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1. Introduction

1.1. Background

Determination of the local stability of an isolated singular point for a system of ordinary differ-
ential equations (ODEs) is one of the fundamental problems encountered across various branches of 
applied sciences and engineering. For a system

ẋ = f(x), x ∈R
n, (1)
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Fig. 1. An example of a stable focus (a) and a center (b).

where f : Rn ⊃ � → R
n is smooth, and x0 is a singularity, i.e. f(x0) = 0, the celebrated Hartman–

Grobman theorem, e.g., see Chicone (2006), states that the linearization of (1) characterize the local 
qualitative behavior of the trajectories when x0 is hyperbolic. That is, the set of eigenvalues λ1, . . . , λn

of the Jacobian matrix Df(x0) describes the local behavior when the eigenvalues have non-zero real 
part, i.e., Re(λ j) �= 0. If Re(λ j) = 0 for some j, then x0 is called nonhyperbolic and the local stability 
is determined by the higher order terms.

One of the simplest and well-known stability questions is the center-focus (or center) problem, 
originally defined for planar polynomial differential systems, i.e., system (1) when n = 2 and f is 
a system of 2 polynomials in R[x] of some degree m. It consists of obtaining conditions on the 
coefficients of f(x) to distinguish between a local focus (see Fig. 1(a)) or a center (see Fig. 1(b)), which 
has been the subject of intensive research, e.g., Żoładek (1994), Christopher (1994), Wang (1999), 
Romanovski and Shafer (2009), Valls (2015), Giné and Valls (2016), Algaba et al. (2014). Although 
the problem is open in its full generality, it has been solved for some important subclasses of planar 
polynomial vector fields. As an example, consider the quadratic system defined by

u̇ = v + a1u2 + a2uv + a3 v2

v̇ = −u + a4u2 + a5uv + a6 v2,
(2)

where a1, . . . , a6 ∈ R. The center conditions were established by Dulac (1908) and Kapteyn (1912). It 
is well-known (see e.g. Żoładek, 1994; Romanovski and Shafer, 2009) that, for system (2), the so-called 
Bautin ideal B is generated by the first three focus quantities of this system (Bautin, 1952). Moreover, 
the center variety V(B) ⊂R

6 decomposes into four irreducible components:

V(B) = V(I Ham) ∪ V(Isym) ∪ V(I�) ∪ V(Icon),

corresponding to Hamiltonian systems, reversible systems, the Zariski closure of systems having three 
invariant lines, and the Zariski closure of systems having an invariant conic and an invariant cubic, 
respectively.

The center-focus problem can also be defined for higher dimensional systems and has recently 
been studied for a number of three-dimensional families (Edneral et al., 2012; Buică et al., 2011;
García et al., 2013; Mahdi, 2013; Mahdi et al., 2011, 2013). We continue this study here by apply-
ing our new symbolic-numerical approach to a three-dimensional system presented in Sec. 1.3 with 
results presented in Theorems 1 and 3.

1.2. Computational challenges and the new approach

The process of solving the center-focus problem for a specific system of differential equations can 
be divided into three steps (Christopher and Li, 2007). The first step is to compute some finite number, 
say p ∈ N, of focus quantities (also called Lyapunov quantities), which are polynomials in the param-
eters of the system. The second step is to compute the irreducible components of the solution set 
defined by these focus quantities. Since the vanishing of these finitely many polynomials is a neces-
sary condition for a center, the third step is to check each component using additional conditions for 
the existence of a center. This typically involves the application of the Darboux theory of integrability 
or reduction to the center manifold.
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Techniques for efficient computation of Lyapunov quantities has been motivated both by math-
ematical and engineering problems. Over the years, a number of algorithms have been developed 
(Wang, 1991; Romanovskii, 1993; Pearson et al., 1996; Gasull and Prohens, 1997; Gasull and Torre-
grosa, 2001; Lynch, 2005; Kuznetsov and Leonov, 2008; Yu and Chen, 2008). In this work, we used 
the approach described in Edneral et al. (2012) for computing the focus quantities for a system in 
dimension three, which is based on the equivalence of the existence of a center and a local analytic 
first integral in the neighborhood of a singular point (more details are provided in Sec. 2). The advan-
tage of this approach is that it avoids center manifold approximation, which is especially important 
since its power series approximation of analytic or even polynomial systems need not converge (e.g., 
see Aulbach, 1985; Sijbrand, 1985; Mahdi et al., 2013).

From the computational point of view, the biggest obstacle in solving the center-focus problem 
for a specific system is the determination of the irreducible components of the variety (i.e., solu-
tion set) defined by a certain number of focus quantities. The most common approach (Aziz and 
Christopher, 2012; Giné et al., 2014; Ferčec et al., 2014) is the application of computer algebra algo-
rithms for computing the primary decomposition of the ideal generated by the focus quantities such 
as Gianni–Trager–Zacharias (GTZ) (Gianni et al., 1988) or Shimoyama–Yokoyama (SY) (Shimoyama 
and Yokoyama, 1996), which have been implemented in various symbolic packages (e.g. Singu-

lar, Greuel et al., 2005, or Macaulay2, Grayson and Stillman, 2002). The computational difficulty 
related with Gröbner basis calculation over the field of characteristic zero was eased by imple-
mentation of modular arithmetics (Winkler, 1988; Edneral, 1997; Romanovski and Prešern, 2011), 
and successfully used in numerous problems (Ferčec et al., 2011; Han and Romanovski, 2012;
Valls, 2015). Unfortunately, in practice, the application of algorithms that use Gröbner bases (also 
with modular arithmetics) is computationally very heavy and the center conditions can only be 
obtained for specific systems with few parameters. In this paper, we replace this particular step 
and find the common zeros of the polynomial systems formed by focus quantities using numeri-
cal algebraic geometry techniques (for more details, see Sec. 3 and the books, Bates et al., 2013b;
Sommese and Wampler, 2005). The parallelizablity of numerical algebraic geometry together with a 
regeneration based approach (Hauenstein et al., 2011a; Hauenstein and Wampler, 2017) and exactness 
recovery (Bates et al., 2013a) provides a natural alternative to Gröbner basis methods. In particular, 
for the first time, we are able to solve the center-focus problem for a quadratic, three-dimensional 
system described next.

