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RESUMO

Neste trabalho veremos os retratos de fase, no disco de Poincaré, das formas normais

locais das singularidades simétricas dos campos reversíveis do tipo (2; 0) e (2; 1) de

baixa codimensão; uma aplicação da Teoria da Média no campo da Astrofísica, com

o objetivo de estudar as órbitas periódicas de um modelo do universo de Friedmann-

Robertson-Walker; e algumas generalizações de resultados conhecidos sobre policic-

los em campos de vetores suaves para o caso não suave, focando um melhor entendi-

mento de sua estabilidade e da bifurcação de ciclos limite.

Palavras-chave: Sistemas Dinâmicos, Retratos de fase, Reversibilidade, Teoria da Mé-
dia, Policiclos.





ABSTRACT

In this work one will see the phase portraits, in the Poincaré disk, of the local normal

forms of symmetrical singularities of reversible vector fields of type (2; 0) and (2; 1);

an application of the Averaging Theory at the field of Astrophysics, aiming the study

of the periodic orbits in a model of the Friedmann-Robertson-Walker universe; and

some generalizations of well established results about the polycycles in smooth vector

fields to the non-smooth cases, aiming a better understanding of its stability and the

bifurcation of limit cycles.

Keywords: Dynamical Systems, Phase portraits, Reversibility, Averaging Theory, Poly-
cycles.
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1 INTRODUCTION

Let P, Q : R2 → R be two Ck, k > 1, functions. A planar Ck differential system is a
system of the form

ẋ = P (x, y), ẏ = Q(x, y), (1.1)

where the dot in system (1.1) denote the derivative with respect to the independent
variable t. The map X = (P,Q) is called a vector field. If P and Q are polynomials
such that the maximum of the degrees of P and Q is n, then system (1.1) is a planar
polynomial differential system of degree n, or just a polynomial system. If n = 1, then
system (1.1) is a planar linear differential system. This last class of system is already
completely understood, see for instance the books [19, 25, 50]. However, if n > 2, then
we know very few things. The class of planar polynomial systems with degree n > 2, i.e.
the planar nonlinear polynomial differential systems, is too wide and thus it is common
to study more specific subclasses and to classify them by their topological behavior.

With this in mind, we point out the subclass of the reversible vector fields. Given a
Ck planar vector field X and a Ck diffeomorphism ϕ : R2 → R2 such that ϕ = ϕ−1 (i.e. ϕ
is an involution) we say that X is a ϕ-reversible vector field of type (2; r), r ∈ {0, 1, 2}, if

Dϕ(x, y)X(x, y) = −X(ϕ(x, y)), (1.2)

for all (x, y) ∈ R2 and Fix(ϕ) = {(x, y) ∈ R2 : ϕ(x, y) = (x, y)} is a r-dimensional
manifold. We observe that Dϕ(x, y) denotes the Jacobian matrix of ϕ applied at the
point (x, y). In a simple way, X is ϕ-reversible if after applying the change of coordinates
(u, v) = ϕ(x, y) one obtains −X.

Knowing that any planar polynomial vector field X can be extended analytically to
the sphere S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} through the Poincaré compactification
(see Section 2.2), great advances in the topological classification of the planar nonlinear
polynomial differential systems were made by Peixoto [44] and furthermore extended by
Sotomayor [54]. From these works we point out the notion of generic families. Given a
set X we say that ξ ∈ X is generic if ξ is an element of a collection Σ ⊂ X such that:

(a) Σ is large with respect to X;

(b) its elements are amenable to simple description.

In a more mathematical way, if X is endowed with some interesting topology, then condi-
tion (a) can be replaced by

(a1) Σ is open and dense in X.

In [56] Teixeira applied the notion of generic families in the set of one and two-
parameters families of germs of reversible vector fields of type (2; 1). Moreover, Buzzi
[9] also applied this notion in the set of one-parameter families of germs of reversible
vector fields of type (2; 0) with a singularity at the origin. Knowing that the unique germ
of reversible vector field of type (2; 2) is X = 0 we conclude that the works of Teixeira
and Buzzi together provide a topological classification of all the symmetrical singularities
of germs of planar reversible vector fields of low codimension. In other words, given a

17
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symmetrical singularity of a planar reversible vector field we know all the low condimen-
sion bifurcations that can occur on it. Furthermore, Medrado and Teixeira [35, 36] also
gave a classification of the symmetrical singularities of the reversible vector fields of type
(3; 2) of codimension zero, one and two. For more works about reversibility see Buzzi,
Roberto and Teixeira [14], for a time-reversible system, and Pereira and Pessoa [46, 47],
for reversible vector fields over the sphere.

Therefore, based in the works of Buzzi [9] and Teixeira [56], Chapters 3 and 4 of
this dissertation concerns with the global phase portrait, in the Poincaré disk, of all the
topological normal forms given by [56] and [9]. Since such normal forms are local, we
observe that their global phase portraits does not represent the global phase portrait
of all reversible vector fields of type (2; 0) and (2; 1) of low codimension. However, for
a classification of all the quadratic reversible vector fields of type (2; 1), see Llibre and
Medrado [30]. Furthermore, see Theorem 3.7 for the phase portraits of the normal forms
obtained by Buzzi and Theorem 4.3 for the phase portraits of the normal forms obtained
by Teixeira. Given a vector field X, our approach works as follows.

(a) First we workout what we call the local behavior of the vector field X, i.e. we

1) study all the possible finite singularities;
2) use the Grobman-Hartman Theorem, The Stable Manifold Theorem and the

Blow Up technique to obtain the local phase portrait of X at each of the finite
singularities;

3) look for singularity bifurcations as the saddle-node, the center-focus and the
Hopf bifurcation;

4) use tools as the Poincaré-Hopf Theorem and the Bendixson Criterion to un-
derstand when and where a limit cycle can appear;

5) study the equator of the compactification p(X) of X;

(b) Then we look for topological informations which involves more than one singularity
as heteroclinic connections and the formation of graphs;

(c) Finally we look for convenient curves in which the flow ofX crosses it in a convenient
way to shrink the possibilities for the α and ω-limit of the separatrices.

We observe that the work contained in both chapters is a co-work with professors
Claudio Buzzi and Jaume Llibre, with the work [13] of Chapter 3 already published and
the work [11] of Chapter 4 submitted for publication.

Chapter 5 consist in a application of the Averaging Theory in the field of Astrophysics,
i.e. the application of the Averaging Theory in the four-dimensional Hamiltonian

H = 1
2
(
y2 − x2 + p2

y − p2
x

)
+ 1

4
(
ax4 + 2bx2y2 + cy4

)
− ω (xpy − ypx) , (1.3)

which models in a simplified way what is called the Friedmann-Robertson-Walker universe.
We observe that this is a co-work with professors Claudio Buzzi and Jaume Llibre and it
was already published. See [12]. Our goal in this work is the description, in an analytical
way, of the periodic orbits around the origin of the four-dimensional vector field derived
from the Hamiltonian (1.3). See Theorem 5.1. Furthermore, our approach works as
follows.
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(a) First we applied the change of coordinates (x, y, px, py) =
√
ε(X, Y, pX , pY ), obtain-

ing a four-dimensional vector field which is topologically equivalent to the original
system, derived from the Hamiltonian (1.3). We observe that this new system has
the necessary ε-parameter;

(b) Then we applied a linear change of coordinates (X, Y, pX , pY ) = (u, v, pu, pv) such
that in these new coordinate the system is in its Jordan coordinates, i.e. its linear
part is equal its Jordan Normal form;

(c) Then we applied the polar change of coordinates

(u, v, pu, pv) = (r cos θ, r sin θ, ρ cos(θ + φ), ρ sin(θ + φ)),

obtained a never-vanishing θ̇;

(d) Since θ̇ never vanishes, we can take θ as the independent variable of the polar system
and then shrink the dimension of the vector field from four to three;

(e) In this three-dimensional nonautonomous vector field which has θ as its independent
variable, we write the variable ρ as a function of (θ, r, φ, h), where h is the fixed-
value of the first integral obtained from (1.3) in these new coordinate system. Thus,
we obtain a two-dimension vector field which depends on the parameter h;

(f) Hence, we apply the Averaging Theory in this planar nonautonomous vector field
obtaining information about its periodic orbits, which translates in to informations
about the periodic orbits of the original system.

