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Abstract

Background

Brazil is a tropical country that is largely covered by rainforests and other natural ecosys-

tems, which provide ideal conditions for the existence of many arboviruses. However, few

analyses have examined the associations between environmental factors and arboviral dis-

eases. Thus, based on the hypothesis of correlation between environment and epidemiol-

ogy, the proposals of this study were (1) to obtain the probability of occurrence of

Oropouche, Mayaro, Saint Louis and Rocio fevers in Brazil based on environmental condi-

tions corresponding to the periods of occurrence of the outbreaks; (2) to describe the macro-

climatic scenario in Brazil in the last 50 years, evaluating if there was any detectable

tendency to increase temperatures and (3) to model future expansion of those arboviruses

in Brazil based on future temperature projections.

Methodology/Principal findings

Our model assessed seven environmental factors (annual rainfall, annual temperature,

elevation, seasonality of temperature, seasonality of precipitation, thermal amplitude, and

daytime temperature variation) for their association with the occurrence of outbreaks in the

last 50 years. Our results suggest that various environmental factors distinctly influence the

distribution of each arbovirus, with temperature being the central determinant of disease dis-

tribution in all high-risk areas. These areas are subject to change, since the average temper-

ature of some areas has increased significantly over the time.

Conclusions/Significance

This is the first spatio-temporal study of the Oropouche, Mayaro, Saint Louis, and Rocio

arboviruses, and our results indicate that they may become increasingly important public

health problems in Brazil. Thus, next studies and control programs should include these dis-

eases and also take into consideration key environmental elements.
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Author summary

The Oropouche, Mayaro, Saint Louis, and Rocio viruses are neglected emerging mos-

quito-borne viruses that are spreading and causing wide-scale epidemics in South Amer-

ica. However, under-reporting of these cases is possible, as the symptoms are shared with

other endemic diseases. Moreover, little is known regarding environmental conditions

that favor these tropical outbreaks of arboviral diseases. This study examined the associa-

tion of environmental factors with the probability of occurrence of Oropouche, Mayaro,

Saint Louis and Rocio fever outbreaks (present and future) and finds that temperature is a

central variable that determines the distribution of high-risk areas. This fact is very worry-

ing, because the average temperature of some areas has increased significantly over the

time. Results from this study strongly suggest that these four diseases have the potential to

become important public health problems or become increasingly relevant in Brazil and

other tropical areas in the coming years and should be monitored as part of effective con-

trol programs.

Introduction

Arboviruses have become important and constant threats in tropical regions, due to rapid cli-

mate change, deforestation, population migration, disorderly occupation of the urban areas,

and precarious sanitary conditions that favor viral amplification and transmission [1]. Climate

fluctuations produce conditions that accelerate arbovirus epidemics, directly affecting global

public health [2]. Abnormally high temperatures for example, affect populations of insect vec-

tors, and arboviral diseases, by influencing: the survival and replication of the virus, suscepti-

bility of the vector to viruses, distribution of vectors, extrinsic incubation period of a virus in

the insect, and seasonality of virus transmission patterns [3,4]. Besides that, arboviruses are

highly spreadable because their vectors can be carried long distances, and even between coun-

tries or continents, which can lead to pandemics.

Brazil is the largest South American country and has a population of approximately 207

million in an area of 8,514,215 km2 [5]. More than >30% of Brazil remains covered by rainfor-

ests and other natural ecosystems, despite the high rate of deforestation [5]. These natural

environments can harbor many arboviruses that are maintained in different zoonotic cycles.

For example, approximately 200 different arbovirus species have been isolated in Brazil,

including 40 species that can cause human diseases [6,7]. Although it is acknowledged that

dengue, zika, chikungunya, and recently, yellow fever, are today the most important emerging

and re-emerging arboviral diseases in Brazil, in this study we focused on others that have been

neglected and consequently, are less discussed in medical literature. These include Oropouche

(ORO), Mayaro (MAY), Saint Louis (SLE), and Rocio (ROC). Besides the lack of specific tests

to identify these diseases, the similarities among the symptoms are very high; fever, for exam-

ple, is common to all of them. This makes the correct diagnosis very difficult and in most cases

may have been underreported.

Oropouche (ORO)

The Oropouche virus (Orthobunyavirus genus) was first isolated in 1955 from a febrile human

patient and Coquillettidia venezuelensis mosquitoes in Trinidad and Tobago [8]. Five years

later, the virus was detected in a Brazilian territory in a sloth (Bradypus tridactylus) and in
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Ochlerotatus serratus mosquitoes [9]. Since then, ORO has been a common cause of explosive

urban epidemics in the Amazon region, affecting large cities such as Belem and Manaus.