1.3. An application

Consider a third-order differential equation of the form
...
u = ü + u̇ + u + f (u, u̇, ü), (3)

where f = f (u, ̇u, ̈u) ∈R[u, ̇u, ̈u] is a polynomial of degree m. Following Mahdi (2013), we can equiv-
alently write

u̇ = −v + h(u, v, w), v̇ = u + h(u, v, w), ẇ = −w + h(u, v, w), (4)

where h(u, v, w) = f (−u + w, v − w, u + w)/2, which we call the standard form of system (3). Note 
that the origin of (4) is a nonhyperbolic singularity at which the associated Jacobian has two purely 
imaginary eigenvalues λ1,2 = ±i and λ3 = −1. Various dynamic aspects of systems of the form (4)
have recently been considered, including the center conditions (Buică et al., 2011; Dias and Mello, 
2010; Edneral et al., 2012; Mahdi et al., 2011), limit cycle bifurcations (Wang et al., 2010; Mahdi 
et al., 2013), Lie symmetries (García et al., 2013), and isochronicity (Romanovski et al., 2013). In 
particular, the center conditions on the local center manifold for system (4), where

h(u, v, w) = a1u2 + a2 v2 + a3 w2 + a4uv + a5uw + a6 v w, (5)

were studied in Mahdi (2013). Although it was possible to compute the first eight focus quantities, 
standard symbolic algorithms (e.g. GTZ and SY) were not able to provide the decomposition of the 
Bautin ideal into primes for a general six-parameter system, even over fields with non-zero character-
istics. On the other hand, the application of our hybrid approach using numerical algebraic geometry 
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to decompose described in this paper, allowed us to obtain the center conditions for a general six-
parameter system (4).

Theorem 1. The system (4) with h(u, v, w) as in (5) admits a center on the local center manifold if and only if 
one of the following holds:

(1) a1 = a2 = a4 = 0
(2) a1 − a2 = a3 = a5 = a6 = 0
(3) a1 + a2 = a3 = a5 = a6 = 0
(4) a1 + a2 = 2a2 − a3 + a6 = a3 − a4 − 2a5 = 2a4 + 3a5 + a6 = 0
(5) 2a1 − a6 = 2a2 + a5 = 2a3 − a5 + a6 = a4 + a5 + a6 = 0
(6) a1 − a2 = 2a2 + a6 = a4 = a5 + a6 = 0
(7) 2a1 + a2 = 2a2 + a6 = 4a3 + 5a6 = a4 = 2a5 − a6 = 0.

We leave the proof of the theorem to the end of Sec. 4. Nonetheless, an easy conclusion is that 
each irreducible component of the center variety (i.e., the variety of the Bautin ideal generated by 
the focus quantities) of system (4) for quadratic h (5) are vector subspaces of its six-dimensional 
parameter space, which was conjectured in Mahdi (2013).

1.4. Outline

The rest of the paper is organized as follows. Section 2 summarizes focus quantities and their com-
putation. Section 3 summarizes the numerical algebraic geometric solving approach along with exact-
ness recovery method used to prove Theorem 3 in Section 4. Appendix A presents the Dulac–Kapteyn 
criterion of quadratic planar systems with Appendix B summarizing Darboux theory of integrability. 
Appendix C performs a step-by-step computation of the center conditions for an illustrative example.

2. Focus quantities computation in R3

This section is a review of the method described in Edneral et al. (2012) (see also Mahdi, 2013;
Mahdi et al., 2013) for studying the center problem on a center manifold for vector fields in dimension 
three. Let X : R3 ⊃ U → R

3 be a real analytic vector field, such that D X(0) has one non-zero and two 
purely imaginary eigenvalues. By an invertible linear change of coordinates and a possible rescaling 
of time, the system of differential equations u̇ = X(u) can be written in the form

u̇ = −v + P (u, v, w)

v̇ = u + Q (u, v, w)

ẇ = βw + R(u, v, w),

(6)

where β is a non-zero real number. Let X = (−v + P )∂/∂u + (u + Q )∂/∂v + (βw + R)∂/∂ w denote 
the corresponding vector field. A local first integral of system (6) is a nonconstant differentiable func-
tion H : R3 ⊃ U → R that is constant on trajectories of (6), equivalently, H satisfies on U ⊂ R

3 the 
equality

X H := (−v + P )
∂ H

∂u
+ (u + Q )

∂ H

∂v
+ (βw + R)

∂ H

∂ w
≡ 0. (7)

A formal first integral for system (6) is a non-constant formal power series H in u, v and w such that 
when P , Q , and R are expanded in power series, every coefficient in the formal power series in (7)
is zero.

Recall that system (6) admits a local center manifold W c
loc at the origin (Kuznetsov, 2004, Thm. 5.1). 

One of the main tools for detecting a center on a center manifold is the following theorem:
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Theorem 2. The following statements are equivalent.

(a) The origin is a center for X |W c
loc

.
(b) System (6) admits a local analytic first integral at the origin.
(c) System (6) admits a formal first integral at the origin.