Chapter 6 concerns with the polycycles of a non smooth vector field (also known as
piecewise vector fields). More precisely, if Γ is a polycycle of a non-smooth vector field,
composed by tangential singularities, hyperbolic saddles and semi-hyperbolic saddles, then
in Chapter 6 we prove the following.

(a) The stability of Γ depends on the stability of its singularities. See Theorem 6.4 and
Corollary 6.5;

(b) If all the singularities of Γ compress the flow (resp. all the singularities repels the
flow) around it, then Γ is stable (resp. unstable). Furthermore, if small enough
perturbation of Γ has a limit cycle, then it is unique, hyperbolic and stable (resp.
unstable). See Theorem 6.7;

(c) If Γ has n singularities satisfying some conditions, then there exists a perturbation
of Γ such that at least n limit cycles bifurcate from it. See Theorem 6.8;

(d) If Γ is composed by a hyperbolic saddle and a quadratic-regular tangential singu-
larity, then the bifurcation diagrams of Γ was completely described in the generic
cases. See Theorem 6.9.

Our approach in Chapter 6 relies in the extension of previous results that are already
well established in the smooth case, i.e. in polycycles of vector fields of class C∞ (see
[17, 20, 23, 38, 49]), together with the characterization of the flow of non-smooth vector
fields near tangential singularities, obtained by Andrade, Gomide and Novaes [2]. We also
observe that this work is a undergoing collaboration with professors Claudio Buzzi and
Douglas Novaes.
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For the sake of self-containedness, Chapter 2 concerns with some preliminaries neces-
sary for Chapters 3, 4, 5 and 6. Finally, at the end we have a conclusion pointing out the
highlights of each chapter.



2 PRELIMINARIES

2.1 Reversibility

In this subsection we will state some definitions and prove some properties about the
planar reversible vector fields. For more details about this class of vector fields, please
see the survey [28]. For now on in this subsection X is always a Ck, k > 1, ϕ-reversible
vector field of type (2; r), with r ∈ {0, 1, 2}.

Definition 2.1. If p is a singularity of X such that p ∈ Fix(ϕ), then p is a symmetrical
singularity of X. Moreover, if γ is an orbit of X such that γ ∩ Fix(ϕ) 6= ∅, then γ is a
symmetrical orbit of X.

Property 2.2 (Invariance by change of variables). If Φ: R2 → R2 is a Ck, k > 1,
diffeomorphism, then the vector field X ′ = Φ∗X is a ψ-reversible vector field of type
(2; r), where ψ = Φ ◦ ϕ ◦ Φ−1.

Proof. Knowing that X ′(p) = DΦ(Φ−1(p))X(Φ−1(p)) it follows from the chain rule and
from (1.2) that

Dψ(p)X ′(p) = DΦ(ϕ(Φ−1(p)))Dϕ(Φ−1(p))DΦ−1(p)DΦ(Φ−1(p))X(Φ−1(p))
= DΦ(ϕ(Φ−1(p)))Dϕ(Φ−1(p))X(Φ−1(p))
= −DΦ(ϕ(Φ−1(p)))X(ϕ(Φ−1(p))),

while,
−X ′(ψ(p)) = −DΦ(Φ−1(ψ(p)))X(Φ−1(ψ(p)))

= −DΦ(ϕ(Φ−1(p)))X(ϕ(Φ−1(p))).

Hence, Dψ(p)X ′(p) = −X ′(ψ(p)) for any p ∈ R2.

Property 2.3 (Relation between the flow Ψ and ϕ). Let Ψ be the flow of X. Then

ϕ ◦Ψt = Ψ−t ◦ ϕ.

Proof. It follows from (1.2) that −X = ϕ∗X, i.e. ϕ is a conjugacy between X and −X
and thus we have the result.

Property 2.4 (Transversality of the flow at Fix(ϕ)). Let p ∈ Fix(ϕ). Then either p is
a singularity of X or X(p) is transversal to Fix(ϕ) at p

Proof. If the dimension of Fix(ϕ) is zero, then TpFix(ϕ) = {(0, 0)} thus the result is
immediate. If the dimension of Fix(ϕ) is at least one and X(p) ∈ TpFix(ϕ), then there
exist α : ]− ε, ε[→ Fix(ϕ) such that α(0) = p and α′(0) = X(p). Knowing that ϕ ◦α = α
it follows that

Dϕ(α(t))α′(t) = α′(t)

for any t ∈] − ε, ε[. Taking t = 0 we have Dϕ(p)X(p) = X(p). Hence, it follows from
(1.2) that −X(p) = X(p) and thus we have the proof.

21
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Remark 2.5. It follows from Property 2.4 that the unique germ of reversible vector field
of type (2; 2) is X = 0.

Property 2.6 (Jacobian matrix as an involution). If p ∈ Fix(ϕ), then Dϕ(p) is an
involution.

Proof. Once ϕ is a diffeomorphism over R2 it follows that Dϕ(p) is also a diffeomorphism
over R2. Now, it follows from ϕ = ϕ−1 and ϕ(p) = p that

[Dϕ(p)]−1 = Dϕ−1(ϕ(p)) = Dϕ(ϕ(p)) = Dϕ(p).

Hence, we have the proof.

Property 2.7 (Relation between p and ϕ(p)). Let p be a singularity of X and λ be an
eigenvalue of DX(p) with algebraic dimension α and geometric dimension β. Then ϕ(p)
is a singularity of X and −λ is an eigenvalue of DX(ϕ(p)) with algebraic dimension α
and geometric dimension β. Moreover, if u is an eigenvector of DX(p) associated with λ,
then v = Dϕ(p)u is an eigenvector of DX(ϕ(p)) associated with −λ.

Proof. Derivating (1.2) and then replacing (x, y) = p one will obtain

Dϕ(p)DX(p) = −DX(p)Dϕ(p).

Therefore, it follows from Property 2.6 that

Dϕ(p)DX(p) [Dϕ(p)]−1 = −DX(ϕ(p)),

i.e. DX(p) and DX(ϕ(p)) are similar. The result now follows from the linear algebra.

Property 2.8 (Relations between γ(t) and ϕ(γ(−t))). The following statements hold.

(a) If γ(t) is an orbit of X, then σ(t) = ϕ(γ(−t)) is also an orbit of X;

(b) If γ intersects Fix(ϕ) in two distinct points, then γ is periodic;

(c) If γ is a periodic orbit of period T > 0, then σ is also a periodic orbit of period
T > 0.

