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The preparation of nanometer-sized structures of zinc oxide (ZnO) from zinc acetate and urea as raw materials was performed
using conventional water bath heating and a microwave hydrothermal (MH) method in an aqueous solution. The oxide formation
is controlled by decomposition of the added urea in the sealed autoclave. The influence of urea and the synthesis method on the
final product formation are discussed. Broadband photoluminescence (PL) behavior in visible-range spectra was observed with
a maximum peak centered in the green region which was attributed to different defects and the structural changes involved with
ZnO crystals which were produced during the nucleation process.

1. Introduction

Zinc oxide (ZnO) is a well-known semiconducting material
with photoluminescent and electric conductivity which has a
band gap value of 3.37 eV and an excitation energy band of
60 meV at room temperature [1, 2]. With these properties,
ZnO has a wide area of application such as solar cells [3, 4],
catalysis [5, 6], sensors [7], laser diodes [8], and varistors [5,
9]. Chemical and structural properties of ZnO particles are
very important in these applications; different preparation
methods for this oxide were used by various researchers
such as a sol-gel process [10], homogeneous precipitation
[5], thermal decomposition [11], microwave heating [12],
a conventional hydrothermal method [13–17], a polymeric
precursor method [10], and an MH-assisted method [18,
19]. The characteristics of the powders obtained for specific
applications are determined by the crystal size, morphology,
porosity, crystal type, and particle shape [6, 20, 21].

The use of polymers or surfactants [22, 23] to prepare
zinc oxide nanoparticles is advantageous due to a surface
modification process which eliminates agglomeration during

synthesis and controls the morphology and the shape of
developed ZnO nanocrystals. However, repetitive washing
and centrifugation is required with appropriate reagents such
as absolute ethanol and distilled water. Therefore, directly
controlling experimental factors to obtain nanoparticles with
ideal morphologies is a significant objective which is essential
for future device application [24]. Furthermore, the MH
method has commanded intensive interest due to simple
manipulation, low cost, clean technology, and short synthesis
time [25–27].

In this paper, the effect of the synthesis method on
the formation of zinc oxide nanostructures in an aqueous
solution was investigated. Thus, we prepared this oxide using
conventional water bath heating and the MH method using
urea as one of the reactants. The samples were characterized
by field emission gun scanning electron microscopy (FE-
SEM) and Raman spectroscopy. The formation of a hexag-
onal ZnO wurtzite phase was verified by X-ray diffraction
(XRD) patterns. The morphology, growth mechanism, and
PL properties were recorded.
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2. Experimental

2.1. Synthesis. Zinc oxide nanostructures were obtained:
zinc acetate (Zn(CH3COO)2·2H2O) (99%, Aldrich) and
urea (CO(NH2)2) (99%, Synth) (1 : 1 stoichiometry) were
dissolved in deionized water under constant agitation. A
potassium hydroxide (KOH) (3.0 mol/L solution) was added
until the pH reached 12 followed by stirring at room
temperature for 15 min.

The solution was then heated by two different methods:
conventional water bath heating and the MH method. In
the MH heating, the solution was transferred to a Teflon-
lined stainless steel autoclave, sealed, and placed in domestic
microwave (2.45 GHz) which was maintained at 100◦C for 2
and 8 min. The pressure in the sealed autoclave was stabilized
at 1.0 atm. The autoclave was cooled to room temperature
naturally. A white product was separated by centrifugation,
washed with deionized water and ethanol, and dried at 60◦C
in air.

2.2. Characterization of Samples. The powders obtained
were structurally characterized by XRD using a Shimadzu
XRD 6000 (Japan) equipped with CuK ∝ radiation (λ =
1.5406 Å) in the 2θ range from 10◦ to 80◦ with 0.02◦/min
scan increment. The morphology was characterized by FE-
SEM (Supra 35-VP, Carl Zeiss, Germany). Raman spectra
were recorded on a RFS/100/S Bruker FT-Raman spectrom-
eter with a Nd:YAG laser providing an excitation light at
1064.0 nm and a spectral resolution of 4 cm−1. The PL
was measured with a Thermal Jarrel-Ash Monospec 27
monochromator and a Hamamatsu R446 photomultiplier.
The 350.7 nm exciting wavelength of a krypton ion laser
(Coherent Innova) was employed, and the nominal output
power of the laser was maintained at 550 mW. All measure-
ments were made at room temperature.