For a proof see Bibikov (1979), Edneral et al. (2012). In fact, a real analytic local first integral from 
statement (b) (as well as a formal first integral from statement (c)) can always be chosen to be of the 
form H(u, v, w) = u2 + v2 + · · · where the dots mean higher order terms in a neighborhood of the 
origin in R

3.
The equivalence of statements (a) and (b) is called the Lyapunov Center Theorem with a proof pre-

sented in, e.g., Bibikov (1979). By this theorem, we can restrict our efforts to investigate the conditions 
for the existence of a first integral H which is equivalent to determine necessary and sufficient con-
ditions for the existence of a center or a focus on the local center manifold.

From now on, we assume that P , Q and R in (6) are polynomials of degree at most n. We begin 
by introducing the complex variable x = u + iv . The first two equations in (6) are equivalent to a 
single equation ẋ = ix + · · · , where the dots represent a sum of homogeneous polynomials of degrees 
between 2 and n. Let x̄ denote the complex conjugate of x. We add to this equation its complex 
conjugate, replacing x̄ everywhere by y which is regarded as an independent complex variable and 
replacing w by z simply as a notational convenience. This yields the following complexification of 
(6):

ẋ = ix +
n∑

p+q+r=2

apqr xp yqzr,

ẏ = −iy +
n∑

p+q+r=2

bpqr xp yq zr,

ż = βz +
n∑

p+q+r=2

cpqr xp yqzr,

(8)

where bqpr = āpqr and cpqr are such that 
∑n

p+q+r=2 cpqr xp x̄q wr is real for all x ∈ C and w ∈ R. Let 
X be the corresponding vector field of system (8) on C3. Existence of a first integral H(u, v, w) =
u2 + v2 + · · · for system (6) is equivalent to the existence of a first integral for system (8), denoted 
again by H , of the form

H(x, y, z) = xy +
∑

j+k+�≥3

v jklx
j ykz�. (9)

We now investigate the existence of a first integral H for system (8) by computing the coefficients 
of X H and equating them to zero. When H has the form (9), the coefficient g jk� of x j ykz� in X H can 
be calculated explicitly (see Edneral et al., 2012). Except when j = k and � = 0, the equation g jk� = 0 
can be solved uniquely for ν jk� in terms of the known quantities ναβγ with α + β + γ < j + k + �. 
A formal first integral H thus exists if and only if gK K 0 = 0 for all K ∈ N. Thus, an obstruction to the 
existence of the formal series H occurs if some gK K 0 is non-zero. This coefficient is the K th focus 
quantity and it can be expressed as

gK K 0 =
2K−1∑
j+k=2

j≥0,k≥0

(
j aK− j+1,K−k,0 + k bK− j,K−k+1,0

)
v jk0 +

2K−2∑
j+k=2

j≥0,k≥0

cK− j,K−k,0 v jk1, (10)

where we have made the natural assignments vαβγ = 0 for α + β + γ = 2 except v110 = 1. It is easy 
to verify that g110 = 0. The coefficient g220 is uniquely determined but the remaining ones depend 
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on the choices made for v K K 0, K ∈ N≥2. Hence, once such an assignment is made, H is determined 
and satisfies

X H(x, y, z) = g220(xy)2 + g330(xy)3 + · · · .

In summary, the vanishing of all focus quantities, i.e.,

gK K 0 = 0 for K ≥ 2 (11)

is both a necessary and sufficient condition for the existence of a center on the center manifold, 
otherwise there is a focus (see Edneral et al., 2012).

By Hilbert’s basis theorem, there exists K0 ≥ 2 such that the set of solutions of gK K 0 = 0 for all 
2 ≤ K ≤ K0 is equivalent to the set defined by an infinite system (11). Since such a K0 is not known a 
priori, we will apply an iterative approach that solves gK K 0 = 0 for 2 ≤ K ≤ M + 1 given the solution 
set of gK K 0 = 0 for 2 ≤ K ≤ M .

3. Numerical algebraic geometry

As shown above, we are faced with computing the solution set to a system consisting of finitely 
many polynomial equations yielding a problem in computational algebraic geometry which consists 
of two general approaches: symbolic and numerical methods. Symbolic methods, such as Gröbner 
basis techniques, take an algebraic viewpoint for solving systems of polynomial equations. In broad 
terms, they manipulate equations to obtain new relations describing the solution set. Alternatively, 
numerical algebraic geometry follows a geometric viewpoint by manipulating solution sets which are 
represented by witness sets described below. A more detailed comparison of symbolic and numerical 
approaches is provided in Bates et al. (2014) with the books (Bates et al., 2013b; Sommese and 
Wampler, 2005) providing more details about the following discussion. These computations can be 
performed using Bertini (Bates et al., 2006).

Following the notation of Sec. 2, we want to solve F M := {g220, . . . , gMM0} = 0 for some given 
M ≥ 2. To do this, we will follow a regenerative intersection approach developed in Hauenstein and 
Wampler (2013, 2017) which builds on the diagonal intersection (Sommese et al., 2004) and the 
regenerative cascade (Hauenstein et al., 2011a, 2011b). The first step is to solve F2 = 0, which in the 
numerical algebraic geometric context means to compute witness sets for the irreducible components 
of this solution set, a so-called numerical irreducible decomposition.

Geometrically, for any polynomial system G , V(G) can be decomposed into a union of irreducible 
components V(G) = ∪r

i=1 V i . This decomposition corresponds algebraically to a prime decomposition 
of the radical ideal generated by G , namely 

√
I(G) = ∩r

i=1 I(V i). A numerical irreducible decomposi-
tion is simply a collection of witness sets, one for each irreducible component V i of V(G). In the 
commonly used algorithms to compute a numerical irreducible decomposition, one first computes 
witness sets for the pure-dimensional components of V(G). Each pure-dimensional component is 
then decomposed into its irreducible components using monodromy and a trace test.