(d) If γ is closed and πp, πq are the Poincaré maps at p ∈ γ and q = ϕ(p) ∈ σ, then
ϕ ◦ πp = π−1

q ◦ ϕ.

Proof. Let γ(t) be an orbit of X, i.e. γ′(t) = X(γ(t)). It follows from σ(t) = ϕ(γ(−t))
and from (1.2) that

σ′(t) = −Dϕ(γ(−t))γ′(−t) = −Dϕ(γ(−t))X(γ(−t)) = X(ϕ(γ(−t))) = X(σ(t)).

Therefore, σ(t) is also an orbit of X and thus we have statement (a).
If γ(0), γ(T ) ∈ Fix(ϕ), with T > 0, then γ(0) = σ(0) and thus it follows from the

Existence and Uniqueness Theorem that γ(t) = σ(t), for every t. Hence,

γ(−T ) = σ(−T ) = ϕ(γ(T )) = γ(T )

and thus it follows statement (b).
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If γ(t) is a periodic orbit of period T > 0, i.e. T > 0 is the smallest real number such
that γ(t+ T ) = γ(t), then

σ(t+ T ) = ϕ(γ(−t− T )) = ϕ(γ(−t)) = σ(t)

and thus σ is also a periodic orbit of period T0 6 T . Knowing that γ(t) = ϕ(σ(−t)) it
follows that T0 = T and thus we have statement (c).

Finally, to prove statement (d), let lp be a transversal section of γ at p. If we take lp
small enough, then lq = ϕ(lp) is also a transversal section of σ at q and thus πp : lp → lp,
πq : lq → lq are both well defined. It is well known that there are two maps τp : lp → R+,
τq : lq → R+ of the same class of differentiability of X, such that

πp(ξ) = Ψ(τp(ξ), ξ), πq(ξ) = Ψ(τq(ξ), ξ), (2.1)

where Ψ(t, ξ) is the flow of X. Let a ∈ lp, b = πp(a), α = ϕ(a), β = ϕ(b) and ω = π−1
q (α)

and observe that b ∈ lp and α, β, ω ∈ lq. See Figure 2.1. Our goal is to prove ϕ ◦ πp(a) =

lp p
a

b

lqqα

ω

β?

ϕ

Figure 2.1: Illustration of lp and lq. Figure source: made by the author.

π−1
q ◦ϕ(a) and for it is enough to prove β = ω. It follows from (2.1) and from Property 2.3

that
ω = Ψ(−τq(ω), α) = Ψ(−τq(ω), ϕ(a)) = ϕ(Ψ(τq(ω), a)),
β = ϕ(πp(a)) = ϕ(Ψ(τp(a), a)).

(2.2)

Therefore, it is enough to prove that τq(ω) = τp(a). Once ω ∈ lq it follows from (2.2) that
Ψ(τq(ω), a) ∈ lp and thus τq(ω) > τp(a). It follows from (2.2) and from Property 2.3 that

β = ϕ(Ψ(τp(a), a)) = Ψ(−τp(a), ϕ(a)) = Ψ(−τp(a), α)

and thus Ψ(−τp(a), α) ∈ lq. Therefore, we have −τp(a) 6 −τq(ω), i.e. τp(a) > τq(ω) and
hence we have the proof.

Property 2.9 (Relation between the Poincaré maps). Let γ(t) be a periodic orbit of
X, σ(t) = ϕ(γ(−t)), p ∈ γ and πp, πq the Poincaré maps at p and q = ϕ(p) ∈ σ. If λ
is an eigenvalue of Dπp(p) with algebraic dimension α and geometric dimension β, then
λ−1 is an eigenvalue of Dπq(q) with algebraic dimension α and geometric dimension β.
Moreover, if u is an eigenvector of Dπp(p) associated with λ, then v = Dϕ(p)u is an
eigenvector of Dπq(q) associated with λ−1.
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Proof. It follows From Property 2.8(d) that ϕ◦πp(ξ) = π−1
q ◦ϕ(ξ), for any ξ in the domain

of πp. Derivating it and then replacing ξ = p one will obtain

Dϕ(p))Dπp(p) = Dπ−1
q (q)Dϕ(p).

Therefore, we conclude that both Dπp(p) and Dπ−1
q (q) are similar and thus the result

follows from the linear algebra.

Property 2.10 (Relation between the α and ω-limits). Let p be a singularity of X, γ(t)
a periodic orbit, q = ϕ(p) and σ(t) = ϕ(γ(−t)). If µ is an orbit of X such that p ∈ ω(µ),
then q ∈ α(ν), where ν(t) = ϕ(µ(−t)). Moreover, if γ ⊂ ω(µ), then σ ⊂ α(ν).

Proof. We will prove for the singularity p. The case of the periodic orbit γ is analogous.
Let us assume p ∈ ω(µ), i.e there is a sequence (tk) of real numbers such that

lim
k→+∞

tk = +∞ and lim
k→+∞

µ(tk) = p.

It follows from the continuity of ϕ that ϕ(µ(tk))→ ϕ(p) and thus (−tk) is a sequence of
real numbers such that

lim
k→+∞

−tk = −∞ and lim
k→+∞

ν(−tk) = q,

i.e. q ∈ α(ν) and thus we have the result.

It follows from Properties 2.7, 2.8, 2.9 and 2.10 that given a singularity p or a periodic
orbit γ(t), a huge amount of information can be carry on to q = ϕ(p) and σ(t) = ϕ(γ(−t)).
And even more information can be obtained if p or γ are symmetrical. Here we point out
the following.

(a) p (resp. γ) is hyperbolic if, and only if, q (resp. σ) is hyperbolic;

(b) γ is stable outwards (resp. inwards) if, and only if, σ is unstable outwards (resp.
inwards);

(c) p is a stable node (resp. stable focus) if, and only if, q is an unstable node (resp.
unstable focus);

(d) p is a saddle if, and only if, q is a saddle;

(e) If we have a center-focus problem at p and p is symmetrical, then p is a center;

(f) If γ is a symmetrical periodic orbit, then it is not a limit cycle.

Property 2.11 (Local linearization of the involution). If p ∈ Fix(ϕ), then there is a
neighborhood of p such that ϕ is Ck-conjugate to one of the following involutions.

(a) Φ(x1, x2) = (−x1,−x2) if X is (2; 0)-reversible;

(b) Φ(x1, x2) = (x1,−x2) if X is (2; 1)-reversible;

(c) Φ(x1, x2) = (x1, x2) if X is (2; 2)-reversible.
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Proof. Given x ∈ R2, let T (x) = x + p and ψ(x) = T−1 ◦ ϕ ◦ T . Observe that ψ(0) = 0
and ψ = ψ−1. Therefore, ϕ is conjugate to another involution ψ such that ψ(0) = 0 and
thus we can now suppose p = 0. Let Q = Dϕ(0) and σ(x) = x+Qϕ(x). Derivating σ we
obtain Dσ(x) = I2 + QDϕ(x) and thus it follows from Property 2.6 that Dσ(0) = 2I2.
Hence, it follows from the Inverse Function Theorem that σ is locally a difeomorphism at
the origin. Observe that σ(0) = 0 and σ has the same class of differentiability as ϕ. Now,
observe that

σ(ϕ(x)) = ϕ(x) +Qx = Q(Qϕ(x) + x) = Qσ(x)

and thus σ conjugates ϕ and Q. Therefore, it follows from the theory of manifolds that
Fix(Q) is a r-dimensional subspace of R2 and thus with a change of basis we have the
result.

