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ABSTRACT. Current research compares the Bayesian estimates obtained for the parameters of processes 
of ARCH family with normal and Student’s t distributions for the conditional distribution of the return 
series. A non-informative prior distribution was adopted and a reparameterization of models under analysis 
was taken into account to map parameters’ space into real space. The procedure adopts a normal prior 
distribution for the transformed parameters. The posterior summaries were obtained by Monte Carlo 
Markov Chain (MCMC) simulation methods. The methodology was evaluated by a series of Bovespa 
Index returns and the predictive ordinate criterion was employed to select the best adjustment model to the 
data. Results show that, as a rule, the proposed Bayesian approach provides satisfactory estimates and that 
the GARCH process with Student’s t distribution adjusted better to the data.  
Keywords: ARCH family, Bayesian analysis, MCMC methods, financial returns.  

Modelos estocásticos com heterocedasticidade: uma abordagem Bayesiana para os retornos 
do Ibovespa 

RESUMO. O objetivo deste trabalho foi comparar as estimativas Bayesianas obtidas para os parâmetros de 
processos da família de modelos auto-regressivos com heterocedasticidade condicional – ARCH 
considerando distribuição normal e t de student para a distribuição condicional da série de retornos. Adotou-
se a distribuição a priori não-informativa e considerou-se uma reparametrização dos modelos estudados 
para mapear o espaço dos parâmetros no espaço real. Este procedimento permite adotar distribuição a priori 
normal para os parâmetros transformados. Os sumários a posteriori foram obtidos por meio dos métodos 
de simulação de Monte Carlo em Cadeias de Markov (MCMC). A metodologia foi avaliada considerando 
uma série de retornos do Ibovespa e, para selecionar o modelo de melhor ajuste aos dados, foi utilizado o 
critério da densidade preditiva ordenada. Os resultados mostram que, de um modo geral, a abordagem 
Bayesiana proposta fornece estimativas satisfatórias e que o processo GARCH com distribuição t de student 
apresenta melhor ajuste aos dados. 
Palavras-chave: família ARCH, análise Bayesiana, métodos MCMC, retornos financeiros.  

Introduction 

A large variety of models exists to estimate the 
volatility of financial assets return series. The most 
common in the literature are the Autoregressive 
Conditional Heteroskedasticity (ARCH) model, 
suggested by Engle (1982), and its extension, the 
Generalized ARCH (GARCH) models, proposed by 
Bollerslev (1986). The models characterize a non-
linear dependence among returns due to the serial 
dependency of conditional variance. 

Since volatility at a specific time depends on the 
past values of the series, the determination of 
maximum likelihood estimators (MLE) of 
parameters of ARCH family models require the 
maximization of a non-linear function, and thus, 

estimates could only be obtained numerically.  
Engle (1982) suggested Newton’s method as an 
iterative method to calculate maximum likelihood 
estimates. Such procedure relaxes the imposed 
restrictions to parameters (they must be positive and 
their sum must be less than one) which warrant 
stationary covariance. On the other hand, certain 
difficulties are involved in the determination of 
asymptotic characteristics of MLE with restrictions. 
It may lead to local maxima, since characteristics 
such as asymptotic normality do not allow 
restrictions. Further, procedures for the 
identification, adjustment and diagnosis of models 
and prediction of econometric series values require 
the characteristics of asymptotic theory. Since 
models are distant from linearity, the estimators’ 
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asymptotic characteristics may only be verified for 
very long series and, in general, are more appropriate 
with symmetrical distribution for errors and with 
normal distribution for data. Bollerslev (2008) 
provided an extensive review of the models’ 
characteristics.  

Under a Bayesian approach, Geweke (1989) 
provided one of the first investigations for ARCH 
family models in which a special reparameterization 
case employed non-informative prior distributions. 
Estimates of parameters were obtained from Monte 
Carlo simulation algorithms. Nakatsuma (2000) 
used normal prior distributions for the parameters 
of ARMA-GARCH models and the Metropolis-
Hastings algorithm to determine posterior 
summaries. Further, Polasek (2001) suggested a 
hierarchic structure for PAR-ARCH from a 
Bayesian approach by using Monte Carlo Markov 
Chain simulation methods. Within the context of 
unobserved component models, Giakoumatos et al. 
(2005) suggested a Bayesian approach for ARCH 
models with auxiliary variables (PITT; WALKER, 
2005).  

