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spherical surfaces with arbitrarily high surface charge densities by massive Monte Carlo computer
simulations. We examine in detail how the well known scaling relations for the threshold transition—
demarcating the adsorbed and desorbed domains of a polyelectrolyte near weakly charged surfaces—
are altered for highly charged interfaces. In virtue of high surface potentials and large surface charge
densities, the Debye—Hiickel approximation is often not feasible and the nonlinear Poisson—
Boltzmann approach should be implemented. At low salt conditions, for instance, the electrostatic
potential from the nonlinear Poisson—-Boltzmann equation is smmaller than the Debye—Hiickel result,
such that the required critical surface charge density for polyelectrolyte adsorption o increases. The
nonlinear relation between the surface charge density and electrostatic potential leads to a sharply
increasing critical surface charge density with growing ionic strength, imposing an additional limit to
the critical salt concentration above which no polyelectrolyte adsorption occurs at all. We contrast our
simulations findings with the known scaling results for weak critical polyelectrolyte adsorption onto
oppositely charged surfaces for the three standard geometries. Finally, we discuss some applications of
our results for some physical-chemical and biophysical systems.

1. Introduction

The adsorption of charged polymers or polyelectrolytes (PEs) onto oppositely charged planar and curved
interfaces [1-6] attracted the attention of a large number of theoretical [7-34], experimental [35-53], and
computer simulations [54—79] groups over the last decades. Important applications of PE-surface adsorption
include paper making [80], surface coating [4, 48], metal corrosion inhibition via multilayered adsorption

[81, 82], flocculation as well as stabilisation of colloidal suspensions [48, 83, 84], formation of polymer-
nanoparticle composites [85-87], PE-protein [47, 61, 88] and PE-micelle [89] complexation, to mention but a
few. Complexation of PEs with nanoparticles is also employed for water treatment [90], utilising polymer
flocculation [91] with water-dissolved particles. Multilayered PE formation on surfaces [35, 92] and hollow
microcapsules [39, 93] has several technological and biomedical (drug delivery) applications [94-97]; see [98] for
functioning mechanisms of polymer-drug conjugates.

Both the limits of strong and weak PE-surface adsorption were investigated [5]. For the latter, the
electrostatic (ES) polymer-surface attraction is comparatively weak and the transition between adsorbed and
desorbed chain conformations is governed by the interplay of the PE-surface attraction and the entropic penalty
of chain confinement in the vicinity of the interface [2, 5], see also figure 1. In this weak coupling limit the
transition is quantified in terms of the critical surface charge density o, via its dependence on the reciprocal
Debye screening length, «. With increasing solution salinity, the screening of attractive PE-surface interactions

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Snapshots of typical PE configurations obtained from Monte Carlo simulations for a relatively high surface charge density of
0=0.5C m™2and salt concentration of ny= 0.7 M corresponding to # ~ 0.27 A~". ES surface potentials were obtained from
solutions of the linear and nonlinear PB equation, see appendix. The cylinder and sphere radiusis a = 100 A, the chain monomer
radiusis R = 2 A, and the intercharge separation alongthe PEis b = 7 A. At these conditions, the system is close to the adsorption—
desorption threshold for the nonlinearly treated ES potential, while for the linear ES potential the PE is in the adsorbed state. Video
files illustrating the PE adsorption dynamics for the above mentioned model parameters are presented in the supplementary material.

becomes stronger, and the surface charge density necessary to get the polymer adsorbed onto the interface from
the solution increases. The adsorption—desorption transition of polymers near attractive interfaces is also
controlled by the PE charge density, chain bending softness, and temperature [5, 7, 9].

The well known result for a uniformly weakly charged planar interface [7]

oh o (K) ~ K, (1)

is based on the eigenfunction expansion of the Edwards equation with the Debye—Hiickel ES potential, see also
[9,22,29,73]. This expansion defines the PE bound states in the attractive potential field of the surface [7—
9,11,27,29]. In these approaches, the latter is computed from the linear Poisson—Boltzmann (PB) theory and
attracts the oppositely charged nearly Gaussian PE chain towards the interface. The scaling relation (1) implies
that the statistical properties of PE chains are approximated by those of infinitely long Gaussian neutral polymers
[7, 13, 29]. The analytical modifications of equation (1) are known for PE adsorption from dilute solutions onto
convex cylindrical and spherical interfaces [5, 29] as well as for PEs under confinement imposed by planar and
concave surfaces [30, 32]. The effects of surface curvature [11, 20, 23, 27, 29, 33], image forces [ 34, 64, 75], and
chargeable surface groups [60] onto PE adsorption were studied within the linear ES model. Moreover, some
computer simulations results are available for various structured and patterned surfaces [12, 57, 67], spherical
Janus particles [33], and PE chains with pH-sensitive charge density [59, 62, 63]. The implications of the applied
shear and hydrodynamic interactions onto PE-surface adsorption were examined as well [68], see also [99].

