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Neutron-neutron correlation in the halo dissociation of light exotic nuclei
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We present model results for the two-halo-neutron correlation functions, Cnn, for the dissociation process of
light exotic nuclei modelled as two neutrons and a core. A minimum is predicted for Cnn as a function of the
relative momentum of the two neutrons, pnn, due to the coherence of the neutrons in the halo and final state
interaction. Studying the systems 14Be, 11Li, and 6He within this model, we show that the numerical asymptotic
limit, Cnn → 1, occurs only for pnn >∼ 400 MeV/c, while such limit is reached for much lower values of pnn in
an independent particle model as the one used in the analysis of recent experimental data. Our model is consistent
with data once the experimental correlation function is appropriately normalized.
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The discovery of radioactive exotic weakly bound nuclei,
rich in neutrons or protons, beyond the drip line have brought
a lot of interest in the nuclear structure and reactions of these
unstable nuclei. The traditional nuclear models are unable to
describe the long-range correlations between the nucleons of
the halo. The large size of the halo has stimulated several
experimental and theoretical studies devoted to clarify the new
aspects of the structure, stability, and reaction of these nuclei,
including astrophysical applications (see, for example, [1–3]).

The effect of the large spatial extension of the neutron halo,
was probed in a recent fusion experiment of 6He with 238U
target [4]. It was observed a large reaction cross section due
to a direct 2n (n represents a neutron) transfer rather than an
enhancement of the complete fusion cross section. In view of
the large size of the halo (r rms

nn = 5.9 ± 1.2 fm [5], r rms
nn is the

nn root-mean-square radius) which is comparable to the size
of 238U itself, it is most likely that a correlated neutron-neutron
(nn) is transferred to 238U while the 4He is still far from the
fusion barrier, favoring the 2n transfer process.

A novel view of the complete fusion reaction for large
halo nuclei also emerges [6]: It is most probable that the core
approaches the fusion barrier of an excited target nucleus that
has already absorbed the halo. This interpretation is in line
with the concept of an absorptive many-body potential written
in the relative coordinates of the core, two neutrons, and the
target [7].

The need for a deeper insight into the key aspects of the
structure and dynamics of the halo in Borromean three-body
systems (where all the subsystems are unbound), like 6He
is evident. In this respect, using intensity interferometry
applied with a new iterative technique, Marqués et al. [5,8]
recently probed the spatial configuration of two-neutron halo
systems and estimated the mean-square nn distances as well,
considering the dissociation of 6He, 11Li, and 14Be in the
field of a heavy nucleus target. The spatial configuration
of 11Li was also studied by Petrascu et al. [9,10]. The nn
correlation function, Cnn, is extracted as a function of the
relative momentum between the neutrons, pnn. As the absolute
normalization of the correlation function is an important piece

of physical information, one should consider a consistent
model for that. We note that, for the asymptotic normalization,
in the fit to data, it has been considered a model where the
halo neutrons are assumed to be independent [11]. In our
understanding, one should assume them as being emitted by a
coherence source.

In the present communication we report our results for the
Cnn of Borromean three-body systems n-n-A, where A is the
core mass number. We consider 6He, 11Li, and 14Be within a
description of two neutrons and a core forming Borromean
systems. We show how to circumvent the major difficulty
of the relationship between the initial and final states due
to the distorting effects of the reaction: We consider the nn
final state interaction (FSI) and the three-body structure of the
Borromean system. The nn FSI is shown to play a crucial role in
distorting the relative motion of the neutrons and it is a source
of interference effects which leads to an unexpected minimum
of the Cnn, as a function of pnn, pushing the asymptotic
behavior (where Cnn = 1) to larger momentum. By comparing
our results with the available experimental ones [5,8,9], we
found that it is reasonable to expect a different normalization
for the data, as will be shown.

We use a three-body model in the limit of zero-range
interaction, which retains the essential physics of the weakly
bound and large two-neutron halo systems [2,3]. The in-
teraction singularity is tamed in a renormalized zero-range
model [12–15] which is appropriate to study weakly bound
three-body systems. The model is parametrized by minimal
number of physical inputs, which are directly related to known
observables: The two-neutron separation energy, S(2n) =
−Ennc, the nn and neutron-core (n − A) s-wave scattering
lengths (or the corresponding virtual or bound state energies).

