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Abstract: We propose a nonperturbative framework to study general correlation func-

tions of single-trace operators in N = 4 supersymmetric Yang-Mills theory at large N . The

basic strategy is to decompose them into fundamental building blocks called the hexagon

form factors, which were introduced earlier to study structure constants using integrabil-

ity. The decomposition is akin to a triangulation of a Riemann surface, and we thus call it

hexagonalization. We propose a set of rules to glue the hexagons together based on sym-

metry, which naturally incorporate the dependence on the conformal and the R-symmetry

cross ratios. Our method is conceptually different from the conventional operator product

expansion and automatically takes into account multi-trace operators exchanged in OPE

channels. To illustrate the idea in simple set-ups, we compute four-point functions of BPS

operators of arbitrary lengths and correlation functions of one Konishi operator and three

short BPS operators, all at one loop. In all cases, the results are in perfect agreement

with the perturbative data. We also suggest that our method can be a useful tool to study

conformal integrals, and show it explicitly for the case of ladder integrals.
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Figure 1. Hexagonalization of a four-point function: a planar four-point function can be repre-

sented as a surface with four holes. The idea of hexagonalization is to cut it into four hexagonal

patches as depicted above. The contribution from each patch is given by a hexagon form factor.

It is conceptually different from the usual operator product expansion. (The colors of the figure

represent the two places where this work was done.)

1 Introduction

A conformal field theory is characterized by its spectrum and structure constants. This

however does not mean that higher-point functions are inconsequential. By taking various

limits of higher-point functions, one can study interesting physical phenomena1 which

cannot be explored just by looking at individual two- and three-point functions.

The situation is more interesting, and at the same time, more intricate in large N

conformal field theories such as planar N = 4 supersymmetric Yang-Mills theory (N = 4

SYM). This is because the operator product expansion (OPE) and the large N limit are not

quite “compatible”: basic observables in large N CFT’s are correlation functions of single-

trace operators. Even at large N , the OPE series of these correlators contains not only

single-trace operators but also multi-trace operators. Therefore one cannot compute higher-

point functions just by knowing two- and three-point functions of single-trace operators.2

This appears to be an inconvenient truth for integrability practitioners: owing to the

remarkable progress in the last ten years, we now have powerful nonperturbative methods

to study the spectrum [5] (see [6] for the current state of the art), and the structure

constants [7] of planar N = 4 SYM. However these approaches are so far limited to single-

trace operators. The aforementioned fact seems to indicate that we must extend these

methods to multi-trace operators before studying higher-point functions.

This however is not the case: in this paper, we propose an alternative route to higher-

point functions, which does not necessitate explicit information on multi-trace operators.

1Examples of such interesting physics discussed recently are the Regge limit [1], the emergence of the

bulk locality [2] and chaos [3].
2There are certain limits where contributions from multi-trace operators are suppressed. In such limits,

one can construct (approximate) higher-point functions from two- and three-point functions of single trace

operators. See [4] for more detailed discussions.
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The key idea is to decompose the correlation functions not to two- and three-point func-

tions, but to more fundamental building blocks called the hexagon form factors. The

hexagon form factors were introduced in [7] as the building blocks for the three-point func-

tion of single-trace operators. They compute a “square-root” of the structure constant,

which is associated with a hexagonal patch of the string worldsheet. The purpose of this

work is to show that these hexagons can compute higher-point functions as well (see fig-

ure 1): by gluing 2(n−2) hexagons together with appropriate weight factors, we can deter-

mine n-point functions of single-trace operators including the dependence on the conformal

and the R-symmetry cross ratios. The decomposition bears resemblance to a triangula-

tion of a Riemann surface, and we thus call it hexagonalization. It also shares conceptual

similarities with the operator product expansion of the null polygonal Wilson loop [8, 9].

The structure of the paper is as follows: after briefly reviewing the hexagon formalism

in section 2, we begin by computing a simple correlator at tree level in section 3. The main

purpose is to demonstrate that cross ratios can appear in weight factors. Motivated by this

observation, we present our proposal, hexagonalization, in section 4. We first determine

weight factors for the so-called mirror channel using the superconformal symmetry and

then explain how they generalize to the physical channel. We test our proposal against

one-loop data in section 5 and 6, and obtain a complete match. Furthermore, we compute

a simple class of contributions at higher loops in section 7 and show that they coincide

with the so-called ladder integrals. We conclude with discussions of future directions in

section 8. A few appendices are included to explain technical details.

Note added: after this paper is completed, the paper [54], which partially overlaps the

result in section 3, appeared in the arXiv.

2 Review of the hexagon formalism

Both in spin chain and in string theory, the structure constant of single-trace operators

can be represented pictorially by a pair of pants. The key idea in [7] is to cut the pair of

pants into two hexagonal patches and determine the contribution from each patch, called

the hexagon form factor, using integrability (see figure 2).

When we cut the pair of pants, excitations (magnons) in each operator are divided

between two hexagons and we need to sum over all such possibilities. To bring excitations

to the second hexagon, we have to move them across the bridges, namely propagators

connecting two operators. This leads to a propagation phase eip`ij , with `ij being the

length of the bridge between Oi and Oj and p being the set of momenta. Upon doing

so, we sometimes need to reorder excitations. In case it happens, there will be an extra

contribution to the phase shift from the S-matrices S(u, v). Altogether, it constitutes the

so-called asymptotic part of the structure constant, which has the following schematic form3

for the configuration depicted in figure 2:

C123|asympt ∼
∑

α∪ᾱ={u}

wα,ᾱ ×Hα ×Hᾱ . (2.1)

3For simplicity, here we consider a three-point function with one non-BPS operator in a rank 1 sector.
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Figure 2. Hexagon formalism for three-point functions: the three-point function are represented

as a pair of pants which is cut into two hexagons. These two hexagons are separated by bridges of

lengths `ij ≡ (Li+Lj−Lk)/2 (Li is the length ofOi). To compute the three-point function, one sums

over partitions of physical magnons and the mirror states appearing on the dashed edges. Since the

physical and the mirror edges intersect by 90 degrees, the hexagon has a conical excess π in its center.

Here {u} is a set of rapidities of magnons and H denotes the hexagon form factor. wα,ᾱ is

a partition-dependent prefactor given by4

wα,ᾱ = (−1)|ᾱ|

(∏
ui∈ᾱ

eip(ui)`31

) ∏
i<j

ui∈ᾱ,uj∈α

S(ui, uj)

 . (2.2)

This asymptotic part gives the leading contribution when all the operators are long.

To compute the finite-size effects, we need to sum over all possible states appearing on

the dashed lines in figure 2, called the mirror edges. This can be achieved by dressing the

mirror edges by magnons and integrating over their momenta. This leads to a series

C123 ∼
∑

α∪ᾱ={u}

wα,ᾱ

[
HαHᾱ +

∑
a

∫
dv

2π
µa(v)e−Ẽa(v)`31Hα;vHᾱ;v + · · ·

]
, (2.3)

where Ẽ is the energy of the mirror magnon and µ is the measure factor. The subscript

a signifies the a-th bound state,5 which exists in the spectrum on the mirror edge. The

asymptotic part, discussed above, corresponds to the contribution from the vacuum states

of the mirror edges. The series (2.3) can also be regarded as the form factor expansion of a

two-point function of hexagon twist operators, which create an excess angle π on the string

worldsheet (see figure 2). This is why we refer to H as the hexagon “form factor”.

It is worth noting that the weight factor for the physical particle (eip`) and the weight

factor for the mirror particle (e−Ẽ`) are related to each other by the analytic continuation

called the mirror transformation (see figure 3). We will later see that such a relation exists

also for higher-point functions.

The mirror transformation offers another viewpoint on the finite-size correction. As

shown in figure 3, inserting a complete basis of states on a mirror edge is equivalent to

4Additional signs can appear when the excitations are fermionic, see [10].
5Roughly speaking, the bound state index a can be thought of as the Kaluza-Klein mode number arising

from the dimensional reduction of R× S3 to R.
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Figure 3. Mirror transformation. Left: the mirror transformation is an analytic continuation of the

rapidity (u→ uγ), which allows us to move a particle from one edge to another. Right: alternative

viewpoint on the finite size correction. Inserting a complete basis on a mirror edge is equivalent to

dressing neighboring physical edges by virtual particle pairs and making them “entangled”.

putting virtual particle pairs on the adjacent physical edges. This stitches two physical

edges by making them “entangled” with each other. This point of view is often useful in

practical computation. See for instance appendix D.

In the rest of this paper, we will explain how to generalize this formalism to more

complicated surfaces which describe higher-point functions.

3 Simple exercise at tree level

As a warm up, we compute a tree-level correlation function6 of three BPS operators and

the following single-magnon operator in the SL(2)-sector:

O1 =
∑
n

eipn Tr
(
· · ·Z(DZ)

↑
n

Z · · ·
)
. (3.1)

Here D is a holomorphic derivative on the x2-x3 plane; D = (∂2−i∂3)/2. Strictly speaking,

this operator cannot exist unless p = 0 since it violates the cyclicity of the trace. However

we keep p to be nonzero throughout this section in order to illustrate the main idea in the

simplest set-up. We nevertheless impose the Bethe equation eipL1 = 1, with L1 being the

length of the operator.

The rest of the operators are given by

Oi(xi, Yi) = Tr
(
(Yi · Φ)Li(xi)

)
, (3.2)

where Yi’s are six-dimensional null vectors parameterizing the orientation in the R-

symmetry space, and the product (Yi·Φ) is a standard inner product defined by
∑6

I=1 Y
I
i ΦI .

As a further simplification, we assume that all four operators live on the x2-x3 plane.

At tree level, the four-point function can be computed in two steps: first we list up all

possible ways to contract four operators. See figure 4 for an example. They are specified

6An extensive study of tree-level four-point functions in the SU(2) sector was performed in [11].
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Figure 4. An example of tree-level Wick contraction: a magnon D can live in either one of three

bridges (`12, `13, or `14). As shown above, the bridges split the diagram into four hexagonal patches,

which are depicted in different colors. Each term in the final result (3.8) can be interpreted as a

contribution from one of those hexagon patches.

by the numbers of Wick contractions between operators, which we call the bridge lengths.

Second, for each graph, we sum over the positions of the magnon in O1.

In the case depicted in figure 4, there are three distinct possibilities: when the magnon

lives in the bridge `14, the derivative acts on a propagator between O1 and O4 and produces

an extra position dependence,

D

(
1

x2
14

)
= − 1

x+
14

1

x2
14

, (3.3)

where x± denote holomorphic and anti-holomorphic coordinates7 x2 ± ix3, and x±ij and

|xij | are given by x±ij ≡ x±i − x
±
j and xij ≡ |xi − xj |. Then, the summation over positions

of the magnon yields an extra overall factor,

first ≡ − 1

x+
14

`14∑
n=1

eipn = −N (p)

x+
14

(
1− eip`14

)
, (3.4)

where N (p) is given by 1/(e−ip − 1). Similarly, when the magnon lives on the bridges `12

and `13, we obtain respectively

second ≡ − 1

x+
12

`14+`12∑
n=`14+1

eipn = −N (p)

x+
12

(
eip`14 − eip(`14+`12)

)
, (3.5)

third ≡ − 1

x+
13

L1∑
n=`14+`12+1

eipn = −N (p)

x+
13

(
eip(`14+`12) − 1

)
. (3.6)

In (3.6), we used the Bethe equation eipL1 = 1.

7In this paper we are using a slightly unusual notation, in order to avoid the conflict of notations.
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Figure 5. Edge and cross ratio: there is a natural way to associate a cross ratio with each edge. For

instance, the cross ratio associated with the black dotted edge is given by the expression above. ±
signs signify whether the corresponding propagators appear in the numerator or in the denominator.

In terms of these cross ratios, the weight factor in (3.8) reads W = 1/z. This rule of relating an

edge and a cross ratio is akin to the definition of the Fock coordinates of the Teichmuller space [12]

or the Fock-Goncharov coordinates of the moduli space of flat connections [13]. Note also that the

Fock-Goncharov coordinates show up in the study of four-point functions at strong coupling [14].

Adding up all these contributions and reorganizing them, we arrive at

first + second + third = N (p)

(
x+

34

x+
13x

+
14

+
x+

42

x+
12x

+
14

eip`14 +
x+

23

x+
12x

+
13

eip(`14+`12)

)
. (3.7)

A similar computation for the three-point function was performed in [7]. In that case, dif-

ferent terms corresponded to different ways of distributing magnons among two hexagons,

and the exponential prefactors (eip`) were interpreted as the phase shift needed to move a

magnon from one hexagon to the other. Here as well, we propose to interpret terms in the

parenthesis as describing different ways to distribute the magnon among several hexagons.