A witness set for V ⊂ C
N , a pure-dimensional component of V(G) for some polynomial system G , 

is the triple {G, L, W } where L ⊂ C
N is general linear subspace of codimension d = dim V and W =

V ∩V(L) so that |W | = deg V . Here, the definition of general means that L intersects V transversely, 
which is a Zariski open condition on the Grassmannian of codimension d linear subspaces in CN .

For the particular application, since F2 = {g220}, V(F2) is a hypersurface, which is pure-
dimensional. In fact, since F2 is an irreducible polynomial, V(F2) is an irreducible hypersurface. 
By restricting to a line, a witness set for V(F2) can easily by computed by solving a univariate poly-
nomial.

Given a numerical irreducible decomposition of V(Fk−1), the regenerative intersection approach 
computes a numerical irreducible decomposition of V(Fk) = V(Fk−1) ∩ V(gkk0) as follows. Suppose 
that V is an irreducible component of V(Fk−1) with witness set {Fk−1, L, W }. We first need to test 
if V ⊂ V(gkk0) which, due to the genericity of L, is equivalent to gkk0(w) = 0 for w ∈ W . When 
V ⊂ V(gkk0), then V is an irreducible component of Fk with witness set {Fk, L, W }.

If V is not contained in V(gkk0), then V ∩ V(gkk0) is either empty or pure-dimensional of dimen-
sion d −1 where d = dim V . Suppose that L =K∩H where K is a general linear space of codimension 
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d −1 and H is a general hyperplane. We compute V ∩V(gkk0) ∩K from V ∩H∩K using regeneration 
as follows. Let e = deg gkk0 and select general hyperplanes H1, . . . , He . The homotopy

V ∩ (t ·H+ (1 − t) ·Hi) ∩K

deforms from the known points V ∩ H ∩ K at t = 1 to yield V ∩ Hi ∩ K at t = 0. We then deform 
from ∪e

i=1Hi to V(gkk0), both hypersurfaces of degree e, via the homotopy:

V ∩ (t · ∪e
i=1Hi + (1 − t) · V(gkk0)) ∩K.

In summary, this yields W ′ = V ∩ V(gkk0) ∩ K with {Fk, K, W ′} forming a witness set for the pure-
dimensional algebraic set V ∩ V(gkk0). We can then decompose this into its irreducible components 
using monodromy and a trace test.

The last step in computing a numerical irreducible decomposition of V(Fk) is to remove redun-
dant and superfluous components. In particular, by using a membership test (see Bates et al., 2013b, 
§ 8.4), we can compute the inclusion maximal collection of the irreducible components identified in 
this regenerative intersection which yields a numerical irreducible decomposition for V(Fk). As an 
example, regenerative intersection in Step 4 of Appendix C yields a point, namely 0, which is con-
tained in another irreducible component, namely defined by (C.2), and thus {0} is not an irreducible 
component.

By repeating this regeneration, we can compute a numerical irreducible decomposition for V(F M). 
We can then increase M ≥ 2 until V(F M) = V(F M+1) yielding a reasonable guess on when the ideal 
has stabilized as in Hilbert’s basis theorem. Along the way in this process, we can analyze the irre-
ducible components to possibly help simplify the computation. For example, since only real points 
are of interest to the center problem, we can ignore all irreducible components which do not contain 
real points. The approach of Hauenstein (2013) uses critical points conditions of the distance function 
to determine if an irreducible component V , represented by a witness set, contains real points. Thus, 
if V ∩R

N = ∅, then we can disregard this component.
When the input polynomials have exact coefficients, e.g., are rational numbers, one often would 

like exact output. Although the internal computations and witness sets rely upon numerical approx-
imations, there exist techniques for recovering exact answers. The resulting exact answers can be 
verified using exact symbolic methods, which is typically computationally inexpensive. For the prob-
lems at hand here, we use the exactness recovery technique described in Bates et al. (2013a) which 
uses a sufficiently accurate numerical approximation of a sufficiently general point on V to com-
pute polynomials with integer coefficients that vanish on V , which is based on using a lattice-base 
reduction technique such as LLL (Lenstra et al., 1982) or PSLQ (Ferguson and Bailey, 1991).

4. Center conditions for a three dimensional quadratic system

Here we provide a proof of Theorem 1. Without loss of generality, we can always assume that 
either a6 = 0 or a6 = 1. The latter follows immediately by the change of variables (u, v, w) �→
(x/a6, y/a6, z/a6) and rescaling of time dt = a6dτ . Thus, the seven cases in Theorem 1 can be split 
into ten cases, five each for a6 = 0 and a6 = 1. After showing these ten cases, we then related them 
to the seven cases of Theorem 1.

Theorem 3. Consider system (4) with h(u, v, w) as in (5).
When a6 = 0, system (4) admits a center on the local center manifold if and only if one of the following 

holds:

(a) a1 − a2 = a3 = a5 = 0
(b) a1 + a2 = a3 = a5 = 0
(c) a1 = a2 = a4 = 0;
(d) a1 + a2 = 2a1 + a3 = 6a1 − a4 = 4a1 + a5 = 0
(e) a1 = a2 + a3 = 2a2 − a4 = 2a2 + a5 = 0.
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When a6 = 1, system (4) admits a center on the local center manifold if and only if one of the following 
holds:

(f) a1 = a2 = a4 = 0
(g) 2a1 − 1 = a4 + a5 + 1 = 2a2 + a5 = 2a3 − a5 + 1 = 0
(h) 2a1 + 1 = 2a2 + 1 = a4 = a5 + 1 = 0
(i) a1 + a2 = 4a2 − a5 + 3 = 6a2 + a4 + 5 = 2a2 − a3 + 1 = 0
(j) 4a1 − 1 = 2a2 + 1 = 4a3 + 5 = a4 = 2a5 − 1 = 0.