Whereas Ausín and Galeano (2007) recently 
suggested a Bayesian approach for GARCH models 
with errors generated by Gaussian mixtures, Barreto 
et al. (2008) compared Bayesian and Maximum 
Likelihood methods by simulated series, following 
ARCH processes, with different orders and under 
conditions of finite and infinite variance. Moreover, 
Andrade and Oliveira (2011) presented a Bayesian 
approach for ARCH models with normal prior 
distributions for their respective parameters and 
compared credibility intervals with bootstrap 
intervals by employing index return series of the 
Brazilian financial market.  

The Stock Exchange Index of São Paulo 
(Ibovespa) is the most important index for the 
average performance of the Brazilian market shares 
rates. Its relevance is due to the fact that Ibovespa 
portrays the behavior of the main stocks and shares 
negotiated at Bovespa and also its history. In fact, the 
Bovespa index maintains the integrity of a historical 
series and did not undergo methodological 
modifications since its establishment in 19681. 
Ibovespa’s basic aim is to be an average indicator of 
the main transacted shares and a profile of cash 
negotiations in the Bovespa exchange. Stocks with 
the highest participation (in terms of volume) on the 
exchange are selected to compose the index. 
Ibovespa’s behavior has been widely investigated in 
                                                 
1BM&FBOVESPA was established in May 2008 and combined the Bolsa de 
Mercadorias & Futuros (BM&F) and Bolsa de Valores de São Paulo (Bovespa). It 
became the biggest Stock Exchange institution in Latin America, the second in 
the Americas and the third in the world (PORTAL DO INVESTIDOR, 2011). 

the literature owing to its economical relevance and 
several authors have used Ibovespa return series for 
modeling and for comparing different models. 
Morettin (2008), Andrade and Oliveira (2011), and 
Oliveira and Andrade (2012) are among the many 
authors who investigated the above-mentioned 
index and who employed different time series 
models from a classical or Bayesian approach.  

Since the context and the relevance of the 
ARCH family models in the solution of problems in 
the economical and financial areas due to their 
applicability and interpretation (the relations 
between returns and volatility) have been provided, 
current investigation compares the Bayesian 
estimates obtained for the parameters of AR(p)-
ARCH(q), ARCH(q) and GARCH(q,r) models, 
taking into account normal and Student’s t 
distributions for the conditional distribution of the 
Ibovespa’s financial returns series. Non-informative 
prior distributions, foregrounded on Geweke 
(1989), were suggested and a reparameterization of 
the models studied was taken into account for each 
case to map the parameter’s space on real space. The 
procedure adopts normal prior distributions for the 
transformed parameters. Posterior summaries were 
obtained by MCMC simulation methods.   

Stochastic models with heteroskedasticity for time series 

AR-ARCH models 

The regression model proposed by Engle (1982) 
with its mean non-zero and expressed as a linear 
combination of exogenous variables, exhibits the 
following structure: 

 

ttt zβxy +=  (1)
 

( )tt1tt h,βxP~|y −Ω  (2)
 

2
jt

q

1j

j0t zh −
=
+= αα  (3)

 
βxttt yz −=  (4)

 
in which: 

yt represents a returns series;  
P(.)is a parametric distribution, usually Normal 

or Student’s t; 
xt is a vector of exogenous variables which may 

include values of yt outdated by time; β is the vector 
of unknown parameters; 

Ωt-1 is the set of information available up to 
time t - 1.  
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Only AR(p)-ARCH(q) models have been 
investigated in current research, in which 

( )′= −−− pt2t1tt y,...,y,yx . Therefore,  

 


=

− +=
p

1i

titit zyy β  (5)

 
Let zt be the process that satisfies model 

t
2/1

tt hz ε=  in which { tε , 0t ≥ } is a sequence of 
independent randomized variables, identically 
distributed with mean zero and variance 1, 
regardless of xt. In practice, it is commonly supposed 
that )1,0(Nt  ~ε  or v ~ ttε  (Student’s t distribution 
with v degrees of freedom). The model defined in 
(1)-(4) may be interpreted by disturbances in linear 
regression which follow an autoregressive 
conditional heteroskedasticity of the order q. 

So that model (1)-(4) may be plausible ( 0ht >  
during t), there must be 00 >α  and q,...,1j,0j =≥α . 