2.2 Poincaré compactification

Let X be a planar polynomial vector field of degree n. The Poincaré compactified
vector field p(X) is an analytic vector field on S2 constructed as follow (for more details
see Chapter 5 of [19]).

First we identify R2 with the plane (x1, x2, 1) in R3 and define the Poincaré sphere
as S2 = {y = (y1, y2, y3) ∈ R3 : y2

1 + y2
2 + y2

3 = 1}. We define the northern hemisphere,
the southern hemisphere and the equator respectively by H+ = {y ∈ S2 : y3 > 0},
H− = {y ∈ S2 : y3 < 0} and S1 = {y ∈ S2 : y3 = 0}.

Consider the projections f± : R2 → H± given by f±(x1, x2) = ±∆(x1, x2)(x1, x2, 1),
where ∆(x1, x2) = (x2

1 + x2
2 + 1)− 1

2 . These two maps define two copies of X, one copy
X+ in H+ and one copy X− in H−. Consider the vector field X ′ = X+ ∪ X− defined
in S2\S1. Note that the infinity of R2 is identified with the equator S1. The Poincaré
compactified vector field p(X) is the analytic extension of X ′ from S2\S1 to S2 given by
yn−1

3 X ′. The Poincaré disk D is the projection of the closed northern hemisphere to y3 = 0
under (y1, y2, y3) 7→ (y1, y2) (the vector field given by this projection will also be denoted
by p(X)). Note that to know the behavior p(X) near S1 is the same than to know the
behavior of X near the infinity. We define the local charts of S2 by Ui = {y ∈ S2 : yi > 0}
and Vi = {y ∈ S2 : yi < 0} for i ∈ {1, 2, 3}. In these charts we define φi : Ui → R2

and ψi : Vi → R2 by φi(y1, y2, y3) = −ψi(y1, y2, y3) =
(
ym
yi
, yn
yi

)
, where m 6= i, n 6= i and

m < n. Denoting by (u, v) the image of φi and ψi in every chart (therefore, (u, v) will
play different roles in each chart) one can see the following expressions for p(X):

vn η(u, v)
(
Q
(1
v
,
u

v

)
− uP

(1
v
,
u

v

)
,−vP

(1
v
,
u

v

))
in U1,

vn η(u, v)
(
P
(
u

v
,

1
v

)
− uQ

(
u

v
,

1
v

)
,−vQ

(
u

v
,

1
v

))
in U2,

η(u, v)(P (u, v), Q(u, v)) in U3,

where η(u, v) = (u2 + v2 + 1)− 1
2 (n−1). We can omit the term η(u, v) by a time rescaling of

p(X). Therefore, we obtain a polynomial expression of p(X) in each Ui. The expressions
of p(X) in each Vi is the same as that for each Ui, except by a multiplicative factor of
(−1)n−1. In these coordinates for i ∈ {1, 2}, v = 0 always represents the points of S1 and
thus the infinity of R2. Note that S1 is invariant under the flow of p(X).



26 PRELIMINARIES

2.3 Blow up technique

If the origin is an isolated singularity of a polynomial planar vector field X, then we
can apply the change of coordinates φ : R+×S1 → R2 given by φ(θ, r) = (r cos θ, r sin θ) =
(x, y), where R+ = {r ∈ R : r > 0}. Therefore, we can induce a vector field X0 in R+×S1

by pullback, i.e. X0 = Dφ−1X. One can see that if the k-jet of X (i.e. the Taylor
expansion of order k of X, denoted by jk) is zero at the origin, then the k-jet of X0 is also
zero in every point of {0} × S1. Thus, taking the first k ∈ N satisfying jk(0, 0) = 0 and
jk+1(0, 0) 6= 0 we can define the vector field X̂ = 1

rk
X0. Therefore, to know the behavior

of X̂ near S1 is the same than to know the behavior of X near the origin. One can also
see that S1 is invariant under the flow of X̂. For a more detailed study of this technique,
see Chapter 3 of [19]. One can also see that X̂ is given by

ṙ = xẋ+ yẏ

rk+1 , θ̇ = xẏ − yẋ
rk+2 .

There is a generalization of the Blow Up Technique, known as Quasihomogeneous Blow
Up. This time we consider the change of coordinates ψ(θ, r) = (rα cos θ, rβ sin θ) = (x, y)
for (α, β) ∈ N2. Similarly to the previous technique, we can induce a vector field X0 in
R+ × S1. For some k ∈ N maximal one can define Xα,β = 1

rk
X0 and see that this vector

field is given by

ṙ = ξ(θ)cos θ rβẋ+ sin θ rαẏ
rα+β+k−1 , θ̇ = ξ(θ)α cos θ rαẏ − β sin θ rβẋ

rα+β+k ,

where ξ(θ) = (β sin2 θ + α cos2 θ)−1. Observe that the factor ξ(θ) can be cancel out.
Similarly to the previous technique, to know the behavior of Xα,β near S1 (which is
invariant) is the same than to know the behavior of X near the origin. For more details
see chapter 3 of [19].

There is another blow up technique, known as Quasihomogeneous directional Blow Up.
This time we consider the change of coordinates


(x, y)→ (xα1 , x

β
1y1) positive x-direction

(x, y)→ (−xα1 , x
β
1y1) negative x-direction

(x, y)→ (x1y
α
1 , y

β
1 ) positive y-direction

(x, y)→ (x1y
α
1 ,−y

β
1 ) negative y-direction,

where (α, β) ∈ N2. For example, if we do a Quasihomogeneous blow up at the positive
x-direction, leading to a vector field Xx

+, then to understand the positive x-direction, i.e.
x > 0, of X is the same than to understand the positive x1-direction of vector field Xx

+.
Similarly to the previous techniques, for some k ∈ N maximal one can divide Xx

+ and Xx
−

by xk (and Xy
+, Xy

− by yk) and study a regularized version of these systems. Moreover,
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this vectors fields (not regularized) are given by

ẋ1 = 1
α
x1−α

1 ẋ, ẏ1 =
xα1 ẏ − β

α
ẋy

xα+β
1

at the positive x-direction;

ẋ1 = − 1
α
x1−α

1 ẋ, ẏ1 =
xα1 ẏ + β

α
ẋy

xα+β
1

at the negative x-direction;

ẋ1 =
yβ1 ẋ− α

β
ẏx

yα+β
1

, ẏ1 = 1
β
y1−β

1 ẏ at the positive y-direction;

ẋ1 =
yβ1 ẋ+ α

β
ẏx

yα+β
1

, ẏ1 = − 1
β
y1−β

1 ẏ at the negative y-direction.

2.4 Markus-Neumann-Peixoto theorem

Let X be a polynomial vector field, p(X) its compactification defined on D and φ the
flow defined by p(X). The separatrices of p(X) are:

(a) all the orbits contained in S1, i.e. at infinity;

(b) all the singular points;

(c) all the separatrices of the hyperbolic sectors of the finite and infinite singular points;
and

(d) all the limit cycles of X.