This virus is transmitted among vertebrate hosts, such as marsupials, sloths, primates, and

birds, through a generally wild transmission cycle by the Ochlerotatus serratus and Culex quin-
quefasciatus mosquitoes. Notably, this arbovirus has adjusted to an urban transmission cycle

with humans as the main reservoir and Culicoides paraensis (Ceratopogonidae) as the main

vector. Thus, there is a worrisome risk of ORO emergence in the densely populated coast of

Brazil, which cover the northeastern and southeastern regions, considering that vector C. para-
ensis is present in low-altitude areas of the entire Brazilian territory [7,10]. Moreover, Cx. quin-
quefasciatus mosquitoes are spread throughout the Brazilian cities, suggesting the need to pay

more attention to this mosquito species too.

ORO is one of the most important arboviral diseases in the Americas, especially in the Bra-

zilian Amazon region. However, because ORO fever is not considered a reportable disease, it

is difficult to estimate its incidence during outbreaks, although serological surveys are useful in

this setting. Thus, research has indicated that approximately 500,000 people in the Amazon

region may have been infected with the ORO virus since the early 1960s [6].

Most epidemics of ORO fever typically occur during the rainy season. However, some epi-

demics have also extended into the dry season, although with less intensity. The seasonal

nature of the ORO is most likely linked to the higher density of the populations of the vector

C. paraensis in months with higher levels of rainfall, combined with a higher concentration of

exposed hosts. Unfortunately, the diagnosis of ORO can be confused with other acute febrile

diseases that are endemic in the Amazon region, such as malaria and dengue [11].

Mayaro (MAY)

The MAY virus, belonging to the Alphavirus genus, has been responsible for outbreaks of

acute febrile illness and arthralgia syndrome in northern and midwestern Brazil, as well as

Peru, Bolivia, and Venezuela [7,12]. This virus was first detected and isolated in 1954, from

rural workers in Trinidad [13].

Human cases of MAY are sporadic and mainly involve people who live in rainforests, as the

main vector is the Haemagogus mosquitoes that are common in those forests. Vertebrate hosts

are mainly mammals, although there is some evidence of bird infections in southern Brazil.

Aedes mosquitoes can also transmit the virus in rural, suburban, and urban areas [14]. The

course of 3–5 day of illness is characterized by fever, headache, myalgia, rash, and pain, mainly

in the large joints, and less often, arthritis [15,16]. The spread of this virus can extend to cities

through an infected human or through birds that can travel long distances in a short time, and

adapt to a new cycle that involves humans as reservoirs.

This febrile illness occurs throughout the year, more frequently in the rainy season, as with

dengue and ORO, and affects people of both sexes, of all ages. The estimated transmission of

the virus in Manaus, state of Amazonas, is about 2 million people. This is a public health prob-

lem because there is no vaccine, and vector control is not feasible [12].

Saint Louis Encephalitis (SLE)

The SLE virus belongs to the Japanese encephalitis virus complex, which is within the Flavivi-
rus genus, and Flaviviridae family [17]. The virus was first isolated in 1933from suspensions of

human intracerebral brain samples that had been inoculated postmortem with tissues from

rhesus monkeys and white mice (Saint Louis, Missouri, USA) [18]. Currently, the SLE virus is

broadly distributed throughout all Americas (from Canada to Argentina), and has neurotropic

characteristics [12]. It causes an acute disease in humans, with manifestations that range from
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febrile syndrome to fatal meningoencephalitis [19]. Reports of fatal cases vary from 5% to 20%;

however, the numbers are even higher among the elderly population [20].

Transmission of the SLE virus occurs through Culex mosquitoes, and migratory birds

spread the virus and other forms of encephalitis along their migratory routes [12]. Despite rare

cases of the isolation of SLE virus in humans in Brazil, the antibodies of this virus were found

in approximately 5% of the populations of the Northern and Southeastern Regions [12].

Recently, there was an outbreak of SLE in the country, which occurred simultaneously with

that of dengue in São José do Rio Preto (Sao Paulo) [21]. During this outbreak, some patients

with SLE exhibited hemorrhagic manifestations, such as a positive tourniquet test, petechiae,

and bleeding [21].

Rocio (ROC)

The ROC virus was first isolated in 1975 from a fatal case of encephalitis in a restricted area of

the Atlantic Forest (Ribeira River Valley Sao Paulo) [7]. The case was detected during the

1973–1980 outbreak which caused an estimated 1,000 cases of encephalitis in more than 20

municipalities. The mortality rate was 10%, and among the survivors, about 200 suffered bal-

ance or mobility sequelae [7]. It is unclear how the ROC virus spread to this region and why it

subsequently disappeared 7 years later, although antibodies have been detected in rural resi-

dents of southeastern and northeastern Brazil. [22,23]. Based on the viral isolation and serolog-

ical data, it is believed that the ROC virus is maintained in a transmission cycle that involves

wild birds, including some migratory species, as the reservoirs, and Aedes and Psorophora
mosquitoes, as the vectors.