Necessary conditions.
We first consider a6 = 0 and take (a1, . . . , a5) ∈ P

4. Using the notation from Sec. 3, V(F2) and 
V(F3) are irreducible of codimension 1 and 2 of degree 2 and 8, respectively. Now, V(F4) has codi-
mension 3 and decomposes into the following irreducible components:

• 5 linear spaces, 3 of multiplicity 1 and 2 of multiplicity 3, and
• an irreducible algebraic set of degree 39.

The three linear spaces of multiplicity 1 are (a), (b), and (c). The other two linear spaces are complex 
conjugates of each other with their union is defined in P4 by

a1 + a2 = 4a2
2 + a2

4 = a5 = 0.

Since the real points on this union are contained in (c), we only need to further investigate the 
degree 39 component, say V , which is not contained in V(g550). Regenerating from V to compute 
V ∩V(g550) yields 189 distinct points in P4, of which 19 correspond to real points. There are 14 real 
points that do not lie on (a), (b), or (c) of which only 2 satisfy g660 = 0, namely (d) and (e). We note 
that (e) has multiplicity 2 with respect to F5.

We next consider a6 = 1 and take (a1, . . . , a5) ∈ C
5. Similar to the case above, V(F2) and V(F3)

are irreducible of codimension 1 and 2 of degree 2 and 8, respectively. Also, V(F4) has codimension 3
and decomposes into the following components:

• 3 linear spaces, one having multiplicity 1 and 2 having multiplicity 3, and
• an irreducible algebraic set of degree 41.

The linear space of multiplicity 1 is ( f ) while the two linear spaces of multiplicity 3 are complex 
conjugates of each other with their union defined in C5 by

a1 + a2 = 4a2
2 + a2

4 = 2a2 + a4a5 = 2a2a5 − a4 = a2
5 + 1 = 0.

Since there are no real points on this union, we only need to further investigate the degree 41 compo-
nents, denoted V , which is not contained in V(g550). Regenerating V yields 4 irreducible components 
of V ∩ V(g550) not contained in (f) or the hyperplane a2

5 + 1 = 0. Three of these are the lines (g), 
(h), and (i) with the fourth being an irreducible curve of degree 244, denoted V ′ , not contained in 
V(g660). Regenerating V ′ yields 71 distinct real points not contained in the hyperplane a2

5 + 1 = 0 nor 
satisfying (f), (g), (h), or (i). Of these, only one satisfies g770 = 0, namely (j).

Therefore, we have shown that the real points which satisfy g220 = · · · = g770 = 0 are contained in 
(a)–(e) when a6 = 0 and (f)–(j) when a6 = 1.

Sufficient conditions.
Cases (a) and (b). If the condition (a) (resp. (b)) holds, system (4) reduces to

u̇ = −v + a1u2 + a2 v2 + a4uv,

v̇ = u + a1u2 + a2 v2 + a4uv,

ẇ = −w + a u2 + a v2 + a uv,
1 2 4
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with a2 = a1 (resp. a2 = −a1). Note that by Theorem 2, it is enough to show that this system admits 
a local analytic first integral at the origin. Since the first two equations are decoupled from the third 
we only need to show that

u̇ = −v + a1u2 + a2 v2 + a4uv, v̇ = u + a1u2 + a2 v2 + a4uv, (12)

admits a local analytic first integral. In fact, if a4 �= 0 and a2 = a1, system (12) has the inverse inte-
grating factor

V (u, v) = −a4 + a4 (a4 + 2a1) (x − y) + a1 (a4 + 2a1)
2
(

x2 + yx + y2
)

.

As V (0, 0) = −a4, it follows that system (12) has a first integral defined at the origin. If a4 = 0 and 
a2 = a1, applying Theorem 4(ii) with a = c = a1, b = d = −a1, A = 2a1 and B = −2a1, we have that 
(12) has a center at the origin and so it is integrable. The case a2 = −a1 (i.e. case (b)) is analogous, 
since

V (u, v) = 1 + (2a1 − a4) x + (2a1 + a4) y − a1a4x2 − a4
2xy + a1a4 y2,

is an inverse integrating factor for system (12), which is also nonzero at the origin.

Case (c). In this case system (4) becomes

u̇ = −v + a3 w2 + a5uw,

v̇ = u + a3 w2 + a5uw,

ẇ = −w + a3 w2 + a5uw.

Note that w = 0 is invariant and is a center manifold for this system. Moreover, the restriction of the 
associated vector field to w = 0 gives rise to a linear center.

Case (d). For a2 = −a1, a3 = −2a1, a4 = 6a1 and a5 = −4a1 the vector field associated to system 
(4) has the invariant algebraic surface

F (u, v, w) = w + a1(u − v)2 − 2a1(v − w)2 = 0

with cofactor K (u, v, w) = −1. Since F = 0 is tangent to w = 0 at the origin, it is a center manifold 
for this system. To determine the dynamics on it, we first use the change of coordinates (u, v, w) �→
(x + z, y + z, z) that transforms the system into

ẋ = −y,

ẏ = x + 2z,
ż = −z + a1x2 + 6a1xy + 4a1xz − a1 y2 + 4a1 yz.