Denote by S the set of all separatrices. It is known that S is closed, see for instance
[19]. Each connected component of D\S is called a canonical region of the flow (D, φ). The
separatrix configuration Sc of a flow (D, φ) is the union of all the separatrices S of the flow
together with one orbit belonging to each canonical region. The separatrix configuration
Sc of the flow (D, φ) is topologically equivalent to the separatrix configuration S∗c of the
flow (D, φ∗) if there exists a homeomorphism from D to D which transforms orbits of Sc
into orbits of S∗c , orbits of S into orbits of S∗ and preserves or reverses the orientation of
all these orbits.

Theorem 2.12 (Markus-Neumann-Peixoto). Let p(X) and p(Y ) be two Poincaré com-
pactifications in the Poincaré disk D of the two polynomial vector fields X and Y with
finitely many singularities, respectively. Then the phase portraits of p(X) and p(Y ) are
topologically equivalent if and only if their separatrix configurations are topologically equiv-
alent.

For a proof of this Theorem see [34, 39, 45, 6].

2.5 Index of singularities and limit cycles

Let p be an isolated singularity of a polynomial vector field X. Let e and h denote
the number of elliptical and hyperbolic sectors of p, respectively. The Poincaré index of
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p is given by

ip = e− h
2 + 1.

It is known that ip ∈ Z. See for instance chapter 6 of [19].

Proposition 2.13. Let Γ be a limit cycle of a planar polynomial vector field X. Then
there is at least one singularity in the bounded region limited by it. Moreover, if there is
a finite number of singularities in the bounded region limited by Γ, then the sum of their
Poincaré index is 1.

Theorem 2.14 (Poincaré-Hopf Theorem). Let X be a planar polynomial vector field and
p(X) its compactification defined on S2. If p(X) has a finite number of singularities, then
the sum of their Poincaré index is 2.

For a proof of Proposition 2.13 and Theorem 2.14 see chapter 6 of [19].

2.6 Bifurcation of heteroclinic connections

Let X = X(x, y;µ) be a Ck, k > 1, planar vector field depending on a parameter
µ ∈ Rn such that at µ = µ0 there is a graph G of saddles connected by heteroclinic orbits.
Moreover, let pu and ps be two hyperbolic saddles of G connected by the heteroclinic orbit
Γ0. Following [49] we denote γ0(t) a parametrization of Γ0 and define x0 = γ0(0) and l0 a
transversal section of Γ0 passing through x0. We also denote Γu and Γs the perturbations
of Γ0, for ||µ−µ0|| small enough, such that α(Γu) = pu and ω(Γs) = ps. Let xs and xu be
the intersections of Γs and Γu with l0, respectively, and let ns and nu be its coordinates
along the line l0 in such a way that n(x) > 0 outside the graph, n(x0) = 0 and n(x) < 0
inside the graph. Now we define the displacement function d(µ) = nu−ns. See Figure 2.2.

xs
xu

d < 0

Γu

Γs

µ 6= µ0

Γ0 x0

l0

µ = µ0

xu

Γu

d > 0
Γs

xs

µ 6= µ0

Figure 2.2: The displacement map d defined near µ0. Figure source: made by the author.

It follows from [49] that d is well defined and

∂d

∂µi
(µ0) = − ω0

||X(x0;µ0)||

∫ +∞

−∞

(
e−
∫ t

0 Div(X(γ0(s);µ0)) ds
)
X(γ0(t);µ0) ∧ ∂X

∂µi
(γ0(t);µ0) dt,

where (x1, x2)∧ (y1, y2) = x1y2−x2y1, µ = (µ1, . . . , µn) ∈ Rn and ω0 = 1 if the orientation
of G is positive or ω0 = −1 if the orientation of G is negative. For more details see also
[26, 22].
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2.7 The averaging theory

In this section we recall the averaging theory of first order for finding periodic so-
lutions. The averaging theory up to third order specifically for studying periodic orbit
was developed in [8]. The averaging theory of higher order can be found in [31]. Other
versions of the averaging theory can also be found in [7] and in Theorems 11.5 and 11.6
of [57]. For a general view on the averaging theory see the book [53].

Theorem 2.15. Consider the differential system

ẋ(t) = εF (t, x) + ε2R(t, x, ε), (2.3)

where F : R×D → Rn, R : R×D× (−εf , εf )→ Rn are continuous functions, T -periodic
in the first variable and D is an open subset of Rn. We define f : D → Rn as

f(z) = 1
T

∫ T

0
F (s, z) ds,

and assume that

(i) F and R are locally Lipschitz with respect to x;

(ii) for all a ∈ D with f(a) = 0, there exists a neighborhood V of a such that f(z) 6= 0
for all z ∈ V \{a} and dB(f, V, 0) 6= 0 (see its definition later on).

Then for |ε| > 0 small enough there exists a T -periodic solution ϕ(·, ε) of system (2.3)
such that ϕ(·, ε)→ a as ε→ 0.

We denoted by dB(f, V, 0) the Brouwer degree at the triple (f, V, 0). A sufficient
condition for showing that the Brouwer degree is non-zero is that the Jacobian of the
function f at a (when it is defined) is non-zero, for a proof see [32]. For more details
about the Brouwer degree see [5].

2.8 Transition map near a hyperbolic saddle

Let Xµ be a C∞ planar vector field depending on a C∞-way on a parameter µ ∈ Rr,
r > 1, defined in a neighborhood of a hyperbolic saddle p0 at µ = µ0. Let Λ ⊂ Rr be a
small enough neighborhood of µ0, ν(µ) < 0 < λ(µ) be the eigenvalues of the hyperbolic
saddle p(µ), µ ∈ Λ, and r(µ) = |ν(µ)|

λ(µ) be the hyperbolicity ratio of p(µ). Let B be a small
enough neighborhood of p0 and Φ : B×Λ→ R2 be a C∞-change of coordinates such that
Φ sends the hyperbolic saddle p(µ) to the origin and its unstable and stable manifolds
W u(µ) and W s(µ) to the axis Ox and Oy, respectively (see Figure 2.3). Let σ and τ be
two small enough transversal sections of Oy and Ox, respectively. We can suppose that σ
and τ are parametrized by x ∈ [0, x0] and y ∈ [0, y0], with x = 0 and y = 0 corresponding
to Oy∩σ and Ox∩ τ , respectively. Clearly the flow of Xµ, in this new coordinate system,
defines a transition map:

D : ]0, x0]× Λ→]0, y0]
called the Dulac map, since it was study first by Dulac in [18]. See Figure 2.3. Observe
that D is C∞ for x 6= 0 and it can be continuously extend by D(0, µ) = 0 for all µ ∈ Λ.

Definition 2.16. Given k > 0, we will denote by Ik the set of functions f : [0, x0]×Λk →
R with the following properties:
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σ

τ

0

Oy

Ox

D

Figure 2.3: The Dulac map near a hyperbolic saddle. Figure source: made by the author.

(a) f is C∞ on ]0, x0]× Λk;

(b) For each j ∈ {0, . . . , k} we have that ϕj = xj ∂
jf
∂xj

(x, µ) is continuous on ]0, x0]× Λk

with ϕj(x, µ)→ 0 for x→ 0, uniformly in µ.

Furthermore, we will say that a function f : [0, x0] × Λ → R is class I if f is C∞ on
]0, x0]×Λ and for every k > 0 there exists a neighborhood Λk ⊂ Λ of µ0 such that f is of
class Ik on ]0, x0]× Λk.