Further, process yt has finite variance and, therefore, 
stationary covariance if, and only if, all the roots of 

the polynomials 
=

−
p

1i

i
il1 β  and 

=

−
q

1j

j
jl1 α  are outside 

the unit radius circle (ENGLE, 1982: Theorem 2). 
When these conditions are satisfied, unconditional 
variance ty  may be given by   
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( ) ( )2
tt0 yEyV ==γ  and ( )itti yyE −=γ p,...,1i, = . 

Therefore, 
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1j

j 1α  and 1

p

1i

i <
=

β  is the sufficient 

condition so that the process has a stationary 
covariance.  

Let { }T,...,2,1t,yY t ==   be a trajectory of the 
process yt and that xt involves only past “p” values of 
yt. If normality is held for tε , the likelihood function 
of yt, T,...,1qpt ++= , conditioned to qp +  first 
observations (presumed to be known) is defined as:  

 

( ) ( )
( ) ( )











 −
−








= ∏

++=

−−−

t

2
tt

T

1qpt

2/1

t
2

qpT

h2

βxy
exp

h

1
2β,α|YL π (6)

 
where: 

( )′= q10 ,...,,α ααα ; 

( )′= p1,...,β ββ . 

Supposing that tε  has standard Student’s t 
distribution such that v t ~ Student’s t with v 

degrees of freedom, or rather, 
( )2vv

tv
t

−
=ε , the 

likelihood function of ty , T,...,1qt += , conditioned 
to qp +  first observations is given by (MORETTIN, 
2008):  
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with ( )′= q10 ,...,,α ααα , ( )′= p1,...,β ββ  and for some v.  

ARCH models 

If the regression model proposed by Engle 
(1982), defined by the expressions (1)-(4), considers 

0β = , then the new structure may be summarized as  
 

( )t1tt h,0P~|z −Ω  (8)
 

2
jt

q

1j

j0t zh −
=
+= αα  (9)

 
where: 

zt represents return series;  
( )⋅P  is the parametric distribution;  

1t−Ω  is the set of information available up to 
time t - 1.  

The interpretation for the model defined in (8)-
(9) is that returns in linear regression follow an 
autoregressive conditional heteroskedasticity of the 
order q.  

Similarly, so that model (8)-(9) is plausible 
( 0ht >  during t), there must be 00 >α  and 0j ≥α  for 

q,...,1j = . Further, process zt has finite variance and 
therefore stationary covariance if, and only if, all the 

roots of the polynomial 
=

−
q

1j

j
jl1 α  lie outside the 

unit radius circle. It may be thus shown that the 
unconditional variance of zt is given by 


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covariance process is 
=
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q

1j

j 1α .  

Let { }T,...,2,1t,zZ t ==   be a trajectory of the 
process zt. If normality holds for tε , the likelihood 
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function of tz , T,...,1qt += , conditioned to q first 
observations (presumed to be known) is given by  
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with ( )′= q10 ,...,,α ααα .  

Presuming that tε  has a standard Student’s t 

distribution, the likelihood function of tz , 

Tqt ,...,1+= , conditioned to q first observations, is 
given by (MORETTIN, 2008): 
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with ( )′= q10 ,...,,α ααα  and for some v.  

GARCH models 

The regression model proposed by Engle (1982) 
and generalized by Bollerslev (1986), with means 
zero and expressed as a linear combination of 
exogenous variables, have a structure summarized as  
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where: 

zt is a return series; 
( )⋅P  is a parametric distribution; 

1t−Ω  is the set of information available up to 
time 1t − . 

When 0r = , the process is reduced to an 
ARCH(q).  

Let zt be a process that satisfies the model 

t
2/1

tt hz ε=  such that { tε , 0t ≥ } is a sequence of 
independent randomized variables and identically 
distributed with mean zero and variance 1. An 
interpretation for the model defined in (13)-(14) is that 
disturbances in linear regression follow a generalized 
ARCH process respectively of the orders q and r. 

So that model (12)-(13) be plausible ( 0ht >  during t), 
there must be r,...,2,1i,0,q,...,2,1j0,0,0r,0q ij0 =≥=≥>≥>    ,      λαα . 