Despite the availability of a comprehensive record in the literature for these relevant dis-

eases, to the best of our knowledge, no predictive models have been developed in this context.

In this study, we analyze and illustrate how these four mosquito-borne diseases can have seri-

ous public health implications, or increase their relevance in the future. Thus, the study’s goals

were: (a) to obtain the probability of occurrence of ORO, MAY, ROC and SLE in Brazil, based

on environmental conditions corresponding to the periods of occurrence of the outbreaks; (b)

to describe the macroclimatic scenario in Brazil in the last 50 years, evaluating any detectable

tendency to increase temperatures and (c) to predict future expansion of ORO, MAY, SLE and

ROC in Brazil, based on future temperature projections for 2046–2065 and 2071–2100, using

two different scenarios of greenhouse gas emissions.

Methods

Study area and data source

The approximate locations of human ORO, MAY, SLE, and ROC cases were determined using

sites that were identified in the literature between 1961 and 2012 (Table 1). Data were exhaus-

tively collected using searches of the PubMed and Google Scholar databases (search term:

“Oropouche” OR “Mayaro” OR “Saint Louis” OR “Rocio” AND “Brasil” OR “Brazil”) and the

library of University of Sao Paulo, Brazil. We have included all records of diseases in Brazilian

municipalities reported in epidemiological bulletins since the very first record up until 2012.

The criterion for inclusion of a municipality in the analysis was presence� 1 of ORO, MAY,

SLE or ROC case. This is because the World Health Organization has stated “a single case of a
communicable disease long absent from a population, or caused by an agent (e.g. bacterium or
virus) not previously recognized in that community or area, or the emergence of a previously
unknown disease, may also constitute an outbreak” [24].

To determine the ecological and climatic conditions associated with ORO, MAY, SLE, and

ROC mosquito-borne disease outbreaks, we examined the relationships between the locations

Future predictions of arboviral diseases in Brazil

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005959 September 27, 2017 4 / 19

https://doi.org/10.1371/journal.pntd.0005959


Table 1. Brazilian municipalities that have presented arbovirus outbreaks in the 1961–2012 interim. (Data from Google Scholar and Pubmed data-

bases. Searching topics = “Oropouche” OR “Mayaro” OR “Saint Louis” OR “Rocio” AND “Brasil” OR “Brazil”). The acronyms next to each municipality indicate

the State.

Virus Municipality Epidemic Year References

Oropouche Belém (PA) 1961, 1968, 1979, 1980 [25–29]

Bragança (PA) 1967, 1979–1980

Baião (PA) 1972

Santarém region (PA) 1974–1975

Itupiranga (PA) 1975

Tomé Açu (PA) 1978

Portel (PA) 1979

Bragantina region (PA) 1979–1980, 2006

Mazagão (PA) 1980

Barcelos (AM) 1980

Manaus (AM) 1980–1981

Tocantinópolis (TO) 1988

Porto Franco (MA) 1988

Ouro Preto d’Oeste (RO) 1991

Ariquemes (RO) 1991

Serra Pelada (PA) 1994

Brasil Novo (PA) 1996

Novo Airão (AM) 1996

Oriximiná (PA) 1996

Vitória do Xingu (PA) 1996

Xapuri (AC) 1996

Parauapebas (PA) 2003

Porto de Moz (PA) 2004

Mayaro Belterra (PA) 1977–1978 [30–36]

Conceição do Araguaia (PA) 1981

Itaruma (GO) 1987

Benevides (PA) 1991

Peixe (TO) 1991

Acrelândia (AC) 2004

Manaus (AM) 2007–2008

Santa Bárbara (PA) 2008

Sinop (MT) 2011–2012

Cuiabá (MT) 2012

Sorriso (MT) 2012

Várzea Grande (MT) 2012

Nossa Senhora do Livramento (MT) 2012

Saint Louis São Pedro (SP) 2004 [37–39]

Ribeirão Preto (SP) 2006

São José do Rio Preto (SP) 2007

Rocio Cubatão (SP) 1975 [40–43]

Guarujá (SP) 1975

Itanhaém (SP) 1975

São Vicente (SP) 1975

Mongaguá (SP) 1975

(Continued )
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of the outbreaks and seven variables: annual rainfall (RAIN, mm), annual temperature

(TEMP, ˚C), elevation (ELEV, m), seasonality of temperature (SEA-TEMP), seasonality of pre-

cipitation (SEA-RAIN), thermal amplitude (THER-AMP), and daytime temperature variation