For instance, the first term in (3.7) corresponds to the case where the magnon is in the

hexagon formed by O1, O3 and O4 whereas the second term corresponds to the case where

the magnon is in the hexagon formed by O1, O4 and O2 (see also figure 4).

A crucial difference from the three-point function is that different terms in (3.7) are

dressed by different space-time dependences. To understand its physical implication, it is

useful to factor out the first term and rewrite (3.7) as8

first + second + third = N (p)
x+

34

x+
13x

+
14

(
1− x+

13x
+
24

x+
12x

+
34

eip`14 +
x+

13x
+
24

x+
12x

+
34

x+
14x

+
23

x+
13x

+
24

eip(`14+`12)

)
.

(3.8)

As can be readily seen, the factors in front of eip`’s are precisely the (holomorphic part

of) cross ratios. This implies that, besides the phase shift, we should multiply appropriate

8In [7], there are ad hoc additional signs when moving the magnons from one hexagon to the other.

Here such signs appear naturally after factoring out x+34/(x
+
13x

+
14). A similar reasoning can be applied to

three-point functions. It will be interesting to check that the signs of [10] for fermionic excitations can also

be reproduced in this way.
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Figure 6. Tree-level correlation function: at tree level, the correlation function is given by a sum

over all possible planar graphs. Each graph is characterized by a set of bridge lengths.

cross ratios when we move magnons across the bridges. The relation between the bridge

and the cross ratio can be understood graphically as shown in figure 5. In addition to such

factors, there is an overall prefactor x+
34/(x

+
13x

+
14).

As mentioned in section 2, the weight factors of physical and mirror magnons for the

three-point functions are related with each other by the mirror transformation. It is thus

tempting to speculate that, in higher-point functions, the cross ratios couple also to mirror

magnons. In the next section, we will see that this is indeed the case: we derive the

weight factor for mirror magnons based on the symmetry, and show that it incorporates

the dependence on the cross ratios.

4 Hexagonalization

4.1 Main proposal

We consider a correlation function of BPS operators of the form (3.2). Here and below, we

normalize the operators as

〈O(x1, Y1)O(x2, Y2)〉 = (d12)L , (4.1)

where L is the length of the operator and dij is a Wick contraction of two scalar fields,

dij ≡
y2
ij

x2
ij

, (4.2)

with y2
ij = Yi · Yj .

In the large Nc limit, the correlator consists of two parts: one is the disconnected part,

which is given by a product of lower-point functions and has a lower power of 1/Nc. The

– 8 –
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Figure 7. Main proposal (4.5): BPS correlators at finite coupling are given by a sum over graphs

and a sum over all possible mirror states living on the dashed edges. (For simplicity, here we only

depicted the state living on the edge 14.) Each state comes with an appropriate weight factor W,

which will be determined in section 4.2.

other is the connected part, which scales as 1/Nn−2
c and corresponds to a true interaction

of n operators:

〈O1(x1, Y1)O2(x2, Y2) · · · On(xn, Yn)〉 = (disconnected) +

∏n
i=1

√
Li

Nn−2
c

G{Li} . (4.3)

Here we stripped off the factor
∏
i

√
Li from the connected part G{Li} as it always appears9

owing to the normalization (4.1). The main subject of this paper is G{Li}.

At tree level, G{Li} is a sum of all possible planar connected graphs, each of which is

specified by a set of bridge lengths `ij :

G0
{Li} =

∑
graphs

∏
(i,j)

(dij)
`ij . (4.4)

A typical graph divides the planar surface into 2(n − 2) hexagonal patches as shown in

figure 6 and figure 7. We call this decomposition of the surface hexagonalization as it bears

resemblance10 to a triangulation of a n-punctured sphere. The product
∏

(i,j) in (4.4) runs

over all the edges of a given hexagonalization.

To compute G{Li} at finite coupling, we replace each hexagonal patch by the hexagon

form factor. More precisely, we conjecture that the connected four-point function at finite

coupling can be computed by inserting a complete basis of states to each mirror edge

of a hexagonalization, dressing them with appropriate weight factors, and evaluating the

9For a more detailed explanation of this factor, see introduction of [15].
10If we shrink each operator to a point, a hexagonalization reduces to a triangulation.
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contributions from each hexagon. This leads to our main formula (see also figure 7),

G{Li} =
∑

graphs

∏
(i,j)

(dij)
`ij

∑
{ψij}

∏
(i,j)

µψije
−Ẽψij `ijWψij

∏
(i,j,k)

Hψij ,ψjk,ψki

 . (4.5)

Giving a precise meaning to this formula, which is cryptic as it is, is the main goal

of the rest of this section. As a preparation, let us clarify what each symbol stands for:

ψij denotes a state inserted on the edge i-j, e
−Ẽψij `ij is a propagation factor of the mirror

state, and µψij is a measure factor. Wψij is a weight factor encoding kinematics whose

explicit form will be derived in section 4.2. The symbol
∏

(i,j,k) denotes a product over

faces of a hexagonalization. Finally H is, as before, the hexagon form factor.

4.2 Symmetry and gluing rules

We now determine the weight factor W from the symmetry-based argument. In the case

of three-point functions, the underlying symmetry is most transparent in the canonical

configuration,11 in which the operators take the following form:

O1 : Tr
(
ZL1

)
|xµ=(0,0,0,0) , O2 : Tr

(
Z̄L2

)
|xµ=∞ , O3 : Tr

(
Z̃L3

)
|xµ=(0,1,0,0) , (4.6)

Here Z̃ is given by Z̃ = (Z + Z̄ + Y − Ȳ )/2. In terms of the polarization vectors, it

corresponds to Y1 = (1, i, 0, 0, 0, 0), Y2 = (1,−i, 0, 0, 0, 0) and Y3 = (1, 0, 0, i, 0, 0) in our

convention. We refer to the hexagon twist operator defined in this configuration as the

canonical hexagon, and denote it by Ĥ.

Let us now consider a configuration depicted in figure 7 and try to glue two hexagons

H1 and H2 through the edge 14. In this configuration, H1,2 are not canonical since the

operators forming these hexagons (O1,4,3 for H1 and O1,2,4 for for H2) are at generic

points and have arbitrary R-symmetry polarizations. However, using the conformal and

the R-symmetry transformations, we can always relate them to the canonical configuration.

Namely, we can express the hexagon operators Ĥ1,2 in terms of the canonical hexagon as

Ĥ1 = g−1
1 Ĥg1 , Ĥ2 = g−1

2 Ĥg2 , (4.7)

where g1,2 ∈ PSU(2, 2|4) are transformations needed to bring three operators forming each

hexagon to the canonical configuration. From this operatorial point of view, gluing two

hexagons correspond to considering a sequence of hexagon operators,

· · · Ĥ2e
−Ẽ`14Ĥ1 · · · (4.8)

and inserting a complete basis of states in between. This leads to an expression12∑
ψ

µψe
−Ẽψ`14

(
· · · Ĥ|ψ〉〈ψ|g|ψ〉〈ψ|Ĥ · · ·

)
, (4.9)

with g ≡ g2g
−1
1 . The factor in the middle, 〈ψ|g|ψ〉, gives rise to the weight factor Wψ.

11In [7], we considered more general configurations using the twisted translation. The canonical configu-

ration is a specialization of it.
12Here we are using the basis which diagonalizes g2g

−1
1 .
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Figure 8. Weight factor and symmetry. In the second hexagon H2, the operators are positioned at

0, (z, z̄) and∞. To obtain this configuration starting from the “canonical one”, one needs to perform

the transformations, e−D log |z| and eiLφ as depicted in the figure. Note that these transformations

leave the points 0 and ∞ invariant.

Note that W is invariant under the transformation g1,2 → g1,2h with h ∈ PSU(2, 2|4).

Making use of such transformations, we can bring Ĥ1 to be canonical without changingW:

O1 : x1 = (0, 0, 0, 0) , Y1 = (1, i, 0, 0, 0, 0) ,

O3 : x3 = (0, 1, 0, 0) , Y3 = (1, 0, 0, i, 0, 0) ,

O4 : x4 =∞ , Y4 = (1,−i, 0, 0, 0, 0) .

(4.10)

On the other hand, Ĥ2 is not canonical since the position and the polarization of O2 in

this frame are given in terms of the conformal and the R-symmetry cross ratios as

O2 : x2 = (0,Re(z), Im(z), 0) ,

Y2 = (2/|α|)((1 + αᾱ)/2, i(1− αᾱ)/2, iIm(α), iRe(α), 0, 0) ,
(4.11)

where z and α are defined in a standard way as follows:

zz̄ =
x2

12x
2
34

x2
13x

2
24

, (1− z)(1− z̄) =
x2

14x
2
23

x2
13x

2
24

, αᾱ =
y2

12y
2
34

y2
13y

2
24

, (1− α)(1− ᾱ) =
y2

14y
2
23

y2
13y

2
24

. (4.12)

To obtain the configuration for Ĥ2 starting from the canonical configuration, we need to

perform the dilatation and the rotation (see figure 8),

e−D log |z|eiLφ , (4.13)

where L and φ are given by13

L =
1

2
(L1

1 − L2
2 − L1̇

1̇ + L2̇
2̇) , eiφ =

√
z

z̄
. (4.14)

The same argument applies also to the R-symmetry part and the full transformation which

brings Ĥ to Ĥ2 is

g = e−D log |z|eiLφeJ log |α|eiRθ = e−(D−J) log |z|eJ(log |α|−log |z|)eiLφeiRθ , (4.15)

13Here Lαβ and L̇α̇β̇ are Lorentz generators contained in psu(2|2)2.
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Figure 9. Gluing multiple edges. We consider two mirror states depicted in (a). The state ψ1 is

defined in the frame 1, whereas the state ψ2 is defined in the frame 2. It turns out that the effect

of the change of frames is already incorporated into the hexagon formalism as the crossing rule.

where J is the R-charge which rotates Z and Z̄ and R and θ are the R-symmetry analogue

of L and φ:

R =
1

2
(R1

1 −R2
2 −R1̇

1̇ +R2̇
2̇) , eiθ =

√
α

ᾱ
. (4.16)

Thus, the weight factor can be determined as

Wψ = e−2ip̃ψ log |z|eJψϕeiLψφeiRψθ , (4.17)

with

eϕ = |α/z| . (4.18)

Here we used the fact that D − J is related to the spin-chain energy E and the mirror

momentum p̃ as
D − J

2
= E = ip̃ , (4.19)

and Jψ, Lψ and Rψ denote the charges of the state ψ. The weight factorWψ can be regarded

as a sort of the chemical potential from the two-dimensional world-sheet point of view. In

section 5, we will explicitly evaluate W for one magnon state and show that it coincides

with a character of psu(2|2).

4.3 Gluing multiple channels

The argument above carries over as long as we glue just one edge: we go to a frame where

the edge runs from the origin to infinity and read off the transformation which relates two

hexagons. The resulting weight factor is given by (4.17) with the cross ratios replaced

appropriately using the rule given in figure 5.

By contrast, to glue more than one edge, we need to work in different frames at the

same time. For instance, if we want to glue two successive channels shown in figure 9, we

consider the following expansion,∑
ψ1,ψ2

· · · |ψ1〉〈ψ1|g1|ψ1〉〈ψ1|H|ψ2〉〈ψ2|g2|ψ2〉〈ψ2| · · · . (4.20)
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In this expression, |ψ1〉 is defined in a frame where O1 is at the origin, O2 is at (0, 1, 0, 0)

and O3 is at ∞, whereas |ψ2〉 is in a frame where O2 is at the origin, O3 is at (0, 1, 0, 0)

and O1 is at ∞. These two frames are related by a nontrivial conformal transformation

r = e−Ke−T , (4.21)

where T is the twisted translation [7] while K is the twisted special conformal transforma-

tion:

T ≡ iεαα̇P α̇α + εȧaR
aȧ , K ≡ −iεα̇αKαα̇ − εaȧRȧa . (4.22)

It may seem that such a change of frames substantially complicates the computation of

〈ψ1|H|ψ2〉, which is coupled to both of the states. However, as it turns out, the effect

of this transformation is already implemented in the hexagon form factor: as shown

in appendix A, the transformation r essentially swaps two psu(2|2)’s of the psu(2|2)2

symmetry. This turns out to be equivalent to the crossing rule conjectured in [7], which

claims that a magnon should swap two indices when we perform a crossing transformation

inside a hexagon. This actually provides a physical explanation of the crossing rule in [7].

See appendix A for details.

Thus, to summarize, we expect that a change of frame is negligible as long as we use

the correct crossing rules. The only thing that matters is that, for n(≥ 5)-point functions,

we need to include rotations other than L in the definition of the weight factor since general

n(≥ 5) points cannot be put on a single plane. It will be discussed more in detail in a

future publication [16].