The neutrons of the halo have a large probability to be
found outside the interaction range. Therefore the low-energy
properties of these halo neutrons are, to a large extend, model
independent as long as few physical input scales are fixed. The
model provides a good insight into the three-body structure
of halo nuclei, even considering some of its limitations. It is
restricted to s-wave two-body interactions, with small energies
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for the bound or virtual states. Even in this case, the three-body
wave function for the valence neutrons presents configuration
mixing due to angular momentum recoupling (see also
Refs. [14,16]). We also note that, all the interaction effects,
such as higher partial waves in the interaction and/or Pauli
blocking effect are, to some extent, included in the model,
as long as the experimental two- and three-body energies are
supplied. In this perspective, it is of interest to extend the
three-body continuum calculation of Cnn, done in [17] for
6He, to analyze the actual data.

The zero-range interaction itself does not have a physical
scale, then any calculated observable only depends on the
two- and three-body energy scales. The dependence on the
three-body scale is a consequence of the Thomas collapse [18]
of the three-body system in the limit of a zero-range interaction
which demands a three-body scale to supply the system with
the physical information of the three-particle short distance
configurations. Therefore, any dimensionless observable is a
function of the ratios between the input energies, the core
mass A and as well as on the nature of the subsystems,
bound or virtual [13]. The functional form of each observable
written in terms of dimensionless ratios is given by a universal
scaling function valid for short-range interactions or large
systems [19]. The model is more general and can describe
phenomena in atomic and molecular physics such that other
large three-body systems with different structures can also
be treated and stability and size studies performed (see, e.g.,
Ref. [3,20]).

We show that the asymptotic limit Cnn → 1 is reached
in our model at much higher values of pnn than the ones
found in previous data analyses [5,8–10]. Due to coherence
of the neutrons in the halo and final state interaction, Cnn

goes smoothly to the asymptotic limit only after displaying a
minimum, as it will be shown.

Particle distributions in the halo were calculated in
Refs. [15,19], where the three-body Faddeev equations for the
renormalized zero-range two-body interactions were solved.
We obtain Cnn by using the corresponding three-body wave
function with the inclusion of the nn final-state interaction
(FSI) [21]. We will show our results in the case of the halo
nuclei 6He, 11Li, and 14Be.

For the n-n-A three-body system, Cnn is given by

Cnn ≡ C( �pnn) =
∫

d3qnn|�(�qnn, �pnn)|2∫
d3qnnρ(�qnA)ρ(�qn′A)

,

(1)
�qnA ≡ �pnn − �qnn

2
and �qn′A ≡ − �pnn − �qnn

2
,

where the one-body density is

ρ(�qnA) =
∫

d3qn′A

∣∣∣∣�
(

−�qnA − �qn′A,
�qnA − �qn′A

2

)∣∣∣∣
2

. (2)

� ≡ �(�qnn, �pnn) is the corresponding breakup amplitude of
three-body wave function including the FSI between the
neutrons. �qnn is the relative momentum between the core A and
the center of mass of the nn subsystem; and �pnn the relative
momentum between the neutrons.
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FIG. 1. Two-neutron correlation for the halo of 14Be, as a function
of the relative nn momentum, pnn. The solid curve gives the model
results for S2n = 1.337 MeV, and EnA = 0.2 MeV. When compared
with data, the model result is multiplied by 1.425. Experimental data
are from [5] (open triangles) and [8] (full circles).

The FSI is introduced directly in the inner product
� ≡ 〈�qnn; �pnn

(−)|�〉, where the ket | �pnn
(−)〉 refers to the

nn scattered wave given by the Lippmann-Schwinger equation.
The correlation function, calculated with the distorted-wave
amplitude, assumes a sudden breakup of the halo as the
main reaction mechanism. The halo is considered as a
coherent source of neutrons, differently from the framework of
Ref. [11]. In our picture, the slow halo motion decouples
from the fast motion of the core in the field of the target.
The distorted wave amplitude � is given by

� = �(�qnn, �pnn) + 1/(2π2)√
Enn − ipnn

∫
d3p

�(�qnn, �p)

p2
nn − p2 + iε

,

(3)

where � is the three-body wave function [15]. Enn is the nn
virtual state energy taken as 0.143 MeV.