3. Results and Discussion

XRD patterns of samples obtained using conventional water
bath heating and the MH method for 2 and 8 min are
shown in Figure 1. The results revealed that all diffraction
peaks can be indexed to the hexagonal ZnO structure which
shows good agreement with data reported in the literature
(JCPDS card number 36–1451). The strong and sharp peaks
indicate that the zinc oxide powders are highly crystalline and
structurally ordered at long range. These results show that
the MH processing promotes the complete crystallization of
ZnO samples at low temperatures and reduced processing
time. No secondary phases were detected.

Five active Raman modes can be observed for ZnO
samples: (i) at 437 cm−1 a narrow strong band has been
assigned to one of the two E2 modes involving mainly a
Zn motion which is a band characteristic of the wurtzite
phase [35]; (ii) bands at approximately 332 cm−1and several
common low-frequency features should be assigned to the
second-order Raman spectrum arising from zone boundary
phonons 3E2H-E2L; (iii) at 530 cm−1, a very weak band
from the E1 (LO) mode of ZnO associated with oxygen
deficiency [36]. Its intensity depends upon the crystallinity,
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Figure 1: XRD patterns of the ZnO sample obtained by (a)
conventional water bath heating, (b) the MH method for 2 min, and
(c) the MH method for 8 min.

preparation method and crystal orientation. Figure 2 shows
Raman spectra of ZnO powders obtained. The asymmetric
band at 378 cm−1 (A1T mode) related to the structural
order-disorder in the lattice [37] is covered by broad band
characteristic of a Zn–O bond at 437 cm−1.

Well-crystallized zinc compounds with different mor-
phologies can be obtained by several synthesis methods
by using urea (see Table 1). Precursors, the concentration
of urea, the synthesis method and the reaction time are
important factors influencing the structural evolution and
the morphology of the products. The weak basicity of
the solution gives rise to a zinc carbonate species product
(Table 1). The use of MH crystallization facilitates the direct
preparation of pure oxide powders in less time with desired
particle sizes and shapes from the control parameters such
as solution pH, reaction temperature, reaction time, solute
concentration and the type of solvent [38–40].

Hydrolysis characteristics of urea are well known in
H2O over 293–373 K at 1 bar [41]. Urea is highly soluble in
water, and its controlled hydrolysis in aqueous solutions can
yield ammonia and carbon dioxide. In the crystal growth
process, first ZnO tiny crystalline nuclei were formed, and
nanoparticles of this oxide were precipitated by an increase
in pH due to NH4

+ ions generated from of NH3 which
resulted from urea decomposition when the temperature
rose. The NH4

+ ion formation is controlled by ammonia in
water, and the hydrolysis of urea leads to a rise in the pH.
The urea hydrolysis progresses slowly, and the basic solution
undergoes supersaturation of the zinc hydroxide species [42].
Thus, the formation of ZnO occurs by a nucleation process
and the preferred growth direction of the crystal.

During the MH process, the urea is readily hydrolyzed;
its hydrolysis is also accompanied by the formation of gas
molecules and an increase in the pressure in the system which
is expected to perturb nanocrystalline growth and thereby
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Table 1: Zinc species obtained by different synthesis method using urea as a precursor.

Synthesis method Product 1 Temperature/time Product 2 Morphology/size Reference

Precipitation Zn5(OH)6(CO3)2 + ZnO 4 h of synthesis ZnO Bipods/3.1–7.9 μm [3]

Precipitation [Zn(OH)2(H2O)2] 1000◦C/2 h ZnO Hexagonal plates/35–45 μm [6]

Sol-gel Zn5(OH)6(CO3)2 500◦C–900◦C/2 h ZnO Spherical particles/20 nm [28]

Conventional hydrothermal white powder 550◦C/4 h ZnO
Column-,

rosette-fiber-like/0,5–10 μm
[29]

Microwave-induced combustion
technique

ZnO — — Flowers-like/2–5 μm [30]

Refluxing route ZnO — —
Rods-likes/30–40 nm (diameter)

and 500–700 nm (length)
[31]

Conventional hydrothermal Zn5(OH)6(CO3)2 500◦C/1 h ZnO Spherical particles/25 nm [32]

Conventional hydrothermal Zn4(OH)6CO3·H2O 400◦C/2 h ZnO Flakes-like/0.65–1.5 mm [33]

Conventional hydrothermal Zn5(OH)6(CO3)2 600◦C ZnO Flakes-like/10–20 nm [11]

Solvothermal ZnOCO3 + ZnO 180◦C/24 h ZnO Spherical particles/50–300 nm [23]

Urea aqueous solution process Zn5(OH)6(CO3)2 600◦C/30 min ZnO
Spherical

chrysanthemums/2–6 μm
[34]

Conventional water bath heating ZnO — — Irregular nanoparticles This work

Microwave-assisted
hydrothermal

ZnO — — Spheres-like/85 nm This work
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Figure 2: Raman spectra of ZnO powders prepared by (a)
conventional water bath heating, (b) the MH method for 2 min, and
(c) the MH method for 8 min.
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Figure 3: Schematic representation of ZnO formation.