4.4 Generalization to physical magnons

We now discuss generalization to the correlators with non-BPS operators. In such cases,

in addition to the mirror-particle integrations, we need to perform a sum over partitions of

physical magnons. We conjecture that the weight factor needed for the physical magnon

is related to the weight factor for the mirror particles (4.17) by the mirror transformation.

More precisely, the rule is to multiply an extra factor

Wχ = e−2Eχ log |z|eJχϕeiLχφeiRχθ , (4.23)

when we move a magnon χ in O1 from H1 to H2 in figure 7. This has a nice property

that the product of all the weight factors for edges ending at a single operator is always

unity (see figure 10). Combined with the Bethe equations, this property guarantees that

the final result is independent of the directions in which we move magnons.

As have been observed in section 3, there is also an extra overall space-time (and

R-symmetry) dependence when there are physical magnons. This factor depends only on

the data of the first hexagon, the hexagon for which we do not multiply a weight factor.

As we explain below, it comes from the transformation which relates the first hexagon to

the canonical hexagon. For simplicity, we focus on the space-time dependence, but the

argument easily carries over to the R-symmetry part.

Let us first bring the operator O1, which contains magnons, to xµ = 0 by performing

a translation. This is of course harmless since the correlation function is invariant under

– 13 –
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Figure 10. A product of all the weight factors for edges ending at a single operator is always unity.

A similar property is observed also in the analysis at strong coupling [14].

translations. We then consider a transformation g′ which keeps O1 at the origin and maps

O3 and O4 from the canonical configuration to the configuration we want. In general,

g′ ∈ SO(2, 4) can always be expressed as

g′ = g+g0g− , (4.24)

where g0 is generated by the dilatation D and the rotations Lµν while g+ and g− are gen-

erated by the “upper-triangular” generators Pµ and the “lower-triangular” generators Kµ

respectively. Since the upper-triangular generators change the position of O1, they should

not be contained in the transformation g′ we are studying. In addition, in almost all the

cases of interest, the operator O1 is a conformal primary and the lower-triangular generators

act trivially on O1. Therefore, the only nontrivial effect in O1 is brought about by g0. The

action of g0 on magnons can be read off easily since g0 belongs to the magnon-symmetry

group psu(2|2)2. This is the origin of the extra space-time dependence multiplying the sum

over partitions.

In the case studied in section 3, we find that g′ is given by

g′ =

(
x+

34

x+
13x

+
14

)(D−L)/2(
x−34

x−13x
−
14

)(D+L)/2

︸ ︷︷ ︸
= g0

exp

[
x+

13

x+
34

Kz +
x−13

x−34

Kz̄

]
︸ ︷︷ ︸

= g−

, (4.25)

where L is the rotation on the x2-x3 plane and Kz (Kz̄) is the (anti-)holomorphic special

conformal transformation on that plane. Applying the aforementioned analysis to this case,

we obtain14

f
(

1−W(14)eip`14 +W(14)W(12)eip(`14+`12)
)∏

(ij)

d
`ij
ij , (4.26)

where W(14), W(12) and f are given by

W(14) =

(
x+

13x
+
24

x+
12x

+
34

)1+ γ
2
(
x−13x

−
24

x−12x
−
34

) γ
2

, W(12) =

(
x+

14x
+
23

x+
13x

+
24

)1+ γ
2
(
x−14x

−
23

x−13x
−
24

) γ
2

,

f =

(
x+

34

x+
13x

+
14

)1+ γ
2
(

x−34

x−13x
−
14

) γ
2

,

(4.27)

14Note that the holomorphic derivative has a charge −1 under the rotation L.
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Figure 11. Examples of a 1EI graph (a) and a non-1EI graph (b) for G2233.

with γ being the anomalous dimension. The prefactor f can be read off by acting the g0

part in (4.25) on the magnon. At tree level, the factors in front of
∏
d
`ij
ij coincide with (3.8).

4.5 A remark on the summation over graphs

Let us finally make an important remark about the summation over graphs. For this

purpose, it is convenient to introduce a notion of 1-edge irreducible graph (1EI graph).

The 1EI graphs are subsets of connected graphs which are still connected even after we

remove all the propagators connecting a pair of points. Examples of 1EI and non-1EI

graphs are given in figure 11.

When performing a summation over graphs, we should in principle sum over all the

connected graphs. However, we found, in all the examples checked so far at one loop, that

the correct perturbative result can be reproduced by the following prescription:

1. For the asymptotic part, sum over all the connected graphs.

2. For the finite-size corrections, sum only over 1EI graphs.

At least in a naive estimate, non-1EI graphs can receive multi-particle mirror corrections

already at one loop whereas 1EI graphs only receive one-particle correction at this order.

Thus, practically, the restriction to 1EI graphs simplifies our task a lot. We however have

not fully understood the origin of such a restriction. It is likely that different mirror-

particle contributions cancel out in non-1EI graphs. Such a mechanism, if exists, would

be responsible also for the non-renormalization properties of extremal and near-extremal

correlators [17–19] since all the relevant graphs for those correlators are non-1EI. This

suggests that our finding may be understood as a consequence of some “partial” non-

renormalization theorem. Another evidence for our prescription comes from the perturba-

tive analysis in [20], in which they studied several BPS four-point functions at two loops

and showed that the contributions from non-1EI graphs vanish.

In any case, it would be important to understand the origin of our empirical rule and

see if it holds also for more general cases. We postpone the analysis on these points to a

future publication [16].
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L R

ψ1 +1/2 0

ψ2 −1/2 0

φ1 0 +1/2

φ2 0 −1/2

L R

ψ1̇ −1/2 0

ψ2̇ +1/2 0

φ1̇ 0 −1/2

φ2̇ 0 +1/2

Table 1. The charges of a fundamental magnon under the rotations L and R.

5 Four BPS operators

Here we test our proposal (4.5) against one-loop perturbative data for four-point functions

of BPS operators.

5.1 Flavor-dependent weight as psu(2|2) character

At weak coupling, the one-particle measure and the mirror energy scale as

µ ∼ O(g2) , e−Ẽ ∼ O(g2) , (5.1)

where g is related to the ‘t Hooft coupling constant as

g2 =
λ

16π2
. (5.2)

Thus the correction at one loop comes only from one-particle states living on an edge with

length 0. To compute such contributions, we just need to evaluate the flavor-dependent

part of the weight W,

Wflavor = eJψϕeiLψφeiRψθ (5.3)

since all the other factors are known already. Below we first focus on the dependence on

Lψ and Rψ since the determination of eJψϕ is more subtle.

Let us first consider a fundamental magnon. A fundamental magnon belongs to a

bifundamental representation of psu(2|2)2, and the charges of the left and the right parts are

given in table 1. By straightforward computation, one can confirm that the multiplication

of eiLψφeiRψθ amounts to modifying the matrix part [7] of the mirror particle integrand as

Tr
[
(−1)F

]
→ Tr

[
(−1)F eiφL̃+iθR̃

]
, (5.4)

where F is a fermion number and L̃ and R̃ are given by

L̃ = L1
1 − L2

2 , R̃ = R1
1 −R2

2 . (5.5)

This can be evaluated explicitly as

Tr
[
(−1)F eiφL̃+iθR̃

]
= −2(cosφ− cos θ) . (5.6)

It can also be understood graphically as shown in figure 12. In the presence of physical

magnons, it will be replaced by a twisted transfer matrix (see section 6.2).
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Figure 12. Matrix part and weight factor for the one-particle mirror state. Wavy lines denote the

actions of the transformation eJϕ+iLφ+iRθ. It acts both on the left and the right psu(2|2) indices.

The summation over the flavor indices adds a dashed red curve and makes it into a trace of a single

psu(2|2). After doing so, we can combine the actions of the transformation into one and rewrite it

as e2Jϕ+iL̃φ+iR̃θ.

We now perform the same analysis also for the bound states. It is not hard to verify

that eiLψφeiRψθ for the bound states leads to

Tra
[
(−1)F

]
→ Tra

[
(−1)F eiφL̃+iθR̃

]
, (5.7)

where now the trace is taken over the a-th anti-symmetric representation. This is nothing

but the character of psu(2|2) and therefore can be evaluated using the known formula.15

Here however, we take a more pedestrian approach and evaluate the trace using the explicit

basis. The basis for the a-th anti-symmetric representation is given by

|ψα1 · · ·ψαa〉+ · · · , |φ1ψα1 · · ·ψαa−1〉+ · · · ,
|φ2ψα1 · · ·ψαa−1〉+ · · · , |φ1φ2ψα1 · · ·ψαa−2〉+ · · · ,

(5.8)

with αi = 1, 2. Computing the trace using this basis, we arrive at

Tra

[
(−1)F eiφL̃+iθR̃

]
=(−1)a

(
eiaφ

a∑
n=0

e−2inφ−2 cos θei(a−1)φ
a−1∑
n=0

e−2inφ+ei(a−2)φ
a−2∑
n=0

e−2inφ

)

=2(−1)a (cosφ− cos θ)
sin aφ

sinφ
. (5.9)

A gratifying feature of this expression is that it vanishes when φ = θ, as expected from

supersymmetry [23].

Let us now turn to the remaining factor eJψϕ. In the so-called string frame, we usually

assume that the excitations do not carry any J-charge since the J-charge corresponds to

the length of the string, which is fixed once and for all by taking the light-cone gauge.

However, it turns out that setting Jψ = 0 in (4.17) does not lead to a reasonable answer.

This is mainly due to supersymmetry: suppose that we have a state |ψα〉 and construct

other states in the same multiplet using the supersymmetry transformations. Since the

15See for instance [21, 22], where the same character appears in a different context.
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supercharges have ±1/2 J-charges, the states we obtain will have nonzero J-charges even

if the original state does not. In terms of Z-markers introduced by Beisert, it can be

expressed also as16

|ψ〉 Q,S→ |Z±1/2φ〉 Q,S→ · · · . (5.10)

This suggests that the states in the same multiplet can have different J-charges. It is

however difficult to know what the charges should be since one can repeat acting the

supercharges and dress the state with an arbitrary number of Z-markers. The one thing

we can say for sure is that we should not add too many Z markers: the factor associated

with a Z-marker, eϕ = |α/z|, can appear as a ratio between different tree-level Wick

contractions. It thus implies that dressing with a large number of Z-markers will mix the

contributions from different graphs and mess up the summation over graphs.

Guided by these considerations, we were led to a “minimal” modification of the weight

factor, given as follows:

Tra

[
(−1)F e2ϕJ+iφL̃+iθR̃

]
= (−1)a

(
eiaφ

a∑
n=0

e−2inφ − 2coshϕ cos θei(a−1)φ
a−1∑
n=0

e−2inφ

+ei(a−2)φ
a−2∑
n=0

e−2inφ

)

= 2(−1)a (cosφ− coshϕ cos θ)
sin aφ

sinφ
. (5.11)

The factor of 2 in the exponent e2ϕJ comes about when rewriting the weight factor as

a trace in a single psu(2|2) (see figure 12 for an explanation). The modification (5.11)

amounts to dressing the states as

|ψα1 · · ·ψαa〉+ · · · , |Z±1/2φ1ψα1 · · ·ψαa−1〉+ · · · ,

|Z±1/2φ2ψα1 · · ·ψαa−1〉+ · · · , |φ1φ2ψα1 · · ·ψαa−2〉+ · · · ,
(5.12)

and averaging over the choices of signs. We confirmed a posteriori that this correctly

reproduces all the results we checked so far including four-point functions with a Konishi

operator (see section 6). It is however desirable to have a first-principle derivation.

Now, using the weight factor (5.11), one can write down a general one-particle inte-

grand17 for gluing the edge 1-4:

int1-4
a (v) =

2(cosφ− coshϕ cos θ) sin aφ

sinφ
µa(v

γ)e−2ip̃a(v) log |z|e−Ẽa(v)` . (5.13)

By setting ` = 0 and going to the weak coupling (see appendix B for expressions at weak

coupling), we get

int1-4
a (v) =

2g2(cosφ− coshϕ cos θ) sin aφ

sinφ

a

(v2 + a2/4)2
e−2iv log |z| +O(g2) . (5.14)

16Throughout this paper, we use a “hybrid” of the conventional spin-chain frame and the string frame:

although we use Z markers to keep track of non-local effects, the excitations are redefined as in appendix

F of [7] so that the S-matrix matches the one for the string frame. This is why the transformations (5.10)

are slightly different from the ones given in [24, 25].
17The factor (−1)a in (5.11) cancels out with another (−1)a coming from the hexagon form factor.
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Figure 13. Three distinct graphs contributing to the four-point function of 20′ operators. Here

we just put numbers i to denote the operator Oi. Dashed lines are the zero-length bridges on which

we insert a mirror magnon (denoted by a red dot).

The expressions for other channels can be obtained by replacing the cross ratios with

appropriate ones.