In contrast to neutral polymers confined near interfaces [100—102], the adsorption of PE chains onto
oppositely charged surface is controlled by an additional length scale, the Debye screening length, A\p = 1/k.
Here k = /8mlgn, is the reciprocal Debye screening length in symmetric 1:1 electrolyte with salt concentration
noand Iy = ej/(ckgT) ~ 7.1 A isthe Bjerrum length in the aqueous solution with dielectric constant ¢ = 78.7
and at temperature T = 298.15 K (as used hereafter). At this distance the ES interactions of two unit electric
charges are equal to the thermal energy, kg T'. This additional length scale not only dramatically changes the
adsorption properties of individual polymer chains, but also affects the ES interactions between the adsorbed PE
segments along the charged surface [2, 25].
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An open question is how different the properties of PE-surface adsorption are for highly charged interfaces,
when the linear PB approximation is no longer valid [ 103, 105, 106]? How strongly will the relation (1) get
modified? Both in theoretical and experimental literature the canonical cubic scaling of equation (1) is often
used as the asymptote in a broad range of parameters, also for situations when the ES potential is not necessarily
<25mV.

In the current study, we unveil the implications of the nonlinear ES potential distribution emerging near
highly charged surfaces [103, 104] onto the conditions of critical PE adsorption in three basic geometries. The
paper is organised as follows. In section 2 and appendix we describe some details of the derivation of the ES
potential and our simulations procedure. The main results are presented in section 3. We first consider PE
adsorption onto the planar interface with the linear and nonlinear ES potentials, section 3.1. The PE critical
adsorption conditions in curved cylindrical and spherical geometries are investigated in section 3.2. The
Discussion and Conclusions in section 4 summarise our findings and provide some applications.

2. Model and approximations

2.1. Potential distribution
For a planar surface with a charge density o the distribution of the ES potential in symmetric 1:1 electrolyte can
be obtained [105-107] from the solution of the nonlinear PB equation

V2U(r) = k?sinh [ (r)]. )
Here, the standard dimensionless ES potential is
U =egp/(ksT). (3

The solution of equation (2) given in appendix is described by equations (A2), (A23) and (A33) for planar,
spherical and cylindrical surfaces, respectively. The monomer-surface ES interaction energy near the interface is
just ey ¢ (r). Interactions other than direct charge—charge forces—e.g. van der Waals forces or electrodynamic
fluctuations-induced r~ forces [108]—are neglected below. We assume that PE chains in proximity to the
surface do not alter the potential distribution emerging from the interface. Near highly charged surfaces, we also
neglect possible formation of an immobile Stern layer, structuring of ions, surface charge renormalisation, a
lower dielectric permittivity ¢ due to hydration layers, as well as an altered dielectric response [108, 109]. So, we
employ the so called primitive model for a structureless electrolyte [110-113], with no explicit solvent or charges
being considered in simulations.

The ES interactions of chain monomers are computed via summing up the pairwise screened Coulomb
contributions

Erep(r) = ege " /(er). (4)

This implies low-to-moderate Manning—Oosawa PE charge parameter [114, 115, 117], £ = Iz/b, where bis the
inter-bead distance, with each bead with radius R carrying one elementary charge, ey. For rather long chains, not
too highly charged PEs, and strong screening conditions the repulsion of charges along the chain can be
approximated by this form.

For comparison, we also use in our simulations the ES potential within the linearised PB theory, given
respectively by equations (A5), (A16) and (A28) of appendix for the three standard adsorption geometries. The
ES potentials from the linear PB theory are explicit and easy to implement in simulations [32, 33, 55]. The
potential from the nonlinear PB approach often requires a numerical solution for an implicit ¥;(c) dependence,
somewhat complicating the simulations. Specifically, to restore the distance variation of the ES potential for the
planar, spherical, and cylindrical geometries, we first systematically evaluate U for varying o using
equations (A4), (A22), and (A37), respectively.

Note that both the linear and nonlinear PB approaches are mean field theories which neglect ion—ion
correlation effects. The latter become particularly important e.g. in the presence of multivalent cations and near
highly charged surfaces [116—118]. Some effects triggered by the binding of multivalent cations are the charge
inversion [117] and attraction between likely charged objects such as DNA [29, 109, 119], often emerging due to
correlated Wigner crystal charge density waves on interacting surfaces [65, 109, 117, 120, 121]. Also, at highly
charged surfaces and for the finite-size electrolyte ions, the effects of crowding, space restriction, and steric
interactions can be important. This yields an additional source of nonlinearity in such lattice-gas based models
of electrolytes, producing Fermi-like [110, 122—125] rather than Boltzmann-like charge density distributions in
the Poisson equation. All these additional effects are beyond the scope of the current study. Finally, note that the
nonlinear PB theory generally violates the superposition principle and features some inconsistencies for
calculations of e.g. the ES free energy of charges in electrolytes [ 109, 126]. The linearised PB approach satisfies
the superposition, but becomes progressively inaccurate for high charge densities [127]. Below, we focus on

3
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novel physical effects stemming from a different decay law and altered ES potential magnitude near highly
charged surfaces, as prescribed by the nonlinear PB approach, onto critical PE-surface adsorption.

The results for the potential variation with the distance from the surface and the nonlinear coupling of the
surface charge density o and surface potential U are presented in figure A1 for spherical and cylindrical surfaces.
Starting from the same value on the surface ¥ = I, the nonlinear PB potential varies much faster with distance
from the surface, as compared to the linear PB result. The solution salinity is fixed here to nearly physiological
conditions, k ~ 1/(10 A). We find also that for smaller surface curvature values a the potential approaches the
far field asymptote at shorter distances from the surface. On the contrary, for larger radii a the short distance
asymptote reproduces quite satisfactorily also the long distance behaviour of the ES potential. The
approximations for the nonlinear PB potential near the interface and far away from it are shown in figure A1 as
the dashed asymptotes to the exact nonlinear PB results. The initial faster-than-exponential decrease of the
nonlinear ES potential with separation is expected to change also the o (x) dependence [5, 29] for strongly
charged interfaces, as we show below.