Thus, it may be demonstrated that unconditional 
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Let { }T,...,2,1t,zZ t ==   be a trajectory of process zt 

and ( )'r21q10 ,...,,,,...,,θ λλλααα= . Presuming normality 

holds for tε , the likelihood function of zt, 

T,...,1rqt ++= , conditioned to q+r first observations 
(presumed to be known), is given by: 
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Presuming that tε  has a standard Student’s t 

distribution, or rather, 
( )2vv

tv
t

−
=ε  such that v t ~ 

Student’s t with v degrees of freedom, the likelihood 
function of zt, T,...,1rqt ++= , conditioned to q+r 
first observations, is given by (MORETTIN, 2008): 
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with ( )'r21q10 ,...,,,,...,,θ λλλααα=  and for some v.  

The likelihood functions described in (6), (7), 
(10), (11), (14) and (15) may be maximized with 
regard to the respective unknown parameters.  

In Bayesian context, the employment of the 
conditioned likelihood function instead of the exact 
likelihood function may be undertaken without any 
great precision loss in the estimates. This is due to 
the fact that one of the main advantages of Bayesian 
inference lies in the possibility of adjusting models, 
even in small samples. 

Bayesian approach  

Taking into consideration returns trajectory 
{ }T,...,2,1t,yY t ==  , the Bayesian approach for the 

inference of parameters of AR(p)-ARCH(q), 
ARCH(q) and GARCH(q,r) processes starts from 
the joint likelihood functions defined by the 
trajectory with a prior density for parameters (that 
reflects previous knowledge on the distribution of 
these parameters) by Bayes’s rule: 

 
( ) )(|YL)Y|( ••∝• ππ  (16)

 
The expression )Y|(•π  is called posterior 

distribution of parameter(s) of interest and explains 
how these randomized variables are distributed after 
data have been complied with.  
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In current research, a non-informative prior 
distribution is proposed for the parameters of 
AR(p)-ARCH(q) and ARCH(q) processes based on 
the suggestion by Geweke (1989), defined as: 
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Conditioned to q,...,1j,0j ==α , it is Jeffreys’ non-

variant prior distribution for the normal linear 
regression model. Reparameterization is also 
considered and consists of  
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Since the necessary condition of stationary 

covariance warrants variation intervals for the 
parameters of ARCH family processes, there are 
intervals [ ]jj b,a , q,...,1,0j =  with 0a j >  and 1b j < , 

such that jjj ba ≤≤ α  which may be also defined as 

000 ba ≤≤ α , with ( )2
t0 zEb0a ≤> 0  and  . Above analysis 

leads towards a choice of transformation (18), which 
maps the intervals ),( +∞−∞  within the dominion 
( )jj b,a  and vice-versa. It also decreases the rejection 

rate of the simulation algorithm MCMC and 
accelerates its convergence process. Values for 

jj ba   and may be chosen based on some prior 

information, for instance, previous studies on the 
series under analysis.  

When reparameterization, defined in (18), is 
employed,  
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Similarly, prior distribution for parameters of 
GARCH (q,r) processes based on the proposal of 
Geweke (1989) and on the reparameterization 
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It should be emphasized that in current research 
aj and bj were defined by analyses undertaken by 
Andrade and Oliveira (2011), in which Ibovespa 
returns series were widely debated and discussed.  

Therefore, volatility ht as a function of model 
parameters, duly transformed into jφ , causes 

posterior joint distributions for φ, described in  
Table 1.  

Posterior densities have forms that are only 
similar to those of density functions of known 
probability. Consequently, the analytic calculation 
of the parameters’ quantities of interest, such as 
means, mode, medians, standard deviation and 
others becomes impossible (KOTZ et al., 2000). 
The issue may be solved by MCMC simulation 
methods, specifically the Metropolis-Hastings 
algorithm. Representative samples of posterior 
distributions of Table 1 may be produced and 
recover the parameters estimated by inverse 
transformation. 

Metropolis-Hastings Algorithm 

The Metropolis-Hastings (M-H) algorithm is an 
iterative scheme to produce indirectly a density 
sample when direct production from this density is 
unknown. Algorithm comprises a choice of nucleus, 
or rather, a transition density q, and generate from 
this nucleus by using an acceptance criterion p of the 
generated value to warrant that the sample obtained 
is representative of the generated sample 
(GAMERMAN; LOPES, 2006). 