(DTV). The SEA-TEMP value was calculated as the standard deviation of the average monthly

temperatures. The THERM-AMP value was calculated by subtracting the minimum tempera-

ture during the coldest month from the maximum temperature during the hottest month. The

SEA-RAIN value was calculated as the coefficient of variation for average monthly precipita-

tion. The mean DTV value was calculated by subtracting the mean minimum temperature

from the mean maximum temperature. All weather data were obtained in ASCII-raster format

files and using the "LAT/LONG" geodetic coordinate system (Datum WGS-84). These data

were obtained from the WorldClim—Global Climate Data database, which contains represen-

tative observational data for 1950–2000 that were interpolated to a resolution of 30 arc-seconds

(approximately 1 km). As the environmental variables were expressed in various units, the

principal components analysis (PCA) was performed after standardizing the variables using a

Pearson correlation matrix. The temperature layers for 1970–2010 were obtained from the

National Institute of Meteorology [44], and data regarding other variables were obtained from

the AMBDATA [45] and WorldClim [46] databases.

Data analysis

Our analysis included all probable (clinically diagnosed) and confirmed (serological) cases of

persons with the onset of the disease from 1961 through to 2012. For each disease, the environ-

mental variables analyzed were those that corresponded with the years of outbreaks: ORO

(between 1961 and 2006), MAY (between 1977 and 2012), SLE (between 2004 and 2007) and

ROC (1975 and 1976). The database was developed based on the presence and absence of arbo-

viroses. We considered value 1 for years with at least one case (or more) of ORO, MAY, SLE

or ROC, and value zero for other years (no occurrence), during the period studied (1961 to

2012). Table 1 shows the municipalities that had cases of these arboviruses and the years in

which they occurred.

Table 1. (Continued)

Virus Municipality Epidemic Year References

Praia Grande (SP) 1975

Santos (SP) 1975

Cananéia (SP) 1975–1976

Iguape (SP) 1975–1976

Itariri (SP) 1975–1976

Jacupiranga (SP) 1975–1976

Juquiá (SP) 1975–1976

Miracatu (SP) 1975–1976

Pariquera-Açu (SP) 1975–1976

Pedro de Toledo (SP) 1975–1976

Peruı́be (SP) 1975–1976

Registro (SP) 1975–1976

Sete Barras (SP) 1975–1976

Barra do Turvo (SP) 1976

Eldorado Paulista (SP) 1976

https://doi.org/10.1371/journal.pntd.0005959.t001
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The PCA was performed using R software to preselect the environmental variables that had

the greatest influence on the distributions of each disease [47]. The PCA approach was used

for two reasons. First, PCA facilitates the identification and elimination of covariant variables,

which is a key procedure for avoiding analytical artefacts. Second, PCA has been widely used

in equivalent studies and then facilitates comparisons, reproducibility, and future meta-analy-

sis. After the PCA, we selected the four most representative eigenvectors of the variables for

each disease, which were used for Maxent analysis (version 3.3.3 k: a machine learning algo-

rithm for modeling species distributions based on existing data and environmental variables)

[48,49]. The data selection was performed according to the criterion of maximum entropy,

with the original variables that reached maximum and minimum values within the ordered

ranking of each principal component, because they describe the full range of data variation.

The Maxent model may be expressed as:

p fj
h i
¼

1

N

XN

i¼1

f iðxiÞ

Where: x
�

= the geographical region of interest; x = {x1,x2 . . ., xN} with x 2 x
�

; x! observed

points at x
�

; fj = f1´, f2´ . . .,fm (environmental variables); N = the number of observed cases; and

p = the probability of disease occurrence. The model was run 25 times, while withholding a dif-

ference of 10% of the localities for each run to estimate the parameters and its precision. The

potential distribution maps were created by interpolating the occurrence points and the simi-

larity measures of the environmental variables in each pixel (i.e., a known observation proba-

bility value can be assigned to each pixel by calculating a probability whose exponent is a

quadratic function). To describe the temperature change patterns in Brazil during the sampled

50 years, we used the kriging method [50, 51] and data from approximately 250 monitoring

stations throughout Brazil. This approach generated a map by estimating the value at each

node of a regular grid, which was superimposed over the area of interest, and then a contour-

ing program was applied to draw iso-level curves. We used a 250 × 250 grid of Brazil map,

which provides 62,500 sections, because it was the maximum map resolution with a minimum

required amount of computational time. R software [47] was also used to evaluate the temporal

trend in temperature during the last five decades.