(13)

The center manifold in the new variables is defined by

F (x, y, z) = z + a1(x − y)2 − 2a1 y2 = 0.

The restriction of system (13) to F = 0 is given by

ẋ = −y, v̇ = x − 2a1x2 + 4a1xy + 2a1 y2.

Since this system has the following inverse integrating factor (nonzero at the origin)

V (u, v) = 1 − 4a1 (x − y) + 4a2
1

(
x2 − 2xy − y2

)
,

system (4) has a center on the center manifold.

Case (e). For a1 = 0, a3 = −a2, a4 = 2a2 and a5 = −2a2 system (4) has the invariant algebraic 
surface F (u, v, w) = w − a2(y − z)2 = 0 with cofactor K (u, v, w) = −1. Since F = 0 is tangent to 
w = 0 at the origin, it is a center manifold for this system. To determine the dynamics on it first we 
use the change of coordinates (u, v, w) �→ (x, y + z, z) that transforms the system into
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ẋ = −y − z + a2 y2 + 2a2xy + 2a2 yz,
ẏ = x + z,
ż = −z + a2 y2 + 2a2 yz + 2a2xy.

(14)

The center manifold F = 0 in the new variables writes as F (x, y, z) = z − a2 y2 = 0. The restriction of 
system (14) to F = 0 is

ẋ = −y + 2a2xy + 2a2
2 y3, ẏ = x + a2 y2.

This system is invariant by the change of variables (x, y, t) �→ (x, −y, −t) so that it has a center at 
the origin this shows that system (4) restricted to (e) has a center on the center manifold.

Case (f). In this case, system (4) becomes

u̇ = −v + a3 w2 + a5uw + v w,

v̇ = u + a3 w2 + a5uw + v w,

ẇ = −w + a3 w2 + a5uw + v w.

It is clear that the plane w = 0 is invariant and is a center manifold for this system. Moreover, the 
restriction of the associated vector field to w = 0 gives rise to a linear center.

Case (g). If a1 = 1/2, a3 = −a2 −1/2, a4 = 2a2 −1 and a5 = −2a2, then system (4) has the invariant 
algebraic surface F (u, v, w) = −2w + (u − w)2 + 2a2(v − w)2 = 0 with cofactor K (u, v, w) = −1. 
Since F = 0 is tangent to w = 0 at the origin, it is a center manifold for this system. To determine 
the dynamics on it first we use the change of coordinates (u, v, w) �→ (x + z, y + z, z) that transforms 
system (4) into

ẋ = −y,

ẏ = x + 2z,
ż = −z + x2/2 + (2a2 − 1)xy + a2 y2 + 4a2 yz.

(15)

The center manifold in the new variables is F (x, y, z) = −2z + x2 + 2a2 y2 = 0 while the restriction of 
system (15) to F = 0 is

ẋ = −y, v̇ = x + x2 + 2a2 y2.

As this system is invariant under (x, y, t) �→ (x, −y, −t), it follows that it has a center at the origin, 
i.e., system (4) under the conditions (g) has a center on the center manifold.

Case (h). If a1 = −1/2, a2 = −1/2, a4 = 0 and a5 = −1. Then the vector field associate to system 
(4) has the invariant algebraic surface

F (u, v, w) = w + [
(u + w)2 + (v − w)2 ]

/2 − w2 (1 + a3) = 0

with the cofactor K (u, v, w) = −1 − 2u + 2a3 w . Since F = 0 is tangent to w = 0 at the origin, it 
is a center manifold for this system. To determine the dynamics on it, first we use the change of 
coordinates (u, v, w) �→ (x − z, y + z, z) that transforms system (4) into

ẋ = −y − 2z + 2(1 + a3)z2 − x2 − y2,

ẏ = x,
ż = −z + (1 + a3)z2 − x2/2 − y2/2.

(16)

The center manifold F = 0 in the new variables is given by

F (x, y, z) = z − (1 + a3)z2 + 1

2
x2 + 1

2
y2 = 0.

The restriction of system (16) to F = 0 gives rise to a linear center.

Case (i). For a2 = −a1, a3 = −2a1 +1, a4 = 6a1 −5 and a5 = −4a1 +3 system (4) admits an invariant 
algebraic surface
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F (u, v, w) = w + (a1 − 1)(u − w)2 + (1 − 2a1)(u − w)(v − w) + (1 − a1)(v − w)2 = 0

with cofactor K (u, v, w) = −1. Since F = 0 is tangent to w = 0 at the origin, it is a center manifold 
for this system. The change of coordinates (u, v, w) �→ (x + z, y + z, z) transforms system (4) under 
the conditions (i) into

ẋ = −y,

ẏ = x + 2z,
ż = −z + a1x2 + (6a1 − 5)xy + 2(2a1 − 1)xz − a1 y2 + 4(a1 − 1)yz.

(17)

Again, in the new variables the center manifold is given by

F (x, y, z) = z + (a1 − 1)x2 + (1 − 2a1)xy + (1 − a1)y2 = 0

and the restriction of (17) to F = 0 reduces to

ẋ = −y, v̇ = x + 2(1 − a1)x2 + 2(2a1 − 1)xy + 2(a1 − 1)y2.

This system has the following inverse integrating factor (nonzero at the origin)

V (u, v) = 1 + 4(1 − a1)x + 2 (2a1 − 1) y + 4(a1 − 1)2x2

−4(a1 − 1)(2a1 − 1)xy − 4(a1 − 1)2 y2.

Hence system (4) has a center on the center manifold.