5.2 Simplest example: four 20′

We first compute the simplest four-point function: the four-point function of length 2 BPS

operators, also known as 20′ operators. For this correlation function, there are only three

distinct planar graphs as depicted in figure 13. To apply the hexagonalization, we split

them into four hexagons by adding dashed lines shown in the figure. These lines denote

zero-length bridges and the one-loop correction comes from adding a mirror magnon on

these lines.

The contribution from each channel can be computed straightforwardly using the in-

tegrand (5.14). For instance, two channels (inside and outside the square) in the graph

(1243) produce the same contribution and their sum reads

2Mz,α ≡ 2

∞∑
a=1

∫
dv

2π
int1-4

a (v)

= g2
[
2(z + z̄)− (α−1 + ᾱ−1)(zz̄ + αᾱ)

]
F (1)(z, z̄) .

(5.15)

Here F (1) is the so-called one-loop conformal integral,

F (1)(z, z̄) ≡
2Li2(z)− 2Li2(z̄) + log zz̄ log 1−z

1−z̄
z − z̄

(
=
x2

13x
2
24

π2

∫
d4x5

x2
15x

2
25x

2
35x

2
45

)
, (5.16)

which satisfies the following properties:

F (1)(1− z, 1− z̄) = F (1)(z, z̄) , F (1)(1/z, 1/z̄) = zz̄F (1)(z, z̄) ,

F (1)
(
z/(z − 1), z̄/(z̄ − 1)

)
= (1− z)(1− z̄)F (1)(z, z̄) .

(5.17)

The contribution from other graphs can be obtained by replacing the cross ratios appro-

priately. Namely, we make the transformation18 z → 1 − z for the graph (1423), and the

transformation z → z/(z − 1) for the graph (1234).

18Of course we also make the same transformations to other cross ratios z̄, α and ᾱ.
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Figure 14. Flip invariance of hexagonalization. Whenever there exists a zero-length bridge, we

can cut a correlation function in several different ways. They are related by the flip transformation,

which flips the cross ratio from z to 1/z. For BPS four-point functions, the flip invariance can be

easily verified.

To compute the full one-loop four-point function, we dress these mirror contributions

by the tree-level correlator for each graph and sum them up. This leads to an expression19

G
(1)
2222 = 2

(
d12d24d34d13Mz,α + d13d23d24d14M1−z,1−α + d12d23d34d14M z

z−1
, α
α−1

)
= −2g2R̃1234F

(1)(z, z̄) ,
(5.18)

where R̃1234 is a universal prefactor,20 given by

R̃1234 =
(z − α)(z − ᾱ)(z̄ − α)(z̄ − ᾱ)

zz̄(1− z)(1− z̄)
d2

13d
2
24 . (5.19)

The result (5.18) perfectly matches the one computed from perturbation theory [27–29].

It is worth noting that the factor R̃1234, which is manifestation of supersymmetry, comes

about only after the summation over different channels. This suggests that supersymmetry

is realized in a rather nontrivial manner in the integrability approach. See also section 4.5.

Before moving to more general correlators, let us make two important comments on the

result we got. The first comment is about the flip invariance: as shown in figure 14, there

are several different ways to cut the four-point function into hexagons. Following the ter-

minology for the Fock coordinates of the Teichmuller space, we refer to the transformation

which relates two different cuttings as the flip transformation. After the flip transforma-

tion, the relevant cross ratios change from z to 1/z. However using (5.17) it is easy to

check that the mirror correction is invariant under this change; namely Mz,α =Mz−1,α−1 .

This serves as an important consistecy check of our formalism.

The second comment is about the relation to the operator product expansion. In the

OPE limit z, z̄ → 0, the mirror correctionsMz,α andM z
z−1

, α
α−1

admit a natural expansion.

To see this, we just need to recall that the integrand for the a-th bound state (for Mz,α)

19As given in (4.3), G2222 denotes a connected part of the correlation function with trivial combinatorial

factors stripped off. In our normalization, the tree-level result reads G
(0)
2222 = d12d24d34d13 + d13d23d24d14 +

d12d23d34d14.
20It is related to the universal rational prefactor R1234 defined in [26] as R̃1234 = R1234/x

2
13x

2
24.
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contains a factor
e−iv log zz̄

(v2 + a2/4)
, (5.20)

which leads to |z|a upon taking a residue. This shows that, for such mirror corrections,

expanding the OPE series corresponds to truncating the sum over the bound states. On

the other hand, the remaining contribution M1−z,1−α does not have a natural expansion

in this limit. This is not so problematic as long as we care only about first few terms in

the OPE series at weak coupling since the contribution from this graph is non-singular and

suppressed in that limit. It would be an interesting future problem to extensively study

the connection between the OPE and our approach, especially at finite coupling.

5.3 General four BPS correlators

We now consider general four-point functions of BPS operators at one loop. A particularly

simple expression for such correlators can be found in [26], which reads in our conventions

as follows:

GL1L2L3L4 = −2g2R̃1234F
(1)(z, z̄)

∑
{bij}

 ∏
1≤i<j≤4

(dij)
bij

 . (5.21)

Here Li is the length of the i-th operator, and the nonnegative integers bij are the set of

solutions to the relations

bij = bji , and
∑
j 6=i

bij = Li − 2 . (5.22)

In what follows, we will reproduce the expression (5.21) from the integrability side.

As should be clear by now, what we need to do is to enumerate all planar 1EI graphs

with zero-length bridges and dress them by the mirror-particle corrections. To avoid being

non-1EI, graphs must contain one of the following three combinations of propagators:21

d12d24d34d13 , d13d23d24d14 , d12d23d34d14 . (5.23)

Let us first consider the graphs with d12d24d34d13, which receive a mirror correction Mz,α.

Each such a graph is characterized by the numbers of the remaining Wick contractions,

which are nothing but the nonnegative integers bij satisfying the condition (5.22). How-

ever, not all such graphs can receive a one-loop correction since, among those, there are

graphs which do not have zero-length bridges. The ones without zero-length bridges are

completely connected graphs, namely the graphs in which every pair of points is connected

by at least one propagator. Completely connected graphs contain a propagator factor

d12d13d14d23d24d34 and are characterized by a set of nonnegative integers cij satisfying

cij = cji , and
∑
j 6=i

cij = Li − 3 . (5.24)

21If a graph contains more than one of the three combinations, it clearly has no zero-length bridges.
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Figure 15. Explanation for the combinatorial factor in (5.25). When there are two zero-length

bridges as in (a), a graph has two mirror channels. On the other hand, if there is only one zero-

length bridge, we can draw two inequivalent graphs ((b) and (c) in the figure) for a given bij . In

both cases, we obtain a factor of 2 as given in (5.25).

All in all, the contribution from the graphs with d12d24d34d13 reads

t1243 ≡ 2Mz,αd12d24d34d13

∑
{bij}

 ∏
1≤<j≤4

(dij)
bij

− d14d23

∑
{cij}

 ∏
1≤<j≤4

(dij)
cij

 .
(5.25)

The origin of the factor of 2, highlighted in red, is explained in figure 15.

To obtain a full correlator, we should also include graphs which contain the other two

combinations in (5.23). The contributions from these graphs can be computed from the

previous one by a simple relabelling of the indices. For instance, the contribution from

graphs with d13d23d24d14 is given by

t1324 ≡ 2M1−z,1−αd13d23d24d14

∑
{bij}

 ∏
1≤<j≤4

(dij)
bij

− d12d34

∑
{cij}

 ∏
1≤<j≤4

(dij)
cij

 .
(5.26)

To sum up three contributions, we use the following identity, which can be verified by the

straightforward computation:

Mz,α +M1−z,1−α +M z
z−1

, α
α−1

= 0 . (5.27)

This identity allows us to get rid of the terms with
∑
{cij}, and the final result reads

t1243+t1324+t1234=2
(
d12d24d34d13Mz,α+d13d23d24d14M1−z,1−α+d12d23d34d14M z

z−1
, α
α−1

)
×
∑
{bij}

 ∏
1≤i<j≤4

(dij)
bij

 . (5.28)

Using the equality (5.18), we can confirm that (5.28) matches precisely the result (5.21).

5.4 Mellin-like representation

The integrability result is expressed in terms of mirror states, which have imaginary eigen-

values of the dilatation operator (see (4.19)). This feature is reminiscent of the Mellin
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Figure 16. The contour for the Mellin-like representation. The original contour C encircles all the

positive integers. By deforming the contour, one can recast it as a contour along the imaginary axis.

representation for conformal correlators: in the Mellin representation, the correlation func-

tion is expressed as integrals along the imaginary axis of Mellin variables, which can be

interpreted as analytically-continued conformal dimensions. Here, with the hope of shed-

ding light on this analogy, we will rewrite the result from integrability into an integral

which is akin to (but different from) the Mellin representation.

Let us consider the one-loop mirror integral,

Mz,α =

∞∑
a=1

∫
dv

2π

2g2(cosφ− coshϕ cos θ) sin aφ

sinφ

a

(v2 + a2/4)2
e−iv log zz̄ . (5.29)

To make a connection with the Mellin representation, we convert the sum over a into an

integral. For this purpose, we split the factor sin aφ into two parts, (eiaφ − e−iaφ)/2i and

rewrite them as∑
a

eiaφ• →
∮
C
du

eiφu

1− e2πiu
• ,

∑
a

e−iaφ• →
∮
C
du

e−iφu

e−2πiu − 1
• . (5.30)

where the contour C is defined in figure 16. Now by deforming the contour, we can express

it as an integral along the imaginary axis of u. The result can be combined into a single

integral,

Mz,α =
g2(cosφ− coshϕ cos θ)

πi sinφ

∫ i∞

−i∞
du

∫ ∞
−∞

dv
eiφu

1− e2πiu

u

(v2 + u2/4)2
e−iv log zz̄ . (5.31)

Changing the integration variable as u→ 2u and v → −iv, we can rewrite it as

Mz,α =
4g2(cosφ− coshϕ cos θ)

π sinφ

∫ i∞

−i∞
du

∫ i∞

−i∞
dv

e2iφu

e4πiu − 1

u

(u2 − v2)2
e−v log zz̄ (5.32)

=
g2(cosφ−coshϕ cos θ)

πi sinφ

∫ i∞

−i∞
du

∫ i∞

−i∞
dv

zu−v z̄−(u+v)

(u−v)2(u+v)2

[
Γ[1+2u]Γ[1−2u]

Γ[1
2 +2u]Γ[1

2−2u]
−2iu

]
,

where we used the relation

u

e4πiu − 1
=

1

4i

[
Γ[1 + 2u]Γ[1− 2u]

Γ[1
2 + 2u]Γ[1

2 − 2u]
− 2iu

]
. (5.33)
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Then, by redefining the integration variables from (u, v) to (s, t) = (u − v,−(u + v)), we

arrive at

Mz,α = c(z, α)

∫ i∞

−i∞
ds

∫ i∞

−i∞
dt
zsz̄t

(st)2

[
Γ[1 + (s− t)]Γ[1− (s− t)]
Γ[1

2 + (s− t)]Γ[1
2 − (s− t)]

− i(s− t)

]
, (5.34)

with

c(z, α) =
g2(cosφ− coshϕ cos θ)

4πi sinφ
= g2 2(z + z̄)− (α−1 + ᾱ−1)(zz̄ + αᾱ)

8π(z − z̄)
. (5.35)

The representation (5.34) appears similar to the Mellin representation. It is a double

integral along the imaginary axis and the OPE series is generated by taking the residues of

the integrand. However there are also important differences: unlike the Mellin representa-

tion, the expression (5.34) is given by the Mellin transform of z and z̄. This makes it harder

to study the crossing symmetry, namely the transformation property under z → 1− z. To

some extent, this is already expected since (5.34) is the result for just one channel, and to

obtain a full correlator, one has to sum different channels. It would be interesting to see if

there is a natural way to combine contributions from different channels. If so, it may help

us to understand the Mellin representation in more physically terms.

6 One Konishi and three 20′s

We now test our proposal for physical magnons by studying a correlation function of one

Konishi and three 20′ operators. More precisely, we consider a Konishi operator in the

SL(2)-sector,

K ∝ Tr
(
D2(Y1 · Φ) (Y1 · Φ)

)
− 2Tr

(
D(Y1 · Φ)D(Y1 · Φ)

)
D = (∂2 − i∂3)/2 , (6.1)

and put all the operators on the x2-x3 plane. As explained in appendix C, this correlation

function can be computed by the OPE decomposition of a five-point function studied in [29].