Future climate data were integrated using two global climate models (GCMs): the Had-

GEM2-ES [52] and MIROC-5 [53], which were selected for their different strengths. The Had-

GEM2-ES model is a stable model that represents a realistic state of the climate, vegetation,

and oceanic biology, without the need for artificial corrections. On the other hand, the

MIROC-5 model also includes components of the Earth’s system and climate change, in rela-

tion to anthropogenic radiation. The advantage of using this model is that it increases the accu-

racy of short-term climate prediction, as it can be affected by both anthropogenic and intrinsic

fluctuations of the climate system. The spatial resolution of the GCMs was the same as that of

the environmental variables (30 arc-seconds, approximately 1 km). The comparison method

was the same as for the Maxent model, although the probability calculation for the GCMs

incorporated a comparison of the present and future environmental conditions. To obtain

future climate scenarios using GCMs, it is also necessary to choose a condition for evolution of

the greenhouse gas emissions (GGE), during the period when the future climate is projected.

In our prediction we used two different scenarios: low emission (RCP 2.6) and very high emis-

sion (RCP 8.5), detailed in the Special Report on Emissions Scenarios by the Intergovernmen-

tal Panel on Climate Change [54]. In the first case, the global temperature tends to increase by

1.0˚C and can reach a temperature anomaly ranging from 0.4 to 1.6˚C and 0.3 to 1.7˚C

between 2046–2065 and 2081–2100, respectively [55]. In the second scenario, with high GGE,
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the global temperature tends to increase 2.0 to 3.7˚C and can reach to a thermal anomaly rang-

ing from 1.4 to 2.6˚C and 2.6 to 4.8˚C between 2046–2065 and 2081–2100, respectively

[56,57].

The models of future expansion of ORO, MAY, SLE and ROC in Brazil were then projected

into the timeline, and the two future climatic conditions (2046–2065 and 2071–2100), to iden-

tify areas suitable for those diseases. A map of raw temperature projections from the GCMs

used to drive the disease models can be seen at S1 Fig. The default Maxent auto feature setting

was used (linear, quadratic, product, threshold, and hinge). The maps were edited using QGis

software 2.10.1.

Results

Through PCA of climatic factors, it was possible to identify three main groups: ROC, SLE and

ORO + MAY (Fig 1). It is important to note that both diseases ORO and MAY occurred more

in the North and Midwest of the country. The first two components (F1 and F2) were able to

explain 82.96% of the variation.

Analyzing each disease separately (Fig 2), according to PCA it was possible to perceive that

the most influential factors were distinct for each arbovirus. With respect to ORO cases, the

most important variables were TEMP and SEA-TEMP; for MAY: THERM-AMP and SEA-

TEMP, which was similar to ORO; for SLE: RAIN and DTV, and finally for ROC, the most

important variables were THERM-AMP and ELEV. Details are described in Table 2.

As some variables co-varied (Fig 2), we selected only the non-covariant variables as input

for analysis in Maxent software. The cut-off was four variables and was based on ROC, which

presented the lowest number (four) of non-covariant variables. After selecting the four most

important variables for each disease, we constructed a predictive model in Maxent (Fig 3), in

order to determine what areas were most likely to present outbreaks. The contribution of each

variable for each model is described in Table 3. The final model for ORO, MAY, SLE and ROC

had an area under the curve of 0.79, 0.76, 0.85 and 0.99, respectively, significantly better than

the random prediction (p = 0.001), indicating good performance of the model. The Maxent

outputs and receiver operating characteristic curves [58] for all arboviruses are shown in S2

Fig. We observed that there is a concentration of ORO and MAY in the Northern region of

Brazil, while SLE and ROC are mainly present in the South region and coastal region.

Fig 1. PCA of arboviruses. This PCA showing the distribution of ORO (brown), MAY (blue), SLE (yellow)

and ROC (red) cases according to environmental variables. The green ellipses show the main clusters: ROC,

SLE and ORO+MAY.

https://doi.org/10.1371/journal.pntd.0005959.g001
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Most of the important variables for the distribution of all four diseases are temperature-

related (TEMP, SEA-TEMP); so we analyzed the temperature situation in Brazil in the last 50

years. After analyzing the historical temperature series, and using the kriging method, we real-

ized that there has been an increase in temperature over the decades (Fig 4), especially in the

North of the country.

In the case of continuity of this scenario of temperature increase, we generated probability

maps with two different climate future projections (Fig 5). The results reveal a progressively

expanding areas with an increased likelihood of ORO, MAY, SLE and ROC cases, especially at

the edges of the transmission areas. In scenario of high GGE it was possible to observe the

increase of high risk areas for ORO and MAY, while for SLE and ROC there were no drastic

changes. This fact is in agreement with our observations of temperature increase (Fig 4),

Fig 2. The most influential environmental variables. PCA of each disease showing which environmental variables are

the most influential.

https://doi.org/10.1371/journal.pntd.0005959.g002
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which the greatest changes occurred precisely in the North region of the country, affecting

mainly the distribution of ORO and MAY. We also performed these same analyzes with the

GCM MIROC-5 and the results were essentially the same (S3 Fig).