Table 2: Fitting parameters of five Gaussian peaks.

Peak center (eV) 1.76 1.95 2.15 2.36 2.61

Conventional water bath
heating (area %)

11.1 29.0 34.5 19.0 6.4

MH for 2 min (area %) 10.1 26.1 31.2 24.1 8.5

MH for 8 min (area %) 9.2 29.9 33.5 20.8 6.5

results in morphological changes. This process may acceler-
ate the reaction between the synthesis precursors which leads
to anisotropic crystal growth and the crystallization of oxide
under mild temperature conditions and reaction times. A
schematic representation of ZnO nanostructure formation is
shown in Figure 3.

The morphology of ZnO powders was investigated using
FE-SEM (see Figure 4). These images reveal that samples
prepared without the MH process had an irregular shape
and were not uniform in size, whereas spherical and uniform
particles were observed for samples prepared using the MH
method. The MH method contributes significantly to ZnO
production with homogeneous shapes after short processing
times.

Diffusivity in the medium and interface mobility could
be enhanced using the MH process which contributes signif-
icantly to ZnO production with homogeneous shapes after
short processing times. Nanosized structures were formed by
this method, and different average particle distributions were
obtained after treatment under hydrothermal conditions (see
inset in Figures 4(b) and 4(c)). Average particle diameters
were 90 nm and 85 nm for samples treated by the MH process
for 2 and 8 min, respectively.

Disordered structures in solids cause degeneracy and
destabilization in the localized states of the atoms which act
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Figure 4: FE-SEM images of ZnO powders prepared using (a) conventional water bath heating, (b) the MH method for 2 min (average
distribution of particles is inserted), and (c) the MH method for 8 min (average distribution of particles is inserted).

as electron-hole pairs and support broadband PL phenom-
ena. PL spectra recorded at room temperature are illustrated
in Figure 5(a).

Theoretical results verify that a symmetry breaking
process in the structure of various semiconductors associated
with order-disorder effects is a necessary condition for
intermediate levels in the forbidden band gap [43–45]. These
structural changes can be related to the charge polarization in
different ranges that are (at the very least) manifestations of
quantum confinement when they occur at short and inter-
mediate ranges independent of the particle size. The main
reason for quantum confinement to occur is the formation
of discrete levels in the band gap which is not possible
with as a periodic crystal defect (dispersion interaction)
[46]. The formation of isolated energy levels (quantum
confinement) and [ZnO3 · V•o] clusters leads to a substantial
recombination between photoexcited electrons and holes
during the excitation process. Probably the [ZnO4]x −
−[ZnO3 · Vx

o] clusters are activated during the excitation
process which changes their symmetry in progressing from
singlet or triplet states as demonstrated for the perovskite

structure [47]. These defects induce new energies in the
band gap which can be attributed to zinc-oxygen vacancy
centers. The structural and electronic reconstructions of all
possible combinations of clusters in a crystal are essential to
understand the cluster-to-cluster charge transfer process and
even the PL phenomenon.

PL curves were decomposed into five components using
the Gaussian method and the Peak Fit program: a red
component (1.76 eV), a yellow component (1.95 eV), two
green components (2.15 and 2.36 eV), and a blue component
(2.61 eV). These emissions arise from a radiative recom-
bination between electrons and holes trapped in the gap
states. Figures 5(b) to 5(d) illustrate decomposition data,
and Table 2 lists the areas under each curve of the respective
transitions. The percentage was obtained by dividing the area
of each decomposed PL curve by the total PL area. Each color
represents a different type of electronic transition and can
be linked to a specific structural arrangement. The high PL
intensity displayed by the sample obtained for 2 min under
MH conditions seems to indicate that this material must
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Figure 5: (a) PL spectra at room temperature of ZnO powders; deconvolution results of ZnO samples obtained by (b) conventional water
bath heating, (c) the MH method for 2 min, and (d) the MH method for 8 min.

possess an optimum structural order-disorder degree for PL
to occur.

4. Conclusions

The MH process affects the growth process of ZnO nanos-
tructures from an aqueous solution of zinc acetate and urea
which leads to the rapid and uniform growth of particles.
The PL emission of semiconductors is an important property
because it can provide information on defects and relaxation
pathways of excited states depending upon the preparation
techniques which can generate different structural defects.
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