M-H algorithm in current research follows 
specifically the steps below: 

Step 1: Attribute arbitrary initial rates { })0(
j

)0(φ φ=  

and start the iteration counter in 1l = .  
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Table 1. Posterior joint distributions. 
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Step 2: Generate a new rate '
jφ  from the 

transition nucleus or density ( )( )c1l φ,φq − . In this case, 
the non-informative prior distributions lead towards 
posterior ones which do not present known 
expression to generate candidate parameters. 
Gaussian nucleus ( )φN  is thus produced so that 
posterior densities may be written as 

( ) ( ) ( )
( ) ( ) 0φN,
φN

φNY|φ
Y|φ* ≠=    

ππ , consequently, 

( ) ( ) ( ) ( ) ( )
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c ,...,,,,...,,φ φφφφφφ . 

Step 3: Calculate the probability of acceptance of 
the new value generated as '

jφ : 
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Step 4: Generate a uniform randomized variable 

( )1,0U~u  and make: 
 

( )







 




≤

=
−

−

otherwise ,       

  if            

)1i(
j

'
j

1i
j

'
j)l(

j

,pu,

φ

φφφ
φ  

 
Step 5: Increase l and repeat Steps 2 to 4 till 

convergence is warranted. Finally, recover the 
estimated parameters by inverse transformation. 

Presupposing a quadratic loss function, 
parameters’ Bayesian estimates should be expressed 

as an evaluation of hope of a function of interest ( )•g  
with regard to posterior distribution ( )Y|•π . Every 
time there is ( )[ ]•gE , an approximation for the 
integrity of the desired function may be obtained by 
Monte Carlo simulation.  

Several criteria exist to select models within a 
Bayesian context. The predictive ordinate criterion 
(POC) based on density was used in current 
research, which was built from distribution mTy + , 
conditioned to data Y and to the parameters of each 
model analyzed. POC comprises the choice of 
model l  which presents the highest rate of ( )lĉ  (a 
quantity obtained by the predictive density of Monte 
Carlo estimate). Gamerman and Lopes (2006) give 
greater details on the subject.  

Evaluation of parameters’ estimate methods  

Below are given the results obtained by 
implementing the modeling proposed for the 
parameter inference of the processes AR(p)-
ARCH(q), ARCH(q) and GARCH(q,r), taking into 
account normal and Student’s t distributions for tε .  

The historical series under analysis gives 
information on the final indexes of the Bovespa 
(Ibovespa) registered between January 2, 1996 and 
February 1, 1999, a total of 651 information items. 
Choice of the period is due to its importance for 
Brazilian and world economy. In fact, events which 
generated behavioral changes with irregular 
frequencies occurred and produced economical and 
financial impacts during the period. Since current 
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research estimates the parameters for the evaluation 
of methods of time series modeling (and not the 
prediction of time series), the period may not 
necessarily be a recent occurrence.   

Let pt be the final result of the Bovespa index 
(Ibovespa) on a trading day. Since tt plnP = , then 
returns are given by ( ) 1tt1ttt PPpplny −− −== . Figure 1 
illustrates Bovespa indexes and their respective  
returns. 

 

 
 

 
Figure 1. Price and return of the Ibovespa series. 

The graphs in Figure 2 show the behavior of 
returns series of Ibovespa, 2

ty . In fact, the series is 
correlated and such behavior is typically associated 
with that of the models of the ARCH family. 

A chain of 50,000 iterations was simulated within 
the implementation of the Metropolis-Hastings 
algorithm. Moreover, 50% of values were discarded 
to decrease the effect of initial conditions. Values, 
spaced in fives, totaling a sample of 5,000 
observations, were established. Algorithm 
convergence was verified by Geweke criterion at 5% 
significance, under the null hypothesis Ho 
(GEWEKE, 1992). Parameter convergence was 
established for values obtained by Geweke’s 
diagnosis between -1.96 and 1.96. 

Adjusted models to the Ibovespa series, 
according to POC, were respectively ARCH(3), 
AR(3)-ARCH(6) and GARCH(1,1). 

 
 

  
 
                                Normal Probability Plot 

 
 

  
Figure 2. Histogram, normal probability plot, autocorrelation 

and partial autocorrelation of 
2
ty  - Ibovespa series. 