The connected part of this correlator reads

〈K(x1)O20′(x2)O20′(x3)O20′(x4)〉|connected =
(
√

2)4

N2
c

GK222(xi, Yi) (6.2)

where (
√

2)4 is the usual length-dependent factor (see (4.3)) and GK222(xi, Yi) is given by

GK222(xi, Yi) = d12d23d34d41

(
x+

34

x+
13x

+
14

)2+γ/2(
x−34

x−13x
−
14

)γ/2
f(z, α) . (6.3)

with γ being the anomalous dimension of the Konishi operator. At weak coupling, f(z, α)

can be expressed in terms of conformal integrals as

f(z, α) =
1√
6

[(
1

z2
+

(1− z)3(1− z̄)

z2(1− α)(1− ᾱ)
+
zz̄

αᾱ

)
+ g2

(
c0 + c1F

(1)(z, z̄) + c2∂zF
(1)(z, z̄) + c3∂

2
zF

(1)(z, z̄)
)

+O(g4)

]
,

(6.4)
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where c0-c3 are given by

c0 = −6

(
1

z2
+

(1− z)3(1− z̄)

z2(1− α)(1− ᾱ)
+
zz̄

αᾱ

)
,

c1 =
2(1− z)3 (1− z̄) (z̄ − 3z − α− ᾱ+ 4)

z2(1− α) (1− ᾱ)
− 2zz̄ (z̄ + 3z − α− ᾱ− 3)

αᾱ
+

2(2− 6z + 3z2)

z2
,

c2 =
2(1− z)

z2

[
7z − 8z2 − 3z̄ + 6zz̄ +

z3z̄ (3z − z̄ − 2α− 2ᾱ)

αᾱ

−(1− z)2 (1− z̄) (3z̄ + z (−11 + 9z − 5z̄ + 2α+ 2ᾱ))

(1− α) (1− ᾱ)

]
,

c3 = (1− z)2

[
6(z − z̄)

z

(
1 +

(1− z)2(1− z̄)

(1− α)(1− ᾱ)

)
− (z − α)(z − ᾱ)(z̄ − α)(z̄ − ᾱ)

αᾱ(1− α)(1− ᾱ)

]
. (6.5)

In what follows, we reproduce (6.4) from integrability.

6.1 Asymptotic part

The asymptotic contribution can be computed by performing a sum over partitions for

each connected graph. In the case at hand, there are three graphs as shown in figure 17.

To compute the contribution from each graph, one needs to cut them into hexagons. There

are several different ways to achieve this, but the simplest way is the one shown in figure 17,

in which the Konishi operator is cut only into two segments. In this way of cutting, the

cross ratios appearing in the asymptotic part are all 1. Thus, there is no extra cross-ratio

dependent weight and the sum over partition reduces to the one for the structure constant,

A`=1 =
∏
i<j

h(ui, uj)
∑

α∪ᾱ={u}

(−1)|ᾱ|
∏
j∈ᾱ

eip(uj)`
∏

i∈α,j∈ᾱ

1

h(ui, uj)
, (6.6)

where ` = 1 and h(u, v) is the SL(2) hexagon form factor given in appendix B. For the

Konishi state, the rapidities are given by {u} = {u,−u} with

u =
1

2
√

3
+

4g2

√
3

+O(g4) . (6.7)

To obtain the full result, we need to multiply the space-time dependences coming from

bridges and magnons, and sum over graphs. The result reads

〈KO20′O20′O20′〉|asym = (6.8)

=

√ ∏2
i=1 µ(ui)

det ∂uiϕj
∏
i<j S(ui, uj)

A`=1︸ ︷︷ ︸
=C•◦◦123 /C

◦◦◦
123

[
d12d23d34d41

(
x+

24

x+
12x

+
14

)2+ γ
2
(

x−24

x−12x
−
14

) γ
2

+d12d24d34d13

(
x+

23

x+
12x

+
13

)2+ γ
2
(

x−23

x−12x
−
13

) γ
2

+ d13d23d24d41

(
x+

34

x+
13x

+
14

)2+ γ
2
(

x−34

x−13x
−
14

) γ
2

]
.

Here γ is the anomalous dimension of the Konishi operator and the factor denoted in red

comes from bridges while the factor denoted in blue comes from (physical) magnons. The
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Figure 17. Graphs for the correlator of a Konishi and three 20′s. Here as well, dashed lines denote

zero-length bridges. In the leftmost figure, we depicted the mirror (red) and the physical (blue)

particles. As is clear from the figure, the mirror particle only interacts with the physical particles

which are in the same hexagon.

factor with a square root accounts for the normalization of the Konishi state, where ϕj
defined by

eiϕj ≡ eipjL
∏
k 6=j

S(uj , uk) . (6.9)

with S(u, v) being the S-matrix in the SL(2) sector, and L = 2.

Using the results from integrability [7],

γ = 12g2 +O(g4) , C•◦◦123/C123 =
1√
6
−
√

6g2 +O(g4) , (6.10)

we can rewrite (6.8) as

〈KO20′O20′O20′〉|asym = d12d23d34d41

(
x+

34

x+
13x

+
14

)2+γ/2(
x−34

x−13x
−
14

)γ/2
fasym (6.11)

with

fasym =

(
1√
6
−
√

6g2

)[
1

z2+6g2 z̄6g2
+

(1− z)3+6g2(1− z̄)1+6g2

z2+6g2 z̄6g2(1− α)(1− ᾱ)
+
zz̄

αᾱ

]
+O(g4) . (6.12)

At tree level, fasym matches precisely the OPE data (6.4) while at one loop it gives

f (1)
asym =−

√
6g2

 1

z2
+

(1− z)3(1− z̄)

z2(1− α) (1− ᾱ)
+
z̄z

αᾱ
+

(1− z)3(1− z̄) log
∣∣∣ z

1−z

∣∣∣2
z2(1− α) (1− ᾱ)

+
log |z|2

z2

 .
(6.13)

6.2 Finite-size correction

To reproduce the full answer at one loop, we also need to compute the mirror-particle

correction.

For each graph in figure 17, there are two mirror channels which contribute at one loop.

For definiteness, let us first focus on the channel inside a square in the graph (1243). As is
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clear from figure 17, the mirror particle only talks to a part of physical magnons which are

in the same hexagon.22 As a result, each term in the sum receives different mirror-particle

corrections. By making use of mirror transformations, we can compute the integrand as

int2-3
a (v) = µa(v

γ)e−iv log zz̄ (6.14)

×
∏
i<j

h(ui, uj)
∑

α∪ᾱ={u}

(−1)aT̃a(v
−3γ ;α)

∏
j∈α

ha(uj , v
−3γ)

∏
j∈ᾱ

(−eip(uj)`)
∏

i∈α,j∈ᾱ

1

h(ui, uj)
.

Here ` = 1 and ha(u, v
−3γ) and T̃a(v

−3γ ;α) are the dynamical part and the matrix part of

the interaction between physical and mirror magnons.23

T̃a(v
−3γ ;α) is essentially a twisted transfer matrix with twists given by cross ratios:

T̃a(v
−3γ ; u) ∼ Tra

[
(−1)F e2ϕJ+iφL̃+iθR̃

∏
ui∈u
S1a(ui, v

−3γ)

]
, (6.15)

Here S1a(u, v) is the psu(2|2) S-matrix (without the dynamical phase). To be precise,

however, one needs to dress the states with Z markers as explained in section 5.1. The

effects of Z markers are of two folds: first they produce the dependence on the cross ratio

|α/z| as discussed in section 5.1. Second, in the presence of other magnons, the markers

bring about an extra phase factor as shown in [7]. By taking into account these effects, we

can write down T̃a(v
−3γ ; u) at weak coupling as (see appendix D for details),

T̃a(v
−3γ ; u) =

(−1)a

Q[−1−a]

ei(aφ+P )Q[a+1] +

a
2∑

n=1−a
2

e−2inφQ[−2n−1]

− cos θ
(
eϕ+iP + e−ϕ

) a−1
2∑

n= 1−a
2

e−2inφQ[−2n] + eiP

a
2
−1∑

n=1−a
2

e−2inφQ[−2n+1]

 ,
(6.16)

with Q(v) =
∏
ui∈u(v − ui) and f [n] = f(v + in/2).

It turns out that the other channel gives exactly the same contribution. Adding up two

contributions and substituting the rapidities of the Konishi state, we obtain the following

mirror correction (divided by A`=1) for the graph (1243):

2MK
z,α ≡

2

A`=1

∞∑
a=1

∫ ∞
−∞

dv

2π
int2-3

a (v)=g2m1 log |z|2 +m2 log |1− z|2 +m3F
(1)(z, z̄)

(z − z̄)2
,

(6.17)

22By contrast, in three-point functions, all physical particles interact with the mirror particle since there

are only two hexagons and physical particles always share one hexagon with the mirror particle. This feature

helps to simplify the computation of three-point functions since one can make use of the zero-momentum

condition to get rid of phase factors
∏
j e
ip(uj). On the other hand, for four-point functions, one cannot use

such simplification and has to keep track of phase factors in order to get the correct results.
23The factor (−1)a comes from the hexagon form factor. More precisely, it arises when we perform the

crossing transformations to the mirror particle living in the second hexagon.
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with

m1 = −
z2m2 + z

[
2z̄(z̄ + α+ ᾱ)− z(10z̄ + α+ ᾱ) + z2

(
4 + z̄(α−1 + ᾱ−1)

)]
(1− z)2

,

m2 = (α−1 + ᾱ−1)

[
z

2
(z̄2 + αᾱ)− 3z̄

2
(z2 + αᾱ)

]
−
(
3z2 − 10zz̄ + 3z̄2

)
,

m3 = 2
(
z3 + z̄3

)
− z̄

(
α−1 + ᾱ−1

) (
z3 + z̄αᾱ

)
.

(6.18)

Summing up all the graphs, we finally obtain the finite-size correction at one loop,

〈KO20′O20′O20′〉|mirror=2
C•◦◦123

C◦◦◦123

[
MK

z
z−1

, α
α−1

d12d23d34d41

(
x+

24

x+
12x

+
14

)2+ γ
2
(

x−24

x−12x
−
14

) γ
2

+MK
z,α d12d24d34d13

(
x+

23

x+
12x

+
13

)2+ γ
2
(

x−23

x−12x
−
13

) γ
2

(6.19)

+MK
1−z,1−α d13d23d24d41

(
x+

34

x+
13x

+
14

)2+ γ
2
(

x−34

x−13x
−
14

) γ
2

]
,

which leads to

f
(1)
mirror =

2√
6

[
1

z2
MK

z
z−1

, α
α−1

+
(1− z)3(1− z̄)

z2(1− α) (1− ᾱ)
MK

z,α +
z̄z

αᾱ
MK

1−z,1−α

]
. (6.20)

Remarkably, a sum of f
(1)
asym and f

(1)
mirror precisely matches the OPE result (6.4)! This is

another strong support for our proposal.

Let us make two remarks before closing this section: in [29], several other five-point

functions, which involve longer BPS operators, were computed. By the OPE expansion of

those results, we can compute correlators of one Konishi and three longer BPS operators.

We confirmed that they also match the integrability predictions. See appendix E for details.

For BPS correlators, we showed that the integrability result is “flip-invariant”; namely it

is independent of how we cut a four-point function into hexagons. In appendix F, we show

that the flip invariance holds also in the presence of physical magnons. It is an important

consistency check of our construction.

7 Ladder integrals from integrability

As we have seen in section 5, the one-loop conformal integral can be reconstructed from

the integration of the mirror momentum and the summation over the bound-state index.

It provides an alternative representation of the conformal integral, which can be recast into

a Mellin-like representation (see section 5.4).

Such nice properties seem to persist at higher loops. To get a glimpse of it, let us

consider the L-loop contribution from a one-particle mirror correction with the bridge

length L−1. Since the length of the bridge is the maximum possible for a given loop order,

we can substitute quantities in the integrand (5.13) with their leading order expressions:

int(L)
a (v) =

2g2L(cosφ− coshϕ cos θ) sin aφ

sinφ

a

(v2 + a2/4)1+L
e−2iv log |z| +O(g2(L+1)) . (7.1)
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Figure 18. Examples of ladder integrals: L = 2 (left) and L = 3 (right). The propagators are

denoted by the solid lines and the dual graph is denoted by the dashed lines. The dual graph has a

shape of a ladder diagram. (In the context of scattering amplitudes, they correspond to “four-mass”

ladder diagrams.)

By performing the integral, we obtain∫ ∞
−∞

dv

2π
int(L)

a (v) =
g2L(cosφ− coshϕ cos θ)

i sinφ

[
L∑
k=0

(−1)k(2L− k)!

L!(L− k)!k!

logk(zz̄)

a2L−k (za − z̄a)

]
.

(7.2)

We then perform a sum over a to get

∞∑
a=1

∫ ∞
−∞

dv

2π
int(L)

a (v) = g2L 2(z + z̄)αᾱ− (α+ ᾱ)(zz̄ + αᾱ)

2αᾱ
F (L)(z, z̄) , (7.3)

where F (L) is given by

F (L)(z, z̄) =
1

z − z̄

[
L∑
k=0

(−1)k(2L− k)!