Case (j). For a1 = 1/4, a2 = −1/2, a3 = −5/4, a4 = 0 and a5 = 1/2 the vector field associated to 
system (4) admits a polynomial first integral

H(x, y, z) = x2 + y2 − 1

2
x3 − 1

2
x2 y + 2x2z − 3

2
xz2 − y2x + y2z

− 1

2
yz2 − 1

2
x3z + 5

4
x2z2 + 1

2
y2x2 − 3

2
xz3 + 1

2
y2z2

− yz3 + xyz + 1

8
x4 − x2 yz − y2xz + 2yxz2 + 5

8
z4,

and so it has a center on the center manifold. �
Proof of Theorem 1.

Case (1). Follows from Cases (c) and (f) of Theorem 3.
Case (2). Follows from Case (a) of Theorem 3.
Case (3). Follows from Case (b) of Theorem 3.
Case (4). Follows from Cases (d) and (i) of Theorem 3.
Case (5). Follows from Cases (e) and (g) of Theorem 3.
Case (6). Follows from Cases (c) and (h) of Theorem 3.
Case (7). Follows from Cases (c) and (j) of Theorem 3. �

Appendix A. Dulac–Kapteyn criterion

The following theorem provides a criterion in order to determine when a quadratic planar polyno-
mial system has a center at the origin. It was first proven by Dulac (1908) and Kapteyn (1912), but 
we present the version given in Coppel (1966).

Theorem 4 (Quadratic center). The system

u̇ = −v − bu2 − (B + 2c)uv − dv2,

v̇ = u + au2 + (A + 2b)uv + cv2,

has a center at the origin if and only if at least one of the following three holds:
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(i) a + c = b + d;
(ii) A(a + c) − B(b + d) = aA3 − (3b + A)A2 B + (3c + B)AB2 − dB3 = 0;

(iii) A + 5b + 5d = B + 5a + 5c = ac + bd + 2a2 + 2d2 = 0.

Appendix B. Basic Darboux theory of integrability

Since, by Poincaré theorem, the integrability is closely related to the existence of a center on a 
center manifold (also on the plane), we provide a short overview of the basic notions of the Darboux 
theory of integrability used in Sec. 4; for more information see Llibre (2000), Goriely (2001) and some 
applications see Gasull and Mañosa (2002), Llibre et al. (2013), Mahdi and Valls (2014).

We say that F = F (x, y, z) ∈ C[x, y, z] is a Darboux polynomial and F = 0 is an invariant algebraic 
surface of the vector field X if and only if there exists a polynomial K (x, y, z) ∈ C[x, y, z], the co-
factor of F , such that X F = K F . A the heart of the Darboux theory of integrability is the following 
result (Darboux, 1978): if there exists some number, say n, of pairs (F j, K j) for which there exists a 
nontrivial dependency relation 

∑
α j K j = 0 then F α1

1 · · · F αn
n is a first integral of X .

Consider now the planar system

ẋ = P (x, y), ẏ = Q (x, y), (B.1)

where P , Q ∈ R[x, y], and the associate vector field X = P∂/∂x + Q ∂/∂ y. Let U be an open subset 
of R2, and let R, V : U → R be two analytic functions which are not identically zero on U . We say 
that R is an integrating factor of this polynomial system on U if one of the following three equivalent 
conditions holds

∂ R P

∂x
= −∂ R Q

∂x
, div(R P , R Q ) = 0, X R = −R div(P , Q ),

where div denotes the divergence. The first integral H associated to the integrating factor R can be 
easily obtained by

H(x, y) =
∫

R(x, y)P (x, y)dy + h(x),

where h(x) is chosen such that it satisfies ∂ H/∂x = −R Q . Note that ∂ H/∂ y = R P , so that X H ≡ 0. 
The function V is an inverse integrating factor of the polynomial system (B.1) on U if

P
∂V

∂x
+ Q

∂V

∂ y
=

(
∂ P

∂x
+ ∂ Q

∂ y

)
V . (B.2)

We note that {V = 0} is formed by orbits of system (B.1) and R = 1/V defines on U \ {V = 0} an 
integrating factor of (B.1). We note that if P and Q are quadratic polynomials and the origin of 
system (B.1) is a center, then there always exits a polynomial function V : R2 → R of degree 3 or 5
satisfying equation (B.2), see Ferragut et al. (2007).

Appendix C. Illustrative example to solve a center-focus problem

The hybrid symbolic-numerical approach described above will be applied here to generate nec-
essary and sufficient conditions for the existence of a center on a center manifold for a three-
dimensional quadratic system. We illustrate step-by-step how to use our approach on a simple 
example with computations performed using the software Bertini, see Bates et al. (2006, 2013b). 
Although one could directly obtain a numerical irreducible decomposition defined by all three poly-
nomials, there is benefit to describing each step of our approach to characterize the center conditions 
for the following system derived from Kuznetsov (2004), Edneral et al. (2012):

u̇ = −v

v̇ = u − uw

ẇ = −w + c1u2 + c2uv + c3 v2

where c1, c2, c3 ∈ R.
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Step 1. Focus quantities. The first step is the computation of the focus quantities (see Sec. 2), also 
called Lyapunov polynomials:

L1 = 2c1 − c2 − 2c3

L2 = (−26c21 + 13c1c2 − 20c1c3 + 13c2c3 + 6c23)/20

L3 = (341082c31 − 138277c21c2 − 7782c1c
2
2 − 4175c32 + 530378c21c3 − 188030c1c2c3

−15682c22c3 + 381918c1c
2
3 − 66453c2c

2
3 + 161022c33)/300000

(C.1)

As a matter of course with numerical solving, we have trivially rescaled L2 and L3. The following 
computes V(L1), V(L1, L2), and V(L1, L2, L3) using Bertini. Each of these computations will take 
place in three folders called L1, L12, and L123, respectively.