In contrast to the standard linear relation between the surface potential and the surface charge density, the
generalised Grahame relations for spherical and cylindrical interfaces [103] lead to much weaker ¥ (o)
dependencies for highly charged surfaces, see the bottom panel of figure A1. Thus, a higher ES potential will
emerge near the interface within the linear PB model at a given o, as compared to the nonlinear PB situation.
Clearly, at smaller interface charge densities the relation between the surface potential and the charge density
obtained from the linear and nonlinear approaches are close to one another. This regime is presented in the
bottom panels of figure A1 as the limit of large area per elementary charge on the interface.

2.2.Simulation method

In the current study, we use the same physical model, simulations procedure and PE-surface adsorption criteria
asin our recent studies [32, 33, 77]. In short, the PE chain is described within the bead-spring model, with each
monomer being a sphere of radius R carrying the central unit charge e,. The spring force constant is chosen to
yield the mean bead—bead distance of b ~ 7 A ~ Iy. Thus, the counterion condensation would not occur on
this weakly charged PE, which features the linear charge density just on the onset for counterion condensation
onto an infinitely thin rod, as the Manning theory predicts [115]. ES interactions between the monomers are
screened Coulomb potentials (4), determining also the ES contribution to the chain persistence [5, 13, 33]. In
addition, the hard core repulsion acts between polymer beads, accounting for excluded volume effects,
particularly for compact PE conformations on interfaces. We carried out extensive Metropolis Monte Carlo
computer simulations in the canonical NVT-ensemble, see [32, 33, 55, 63]. Three movements of system
components were implemented: (1) random displacement of chain monomers, (2) random displacement of the
whole chain, and (3) pivot rotation of a chain part around a randomly chosen monomer [128]. The equilibration
was reached with ~107 configurations and we used ~ 108 configurations per particle to calculate the average
quantities.

As discussedin [5, 29, 33, 63], for a given range of surface charge densities the PE chains undergo
discontinuous transitions between the adsorbed and desorbed states. The fraction of configurations in the
desorbed state increases with decreasing surface charge density due to weaker ES attraction of the chain towards
the surface. For a given solution salinity, the critical surface charge density o, was therefore defined as that one in
which half of chain configurations recorded over simulation time is in the adsorbed state. This defines the
position of the adsorption—desorption boundary in the plane of the model parameters; similar definition was
usedin [32, 33].

Therefore, we perform the computer simulations for systematically varying surface charge densities, in order
to find the range of o in which the coexistence of adsorbed and desorbed states of the chain takes place. Each
simulation is executed with 10" Monte Carlo steps. We identify the range of the surface charge densities in which
the fraction of PE configurations in the adsorbed state is between 0.4 and 0.6. To determine the precise value of
0., we are running ten sets of simulations within this preselected range of o using different random number seeds
for each set. For each set, the fraction of configurations in the adsorbed state versus the surface charge density
dependence is fitted by a sigmoid function that yields the actual value of ¢;. In this stage, each simulation is
executed with 10% steps. The statistical deviations for o, values as calculated over 10 independent simulations are
typically <1%. These irregularities are reflected e.g. in the magnitudes of the error bars for o. which are often
smaller that the symbol size, as in figure 3.

In figure 1 the three basic geometries and typical chain configurations are shown as provided by our
computer simulations. Here, the following model parameters are used: the surface charge densityiso =

0.5 Cm 2, the solution salinity is 0.7 M, and the PE degree of polymerisation is N= 50, both for the linear and
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Figure 2. PE distributions near charged planar surfaces. The results obtained with the ES potentials from the linear and nonlinear PB
equation are shown by open and closed symbols, respectively. Parameters: the surface charge density is 0 = —0.5 (top panels), —0.1

(middle panels), and —0.06 C m 2 (bottom panels). The solution salinityis 7o = 1072 M (left panels) and 0.3M (right panels). The
polymer chain contains N = 50 monomers of radius R = 2 A.

nonlinear ES potentials. Figure 1 demonstrates that in the case of a nonlinear potential the chain gets adsorbed to
the surface to weaker extent. Generally, lower values obtained for the nonlinear ES potential give rise to higher
surface charge densities required to trigger critical PE adsorption, as compared to a surface with the linearly
treated ES potential. The ramifications of this fact is the main subject of the current study.

At this point, we refer the reader to the study [54] as to probably the first consideration of PE adsorption onto
planar interfaces with the nonlinear ES potential. Although a detailed consideration of the fraction of adsorbed
monomers as a function of PE ionisation degree as well as the chain end-to-end extension was presented in this
study, the explicit question of critical adsorption conditions for the nonlinear ES potential has not been
addressed. That is why we here exploit this novel element of PE adsorption onto highly charged planar and
convex interfaces.