L!(L− k)!k!
logk(zz̄)(Li2L−k(z)− Li2L−k(z̄))

]
. (7.4)

What is interesting is that the function F (L) coincides with the so-called L-loop conformal

integral, which is obtained in [30] by computing a diagram given in figure 18:

(Figure 18) =
F (L)(z, z̄)

π2Lx2
13x

2
24x

2(L−1)
14

. (7.5)

Following the argument in section 5.4, we can also recast (7.2) into a Mellin-like represen-

tation:

F (L) =
−1

2(z − z̄)

∫ i∞

−i∞
ds

∫ i∞

−i∞
dt

zsz̄t

(st)L+1

[
Γ[1 + (s− t)]Γ[1− (s− t)]
Γ[1

2 + (s− t)]Γ[1
2 − (s− t)]

− i(s− t)

]
. (7.6)

This provides an example where integrability makes a connection with perturbation

theory. Typically the expressions coming from integrability have less number of integration

variables as compared to the ones obtained directly from Feynman diagrams. It would be

an interesting future problem to study multi-particle mirror corrections and see if they re-

produce more complicated conformal integrals, such as Easy and Hard integrals [31], which
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appear at three loops [32]. It would be even nicer if we can use integrability for comput-

ing/predicting integrals at four loops and beyond [33] which have never been evaluated.

Even more amusingly, we found that subleading corrections to (7.1) also produce ladder

integrals but this time with higher transcendentality. For instance, O(g2(L+1)) correction

can be computed by expanding (5.13) as

g2int(L)
a (v)

(
2iv log zz̄

v2 + a2/4
+

8v2 − a2

(v2 + a2/4)2
+ (L− 1)

2(v2 − a2/4)

(v2 + a2/4)2

)
. (7.7)

By integrating by parts, one can show that this gives a ladder integral with one trascenden-

tality higher, F (L+1). Such a pattern seems to persist at least for the first few subleading

corrections. This suggests that the full non-perturbative integral (5.13) resums all the

ladder integrals. Presumably such an integral would be an important building block for

finite-coupling correlators and studying its analytic property will allow us to extract inter-

esting nonperturbative physics.

Before drawing to an end, let us mention two interesting related works in this context:

one is a recent work [34–36], in which they used a double-scaling limit of strongly twisted

and weakly coupled N = 4 SYM theory to extract, using AdS/CFT integrability tools, the

explicit results for particular Feynman graphs, such as wheel graphs. The other is [37], in

which the ladder integral is computed using the conformal quantum mechanics. All these

results are pointing towards some deeper relation between integrability and perturbation.

It would be worth trying to uncover it. In particular, it would demystify the physical origin

of mirror particles.

8 Conclusion and prospects

In this paper, we proposed a framework to study correlation functions of single-trace op-

erators in planar N = 4 SYM. The method proceeds in two steps: first we decompose the

correlation functions into so-called hexagon form factors introduced in [7]. We then glue

them back together with appropriate weight factors, which are determined by the symme-

try. As shown in several examples at one loop, it reproduces the full four-point function

including the space-time and the R-symmetry dependence.

An immediate next step is to study higher points/loops. It is interesting and important

to see if our proposal works also in those cases [16]. Also important is to study four-point

functions with more than one non-BPS operators. At least at one loop, we can compare

them with the OPE decomposition of six- and higher-point functions [29].

Equally important would be to ask how general our formalism is. We expect that a

similar decomposition is possible for more general conformal gauge theories at large N . In

addition, it may also be applicable to 2d CFT’s.

As discussed in introduction, the OPE decomposition of higher-point functions encodes

the information of multi-trace operators. In this sense, our result is already hinting that

non-planar quantities are amenable to the integrability machinery. It would be fascinating

if we can directly construct non-planar surfaces using the hexagonalization [38]. Once we
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≏≫≏≬
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Figure 19. Hexagonalization and its dual graph. The dual graph of a hexagonalization is a ribbon

graph, which can be interpreted as an open string diagram in the mirror channel. From this point

of view, the hexagon form factor plays the role of a fundamental vertex of “mirror open strings”.

succeed, we will for the first time obtain a method to accurately compute the quantum

gravitational effects in AdS.

It is also interesting to explore the relation to the conventional OPE more in detail. In

particular, when the lengths of the operators are large, we may be able to relate our method

to the approach of [4], in which they used the combination of OPE and integrability to

study four-point functions.

Another important direction is to investigate various limits such as the strong coupling,

the Regge limit, and the near-BPS limit. In particular, it would be important to see how the

locality in AdS emerges at strong coupling [2]. It would also be interesting to reproduce a

recent beautiful conjecture on the four-point functions at strong coupling [39]. Also impor-

tant is to study the double light-cone limit [40]. All these may require the resummation of

finite-size corrections [41]. In the case of structure constants, such resummation is hindered

by the double-pole singularities in the mirror-particle integrand [42], which physically come

from the wrapping corrections to the spectrum. By contrast, for higher-point functions of

BPS operators there is no physical reason to expect such singularities. This suggests that

studying higher-point functions might be easier, although counter-intuitive it may seem.

There are also some loose ends in our story: one is the summation range of graphs and

the other is the J-charge dependence of the weight factor. They are conjectured through the

comparison with the data and there is no rigorous derivation yet. To understand them, it

would be helpful to study the roles of supersymmetry since both are somehow related to it.

Our approach is perhaps pointing towards something like “string field theory of mirror

open strings”, in which the hexagon form factor plays the role of a fundamental vertex

(see figure 19). In its current form, it appears quite different24 from conventional string

field theories, but it might be rewarding to pursue this analogy and clarify the relation

with the standard approaches. A step in this direction would be to understand flat-space

amplitudes in a similar manner.

A related question is whether we can interpret the sum over graphs as the integration

over the worldsheet moduli: for n-point functions, there are 2(n−3) unfixed bridge lengths

24The most notable difference is that our “open strings” are ending on physical closed-string states not

on boundary states.
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and the number precisely matches the dimension of the moduli space. A crucial difference

however is that the bridge lengths are all discrete whereas the moduli is continuous. It is

generally believed that the discrete lightcone quantization (DLCQ) partially discretizes the

moduli space [43, 44], but it would be desirable to understand how it works in our set-up.

Similar but different ideas are proposed in [45, 46], which are also quite inspirational.

The integrability approach to the AdS/CFT correspondence is sometimes regarded as

a mere technical tool. It may be true that the progress so far has been technical, at least

to some extent. However, with the method to study general correlation functions at hand,

we truly believe that the time is ripe for asking more physical questions and using it to

sharpen our understanding of quantum gravity and string theory.
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A Change of conformal frames and crossing rule

Here we revisit a crossing rule, first conjectured in [7] and worked out more in detail

in [10], from the viewpoint of the symmetry. The basic strategy is to study the effect of the

frame-changing transformation r = e−Ke−T on the magnon-symmetry group psu(2|2)2.

Let us consider a three-point function with magnons in the operator O1. The frame

suitable for describing this situation is the frame 1 in figure 9, in which the psu(2|2)2

symmetry of O1 is realized in a standard way. On the other hand, if we want to analyze

this configuration from the point of view of O2, we should use the frame 2 in figure 9,

which is obtained from the frame 1 by the transformation r. Under this transformation,

the magnons in O1 transform as

|χAȦ(u)〉1 → |χ̃AȦ(u)〉2 ≡ r|χAȦ(u)〉1 (A.1)

where the subscripts 1 and 2 signifies the frame in which the state is defined. To understand

the property of the state |χ̃AȦ〉2, we consider the action of the psu(2|2)2 generators of the
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frame 2, which can be expressed using (A.1) as

g|χ̃AȦ(u)〉2 = gr|χAȦ(u)〉1 = r
[
(r−1gr)|χAȦ(u)〉1

]
g ∈ psu(2|2)2 . (A.2)

Under the conjugation r, the generators of psu(2|2) transform as follows:

r−1Lαβ r = L̇αβ+i

(
εαγδγ̇β+

1

2
δαβε

γγ̇

)
Kγγ̇ , r−1L̇α̇β̇ r = Lα̇β̇−i

(
εα̇γδγ̇

β̇
+

1

2
δα̇β̇ε

γγ̇

)
Kγγ̇ ,

r−1Rab r = Ṙȧḃ−
(
εaċδcb +

1

2
δabε

ċc

)
Rċc , r−1Ṙȧḃ r = Rab+

(
εaċδcb +

1

2
δabε

ċc

)
Rċc ,

r−1Qαa r = iεαβ̇εaḃṠ
ḃ
β̇+iεαβ̇Sβ̇a , r−1Ṡȧα̇ r = −iεȧbεα̇βQβb−εȧbSα̇b ,

r−1Saα r = iεaḃεαβ̇Q̇
β̇
ḃ−ε

aḃSḃα , r−1Q̇α̇ȧ r = −iεα̇βεȧbSbβ−iεα̇βSȧβ . (A.3)

As can be seen from these relations, the conjugation by r generates extra terms denoted in

blue which are not inside psu(2|2)2. However, these terms should be harmless in practice

since they are all “lowering” generators of PSU(2, 2|4), and the net effect of their action

on the Bethe states (with finite rapidities) is trivial owing to the highest weight property

of the on-shell Bethe states.

As far as the bosonic generators are concerned, the conjugation simply swaps two

psu(2|2)’s. On the other hand, the action of the fermionic generators is more complicated

since the roles of Q’s and S’s are also swapped. For instance, from (A.3) and (A.2), we

can read off the action of Q and S as

Qαa|χ̃Aḃ(u)〉 = i(−1)|A|cδḃa|χ̃Aα(u)〉 , Qαa|χ̃Aβ̇(u)〉 = i(−1)|A|dεαβ̇εab|χ̃Ab(u)〉 ,

Saα|χ̃Aḃ(u)〉 = i(−1)|A|aεaḃεαβ |χ̃Aβ(u)〉 , Saα|χ̃Aβ̇(u)〉 = i(−1)|A|bδβ̇α|χ̃Aa(u)〉 . (A.4)

Here a-d are the ones in the string frame [47] and |A| = 0 for bosonic indices (a’s and

b’s) while |A| = 1 for fermionic indices (α’s and β’s). By comparing these transformations

(and the corresponding ones for psu(2|2)R) with the standard transformation properties of

a magnon in O2, we conclude that |χ̃AȦ(u)〉 can be identified with an excitation in O2 as

|χ̃aȧ(u)〉 = −|χȧa(u−2γ)〉2 , |χ̃aα̇(u)〉 = −|χα̇a(u−2γ)〉2 ,
|χ̃αȧ(u)〉 = |χȧα(u−2γ)〉2 , |χ̃αα̇(u)〉 = −|χα̇α(u−2γ)〉2 .

(A.5)

The relation physically means that having a magnon χ(u) in the operator O1 is equivalent

to having a magnon χ(u−2γ) in the operator O2, up to signs and the change of indices.

This nicely matches the crossing rule given in [7, 10].

B Weak coupling expansions

In this appendix, we collect weak-coupling expressions of several quantities which are useful

for the main text and future purposes.
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In what follows, u = g(x+1/x), v = g(y+1/y), f± = f(u±i/2) and f [a] = f(u+ia/2).

The energy and the momentum of a physical magnon are given by

eip(u) ≡ x+

x−
=
u+ i/2

u− i/2

(
1 +

2iug2

(u2 + 1/4)2

)
+O(g4) ,

E(u) ≡ 1

2
+
g

i

(
1

x−
− 1

x+

)
=

1

2
+

g2

u2 + 1/4
+O(g4) .

(B.1)

On the other hand, the energy and the momentum in the mirror channel are given by

e−Ẽa ≡ 1

x[+a]x[−a]
=

g2

u2 + a2

4

1 +
2g2

(
u2 − a2

4

)
(
u2 + a2

4

)2 + g4
5
(
u2 − a2

4

)2
− 3a2u2(

u2 + a2

4

)4

+O(g8) ,

p̃a ≡ −i
[
a

2
+
g

i

(
1

x[−a]
−x[+a]

)]
=u

1− 2g2

u2+ a2

4

−
2g4

(
u2− 3a2

4

)
(
u2+ a2

4

)3

+O(g6) , (B.2)

The measures for physical and mirror particles are given by

µa(u) =
1

a
− ag2(

u2 + a2

4

)2 +
ag4(a2 − 8u2)(
u2 + a2

4

)4 +O(g6) ,

µa(u
γ) =

ag2(
u2 + a2

4

)2 −
ag4(a2 − 8u2)(
u2 + a2

4

)4 +
ag6(a4 − 24a2u2 + 48u4)(

u2 + a2

4

)6 +O(g8) .