To put it briefly, condition (a) of Definition 2.16 means that f works as desired when
x 6= 0, while condition (b) give us some control of f and its x-partial derivatives as x→ 0,
saying that if x → 0, then f(x, µ) → 0 uniformly in µ and its x-partial derivatives may
explode, but if it does, then it is on a uniformly way in µ and it will not explode infinitely
fast.

Theorem 2.17 (Mourtada). Let Xµ, σ, τ , and D be as above. Then

D(x, µ) = xr(µ)(A(µ) + φ(x, µ)), (2.4)

with φ ∈ I and A a positive C∞ function.

Proof. See [38, 20].

Following [20] we call Mourtada’s form the expression (2.4) of the Dulac map and
denote by D the class of maps given by (2.4).

Proposition 2.18. Given D(x, µ) = xr(µ)(A(µ) + φ(x, µ)) ∈ D the following statements
hold.

(a) D−1 is well defined and D−1(x, µ) = x
1

r(µ) (B(µ) + ψ(x, µ)) ∈ D;

(b) ∂D
∂x

is well defined and

∂D

∂x
(x, µ) = r(µ)xr(µ)−1(A(µ) + ξ(x, µ)),

with ξ ∈ I.

Proof. See [38, 20].
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2.9 Transition map near a semi-hyperbolic singularity

Let Xµ be a C∞ planar vector field depending on a C∞-way on a parameter µ ∈ Rr,
r > 1, defined, at µ = µ0, in a neighborhood of a singularity p0 such that p0 has a unique
non-zero eigenvalue λ ∈ R\{0} and one of it sectors is hyperbolic, e.g. a saddle-node or
a degenerated saddle. Reversing the time if necessary, we can assume λ < 0.

Theorem 2.19. Let Xµ and p0 ∈ R2 be as above. Then, for each k > 1, there exists a
Ck-family of diffeomorphisms of R2 such that at this new coordinate system Xµ is given
by

ẋ = g(x, µ), ẏ = −y,
except by the multiplication of a Ck-positive function. Furthermore,

g(0, µ0) = ∂g

∂x
(0, µ0) = 0,

and g(x, µ0) > 0 for 0 < x < ε small enough.

Proof. See [20].

In this new coordinate system given by Theorem 2.19, let σ(µ) and τ be two small
transversal sections of the axis Oy and Ox (which are, respectively, the stable and the
central manifolds of the origin at µ = µ0). Let us parametrize σ(µ) and τ by x ∈ [x∗(µ), x0]
and y ∈ [0, y0], where x∗(µ) is the largest zero of g(x, µ) = 0. As in Section 2.8, in this
new coordinate system the flow of Xµ defines a transition map:

F : ]x∗(µ), x0]× Λ→]0, y0].

Theorem 2.20. Let Xµ and F be as above. Then

F (x, µ) = ke−T (x,µ),

where k > 0 and T : ]x∗(µ), x0]× Λ→ R+ is the time function to go from σ(µ) to τ .

Proof. See [20].

2.10 The Cardano-Tartaglia formula

Given a cubic equation
x3 + px+ q = 0, (2.5)

if one make the change of variable x = u+ v on (2.5) one will obtain

u3 + v3 + (3uv + p)(u+ v) + q = 0.

Assuming that 3uv+p = 0 one will obtain u3+v3 = −q. The combination of the equations

u3v3 = − 1
27p

3 and u3 + v3 = −q

imply that u3 and v3 are the zeros of

z2 + qz − 1
27p

3 = 0.

Therefore,

u3 = −q2 +
(
q2

4 + p3

27

) 1
2

, v3 = −q2 −
(
q2

4 + p3

27

) 1
2

.
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Remark 2.21. We observe that x 1
n denotes the standard nth root of x, i.e. if x = reiθ,

then x 1
n = n
√
rei

θ
n , where n

√
x denotes the nth real root (when it exists) of x. For example,

8 1
3 = 3
√

8 = 2, but (−8) 1
3 = 1 + i

√
3, while 3

√
−8 = −2. In general both functions coincide

when x is a non-negative real number.

Let D = 1
4q

2 + 1
27p

3 and observe that if D > 0, then u3 and v3 are real numbers and
thus we can take

u = 3
√
u3 and v = 3

√
v3.

Of course these values satisfy u3 + v3 = −q and 3uv + p = 0, hence

x = 3

√√√√√−q2 +
(
q2

4 + p3

27

) 1
2

+ 3

√√√√√−q2 −
(
q2

4 + p3

27

) 1
2

is a (real) solution of (2.5). Let ξ = ei
π
3 be a unity root and observe that the three

solutions of (2.5), when D > 0, are given by

xk = ξk
3

√√√√√−q2 +
(
q2

4 + p3

27

) 1
2

+ ξ2k 3

√√√√√−q2 −
(
q2

4 + p3

27

) 1
2

,

where k ∈ {0, 1, 2}. If D < 0 we cannot take any third root of u3 and v3 because not
every choosing of roots satisfy uv = − 1

27p
3. To satisfy this it is enough that u be the

conjugate of v. Therefore, we can take

u =
(
u3
) 1

3 and v =
(
v3
) 1

3 .

Hence, the solutions of (2.5), when D < 0, are given by

xk = ξk

−q2 +
(
q2

4 + p3

27

) 1
2


1
3

+ ξ2k

−q2 −
(
q2

4 + p3

27

) 1
2


1
3

,

where k ∈ {0, 1, 2}. Observe that if we take these roots when D > 0, then u will not
necessarily be the conjugate of v (for example if both u3 and v3 are negative real numbers)
and thus we would not have a solution of (2.5). At the other hand, we cannot always
apply the 3

√
· when D < 0 because not every complex number has a third real root.

If one let S and T denotes the convenient root of u3 and v3 (i.e. denotes the root
according to the logic of this section), respectively, then the solutions of (2.5) are given
by 

x1 = S + T ;
x2 = −1

2(S + T ) + 1
2

√
3(S − T )i;

x3 = −1
2(S + T )− 1

2

√
3(S − T )i.

One can see that if D < 0, then all solutions are real and simple. If D = 0 and q 6= 0,
then x1 is a real simple solution and x2 = x3 is a double real solution. If D = q = 0, then
x1 = x2 = x3 is a real triple solution. Finally, if D > 0, then x1 is a real simple solution
and x2, x3 are two complex conjugates solutions.
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3.1 Statement of the main results

We recall that this is a co-work with professors Claudio Buzzi and Jaume Llibre and
it was already published, see [13]. In the space of planar C∞ reversible vector fields we
consider the following equivalence relation: X ∼ Y if there is a neighborhood U of (0, 0)
such that X and Y coincide in U . The equivalence class of X is called the germ of X.
We will denote the germ of X also by X. In this chapter we study the space of germs
of C∞ reversible vector fields of type (2; 0) with a singularity at the origin. This class of
vector fields, endowed with the C∞ topology, will be denoted by X. From now on any
vector field will be a C∞ vector field, unless we say other thing. In what follows we will
state some necessary definitions.

Definition 3.1. Two germs of vector fields X, Y ∈ X are topologically equivalent if there
are two neighborhoods U , V of the origin and a homeomorphism h : U → V which
sends orbits of X to orbits of Y preserving or reversing the orientation of all orbits. The
homeomorphism h is a topological equivalence between X and Y .

Definition 3.2. A germ of vector fieldX ∈ X is structural stable if there is a neighborhood
N of X such that X is topologically equivalent to every Y ∈ N . The set of the structural
stable germs will be denoted by Σ0. We will also consider the set X1 = X\Σ0, i.e. the
bifurcation set of X.