Let us comment here on relatively high surface charge densities occurring in the text below. For comparison,
the surface charge density of bare phosphate groups on the double stranded DNA is opna ~ —0.16 Cm ™ >
[109, 119, 131]. Very high charge densitites are realised e.g. for cement paste particles [129]; their self-assembly
with linear block copolymers in the presence of divalent Ca?* cations was examined in [130]. The charge density
of computer simulated cement platelets of up to ~—0.64 C m™ > agrees with the estimations for C-S—H
particles, ~—0.8 Cm™~2[129, 130]. Other examples of highly charged interfaces/particles used for PE adsorption
—such asi.a. silica, mica, and polysterene latex particles—can also reach |o] ~ 0.1-0.5 Cm ™ *[107, 132—135].
For some proteins, the patches of charges on their surfaces reveal large variations, from the charge densities of
~|opnal to considerably larger values in some cases [136].
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Figure 3. Critical charge density o, for PE adsorption onto an oppositely charged plane as a function of the Debye parameter «. The
polymer has N = 50 monomers with R = 2 A. The results for ES potentials from the linear (¢.) and nonlinear (o) PB equations
are the open and filled symbols, respectively. The maximal salinity at which PE adsorption still occurs is indicated by the vertical line.
The error bars are smaller than the symbol size, but increasing as the adsorption—desorption boundary is approached, as expected.

3. Results

3.1. Adsorption onto planar surfaces

We start with evaluating the adsorption of a single PE chain onto a planar surface with varying charge density o.
In figure 2 we show how the PE monomer density profile p (r) near the interface changes for PE adsorption
driven by the nonlinearly (equation (A2)) versus linearly treated (equation (A5)) ES potential. We find that, in
general, smaller monomer concentrations are systematically observed in the immediate vicinity of the interface
with the nonlinear ES potential. In this case, the PE segments rebind from the interface more readily forming
some ‘dangling tails’, whereas for the linear potential the chains are attached stronger to the surface, often only
diffusing along the interface while being fully adsorbed, see the video files in the supplementary material. The
difference between the two approaches with regard to p (r) decreases with increasing salinity, as expected,
compare the left and right panels in figure 2. Considering the polymer distributions obtained with the
nonlinearly treated potential at 0.3 M of salt, the decrease of the surface charge density from o = —0.5

(figure 2(B)) to —0.1 C m™* (figure 2(D)) leads to the emergence of a region near the surface (r < 10 10\) with a
slower decay of p (r). Reducing the surface charge density even further, down to —0.06 C m > as in figure 2(F),
the polymer attains a state close to its desorption threshold at this solution salinity. The monomers assume a
nearly constant concentration in the proximity of the surface, suggesting that the PE near the interface has a
structure with various looped polymer segments, as detected in simulations with the nonlinear ES potential.

In figure 3 we present the dependence of o, on the solution salinity. As stated in section 2, for a given salinity
the value o defines the surface charge density at which we detect the same number of configurations in the
adsorbed and desorbed states in the course of simulations. This is achieved via performing computations at
varying charge density to meet this condition on average (at a given salinity and chainlength L = bN). Aswe
indicate in figure 3, for the surface charge densities above the transition line the PE chains are in the adsorbed
state due to strong ES attraction to the surface, while below this line the entropic free energy of the polymer
dominates and the chain assumes on average desorbed configurations more often. For low salt concentrations
we get a close agreement between the results obtained with the linear and nonlinear ES potentials. In this ionic
strength regime, the critical charge density is low enough so that the corresponding ES potentials W (x) are close.

The cubic scaling of equation (1) is not recovered here however. Instead, we get a weaker dependence of o,
namely

Oc(K) ~ KY (5

with the exponent v & 1.42 in the low salt limit. As discussed in [9, 33, 73], this change of the scaling exponent
can be attributed to a x-dependent ES contribution to the polymer persistence length [5,9, 11, 33] as well as to
some finite length effects. These features are taken into account in computer simulations—contrary to the
theoretical models use to study critical PE-surface adsorption—giving rise to a quite different scaling exponent
than the idealised cubic dependence (1).

In the limit of high salt we find that for the nonlinearly treated ES potential the desorption transition occurs
at substantially higher surface charge densities, in comparison to the linear PB approach. Due to the nonlinear
W (o) coupling, the growth of the surface potential with the increasing charge density becomes weaker, see figure
Al. So, the effective density of charges on the nonlinearly treated interface should be larger to reach the same
impact on the PE chain in front of it and ultimately to cause its electrostatically driven adsorption.
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Figure 4. Ratio of critical surface charge densities obtained with the linear and nonlinear ES potentials for the planar surface, plotted as
a function of the Debye screening parameter . In panel (A), the monomer radiusis R = 2 A and the chainlength is N = 50, 100, and
200. In panel (B), the chain length is N = 50 and the monomer radiiare R = 0.5and 2 A.The asymptotes of equation (6) are shown
as the dashed lines for the G values as indicated in the legend of panel (A).

Furthermore, this fast-growing value of o, at high solution salinities appears to impose a physical limit onto
the ionic strength beyond which the adsorption is fully suppressed. This effect is not observed for the linearly
treated ES potential because of the linear relation between the surface potential and the charge density, see
equation (A38). This made it possible to increase the surface charge density and always have sufficiently large ES
potentials to stabilise the PE adsorption.

The difference of the results obtained with the two approaches can be gauged from figure 4. It illustrates the
ratio between the critical surface charge densities obtained with the linear (UL) and nonlinear (021) PB equations,
both as the functions of x. In panel (A), we consider three different degrees of chain polymerisation. We find that
the difference between o™ and o becomes considerable for # values larger than ~1/(5 A) for all chain lengths
examined. However, the deviations are highly dependent on the polymer length. Specifically, we find that longer
chains—for which the critical charge density is smaller in magnitude—reveal smaller deviations in o, as
expected. The deviations between the two ES approaches start occurring at about the same ionic strength as the
polymer gets ‘flattened’ onto the surface.