Step 2. L1 = 0. We first compute a numerical irreducible decomposition for V(L1), which defines a 
plane. Working inside a folder called L1, we create the file inputL1:

CONFIG
TrackType: 1; % compute a numerical irreducible decomposition
END;
INPUT
variable_group c1,c2,c3;
function L1;
L1 = 2*c1 - c2 - 2*c3;

END;

Running Bertini with input file inputL1 via the command

>> bertini inputL1

yields the following summary printed to the screen showing V(L1) defines a plane:

************** Decomposition by Degree **************
Dimension 2: 1 classified component
-----------------------------------------------------

degree 1: 1 component

*****************************************************

Step 3. L1 = L2 = 0. We next regenerate from V(L1) to compute V(L1, L2) in the folder L12 using the 
following file inputL12:

CONFIG
TrackType: 7; % perform regenerative intersection
END;
INPUT
variable_group c1,c2,c3;
function L1,L2;
L1 = 2*c1 - c2 - 2*c3;
L2 = (-26*c1^2 + 13*c1*c2 - 20*c1*c3 + 13*c2*c3 + 6*c3^2)/20;

END;
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Running Bertini with input file inputL12 via the command

>> bertini inputL12

yields several prompts, where we have put in red the text to be entered by the user: (for interpreta-
tion of the references to color please refer to the web version of this article)

Please enter the number of nontrivial components (-1 to quit): 1

Please enter the name of the corresponding input file or type
’quit’ or ’exit’ (max of 255 characters): ../L1/inputL1

Please enter the name of the corresponding witness_data file or type
’quit’ or ’exit’ (max of 255 characters): ../L1/witness_data

Please select a dimension to regenerate (-1 to quit): 2

Please select a component to regenerate (-1 to quit,
-2 to regenerate all): 0

This following summary printed to the screen shows that V(L1, L2) consists of two lines:

************** Decomposition by Degree **************
Dimension 1: 2 classified components
-----------------------------------------------------

degree 1: 2 components

*****************************************************

Step 4. L1 = L2 = L3 = 0. Before regenerating, we first investigate the lines in V(L1, L2). The approx-
imation of general points listed in the file main_data created by Bertini are to enough accuracy 
to use PSLQ (Ferguson and Bailey, 1991) to compute the defining equations. In more complicated ex-
amples, one may first want to utilize Bertini’s sharpening module to yield numerical approximations 
which are computed to the user’s accuracy requirement. In our example, the point (where I = √−1)

c1 = 2.968118932274116e-01 + I*1.520885450197431e+00
c2 = 1.187247572909648e+00 + I*6.083541800789725e+00
c3 = -2.968118932274119e-01 - I*1.520885450197432e+00

yields the line c1 + c3 = c2 − 4c1 = 0 while the point

c1 = -1.359028418458732e+00 + I*2.899781284193458e-01
c2 = -2.718056836917465e+00 + I*5.799562568386909e-01
c3 = -4.552348104595714e-16 - I*1.940963322531678e-16

yields the line

c2 − 2c1 = c3 = 0. (C.2)

The former is not contained in V(L3) so it must be regenerated while the latter (defined by (C.2)) is 
indeed contained in V(L3) yielding an irreducible component of V(L1, L2, L3). We note that ordering 
by Bertini of the two lines can change with different runs. In our run, the line which needs to be 
regenerated was first, which Bertini calls Component 0.

We next use regeneration to compute the intersection of the first line with the hypersurface V(L3)

in the folder L123 using the following file inputL123:
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CONFIG
TrackType: 7; % perform regenerative intersection
END;
INPUT
variable_group c1,c2,c3;
function L1,L2,L3;
L1 = 2*c1 - c2 - 2*c3;
L2 = (-26*c1^2 + 13*c1*c2 - 20*c1*c3 + 13*c2*c3 + 6*c3^2)/20;
L3 = (341082*c1^3 - 138277*c1^2*c2 - 7782*c1*c2^2 - 4175*c2^3 +

530378*c1^2*c3 - 188030*c1*c2*c3 - 15682*c2^2*c3 +
381918*c1*c3^2 - 66453*c2*c3^2 + 161022*c3^3)/300000;

END;

Running Bertini with input file inputL123 via the command

>> bertini inputL123

yields several prompts, where we have put in red the text to be entered by the user: (for interpreta-
tion of the references to color please refer to the web version of this article)

Please enter the number of nontrivial components (-1 to quit): 1

Please enter the name of the corresponding input file or type
’quit’ or ’exit’ (max of 255 characters): ../L12/inputL12

Please enter the name of the corresponding witness_data file or type
’quit’ or ’exit’ (max of 255 characters): ../L12/witness_data

Please select a dimension to regenerate (-1 to quit): 1

Please select a component to regenerate (-1 to quit,
-2 to regenerate all): 0

This computation yielded one point which was the limit of three solution paths, which is observed 
via the file witness_superset:

----------DIMENSION 0----------
SINGULAR SOLUTIONS
---------------
7.995887974832271e-25 1.110011689888151e-24
3.198355189932908e-24 4.440046759552608e-24
-7.995887974832270e-25 -1.110011689888152e-24
Multiplicity: 3

Since this point, namely the origin, is contained in the line defined by (C.2), we obtain that (C.2), 
which is equal to V(L1, L2, L3), is the collection of necessary conditions for the existence of a center.

Step 5. Sufficient conditions. The last step is to show that the necessary conditions (C.2) are also 
sufficient. This can be obtained, for example, by using Darboux theory of integrability as summarized 
in Appendix B (see also Edneral et al., 2012).
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