Definition 3.3. Let J = [−ε, ε] be a closed interval. Denote by Θ the space of C1

mappings ξ : J → X endowed with the C1 topology. Its elements will be called one-
parameter families of germs of vector fields of X. ξ is generic if

1. ξ(−ε), ξ(ε) ∈ Σ0;

2. there is at most one ε0 ∈ J such that ξ(ε0) ∈ X1 and in this case ξ(ε0) is structural
stable in X1;

3. it is transversal to X1.

Definition 3.4. Two one-parameter families ξ, η ∈ Θ are topologically equivalent if there
is a reparametrization h : J → J and a family of homeomorphisms H : J → Hom(U, V ),
not necessarily continuous, such that for every λ ∈ J we have that H(λ) is a topological
equivalence between ξ(λ) and η(h(λ)).

For more details about generic one-parameter families and bifurcation sets, see [44, 54].
Buzzi proved in [9] the following theorem about X.

Theorem 3.5. The following statements hold.

(a) Every structural stable germ of a vector field in X is topologically equivalent to one
of the following germs:

1. X1 = (x2 − y2, 2xy);
2. X2 = (−x2 − 2y2, xy);

33
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3. X3 = (2x2 − y2, xy);
4. X4 = (−x2 − y2,−2xy);
5. X5 = (x2 − 2y2,−xy).

(b) For λ small enough every generic one-parameter family of germs of vector fields of
X is topologically equivalent to one of the following families:

1. Every germ given in (a);
2. (X12)λ = (−λx2 − y2 + x4, (1− λ)xy);
3. (X21)λ = (λx2 − y2 − x4, (1 + λ)xy);
4. (X34)λ = (λx2 + 2xy − y2 − x4, (λ− 1)xy + 2y2);
5. (X43)λ = (−λx2 + 2xy − y2 + x4,−(λ+ 1)xy + 2y2);
6. (X45)λ = (λx2 − y2 − x4, (λ− 1)xy);
7. (X54)λ = (−λx2 − y2 + x4,−(λ+ 1)xy);
8. (X13)λ = ((2 + λ)x2 − y2 + x4,−λx2 + 2xy + y2);
9. (X24)λ = ((λ− 1)x2 − xy − y2 + x4,−λx2 − xy).

We note that all the germs of vector fields which appear in the statement of the previous
theorem are polynomial. Theorem 3.5 motivated us to classify the phase portrait of the
differential vector fields which appear in its statement and thus to extend the results of
[9]. Our first result provides a tool for studying periodic orbits of those vector fields.

Theorem 3.6. If X is a C1 ϕ-reversible vector field of type (2; 0) satisfying Fix(ϕ) = {p},
then there is no periodic orbit surrounding p.

The main result of this chapter is the phase portraits, in the Poincaré disk, of the
vector fields in the statements of Theorem 3.5. See Subsection 2.2 for more details of the
Poincaré compactification.

Theorem 3.7. The phase portraits in the Poincaré disk of the vector fields in Theorem 3.5
are given in Figures 3.1-3.8.

Remark 3.8. We observe that the phase portraits given in Figures 3.1-3.8 does not
represent the global phase portraits of all reversible vector fields of type (2; 0) of low
codimension. In fact, unless we are given a maximum degree, a reversible vector field of
type (2; 0) may have as many singularities as we want. Therefore, there is infinitely many
of such phase portraits. However, it follows from Theorem 3.5 that a symmetrical singu-
larity of codimension zero or one, of a reversible vector field of type (2; 0), is topologically
equivalent at the origin, for λ ≈ 0, to one of the phase portraits given in Figures 3.1-3.8.

Remark 3.9. Figures 3.1-3.8 work as follow. The thicker lines represent the separatrices
of the phase portrait and the thin lines represent generic orbits of the canonical regions
(see Subsection 2.4 for more details). The biggest dots represent isolated singularities.
The dot line at X12 and X45 for λ = 1 and at X54 for λ = −1 represents a line of
singularities.
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X1 X2 X3 X4 X5

Figure 3.1: Phase portraits of X1, X2, X3, X4 and X5. Figure source: Figure 1 of [13].

X12
λ 6 0

X12
0 < λ < 1

X12
λ = 1

X12
1 < λ

Figure 3.2: Phase portraits of X12. Figure source: Figure 1 of [13].

X34
λ 6 −1

X34
−1 < λ 6 0

X34
0 < λ < 1

X34
λ = 1

X34
1 < λ < λ0

X34
λ = λ0

X34
λ0 < λ < 1 +

√
2

X34
1 +
√

2 6 λ < 3
X34

3 6 λ

Figure 3.3: Phase portraits of X34. Figure source: Figures 2 and 3 of [13].

Remark 3.10. Although we struggled to give as many analytical proofs as possible, one
shall see in Proposition 3.13 that dealing analytically with limit cycles is a very difficult
task and therefore we point out that numerical calculations about the number of limit
cycles of system X34 were used for λ ∈ (1, 3).

This section is organized as follows. Theorem 3.6 is proved in Section 3.2. In Sec-



36 (2;0)-REVERSIBILITY

X21
λ 6 0

X21
0 < λ

X13
λ 6 −1

X13
−1 < λ

Figure 3.4: Phase portraits of X21 and X13. Figure source: Figure 2 of [13].

X43
λ < −3

X43
−3 6 λ 6 0

X43
0 < λ 6 1

X43
1 < λ

Figure 3.5: Phase portraits of X43. Figure source: Figure 3 of [13].

X45
λ 6 0

X45
0 < λ < 1

X45
λ = 1

X45
1 < λ

Figure 3.6: Phase portraits of X45. Figure source: Figures 3 and 4 of [13].

X24
λ < 0

X24
λ = 0

X24
0 < λ < 1

X24
λ = 1

X24
1 < λ

Figure 3.7: Phase portraits of X24. Figure source: Figures 4 and 5 of [13].

tion 3.3 we study the phase portraits. Theorem 3.7 is proved in Section 3.4 .
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X54
λ < −1

X54
λ = −1

X54
−1 < λ 6 0

X54
0 < λ

Figure 3.8: Phase portraits of X54. Figure source: Figure 4 of [13].

3.2 Proof of theorem 3.6

Proof. The proof is by contradiction. Without loss of generality we can suppose p = (0, 0).
Let γ = γ(t) be a periodic orbit of period T > 0 surrounding p. There are two options:
either the sets Γ = γ([0, T ]) and ϕ(Γ) are disjoint or not.

If Γ intersects ϕ(Γ), then there are t1, t2 ∈ R satisfying γ(t1) = ϕ(γ(t2)). Define
t3 = (t1 + t2)/2, t4 = (t1 − t2)/2, ξ(t) = γ(t + t3) and ν(t) = ϕ(ξ(−t)). It is clear that
ξ and ν are both solutions of X and that ξ(t4) = ν(t4). Therefore, by the Existence
and Uniqueness Theorem we have ξ(t) = ν(t) for all t ∈ R. Hence, ξ(0) = ν(0), i.e.
γ(t3) = ϕ(γ(t3)) and therefore γ(t3) = p, contradicting the fact that γ surrounds p.