One feature of the full nonlinear ES potential is the fact that its variation with increasing surface charge
density becomes larger in closer proximity to the surface, see the top panel in figure A1. This has vital
implications for the PE adsorption properties, as we show in figure 3 and below. We find, for instance, that when
the thickness of the interfacial layer with relatively high values of the ES potential becomes smaller than the
monomer diameter 2R, the changes of the surface charge density only weakly affect the attraction of the closest
PE monomers. This can be seen in figure 4(B) where we plot the ratio o™ /¢! for critical adsorption of PEs,
computed for two different monomer diameters. Indeed, smaller monomers can approach closer to the
attracting surface, into the regions of higher ES potentials. Thus, the deviations between o™ and o' start
occurring at higher salinities for the chains with smaller monomers.

We can approximate the behaviour of the critical charge density with the reciprocal Debye screening
parameter by a functional dependence of the form

o (k) /oL (k) ~ exp[r”]. (6)

Here, the exponent 3 however depends on the monomer radius and chain length. The simulations data
presented in figure 4 support the phenomenological dependence (6). This exponential variation should
emphasise how unstable the PE adsorption becomes in the nonlinear PB theory for the conditions of large
salinities, when the region of a high ES potential near the interface becomes progressively thinner. Also, we find
that at a given and relatively large « for longer chains the deviations of linear versus nonlinear critical adsorption
surface charge densities are smaller than for shorter chains, see figure 4(A). One of the reasons is that for longer
chains a substantial PE portion far from the interface is still in the region of small ES potential. Finally, the PE
chains with smaller monomers experience deviations in ¢ for the full nonlinear versus the linearised ES
potential at larger salinities, as intuitively expected, see figure 4(B).

3.2. Adsorption onto curved surfaces

In this section, we address the properties of PE adsorption onto cylindrical and spherical interfaces with the
curvature radius a = 100 A. In figure 5 we present the results of computer simulations for the width of the
adsorbed PE layer w obtained with the nonlinearly treated ES potential, see equations (A23) and (A33) for the
spherical and cylindrical surfaces, respectively. The layer thickness w and the amount of adsorbed polymer are
the PE adsorption observables accessible experimentally via e.g. the ellipsometry and total light reflection
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Figure 5. Width w of the adsorbed PE layer onto the planar (blue circles), cylindrical (red diamonds) and spherical (black squares)
surfaces as a function of ~a, obtained with computer simulations for the nonlinear ES potential. The charge density is o = 0.06 (solid
line), 0.1 (dashed line) and 0.5 C m ™2 (dotted line). The cylinder and sphere radius is a = 100 A andthe salinity is varied. The chain
contains N = 50 beads of radius R = 2 A.

measurements [4]. Similarly to our previous studies [5, 29], the width of the adsorbed PE layer is computed at the
halfheight of the polymer monomer density profile, p (). Here and below the results of the PE adsorption for
the linearised ES potential are shown as the open symbols, while the findings for the nonlinear potential are the
filled symbols. The results for the three standard geometries are designated by the blue (plane), red (cylinder),
and black (sphere) symbols.

As expected, we observe a systematic increase of the PE layer thickness w with the ionic strength. This stems
from the fact that at higher salinities more monomers stay in ‘looped’ and ‘tailed’ conformations, see also [4, 54],
not necessarily very close to the attracting surface. The PE layer thickness is shown in figure 5 for the range of
ionic strengths when the PE adsorption is stable and for o values well above the adsorption—desorption
transition. In all three geometries, we find that with increasing o the fraction of the chains in tailed and looped
states decreases, while the fraction of tightly adsorbed monomers in ‘train-like’ conformations [4, 86] gets larger.
The same trends are observe when the screening length decreases, thus facilitating the ES attraction of PEs to the
interface. These pieces of evidence are consistent with the properties of PE adsorption presented in [54] based on
the full nonlinear ES potential.

We also note that with increasing « the polymer-surface ES interactions decrease, as compared to the
entropic free energy penalty in the course of polymer confinement near the interface. The latter depends on the
surface geometry [29] so that for a relatively small surface curvature, the changes in the surface geometry lead to
only slight variations of the layer width, compare the curves for different geometries in figure 5.

Let us now consider the variation of the PE layer thickness with the surface charge density 0. Some analytical
predictions exist regarding the w (¢') dependencies, namely, the scaling behaviour

w(o) ~ o173, ?)

is often advocated, see e.g. [2, 5, 29]. The reader is also referred here to our recent study [33] regarding the
thickness of the adsorbed PE layer near the dipolar Janus particles. The results for the PE layer thickness for the
nonlinear ES potential are presented in figure 6. They are consistent with the general trend of equation (7) for
substantial surface charge densities. For progressively lower o, however, the layer width grows and ultimately
diverges at the critical point at which the transition from adsorption to desorption takes place. At such conditions,
however, the PE is either in the adsorbed or in the desorbed state, so a statistically meaningful determination of
the average PE layer thickness is not possible. In figure 6, in the region of even smaller surface charge densities,
the polymer chain assumes a desorbed state and the layer width w becomes effectively infinite, see the last points
computed in the region of small ¢ in the corresponding geometry.