In the framework of Lednicky-Lyuboshits [11], in order to
obtain the correlation function Cnn, the probability density (in
configuration space) of the neutron-neutron scattering state is
multiplied by the probability density of the relative motion of
the halo neutrons in the three-body wave function. Such model
for the correlation function was developed from astrophysics,
and the possibility to apply it to particle and nuclear physics is
valid if one assumes that the particles emitted by the source are
independent. We believe this is not the case, when considering
the neutrons of the halo of a nuclei. So, in our approach,
when the distorted-wave amplitude of Eq. (3) is considered,
|�|2 contains off-diagonal matrix elements of the two-body
densities.

The results of our calculations for Cnn of the systems 14Be,
11Li, and 6He are, respectively, shown in Figs. 1–3. They are
shown as functions of pnn, and compared with experimental
available data [5,8,9].
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FIG. 2. Two-neutron correlation for the halo of 11Li, as a function
of the relative nn momentum, pnn. The model results (inset) are
given for three cases: S2n = 0.29 MeV and EnA = 0.05 MeV (solid
line); S2n = 0.37 MeV and EnA = 0.8 MeV (dashed line); and, S2n =
0.37 MeV and EnA = 0.05 MeV (dotted line). In the main body
of the figure, the solid curve (when r rms

nn = 8.5 fm [15]) presents
the corresponding curve of the inset multiplied by 2.5; the dot-dot-
dashed curve, the model presented in [9] with r rms

nn = 8.3 fm. The
experimental data are from [5] (full circles) and [9] (empty circles).

In the present Faddeev renormalized zero-range model, as
expected, Cnn goes asymptotically to unity, as a function
of pnn. Such limit is shown clearly in all three selected
systems that we have analyzed. The results that include the
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FIG. 3. Two-neutron correlation for the halo of 6He, as a function
of the relative nn momentum, pnn. The solid curve gives the model
results for S2n = 0.973 MeV and EnA = 4 MeV; and, the dashed
curve, for S2n = 0.973 MeV and EnA = 0. When compared with
data (extracted from [5]), the model results (in the main body) are
conveniently normalized as explained in the text.

asymptotic limit are shown in the insets of the figures. As
we observe, for example, in the insets of Figs. 1–3, the
theoretical pnn asymptotic limits for the systems 14Be, 11Li,
and 6He are, respectively, >∼400 MeV/c,>∼250 MeV/c, and
>∼500 MeV/c. Besides the fact of the qualitative similar
behavior, when comparing the results of the insets with the
corresponding experimental results, we note a clear scale
discrepancy. The striking observation is that the interference
effect produced by the inclusion of FSI originates a minimum
for Cnn ≈ 0.35, pushing the asymptotic limit to much larger
values of pnn than the ones considered in the asymptotic
normalization of the experimental data. Our model calls for
a different normalization of the experimental Cnn obtained in
Refs. [5,8,9]. We believe that the qualitative picture presented
by our model, evidencing a minimum of Cnn, will survive in a
more realistic three-body approach.

In Figs. 1–3, we observe a quite good agreement between
theory and data when an appropriate normalization factor is
included. Particularly, for 14Be, the data are well reproduced
by the model with S2n = 1.337 MeV [22] and with EnA =
0.2 MeV [23] (where EnAis the virtual state energy of n−12Be),
when our Cnn is multiplied by 1.425, as shown in Fig. 1 (or,
Cnn ≈ 0.70 C

exp
nn , where C

exp
nn is the model fit to experimental

data).
We have studied the model sensitivity to the two

and three-body binding energies considering the case of
11Li. We chose this nucleus because it has the smallest
2n separation energy S2n among the nuclei we are analyzing.
The model results are shown by the three plots presented
in the inset of Fig. 2. For a fixed s-wave 10Li two-body
virtual state energy, EnA = 0.05 MeV [16], we vary S2n

from 0.29 MeV [24] (solid line) to 0.37 MeV [25] (dotted
line). They differ only near the origin. Next, to observe the
sensitivity to the s-wave 10Li two-body virtual state energy,
we also plot a curve for EnA = 0.8 MeV [26] and S2n =
0.37 MeV (dashed line). Increasing the virtual state energy,
the “plateau” near the minimum is enlarged and, for pnn <