(B.3)

The S-matrix in the SL(2) sector is given by

S(u, v) =
u− v + i

u− v − i

(
1− 1

x−y+

1− 1
x+y−

)2
1

σ2(u, v)
=
u− v + i

u− v − i

[
1 +

2ig2(u− v)(
u2 + 1

4

) (
v2 + 1

4

)]+O(g4) ,

(B.4)

where σ(u, v) is the BES dressing phase [48]. For the computation involving a Konishi

operator, we use the following (fused) hexagon form factors:

h(u, v) =
x− − y−

x− − y+

1− 1
x−y+

1− 1
x+y+

1

σ(u, v)
=

u− v
u− v − i

(
1 +

g2i(u− v + i)(
u2 + 1

4

) (
v2 + 1

4

))+O(g4) ,

h1a(u, v
−γ) =

u− i
2

u− v − i(a+1)
2

+O(g2) ,

h1a(u, v
−3γ) =

1

ha1(vγ , u)
=
u− v + i(a+1)

2

u+ i
2

+O(g2) ,

h1a(u, v
−5γ) =

1

ha1(v−γ , u)
=

(
u+ i

2

)2
u− i

2

u− v + i(a−1)
2(

u− v − i(a−1)
2

)(
u− v + i(a+1)

2

) +O(g2) (B.5)

Here the subscripts ab denote the bound-state indices of the first and the second particle

and we used the important relation h(u4γ , v) = 1/h(v, u) when rewriting the results.
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C OPE of five-point functions

Here we sketch how to obtain correlators with a Konishi operator by the OPE decomposi-

tion of higher-point functions.

We start with a (n + 1)-point function of BPS operators. Since we want a Konishi

operator in the SL(2) sector, we place all the operators on the x2-x3 plane. Thus the

positions of the operators are characterized by sets of holomorphic and anti-holomorphic

coordinates (x+ = x1 + ix2, x− = x1 − ix2):

On(x+
n , x

−
n ) . (C.1)

We furthermore take two of such operators to be

O1 ∝ Tr
(
ZX

)
, On+1 ∝ Tr

(
ZX̄

)
. (C.2)

By bringing O1 and On+1 close to each other, we obtain the OPE series [49],

O1(0, 0)On+1(w+, w−) =
cBPS

w+w−

[
OBPS +

1

2

(
w+∂+ + w−∂−

)
OBPS (C.3)

+
1

6

(
(w+)2∂2

+ + w+w−∂+∂− + (w−)2∂2
−
)
OBPS + · · ·

]
+ cKonishi

w+

w−
(
w+w−

)γ/2
K + · · ·

where ∂± = (∂2∓i∂3)/2, K denotes the Konishi operator and γ is the anomalous dimension

of the Konishi operator. cBPS is the structure constant for the BPS operator

OBPS ∝ Tr
(
Z2
)
, (C.4)

which (in appropriate normalization) is cBPS =
√

2 while cKonishi is the structure constant

for the Konishi operator, given by cKonishi = (1/(2
√

3))−
√

3g2. Inserting this series into a

correlation function, we obtain the relation

〈O1 · · · On+1〉 =
cBPS

w+w−
〈OBPS · · · On〉+

cBPS

6

w+

w−
〈∂2

+OBPS · · · On〉+ · · ·

+ cKonishi
w+

w−
(
w+w−

)γ/2 〈K · · · On〉+ · · · .
(C.5)

Since the anomalous dimension is treated as an infinitesimal quantity at weak coupling,

(w+w−)γ/2 only appears as a series 1 + γ log(w+w−)/2 + · · · . Thus the correlator of a

Konishi operator can be obtained by taking the limit of (n+ 1)-point function, reading off

the term proportional to w+/w−, and subtracting a correlator of a descendant of the BPS

operator ∂2
+OBPS. Applying this analysis to the five-point function of 20′’s given in [29],

we obtain the expression (6.4).

D Dressed twisted transfer matrix

In this appendix, we derive twisted transfer matrices and compute their weak-coupling

expressions. To derive the results correctly, we have to take into account the effect of Z

markers.
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≄∨≵⊡⊰∩ ⊹≄∨≵⊰∩

∫
⊹≙ ∨≵⊰∩≚⊧≚⊨≙ ∨≵⊡⊰∩

∫ ⊢ ⊢ ⊢
Figure 20. Dressed basis for the mirror channel. The dressing introduced in (5.12) correspond to

adding/subtracting Z markers from scalar excitations as shown above.

For this pupose, it is convenient to take an alternative viewpoint on the finite-size

correction explained in figure 3. As we see below, the dressing by Z markers given in (5.12)

corresponds in this viewpoint to adding and subtracting Z markers appropriately from

a virtual-particle pair whenever the excitations are scalar. To illustrate the idea, let us

consider a fundamental mirror magnon. Were it not for the dressing, putting a one-particle

mirror state on the mirror edge would correspond to adding a virtual-particle pair on two

adjacent physical edges as

|D(u−γ)〉 ⊗ |D̄(uγ)〉+ |Y (u−γ)〉 ⊗ |Ȳ (uγ)〉+ · · · . (D.1)

As given in (5.12), we have to dress these states by Z markers when the excitations are

scalar. A priori, there is some ambiguity about where to insert Z markers, but the correct

one, which reproduces the weight factor (5.11), turns out to be25 (see also figure 20)

|D(u−γ)〉 ⊗ |D̄(uγ)〉+ |Z∓Y (u−γ)〉 ⊗ |Ȳ (uγ)Z±〉+ · · · . (D.2)

(As in (5.12), we need to average over two choices of signs.) Note that here we have Z±

instead of Z±1/2 as in (5.12). This is because the expression given in (5.12) is for a single

psu(2|2) whereas the real excitation is made out of two copies of psu(2|2)’s.

When there are physical magnons, the Z markers bring about two effects: one is the

extra eϕ dependence coming from Z markers.26 The other is the phase factor derived in

appendix C of [7].

By carefully taking into account these two effects, we can derive transfer matrices for

any mirror bound states. To write down the result, it is convenient to introduce generating

functions W± given by

W± =
(
1− t1±D2

)−1 (
1− t2±D2

) (
1− t3±D2

) (
1− t4±D2

)−1
(D.3)

25There are also terms with two fermions, and they are dressed with Z±1/2. However, because of the

charge conservation, those terms do not contribute to the correlators we studied in this paper.
26The precise rule is to multiply e±ϕ when the second hexagon (or the right hexagon) contains Z±. This

is because, in the conformal frame used in figure 8, the cross ratios are associated with the second hexagon

whereas the first hexagon is simply in the canonical configuration.
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with

t1± = eiφ
B(+)+R(+)−

B(−)+R(−)− , t2± = e±(iP2 +ϕ)ei(
P
2

+θ)R
(+)−

R(−)− ,

t3± = e∓(iP
2

+ϕ)ei(
P
2
−θ)R

(+)−

R(−)− , t4± = e−iφ ,

(D.4)

where D ≡ ei∂v/2, and R(±) and B(±) are given by

R(±)(v) ≡
∏
i

(x(v)− x∓(ui)) , B(±)(v) ≡
∏
i

(
1− 1

x(v)x∓(ui)

)
. (D.5)

From these generating functions, we can define the dressed twisted transfer matrix (with a

physical rapidity) as

1

2
(W+ +W−) =

∞∑
a=1

(−1)aT̃
[a−1]
a,{φ,θ,ϕ}(v)D2a . (D.6)

This yields the following explicit expression for T̃a,{φ,θ,ϕ}(v):

T̃a,{φ,θ,ϕ}= (−1)a
1∑

n=−1

fn

n∏
m=0

ei
P
2
R(+)[2m−a]

R(−)[2m−a]

a−2n
2∑

j= 2−a
2

ei(1−2j−n)φ

a−2
2∏

k=j+n

R(+)[2n−2k]B(+)[−2k]

R(−)[2n−2k]B(−)[−2k]

(D.7)

with

f−1 = 1 , f0 = −2 cos θ cosh (ϕ+ iP/2) , f1 = 1 . (D.8)

For the computation performed in section 6.2, we need a transfer matrix T̃a,{φ,θ,ϕ}(v
−3γ)

since the mirror channel is distant from the physical magnons by the 3γ transformation.

Using (D.7), we can compute the leading order expression of this object as27

T̃a,{φ,θ,ϕ}(v
−3γ) =

(−1)a

Q[−1−a]

ei(aφ+P )Q[a+1] +

a
2∑

n=1−a
2

e−2inφQ[−2n−1]

− cos θ
(
eϕ+iP + e−ϕ

) a−1
2∑

n= 1−a
2

e−2inφQ[−2n] + eiP

a
2
−1∑

n=1−a
2

e−2inφQ[−2n+1]

 ,
(D.9)

with Q being the Baxter polynomial Q(v) =
∏M
i=1(v−ui), and eiP being the total momen-

tum of physical magnons.

In appendix F, we compute an octagon by cutting it in a different way. In that

computation, we also need a transfer matrix T̃a,{φ,θ,ϕ}(v
−γ) (see appendix F for more

details). Its weak-coupling expression is given by

T̃a,{φ,θ,ϕ}(v
−γ) =

(−1)a

Q[1−a]

e−iaφQ[1−a] +

a
2
−1∑

n=−a
2

e−i(2nφ+P )Q[−2n−1]

− cos θ
(
eϕ + e−ϕ−iP

) a−1
2∑

n= 1−a
2

e−2inφQ[−2n] +

a
2
−1∑

n=1−a
2

e−2inφQ[−2n+1]

 .
(D.10)

27Because of the periodicity under 4γ, we have T̃a,{φ,θ,ϕ}(v
−3γ) = T̃a,{φ,θ,ϕ}(v

γ).
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E Correlators of Konishi and longer BPS’s

In [29], explicit expressions for several five-point functions are written down. They are given

in terms of correlators of length 2 BPS operators. For instance, the correlation function of

three length 2 operators and two length 4 operators is given (in their normalization) by

Ḡ22244(x0, x1, x2, x3, x4) = 4d2
34Ḡ22222(x0, x1, x2, x3, x4) + 16d23d24d34Ḡ2222(x0, x1, x3, x4)

+ 16d13d14d34Ḡ2222(x0, x2, x3, x4) + 16d03d04d34Ḡ2222(x1, x2, x3, x4) . (E.1)

By taking the OPE limit explained in appendix C, we can compute correlators involving a

Konishi operator. It turns out that the terms on the second line of (E.1) do not contribute

since they are non-singular in the limit x0 → x1. As a result, we obtain

ḠK244(x1, x2, x3, x4) = 4d2
34ḠK222(x1, x2, x3, x4) + 16d23d24d34ḠK22(x1, x3, x4) . (E.2)

The relation between correlators in [29] and the ones in this paper turns out to be

ḠK,{Li} =

(∏
i

Li

)
GK,{Li} . (E.3)

Therefore, we have

GK244(x1, x2, x3, x4) = d2
34GK222(x1, x2, x3, x4) + 2d23d24d34GK22(x1, x3, x4) . (E.4)

Let us now show that the result (E.4) is reproduced from integrability. Since (E.4) is

written in terms of correlators of 20′ operators, for which we have already seen a match

between perturbation and integrability, it essentially boils down to checking the combi-

natorics: for this correlator, there are five distinct graphs as shown in figure 21. The

first four receive the mirror correction: more precisely, the graphs (a) and (b) have two

mirror channels whereas the graphs (c) and (d) have only one mirror channel. Dressing

them by propagators and adding up contributions, we find that the mirror correction is

the same as the one for 〈KO20′O20′O20′〉 times an extra propagator factor d2
34. On the

other hand, as for the asymptotic part, the first three diagrams give the asymptotic part

of 〈KO20′O20′O20′〉 times d2
34. Combining these contributions we can reproduce the first

term in (E.4). It is then easy to check that the remaining asymptotic part (coming from

(d) and (e)) matches the second term, since the asymptotic part is essentially given by the

structure constant as shown in section 6.1.

We performed such analysis also for other five-point functions given in appendix A

of [29] and we found an agreement in all the cases28 shown below:

{GK244 , GK235 , GK334 , GK246 , GK336 , GK255 , GK345} . (E.5)

The correlators denoted in red receive contributions from non-1EI graphs. We confirmed

that our prescription given in section 4.5 correctly reproduces the data in such cases as well.

28For GK345, the results are consistent if the coefficient of the second term in (76) of [29] is 15 not 30.

We performed a perturbative computation for this correlator by ourselves and found that the coefficient is

indeed 15.
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Figure 21. Graphs relevant for GK244. The first three graphs give the asymptotic part of GK222

and the last two give GK22 (up to trivial propagation factors). The mirror correction comes from

the first four graphs and it matches the one for GK222.
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Figure 22. Flip invariance of an octagon with physical magnons. The red dashed lines denote

zero-length bridges along which we stitch together two hexagons. The left octagon will be denoted

by O23 whereas the right octagon will be denoted by O14.

F Flip invariance of octagon

In section 5, we have seen that the hexagonalization of the BPS four-point function is

flip-invariant; namely the result does not change if we cut the four-point function into

hexagons in a different way. In this appendix, we will show that this property holds even

for correlators involving a Konishi operator.