The reader may compare our simulations results of figure 6 to the theoretical results of the linear PB theory
presented in figure 5 in [29]. We also observe that—as compared to the planar surface with the same charge
density—the width of the adsorbed layer is slightly larger for the cylindrical and even larger for the spherical
interface. This is in line with the physical intuition that polymer adsorption onto convex interfaces gives rise to
stronger restriction on polymer conformations, to a higher entropic free energy penalty upon chain
confinement, and thus leads to a weaker attachment of PE chains to the interface. The differences in w become
larger for strongly curved interfaces, as compared to rather large value of surface curvature radius
a =100 A usedin figure 6 (results not shown).

Finally, we investigate the adsorption—desorption conditions in the three standard adsorption geometries.
Figure 7 illustrates that for low-to-moderate salinities, for these curved surfaces we find excellent agreement
between the results obtained with the linearly and nonlinearly treated ES potentials (details are given in
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Figure 6. Width of the adsorbed PE layer versus the surface charge density o for the three adsorption geometries. The asymptote of
equation (7) is the dashed line. The notations for the symbols are the same as in figure 5. Here, the chain of N = 50 beads with
monomer radius R = 2 A isimmersed into the solution with Ap = 100 A. The radius of curvature of spherical and cylindrical
surfacesisa =100 A.

Figure 7. Critical surface charge density for PE adsorption onto the planar (blue circles), cylindrical (red diamonds) and spherical
(black squares) surfaces as a function of xa. The notations are the same as in figure 5. Panel (B) magnifies the region in which the rapid
changes in o occur, with vertical dotted lines indicating the maximal salinity still enabling PE adsorption. The cylinder and sphere
radiusis a = 100 A and the salt concentration is varied. The polymer contains N = 50 beads of radius R = 2 A. The results obtained
with the linearly and nonlinearly treated ES potential are shown by open and closed symbols, respectively. On a standard 3—-3.5 GHz
workstation every curve on these graphs requires ~150 h of computation time.

appendix). This is similar to the results for the planar interface in figure 3. The scaling exponent v for the o, ()
relation (5) in the Jow salf regime decreases systematically for the cylindrical and spherical surfaces, in
comparison to the planar interface. This fact agrees with the analytical results of the ground state approximation
for the linear PB equation derived in [29]. At high ionic strengths, in contrast, we observe for the spheres and
cylinders a rapid increase of the critical surface density, qualitatively similar to that observed for the planar
surface in figure 3.

The curvature effects at high salt can be attributed to the salinity at which the abrupt growth of o, (k)
emerges. For the case of alinear ES potential, in this regime we observe rather small variations of o, obtained for
different geometries, as shown in figure 7. These are due to curvature effects and larger confinement penalty of
the polymer near the attracting convex surfaces. For the nonlinearly treated ES potential the geometry mediated
deviations in ¢, become substantially larger. In particular, the simulations reveal that spherical interfaces cease
to adsorb PE chains at lower salinity in this high x regime, as compared to the cylindrical interfaces. The same is
true when comparing the cylindrical and planar interfaces, see the corresponding dotted lines in figure 7(B)
indicating the limiting salinity values for each adsorption geometry.

4. Discussion and conclusions

We carried out extensive computer simulations to unravel the properties of electrostatically driven adsorption of
flexible PE chains onto oppositely charged surfaces of arbitrarily high surface charge densities. We used the
known exact solution for the screened ES potential of the plane and approximate solutions of the full nonlinear
PB equation in spherical and cylindrical geometries [103]. Our findings revealed a number of important new
features, as compared to the PE adsorption properties expected from the linear PB theory.
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In particular, we demonstrated that a nonlinear dependence of the surface ES potential and the surface
charge density lead to an abrupt increase of the critical adsorption charge density at high salinities of the solution.
In the region prior to and at this increase of the critical adsorption charge density, no distinct scaling with the
solution salinity is detected in simulations, see figure 3. At low salinities, in contrast, the results for the critical
adsorption charge density obtained with the linear and nonlinear ES potential treatments superimpose, as they
should. In this limit, the surface charge density required for the PE adsorption is rather small, so the linear PB
theory is valid for ES potential calculations. The full nonlinear ES potential of the adsorbing surface also imposes
alimit onto the ionic strength above which no adsorption takes place at all. This limiting ionic strength depends
on the surface geometry, being smaller for the spherical surface, intermediate for the cylindrical interface, and
maximal for the planar adsorbing boundary, see figure 7(B). In addition, we described the conformations of
partly adsorbed PE chains in terms of the width of the polymer layer w near the interface. The results obtained for
the w (o) dependence from the full nonlinear PB theory are in good agreement with the general theoretical
predictions, for all adsorption geometries studied.

One immediate application of our results is related to the PE multilayer formation [31, 35, 37, 38, 137, 138],
governed by ES driven complexation of alternating oppositely charged PE chains and the release of water
molecules forming hydration shells around them, see [2, 92, 96, 139, 140] for the details of physical
complexation mechanisms. For the PE chains adsorbed in such multilayers, a systematic and well controlled
layer growth of oppositely charged polymers is typically achieved at low salt concentrations in the bulk. At these
conditions, rather thin and compact PE layers are formed on the substrate. For the classical example of PAH-PSS
multilayers, the magnitude of voltage variations on the outer PE layer in the course of multilayer formation can
reach ~100 mV at ImM of simple salt [31, 138]. This is clearly beyond the applicability regimes of the linear PB
theory and the full nonlinear ES potential calculations need to be used.