60 MeV/c, Cnn is enhanced and even strongly near zero.
We should note that, as we increase the virtual state energy

(reduce the absolute value of n−9Li scattering length) for
a fixed S2n in 11Li, we are shrinking the three-body system
(see discussion and Table 1 of Ref. [15]), implying that Cnn

develops a longer tail in momentum space. In the inset of
Fig. 2, this effect is clear and shown by the variation of the
n−9Li virtual state energy from 0.05 to 0.8 MeV, while S2n

is kept fixed at 0.37 MeV. The increase of S2n from 0.29
to 0.37 MeV, with EnA fixed at 0.05 MeV, also implies in
reducing the size of the three-body system. This is shown in
the inset of Fig. 2 by comparing the solid with dotted lines;
the variation is small but consistent with the small variation
of S2n. We expect that such typical behavior is general. With
respect to the correct asymptotic behavior, one can observe
our solid line given in the inset figure. We need to multiply
it by a factor 2.5 in order to fit the experimental data, as
shown in the main body of the figure. So, in this case we have
Cnn ≈ 0.40C

exp
nn . We also compare our calculation with another

model, given in [9], which is close to the one presented in [5] in
the framework of [11]. We observe that the different behavior
between our and other models, essential for the absolute
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normalization of the data, will appear at higher momentum
values.

Next, to study the case of 6He, it is worthwhile to mention
that the s-wave n−4He scattering has a positive scattering
length and effective range [27,28], which by extrapolation of
the standard effective range expansion produces an unphysical
5He bound state. A similar situation is found in the quartet
neutron-deuteron scattering where the large positive scattering
length and an effective range produces, by naive extrapolation,
a bound state near the threshold. The effective interaction in the
case of the n–d system is repulsive and no quartet trinucleon
exists, similarly for the n−4He where the s-wave interaction
should be effectively repulsive to avoid an unphysical bound
state. However, in our model the sign of the n-core scattering
length is determinant of the occurrence of the bound state.

The experimental n−4He scattering length is 3.26(3) fm
[28], which by naive extrapolation of the effective range in
our zero-range model produces an unphysical bound state.
Therefore, we arbitrarily made a calculation of Cnn with a
zero energy s-wave 5He and the experimental value of S2n in
6He. Surprisingly, we found a reasonable agreement with the
data, as shown in Fig. 3. In this case, our results for Cnn need
to be multiplied by 1.48 to fit the data, as shown by the dashed
line in the main part of the figure (Cnn ≈ 0.68 C

exp
nn ).

Observe that the interaction for the n−4He should be
weaker than the one we are using; and, as the interaction
becomes weaker while the three-body energy is kept constant,
the three-body system tends to be more compact [15] implying
an increase of the typical three-body momentum scale. To
mimic this effect, we decrease the attraction of the n−4He
s-wave interaction, allowing a virtual s-wave state (unphysi-
cal), using as a typical magnitude for the scattering length the
value of 3 fm. Still in this case, as we have multiplied our Cnn by
1.12, we obtain a good fit to data, as shown by the solid line of
Fig. 3. So, leaving the normalization free, one cannot distin-
guish between different weakly attractive s-wave interactions
in the 5He, if the S2n and the nn virtual state energy are fixed.

Alternatively, one may think in using the zero-range
T -matrix and project out the bound-state, using the experimen-
tal value of the n−4He scattering length. This may effectively
weaken the interaction, which could in principle produce a
similar effect as we have discussed.

In conclusion, we presented a theoretical study of neutron-
neutron correlation for Borromean three-body weakly-bound
systems, considering three cases where experimental data are
available. As the present analysis of halo dissociation in a
renormalized zero-range three-body framework contains the
main physical scales of weakly bound Borromean systems,
we believe that our results for low nn relative energies (below
40 MeV) are to a large extent universal; i.e., other short-range
potential models, with the same low energy scales, will
produce similar results. Considering that in our model there
are no free parameters, as the inputs are just the physical
scales (two- and three-body observables), and Cnn(pnn) → 1,
when pnn → ∞, one can use it to get the normalization of
the data. Our zero-range calculations suggest that the relevant
effect of the inclusion of final-state interactions with the halo
considered as a coherent source of neutrons is the presence
of a minimum in Cnn at an intermediate region of pnn (see
Figs. 1–3). It will be important to verify this conclusion,
as well as possible deviations, within a three-body model
with more realistic two-body interactions. Finally, we observe
a good agreement between theory and experimental results,
provided that the data fits, C

exp
nn , are appropriately normalized.

In view of our findings, it will be very interesting to improve
the experiments [5,8–10], particularly at higher momenta,
in order to characterize the existence of the minimum
in Cnn.
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