Tables 2, 3 and 4 show Bayesian estimates for the 
adjusted models, where M1 and M2: ARCH 
processes; M3 and M4: AR-ARCH processes; M5 
and M6: GARCH processes, with normal and 
Student’s t distributions for tε , respectively.  
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Table 2. Bayesian estimates of ARCH models – M1 and M2. 
  M1   M2  
Parameter Mean Standard deviation Credibility interval (95%) Mean Standard deviation Credibility interval (95%) 
α0 0.00061 0.00005 0.00052;0.00070 0.00070 0.00003 0.00060;0.00071 
α1 0.16350 0.01113 0.14187;0.18514 0.21672 0.00591 0.20524;0.22858 
α2 0.06065 0.01139 0.03885;0.08257 0.05228 0.00205 0.04818;0.05624 
α3 0.33162 0.02134 0.28888;0.37152 0.34961 0.00926 0.33156;0.36665 
 

Table 3. Bayesian estimates of AR-ARCH models – M3 and M4. 
  M3   M4  
Parameter Mean Standard deviation Credibility interval (95%) Mean Standard deviation Credibility interval (95%) 
α0 0.00048 0.00003 0.00042;0.00056 0.00050 0.00003 0.00044;0.00056 
α1 0.21579 0.04142 0.13543;0.29508 0.18757 0.00567 0.17646;0.19868 
α2 0.08565 0.02706 0.03649;0.14026 0.06340 0.00331 0.05691;0.06988 
α3 0.41482 0.04587 0.32397;0.49956 0.38771 0.00900 0.37007;0.40535 
β1 -0.09571 0.02879 -0.15259;-0.03821 -0.10020 0.00577 -0.11151;-0.08889 
β2 -0.01679 0.02853 -0.07421;0.03983 -0.02365 0.00542 -0.03427;-0.01303 
β3 -0.13483 0.02876 -0.19079;-0.07799 -0.12111 0.00531 -0.13152;-0.11070 
β4 -0.16456 0.02804 -0.21835;-0.10972 -0.15437 0.00522 -0.16460;-0.14414 
β5 -0.14604 0.02958 -0.20397;-0.08949 -0.13210 0.00689 -0.14560;-0.11860 
β6 -0.08765 0.02993 -0.14678;-0.02814 -0.07353 0.00695 -0.08715;-0.05991 
 

Table 4. Bayesian estimates of GARCH models – M5 and M6. 

  M5   M6  
Parameter Mean Standard deviation Credibility interval (95%) Mean Standard 

deviation 
Credibility interval  

(95%) 
α0 0.00007 1.5e-009 0.000069;0.000071 0.00007 1.4e-009 0.000069;0.000071 
α1 0.15010 6.7e-004 0.14870;0.15140 0.15035 6.5e-004 0.14920;0.15100 
β1 0.75050 1.3e-003 0.74790;0.75290 0.75027 1.2e-003 0.74850;0.75250 

 

According to values obtained by POC by the 
adjustments of the proposed models, the model that 
best adjusts itself to the Ibovespa series was the 
GARCH(1,1) process with Student’s t distribution 
for tε , or rather, model M6, as Table 5 shows. 

Table 5. Criterion of model selection. 

Model POC ( ( )lĉ ) 

M1 1.163e+018 
M2 1.190e+018 
M3 1.155e+019 
M4 1.264e+019 
M5 1.173e+019 
M6 1.859e+019 
 

Figure 3 shows estimated volatility from 
estimates obtained within the Bayesian approach 
with non-informative prior distribution by the best 
adjustment model, or rather, GARCH(1,1) with 
Student’s t distribution for tε . Several events 
(Russia’s default in August 1998; Asian crisis in 
October 1998; devaluation of the Brazilian real in 
January 1999), which generated important 
behavioral changes, occurred during the period 
under analysis, and caused changes in the behavior 
of volatility which were entirely identified by the 
adjusted model. The above changes impacted the 
prices of stocks and their relationship with the 
market. 

 
Figure 3. Estimated volatility – Ibovespa series: Model M6. 

Conclusion 

Although the above is a highly simplified 
representation of the data-generating process of 
conditional returns data, normal distribution is 
widely employed in the estimation of volatility 
models. However, in certain situations, it is more 
appropriate to presume that tε  has Student’s t 
distribution, as may be seen in current case. 

Results show that, as a rule, the Bayesian 
approach provides satisfactory estimates and is 
entirely viable in returns modeling. In fact, it 
makes feasible the incorporation of experts’ 
experience in finance which is a highly relevant 
issue within the analysis of economical and 
financial series.  
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The proposal of non-informative prior 
distributions, coupled to a reparameterization of the 
models under analysis, provides a faster convergence 
of the inference process of parameters of ARCH 
family models by MCMC methods. 
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