Showing the flip-invariance of the four-point function boils down to proving the flip-

invariance of an octagon,29 which can be obtained by gluing two hexagons along a zero-

length bridge. In what follows, we study octagons with SL(2) magnons on a physical edge

(see figure 22), since they are precisely the ones relevant for the computation of those

correlators.

The easiest way to compute such octagons is to cut them along the edge 23. In this

way of cutting, the asymptotic part is simply given by a product of hexagon form factors

29A similar object is discussed recently in the study of the lightcone string vertex [50, 51].

– 39 –



J
H
E
P
0
1
(
2
0
1
7
)
1
3
0

and the overall spacetime dependence,

O
(0)
23 =

(
x+

23

x+
12x

+
13

)Eu+M
2
(

x−23

x−12x
−
13

)Eu−M2 ∏
i<j

h(ui, uj) , (F.1)

where Eu and M are the total energy and the total number of physical magnons respec-

tively. As discussed in the main text, the one-particle mirror correction O
(1)
23 is given by

O
(1)
23

O
(0)
23

=

∫
dv

2π
(−1)aT̃a,{φ,θ,ϕ}(v

−3γ)µa(v
γ)e−ip̃(v) log zz̄

∏
j

h1a(uj , v
−3γ) . (F.2)

Up to one loop, these two are the only relevant contributions.

Now, to show the flip invariance, we need to reproduce these results by cutting the

edge 14 instead. Since cutting the edge 14 splits the edge on which magnons are living (see

figure 22), the asymptotic part is now given by a sum over partition,

O
(0)
14

O
(0)
23

= |1− z|−2Eu

(
1− z̄
1− z

)M
2 ∑
α∪ᾱ=u

(−1)|ᾱ|
∏
k∈ᾱ

zEk+ 1
2 z̄Ek−

1
2

∏
i∈α,j∈ᾱ

1

h(ui, uj)
. (F.3)

with Ek = E(uk).

To compute the one-particle mirror correction to (F.3), we need to compute the matrix

part. Using the relation between the edges and the cross ratios depicted in figure 5, one

finds that the cross ratios for the edge 14 are the inverses of the ones for the edge 23. This

however does not mean that the matrix part is given by T̃a,{−φ,−θ,−ϕ}. This is because the

crossing transformation (v → v2γ) changes the flavor indices as explained in appendix A

and it compensates the effect of the inversion of the cross ratios. As a result, we obtain

the following expression for the one-particle correction for the channel 14:

O
(1)
14

O
(0)
23

= |1− z|−2Eu

(
1− z̄
1− z

)M
2
∫

dv

2π
(−1)aT̃a,{φ,θ,ϕ}(v

−γ)µa(v
γ)eip̃(v) log zz̄ (F.4)

×
∏
j

h1a(uj , v
−γ)

∑
α∪ᾱ=u

(−1)|ᾱ|
∏
k∈ᾱ

zEk+ 1
2 z̄Ek−

1
2

h1a(uk, v−γ)ha1(v−γ , uk)

∏
i∈α,j∈ᾱ

1

h(ui, uj)
.

Let us now check the flip invariance at tree level and one loop using the formulas above.

At tree level, we only get contributions from the asymptotic part, which reads

O
(0)
14

O
(0)
23

∣∣∣∣∣
tree

=

(
1

1− z

)M ∑
α∪ᾱ=u

(−z)|ᾱ|
∏

i∈α,j∈ᾱ

ui − uj − i
ui − uj︸ ︷︷ ︸

(∗)

. (F.5)

Such a summation was studied in [52] and as it was shown there, one can prove

(∗) = (1− z)M . (F.6)

From this equality, the flip invariance follows immediately.
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At one loop, one has to consider both the asymptotic part and the mirror correction.

As was done in the main text, the mirror correction for the channel 23 can be easily

computed by taking the residues at v = ia/2. On the other hand, the mirror integrand for

the channel 14 has extra poles at v = ui ± i(a ± 1)/2. In the case of the spectrum, these

poles corresponded to the µ terms in the Luscher formula, which vanish30 at weak coupling.

Also here, we found that the contribution from these poles vanishes after the summation

over the bound-state indices. Therefore, the mirror correction can be computed just by

taking the residues at v = ia/2. We performed the computation explicitly for one and two

physical magnons31 and confirmed that the equality

O
(0)
14 + O

(1)
14

O
(0)
23

∣∣∣∣∣
one-loop

=
O

(0)
23 + O

(1)
23

O
(0)
23

∣∣∣∣∣
one-loop

, (F.7)

is indeed satisfied. This proves the flip invariance of correlators involving a Konishi state.

It would be an interesting future problem to show the invariance for an arbitrary

number of physical magnons at one loop. An even more ambitious goal would be to show

the invariance at finite coupling.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[34] Ö. Gürdoğan and V. Kazakov, New integrable 4D quantum field theories from strongly

deformed planar N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 117 (2016)

201602 [Addendum ibid. 117 (2016) 259903] [arXiv:1512.06704] [INSPIRE].

[35] V. Kazakov, New integrable QFT’s from strongly deformed N = 4 SYM, talk at IGST 2016,

Humboldt-Universität, Berlin Germany August 2016.

[36] J. Caetano, O. Gurdogan and V. Kazakov, Chiral limit of N = 4 SYM and ABJM and

integrable Feynman graphs, arXiv:1612.05895 [INSPIRE].

[37] A.P. Isaev, Multiloop Feynman integrals and conformal quantum mechanics, Nucl. Phys. B

662 (2003) 461 [hep-th/0303056] [INSPIRE].

[38] T. Bargheer, B. Basso, J. Caetano, T. Fleury, S. Komatsu and P. Vieira, in progress.

[39] L. Rastelli and X. Zhou, Mellin amplitudes for AdS5 × S5, arXiv:1608.06624 [INSPIRE].

[40] L.F. Alday and A. Bissi, Higher-spin correlators, JHEP 10 (2013) 202 [arXiv:1305.4604]

[INSPIRE].

[41] Y. Jiang, S. Komatsu, I. Kostov and D. Serban, Clustering and the three-point function, J.

Phys. A 49 (2016) 454003 [arXiv:1604.03575] [INSPIRE].

[42] B. Basso, V. Goncalves and S. Komatsu, Structure constants at wrapping order, to appear.

[43] G. Grignani, P. Orland, L.D. Paniak and G.W. Semenoff, Matrix theory interpretation of

DLCQ string world sheets, Phys. Rev. Lett. 85 (2000) 3343 [hep-th/0004194] [INSPIRE].

[44] R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Matrix string theory, Nucl. Phys. B 500

(1997) 43 [hep-th/9703030] [INSPIRE].

[45] R. Gopakumar, From free fields to AdS, Phys. Rev. D 70 (2004) 025009 [hep-th/0308184]

[INSPIRE].

[46] S.S. Razamat, On a worldsheet dual of the Gaussian matrix model, JHEP 07 (2008) 026

[arXiv:0803.2681] [INSPIRE].

– 43 –

http://dx.doi.org/10.1016/S0370-2693(99)01033-3
http://dx.doi.org/10.1016/S0370-2693(99)01033-3
https://arxiv.org/abs/hep-th/9906051
http://inspirehep.net/search?p=find+EPRINT+hep-th/9906051
http://dx.doi.org/10.1088/1126-6708/2009/04/001
https://arxiv.org/abs/0812.3341
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.3341
http://dx.doi.org/10.1016/0370-2693(93)91118-7
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B305,136%22
http://dx.doi.org/10.1007/JHEP08(2013)133
https://arxiv.org/abs/1303.6909
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6909
http://dx.doi.org/10.1016/j.nuclphysb.2012.04.007
https://arxiv.org/abs/1108.3557
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.3557
http://dx.doi.org/10.1016/j.nuclphysb.2012.04.013
http://dx.doi.org/10.1016/j.nuclphysb.2012.04.013
https://arxiv.org/abs/1201.5329
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.5329
http://dx.doi.org/10.1103/PhysRevLett.117.201602
http://dx.doi.org/10.1103/PhysRevLett.117.201602
https://arxiv.org/abs/1512.06704
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.06704
https://arxiv.org/abs/1612.05895
http://inspirehep.net/search?p=find+EPRINT+arXiv:1612.05895
http://dx.doi.org/10.1016/S0550-3213(03)00393-6
http://dx.doi.org/10.1016/S0550-3213(03)00393-6
https://arxiv.org/abs/hep-th/0303056
http://inspirehep.net/search?p=find+EPRINT+hep-th/0303056
https://arxiv.org/abs/1608.06624
http://inspirehep.net/search?p=find+EPRINT+arXiv:1608.06624
http://dx.doi.org/10.1007/JHEP10(2013)202
https://arxiv.org/abs/1305.4604
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.4604
http://dx.doi.org/10.1088/1751-8113/49/45/454003
http://dx.doi.org/10.1088/1751-8113/49/45/454003
https://arxiv.org/abs/1604.03575
http://inspirehep.net/search?p=find+EPRINT+arXiv:1604.03575
http://dx.doi.org/10.1103/PhysRevLett.85.3343
https://arxiv.org/abs/hep-th/0004194
http://inspirehep.net/search?p=find+EPRINT+hep-th/0004194
http://dx.doi.org/10.1016/S0550-3213(97)00326-X
http://dx.doi.org/10.1016/S0550-3213(97)00326-X
https://arxiv.org/abs/hep-th/9703030
http://inspirehep.net/search?p=find+EPRINT+hep-th/9703030
http://dx.doi.org/10.1103/PhysRevD.70.025009
https://arxiv.org/abs/hep-th/0308184
http://inspirehep.net/search?p=find+EPRINT+hep-th/0308184
http://dx.doi.org/10.1088/1126-6708/2008/07/026
https://arxiv.org/abs/0803.2681
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.2681


J
H
E
P
0
1
(
2
0
1
7
)
1
3
0

[47] G. Arutyunov and S. Frolov, Foundations of the AdS5 × S5 superstring. Part I, J. Phys. A

42 (2009) 254003 [arXiv:0901.4937] [INSPIRE].

[48] N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. 01

(2007) P01021 [hep-th/0610251] [INSPIRE].

[49] F.A. Dolan and H. Osborn, Conformal four point functions and the operator product

expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

[50] Z. Bajnok, 3pt functions and form factors, talk at IGST 2016, Humboldt-Universität, Berlin

Germany August 2016.

[51] Z. Bajnok and R.A. Janik, String field theory vertex from integrability, JHEP 04 (2015) 042

[arXiv:1501.04533] [INSPIRE].

[52] N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and integrability III.

Classical tunneling, JHEP 07 (2012) 044 [arXiv:1111.2349] [INSPIRE].

[53] Z. Bajnok and R.A. Janik, Four-loop perturbative Konishi from strings and finite size effects

for multiparticle states, Nucl. Phys. B 807 (2009) 625 [arXiv:0807.0399] [INSPIRE].

[54] B. Eden and A. Sfondrini, Tessellating cushions: four-point functions in N = 4 SYM,

arXiv:1611.05436 [INSPIRE].

– 44 –

http://dx.doi.org/10.1088/1751-8113/42/25/254003
http://dx.doi.org/10.1088/1751-8113/42/25/254003
https://arxiv.org/abs/0901.4937
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.4937
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
https://arxiv.org/abs/hep-th/0610251
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610251
http://dx.doi.org/10.1016/S0550-3213(01)00013-X
https://arxiv.org/abs/hep-th/0011040
http://inspirehep.net/search?p=find+EPRINT+hep-th/0011040
http://dx.doi.org/10.1007/JHEP04(2015)042
https://arxiv.org/abs/1501.04533
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.04533
http://dx.doi.org/10.1007/JHEP07(2012)044
https://arxiv.org/abs/1111.2349
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.2349
http://dx.doi.org/10.1016/j.nuclphysb.2008.08.020
https://arxiv.org/abs/0807.0399
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0399
https://arxiv.org/abs/1611.05436
http://inspirehep.net/search?p=find+EPRINT+arXiv:1611.05436

	Introduction
	Review of the hexagon formalism
	Simple exercise at tree level
	Hexagonalization
	Main proposal
	Symmetry and gluing rules
	Gluing multiple channels
	Generalization to physical magnons
	A remark on the summation over graphs

	Four BPS operators
	Flavor-dependent weight as mathfrakpsu(2|2) character
	Simplest example: four 20'
	General four BPS correlators
	Mellin-like representation

	One Konishi and three 20's
	Asymptotic part
	Finite-size correction

	Ladder integrals from integrability
	Conclusion and prospects
	Change of conformal frames and crossing rule
	Weak coupling expansions
	OPE of five-point functions
	Dressed twisted transfer matrix
	Correlators of Konishi and longer BPS's
	Flip invariance of octagon