Table 2. Importance of environmental variables according to disease.

Eigenvectors

Environmental Variables ORO MAY SLE ROC

F1 F2 F1 F2 F1 F2 F1 F2

TEMP 0.461 0.006 -0.375 0.011 0.949 -0.316 0.129 -0.672

SEA-RAIN -0.259 -0.156 0.369 -0.415 0.955 -0.298 0.382 -0.127

RAIN 0.407 -0.135 -0.352 -0.510 0.046 0.999 -0.459 0.068

ELEV -0.394 0.040 0.387 -0.142 -0.741 0.672 0.039 0.705

DTV -0.428 -0.311 0.397 -0.366 0.990 0.144 0.460 0.109

THER-AMP -0.448 -0.025 0.421 -0.089 -0.735 -0.678 0.467 0.087

SEA-TEMP -0.126 0.926 0.339 0.637 -0.898 -0.440 0.441 0.109

Values of PCA showing the relative influence of which environmental variables for each disease. The most influential variables (extreme values in bold)

were used in the later analyzes with Maxent software.

https://doi.org/10.1371/journal.pntd.0005959.t002

Fig 3. Occurrence of arboviruses. Map of the Brazilian territory showing probability of areas with ORO

(AUC: 0.79), MAY (AUC: 0.76), SLE (AUC: 0.85) and ROC (AUC: 099) during outbreaks in the last five

decades. The maps were built using QGis software 2.10.1.

https://doi.org/10.1371/journal.pntd.0005959.g003
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Discussion

Modeling outbreaks in Brazil

Our analysis showed that the occurrence of outbreaks of ORO, MAY, SLE and ROC is affected

differently by environmental variables, although temperature seems to be strongly associated

with all of them. Theses information is quite alarming, since the temporal analyses have shown

that the average temperature of some Brazilian areas has been increasing over the decades (see

Fig 4). This variable presents an important constraint on the extent of expansion of these dis-

eases throughout the country, mainly because these changes are intimately linked to vector

Table 3. Percent contribution of each variable in the final Maxent model.

Environmental Variables Contribution (%)

ORO MAY SLE ROC

TEMP 1.2 92.3 - 50.7

SEA-RAIN - - - -

RAIN - 2.2 11.5 13.6

ELEV - - - 25.8

DTV 3.6 - 1.4 -

THER-AMP 2.4 5.5 24.5 9.9

SEA-TEMP 92.8 0 62.7 -

AUC index 0.79 0.76 0.85 0.99

Percent contribution of each variable chosen for the final model obtained with Maxent. The dashes indicate those variables excluded (owing to co-variation

or low influence).

https://doi.org/10.1371/journal.pntd.0005959.t003

Fig 4. Temperature in Brazil during the last 50 years. Map showing the increase in temperature in the last five

decades throughout the Brazilian territory. The maps were created using QGis software (version 2.10.1).

https://doi.org/10.1371/journal.pntd.0005959.g004
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lifecycle development and associated with the virus itself [7,59]. In addition, the IPCC report

[60] points out that heat waves are more prone to occur in the next years with more frequency

and duration. Furthermore, events of extreme precipitation are also most likely to be more fre-

quent and intense on the continental surfaces, in humid tropical regions such as the North of

Brazil. Consequently, climate changes may directly interfere with the distribution of the dis-

eases evaluated in this study, particularly ORO and MAY.

The increase in temperature may also change the distribution of virus vectors, because they

may migrate to other areas where conditions are favorable for proliferation. In some cases, the

elevation has an inverse effect on the temperature, because generally, higher altitudes corre-

spond with lower temperatures; nevertheless, some vectors are adaptable. In Mexico, the vec-

tor Aedes aegypti for example, has been found at an elevation of 2,000 meters whereas

previously, it was only found in places up to 1,000 meters high [61]. For ORO and MAY

Fig 5. Predicted ORO, MAY, SLE and ROC range expansion in Brazil based on GCM HadGEM2-ES. The

maps show the distribution under two climate change scenarios: RCP 2.6 (lower increase in greenhouse gas

emissions) and RCP 8.5 (higher increase in greenhouse gas emissions). The maps were built using QGis software

2.10.1. *”Present” is the scenario in which disease outbreaks have been described, based on 1950–2010 climate

data.

https://doi.org/10.1371/journal.pntd.0005959.g005
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outbreaks specifically, one of the factors that seems to be more related is environmental change

[59]. Following deforestation in the Amazon, and subsequently, the cocoa plantation and oth-

ers cultivated in the region, the vectors found an ideal spot for reproduction in the cocoa shells,

and, expanded their population, spreading the virus to humans along the Amazonian roads

[62]. Therefore, ORO and MAY outbreaks appear to be the result of a strong relationship

between the virus and its environment, with human activity (colonization, cocoa cultivation,

and subsequent environmental changes) resulting in the proliferation of the Culicidae and

Ceratopogonidae mosquito families, and subsequently increasing their human contact

[59,62,63].

