 
used in the control will be considered as a random 
error of   [18].  

To consider the effect of measurement noise on the 
performance of the controller, a sinusoidal noise with 
random frequency and amplitude of noise is added:  
 
  (46) 
 

,  
and  are normally distributed random functions. 

 
In Figure 5, we observe the robustness of the 

control to maintain the system in the desired orbit (23).  
 

   
                        (a)                                           (b) 

  
                        (c)                                           (d) 
 

FIGURE 5. (a): Signal deviations |e1| without parameter 
uncertainties and measurement noise, (b): Signal deviations 
|e2| without parameter uncertainties and measurement noise. 
(c): Signal deviations |e1| with parameter uncertainties and 

measurement noise. (d): Signal deviations |e2| with parameter 
uncertainties and measurement noise. 

 
Can be seen in Figure 5 the control (CLFO) proved 

to be most indicated for case of the control was not 
subject to uncertainties. In the case of the control 
subject to uncertainties SDRE control proved to be 
indicated. 

CONCLUSIONS 

Two control strategies were used, suppressing the 
chaotic trajectory and leading the system to a desired 

periodic orbit, obtained by the application of the 
multiple scales method. A comparison of the obtained 
results showed that both controls are efficient.  An 
interesting contribution of these controls is that they 
do not need linearization or lose the nonlinearity of the 
considered systems and show the robustness of the 
controls when the system has measurement noise.  
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