Our results can also help understanding the features of macromolecular adsorption onto highly charged
surfaces as found, for instance, on silica nanoparticles. The latter are widely used for the multilayered PE
deposition [25, 35, 141, 142], with the surface charge magnitudes reaching >0.1 C m™*[143-145]. The ¢-
potential of silica particles coated by alternating deposition of chitosan and poly-(y-glutamic acid) PEs was
demonstrated to vary between +60 and —40 mV. These values are again beyond the reach of the linear Debye—
Hiickel theory. The nonlinear approach is to be implemented for the quantitative description of potential
variations. Similar values of the ES potential were observed when using liposomes as a template to build PE
nanocapsules [146]. Note also the properties of electrostatically driven adsorption of proteins onto highly
charged silica surfaces and inside porous substrates, see [147—149]. At all these conditions, the nonlinear ES
effects can come into play. Thus, close to the adsorption—desorption transition rather small variations of the
ionic strength or pH can may cause significative changes on PE conformations and alter the basic adsorption
characteristics of PE chains, as we demonstrated in this study.
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Appendix

Here, we present the approximate solutions of the nonlinear PB equation for the distribution of the ES potential
near spherical and cylindrical interfaces. We closely follow the procedure developed in [103, 104] for obtaining
the uniformly valid solutions for the potential and the generalised Grahame relations on the interfaces. These
approximate potential distributions have the same structure as the one near a planar surface and yield the correct
limiting behaviours both in the close field and in the far field regions. The corresponding Grahame relations for
the curved highly charged interfaces are obtained [ 103] via integrating the PB equation and using the boundary
conditions for the ES potential and its derivative. These relations provide the nonlinear coupling of the surface
charge density and surface potential, in contrast to the linear (o) relation in the Debye—Hiickel theory.
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A.1. Planar geometry
We start with the solution for the dimensionless ES potential

W(r) = egd(r)/ (ks T)

emerging near a planar surface immersed in 1:1 electrolyte solution with the salt concentration n,. This solution
for the nonlinear PB equation

d*¥(x)/dx?* = k?sinh(¥(x)) (A1)

ata constant surface potential ¥ is the well known expression from the Gouy—Chapman theory of electrical
double layer formation, namely [105, 106]

(A2)

U(x) = Zlog[1 + tanh(f/9e”™ ]

1 — tanh(¥,/4)e "™
The standard boundary conditions are that the potential at the charged surface assumes the value ¥; and far away

from the charged interface the ES potential and its derivative both vanish, ¥(x) = d¥(x)/dx = 0at x — oc.
For the surface charge density being represented as

o= eo/S, (A3)

where S is the surface per elementary charge ey, the Grahame relation [105, 106] from the nonlinear PB equation
is

47l /(Sk) = 2sinh(8,/2). (A4)

Naturally, in the limit of small potentials and weakly charged surfaces, when the linear PB theory of diffuse
double layers is valid and

U(x) = Ye ", (A5)
this relation turns into the standard
d¢ (x)/dxl—0 = —4mo /€. (A6)
A.2. Spherical geometry
For the spherical geometry in terms of the dimensionless variable [103]
R = kr (A7)
the nonlinear PB equation to be solved becomes
d>¥(R)/dR?* + (2/R)d¥(R)/dR = sinh(¥(R)). (A8)
Provided the same standard boundary conditions are imposed, introducing new dimensionless variables
E=k(r—a) (A9)
and
A = Ka, (A10)
we rewrite equation (A8) as
PO _ sinh(U(e)) — 2—A VO (A11)
de? AA+E dg

Using the result of the first integration of the planar equation (A2) as the initial approximation, namely that
dWU(£)/d¢ = —2sinh(¥(£)/2), we arrive in the limit A > 1at

d*¥(£)/d&? = sinh(¥(E)) + (4/A)sinh(¥(£)/2). (A12)
The integration of this equation gives
aoe) _ zsinh(&f))\/l +2 L (AL3)
d¢ 2 A cosh?(U(£)/4)

Attheinterface at £ = 0 this yields the next order approximation for the Grahame relation for the nonlinear PB
in the spherical geometry. Namely for the dimensionless surface charge density defined as

I (W) = —d¥(&)/dE|e=0 = 4meoo (W)/(exksT)
we get
1(Iy) = 2sinh(8,/2) + (4/A)tanh(L,/4). (Al4)
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Figure Al. Decay of the linear and nonlinear PB potential in spherical and cylindrical geometries (top panels) and the nonlinear
relation between the surface charge density and the surface potential (bottom panels). In the top panel, the linear PB potential is shown
by the red curve, while the full nonlinear PB solution is the solid black curve. The close field and far field asymptotes for the ES
potential given by equations (A20) and (A25) and equations (A31) and (A36) for spherical and cylindrical geometries, respectively, are
the blue dashed and green dashed curves. The linear relation (A6) for ¥ (o) is the dashed line in the bottom panel. Parameters:

a =100 Aand k = 1/(10 A).