By analyzing the results of PCA, it was observed that diseases were grouped into three main

clusters: SLE, ROC and ORO+MAY (see Fig 2). The relationship between ORO and MAY

occurred because both diseases are influenced by similar climatic factors, such as seasonality of

temperature. Both have high-risk areas in the Northern and Central regions of the country,

where the Amazonian biome predominates [5]. Moreover, both diseases are related to wild

vectors, such as Haemagogus mosquitoes for cases of MAY and C. paraensis (Ceratopogonidae)

for ORO [7]. Furthermore, although restricted to the Amazon region, these diseases have the

potential to spread throughout the country and around the world, since they affect birds that

can move long distances by migration or by illegal wildlife trafficking, which is very common

in this region.

In relation to ROC, the factors that were most related to high-risk areas were thermal

amplitude and elevation. This is in accordance with the distribution of the Atlantic Forest

biome, which covers a mountainous region that shelters the wild vectors, Aedes scapularis and

Psorophora sp. mosquitoes. To the best of our knowledge, no reports have explained the emer-

gence and sudden disappearance of ROC cases in the 1970s, but it is believed that this virus is

remained in a cycle where birds, including some migratory species, are the reservoirs [12].

Furthermore, in 2004, antibodies were detected among birds in southern Brazil, and the ROC

virus may be circulating in different Brazilian regions, which could represent a permanent

threat of disease outbreaks [7,12].

Similarly, the SLE virus can also be found in migratory birds, and it is believed to be respon-

sible for the spread of the virus throughout the Americas, as well as other encephalitis. How-

ever, there are biological and genetic differences between isolates from North and South

America [64]. Despite the rare isolates of SLE in humans in Brazil, antibodies to this virus

were found in approximately 5% of the populations of the Northern and Southeastern regions

[21]. The present study revealed that the most important factors for SLE were annual RAIN

and DTV, which can also affect the life cycle of the Culex vector. For example, greater rainfall

results in increasing vegetation coverage, which is the primary food source of many vertebrates

that are potential hosts for the mosquitoes. However, decreased precipitation can reduce vege-

tation and drive both the vertebrate hosts and the mosquitoes towards human settlements,

which can increase vector-human contact [2,3,65].

By analyzing the distribution maps of the diseases generated by Maxent it was observed that

the probable high-risk areas were much larger than those in which the cases were detected. For

example, ROC cases were reported only in the Sao Paulo state, but it is possible that there are

other areas suitable for other outbreaks, such as a small region observed between the Rondonia

and the Mato Grosso states (see Fig 3). This discrepancy between the reported cases and the

existing cases is due mainly to the similarity of the clinical symptoms among those arboviruses,

leading to an underestimation of the occurrence of ORO, MAY, SLE and ROC in Brazil. This

scenario is aggravated by the lack of accurate diagnostic methods that identify which virus is

acting. In cases of acute febrile illness outbreaks of MAY, SLE and ORO, for example, the labo-

ratory procedures for diagnosing suspected cases is indispensable because these pathogens
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cannot be differentiated from other viral diseases, such as dengue or chikungunya, and may

remain unknown [7].

As Brazil has been facing a major dengue, zika and chikungunya epidemic in recent years

[66], it is quite possible that other arboviruses with similar symptoms have been underreported

or confused with dengue itself. Despite the knowledge of the significant occurrence of many

arboviruses in the Amazon Region, like ORO and MAY, many cases remain undiagnosed,

probably because of their clinical manifestations, being usually mild and self-limited; patients

generally recover completely after a few days. However, more severe cases may remain undiag-

nosed, especially because of the long distances to health care facilities, transport difficulties of

the sample and lack of laboratories capable of conducting diagnostic tests. With regard to

ORO infections, the diagnosis can easily be confused with malaria, which is endemic in that

region [11,12].

According to the predictive model HadGEM2-ES, high-risk areas for all diseases may

change in the next decades. For MAY, for example, practically the whole country will have ade-

quate climatic conditions for virus transmission (see Fig 5). In some cases, such as ORO, total

areas of infection will decline, but those that remain, such as the Northwestern and Northeast-

ern regions of the country will be at increased risk. For ROC, there will be an emergent high-

risk area in the South of the country, while for SLE the southern areas will become less suscep-

tible to outbreaks. This scenario can be more or less dramatic, and depends on the levels of

greenhouse gas emissions. However, this difference in emission rates will most strongly affect

ORO and MAY distribution, precisely because they occupy the Northern areas of Brazil and

are more susceptible to temperature changes (see Fig 4). Climatic change also affect human

activity and the migration of the people, as well as the redistribution of the vectors, and a more

favorable environment for the propagation of arboviruses [59]. Therefore, future risk estima-

tions should consider those factors. Nevertheless, despite all efforts and cumulated knowledge

in the literature, it is still remains difficult to identify the main cause of an outbreak [67] and to

determine the most efficient technique(s) for protecting humans from these viruses. However,

our findings indicate that temperature-related variables appear to play a central role in the epi-

demiology of culicid-vectored arboviruses.