This relation in the limit of small potentials gives
I(%) = Y%A + D/A, (A15)
that is the correct result following from the exact ES potential solution for the sphere [5], namely

drgae =D ¢,

U(r) = —_—
e(l + ra)r kgT

(A16)

After getting the approximate close field solution for the ES potential, we now find an approximate solution
in the far field limit. For this, a new variable s (r) is introduced to reflect the features of the far field behaviour of
the potential, as known from the linear PB theory (A16). Specifically, we use

s(r) = AemRO=A /R(r) ~ e #0=D /¢, (A17)

In terms of this variable equation (A8) turns into

d*W(s) dW(s) ) 2A + 1
52 52 +s s = sinh(¥(s)) — mG(\P(S)), (A18)
where the function G (y) is defined as
2
GW) = ﬂw(sinh(@) — Sﬁ) (A19)
2A + 1 (R + 1)? ds

In the limit of weakly curved interfaces, i.e. when A >> landin therange R ~ A, thelast term in equation (A18)
disappears. With the additional substitution of variables s = e’ its solution satisfying the boundary conditions
has the form of equation (A2) for the planar surface, namely

1+ tanh(\Ils/4)s]

(A20)
1 — tanh(¥,/4)s

Us) =2 log[
Here the fundamental solution of the linear PB equation in the spherical geometry, e ("=, plays the role of the
decaying exponent e~** in the planar solution (A2), see figure A1.
In the next order perturbation—similar to the procedure of the close field solution of equation (A12)—we
use the solution (A20) to get G (V) = sinh(¥) — 2sinh(¥/2). Then equation (A18) with the substitution s = e’
can be integrated once to give
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d¢  dv 24 Smh(\p)\/l R 2A 4+ 1 1 (A21)

dt T ds A1 2 A cosh’(U/4)
From this relation the generalised Grahame equationis I = s(d¥/ds)|;—; (A + 1)/A orin terms of the surface
area per charge

4LZB = Zsinh(%) 1+ A+ 1 ! . (A22)
Sk 2 A% cosh?(¥,/4)

This relation yields the correct limits of equation (A14) for a small curvature A > 1and of equation (A15) for
small ES potentials ¥ < 1. Integrating equation (A21) we get the uniformly valid solution of the nonlinear PB
equation in the spherical geometry

1+ Bs!+ 2AB+15
U(s) = 2log g , (A23)
1—Bs1 — s
24+ 1
where the function B depends on the surface potential and has the form
B— B() — tanh(%/H(A + A/A + D) (A24)

2441 2 (%
1—|—\/1 (A+1)2tanh (4)
In the limit of weak potentials the general expression (A23) gives W(s) ~ s, as expected. Also, in the far field
region—when R — oo and s — 0—this expression in the leading order gives the potential variation linear in
variable s, namely

T(s) ~ 8tanh (¥, /4)s ‘ (A25)
24+ 1 [
1+ \/1 G tanh? (7)
A.3. Cylindrical geometry
Likewise, for the ES potential in the nonlinear PB theory in the cylindrical geometry
d*¥(R)/dR?* + (1/R)d¥(R)/dR = sinh(¥(R)), (A26)

we introduce a new variable c[103]. It reflects the far field behaviour of the linear ES potential, namely

c(r) = Ko(kr)/Ky(ka). (A27)
Here K (z) is the modified Bessel function of the second kind. It describes the potential decay from a uniformly
charged cylinder in the linear PB scenario [5]

droa Ky(kr) e

U(r) = . A28
@) e kaKi(ka) kgT (428)
Equation (A26) can then be presented in the form
d>U(c) dW(c) . KZ(A)
c? +c = sinh(T(c)) — |1 — H(T (o)), A29
i i (T() KA (T() (A29)
where the function H (V) is
_ K®
HW) = K@ (sinh(\ll) - cg). (A30)
1 — Kg4) dc
Kt (@A)

In the limit of small curvature A > 1the dependence on A disappears on the right-hand side of equation (A29),
so that one gets c2d?¥/dc? + ¢d¥/dc ~ sinh(¥). Its solution in the close field limit is similar to the planar
nonlinear PB solution (A2), namely (see figure A1)

[1 + tanh(\IlS/4)c]

W(c) =21
(© °8 | 1 — tanh(¥;/4)¢

(A31)

Using the first derivative of this potential, one arrives at H (V) =~ sinh(¥) — 2 sinh(¥/2) and

2
czdzi(zc) + cd‘iic) = sinh(¥(0)) — |1 — I;gg:;][sinh(\ll(c)) - 2sinh(‘1’§6))]. (A32)

1
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The solution of this equation is
14 (1 _ KU<A>)DC /(1 n KO(A>)
W) = 2log 1 + Dc K(4) Ki(4) (A33)
R
Ki4) Ki4)
where the function D has the form
tanh (%)(1 + I;O((':)))
D =D(L) = . . (A34)
Ki4) 2 (%
1+ \/1 — (1 — K?(A))tanh (Z)
In the limit of small potentials equation (A33) yields
U(r) ~ U = YKo (kr)/Ko(ka) (A35)

asit should, see equation (A28). The far field expansion of the ES potential at ¢ — 0 has—again similarly to the
spherical geometry—the decay reminiscent to that of the linear PB potential (A28). Namely, we get

W) Kotsr)
8 tanh( " ) ran

(1 _ B nr (%)

1+ \/1 (1 Klz(A))tanh (4)

The reader is also referred to the studies [13, 150] for the exact solution for the nonlinear ES potential
distribution around a charged rod in a salt free regime (only the PE rod with own counterions) in the cylindrical

Wigner—Seitz cell model. Finally, the generalised Grahame relation in the cylindrical geometry follows from the
first integration of equation (A32) using the condition of vanishing potential and its derivative at infinity,

U(r) ~ (A36)

2 2 _
[ Al Zsinh( g) L KR@/K@) -1 )
Sk 2 cosh?(¥,/4)
In the limit of small potentials, the standard relation between the potential and surface charge density
¢,(0) = 4mo/(er), (A38)

is naturally recovered from equation (A37).
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