Limitations

This study has limitations, since the projections presented here are processed on the assump-

tion that the other variables remained stable. The human population size, for example, was

considered as constant in our models. Moreover, we did not consider host migration (of both

birds and humans), and the deforestation rate, which are important factors in determining the

outbreaks of ORO and SLE. Yet, other factors that were not part of our model could change

over the given time period: For example, the quality of vector surveillance, clinical case detec-

tion, and the development of some vaccine. Besides that, we did not take into account the dis-

tribution areas of the vectors, which are essential for the transmission, but very difficult to

estimate. Another point is we used linear extrapolation to predict the distributions of each dis-

ease, and our model did not account for non-linear phenomena. For example, the models

would fail if temperature increased to the point that it changed the vector transmission rates.

Another limitation is the supposed underreporting of cases and the confusion with other

diseases. These neglected arboviruses may be circulating in asymptomatic patients or misdiag-

nosed and it is not possible to know their exact distribution; this affects directly the predictive

power of our model. The model itself also has an intrinsic limitation, because it assumes that

the increase in temperature can only be owing to GGE. We know that this is not the only possi-

bility in nature, so this is a simplified premise that limitates interpretations. Although there are
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a number of constraints to our model, it is an important first step in trying to predict the emer-

gence of these neglected arboviruses. It also serves to warn the vigilant surveillance health that

arboviruses may remain longly underestimated before outbreak arises.

Conclusions

In summary, environmental factors can directly affect the distribution of ORO, MAY, SLE and

ROC. Among them, temperature is a central variable that determines the distribution of high-

risk areas. As the average temperature of some Brazilian areas has augmented significantly

over the last 50 years, a better understanding of the biology of neglected arboviruses, their

interactions and consequences in the ecosystem and climatic factors is needed. The four dis-

eases addressed in the present work are clearly a latent menace to the public health and thus

should be promptly included in the health programs agenda. Accurate detection and diagnos-

ing are fundamental steps for developing efficient control measures. These four apparently

similar arboviruses are differently affected by environmental factors, and these differences are

probably linked to the vector’s lifecycle or associated with the virus itself. We can also conclude

that our mathematical and statistical approach allowed us to further describe peculiar environ-

mental elements in the epidemiology of these neglected diseases. Even though, the approach is

limited and we suggest that next studies should be multidisciplinary and comprehensive so

that they include vector distribution, components of natural cycle and actual disease

incidence.

Overall, this work provides useful indications about the dynamics of those arboviruses

across the country. Our results suggest that high-risk areas may change in the coming years,

being more pronounced with high GGE rates in the northern region of the country. This is the

first spatio-temporal study of these arboviral diseases. However, there are gaps in available

knowledge to scientifically predict future occurrences of large epidemics. Due to the epidemio-

logical and entomological situation of several continents, there is evidence of aggravation of

this current scenario, because there is great difficulty in eliminating or controlling the risk fac-

tors of the diseases.
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GC. Epidemiologia das encefalites por arbovirus na Amazônia brasileira. Rev Inst Med Trop São Paulo.
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42. Lopes ODS, Coimbra TL, Sachhetta LDA, Calishier CH. Emergence of a new arbovirus disease in Bra-

zil: Isolation and characterization of the etiologic agent, Rocio Virus. Am J Epidemio. 1978; 107(5):

444–449.

43. Iversson LB, Coimbra TLM. Encefalite na região do Vale do Ribeira, São Paulo, Brasil, no perı́odo pós-
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59. Pignatti MG. Saúde e ambiente: as doenças emergentes no Brasil. Amb Soc. 2004; 7(1): 133–44.

60. IPCC. Summary for Policymakers in Climate Change 2014: Mitigation of Climate Change. Contribution

of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

(eds Edenhofer O. et al.) Cambridge Univ. Press, 2014.

61. Harrera-Bastos E, Prevots DR, Zarate ML, Sila JL, Sepulveda-Amor J. First reported outbrek of classi-

cal dengue fever at 1.700 meters above sea level in Guerrero State, Mexico. Am J Trop Med Hyg. 1992;

46(6): 649–653. PMID: 1621889
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