If Γ does not intersects ϕ(Γ), then denote by A the ring delimited by Γ and by ϕ(Γ).
Denote by U the interior of the region delimited by Γ. Once p ∈ U it follows that
p ∈ ϕ(U). Without loss of generality we can suppose that Γ delimit the inner boundary of
A, i.e. Γ ⊂ ϕ(U). Let r be any straight line through p and τ : R→ R2 a parametrization
of r with τ(0) = p. Let η1 < 0 be the greatest and η2 > 0 the smallest real numbers
satisfying qi = τ(ηi) ∈ Γ, for i ∈ {1, 2}. Observe that τ([η1, η2]) does not intersects
ϕ(Γ). Define µ = ϕ ◦ τ and note that µ is continuous, µ(ηi) = ϕ(qi) for i ∈ {1, 2} and
µ(0) = p. See Figure 3.9. It follows from the continuity that µ([η1, η2]) must intersect Γ

A

Up

q1

q2
ϕ(q1)

ϕ(q2)

Γ
ϕ(Γ)

Figure 3.9: Illustration of Γ and ϕ(Γ). Figure source: made by the author.

and therefore τ([η1, η2]) must intersect ϕ(Γ). But this contradicts the fact that τ([η1, η2])
does not intersects ϕ(Γ).
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3.3 Phase portraits

We will show how to obtain the phase portraits of the vector field X34 and give a
sketch of how to obtain the phase portraits of the other families. First we remember that
X34 is given by

ẋ = λx2 + 2xy − y2 − x4, ẏ = (λ− 1)xy + 2y2.

Note that {(x, y) ∈ R2 : ẏ = 0} is the union of the straight lines y = 0 and y = 1−λ
2 x.

Therefore, one can see that all the possible finite singularities are given by the origin and
the points

p± = ±
(√

λ, 0
)
, q± = ±

(1
2

√
f(λ), 1

4(1− λ)
√
f(λ)

)
,

where f(λ) = −(λ+ 1)(λ− 3). By possible singularities we mean that p± are well defined
only for λ ≥ 0 and q± are well defined only for −1 6 λ 6 3. In the following three
propositions we study the local behavior of X34, i.e. we study the local phase portrait of
X34 at each finite and infinite singularity and the existence of limit cycles for every λ ∈ R.

Proposition 3.11. For every λ ∈ R the following statements hold.

(a) The origin is the only singularity of the chart U1 and it is an unstable node.

(b) The origin is the only singularity of the chart U2 and its local phase portrait is given
by Figure 3.10.

Figure 3.10: Local phase portrait at the origin of chart U2 of p(X34). Figure source:
Figure 6 of [13].

Proof. The first statement follows from the fact that p(X34) is given in the chart U1 by

u̇ = u− uv2 + u3v2, v̇ = v − λv3 − 2uv3 + u2v3.

To prove the second statement we will do a quasihomogeneous blow up at the origin
of the chart U2. Following the algorithm of section 3.3 of [19] we choose (α, β) = (1, 2) to
apply the technique. Doing that one will obtain the vector field X0 = X0(r, θ) given by

ṙ = rR1(r, θ), θ̇ = f(θ) sin θ + rR2(r, θ),

where f(θ) 6= 0 for all θ ∈ S1. The linear part of X0 at (0, 0) and at (0, π) are given by

DX0(0, 0) = −DX0(0, π) =
(
−1 0
0 2

)
.

Therefore, all the singularities of S1 are hyperbolic and thus one can conclude Figure 3.10.

Proposition 3.12. The following statements hold.
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(a) Singularity p+ (resp. p−) is a stable (resp. unstable) node for 0 < λ < 1. For 1 < λ
both singularities p± are saddles.

(b) Singularities q± are both saddles for −1 < λ < 1. For 1 < λ < 1.4314.. singularity
q+ (resp. q−) is a stable (resp. unstable) node. For 1.4314.. 6 λ < 1+

√
2 singularity

q+ (resp. q−) is a stable (resp. unstable) focus. For 1 +
√

2 6 λ 6 2.8549..
singularity q+ (resp. q−) is a unstable (resp. stable) focus. For 2.8549.. < λ < 3
singularity q+ (resp. q−) is a unstable (resp. stable) node.

(c) For λ = 1 we have q± = p± and they are both saddle-nodes.

(d) The local phase portrait of X34 at the origin and its Poincaré index i are given by
Figure 3.11.

(e) It occurs a Hopf bifurcation at q+ (resp. q−) when λ = 1 +
√

2. Moreover, there
is a hyperbolic stable (resp. unstable) limit cycle surrounding q+ (resp. q−) for
1 +
√

2− ε < λ < 1 +
√

2.

λ 6 −1
i = 0

−1 < λ 6 0
i = 2

0 < λ < 3
i = 0

3 6 λ
i = 2

Figure 3.11: Local phase portrait of X34 at the origin. Figure source: Figure 7 of [13].

Proof. The first statement follows from

DX34(p+) =
(
−2λ 3

2 2
√
λ

0 (λ− 1)
√
λ

)
.

Using the Theorem of Hartman-Grobman, the Trace-Determinant Theory (see Section
4.1 of [25]) and knowing that the determinant and the trace of DX34(q+) are given,
respectively, by

Det(λ) = 1
8(λ+ 1)2(λ− 1)(λ− 3)2,

T r(λ) = 1
2
[
λ−

(
1−
√

2
)] [

λ−
(
1 +
√

2
)]√

f(λ),

one can prove the second statement.
Doing the change of coordinates (u, v) = (x − 1, y) and then applying the blow up

technique at the origin of the vector field Y = Y (u, v) we obtain the vector field Y0 =
Y0(r, θ) given by

ṙ = rR1(r, θ), θ̇ = 2 sin θ(cos θ − sin θ) + rR2(r, θ).

Therefore, the singularities of S1 are given by (r, θ) = (0, θ0), where θ0 ∈ {0, π4 , π,
5π
4 }.

Observe that
DY0(0, 0) = DY0(0, π) =

(
−2 0
0 2

)
,



40 (2;0)-REVERSIBILITY

DY0

(
0, π4

)
= −DY0

(
0, 5π

4

)
=
(

0 0
∗ −2

)
.

Applying the Center Manifold Theorem (see Section 2.7 of [50]) at the non-hyperbolic
points and knowing that v̇ > 0 for every point outside the u-axis we can conclude that
(0, π4 ) is a saddle and (0, 5π

4 ) is a stable node for Y0 and thus prove the third statement.
To prove the fourth statement note that the origin is a degenerated singularity, i.e.

DX34(0, 0) = 0. Doing a blow up at the origin one will obtain a vector field X0 = X0(r, θ)
given by

ṙ = rR1(r, θ), θ̇ = sin θ(sin2 θ − cos2 θ) + rR2(r, θ).

Therefore, the singularities of S1 are given by (r, θ) = (0, θ0), where θ0 ∈ {0, π4 ,
3π
4 , π,

5π
4 ,

7π
4 }.

Observe that
DX0(0, 0) = −DX0(0, π) =

(
λ 0
0 −1

)
,

DX0

(
0, π4

)
= −DX0

(
0, 5π

4

)
=
(
f1(λ) 0

0
√

2

)
,

DX0

(
0, 3π

4

)
= −DX0

(
0, 7π

4

)
=
(
f2(λ) 0

0 −
√

2

)
,

where f1(λ) = 1
2

√
2(λ+1) and f2(λ) = −1

2

√
2(λ−3). Therefore, all the six singularities are

hyperbolic for λ /∈ {−1, 0, 3} and thus one can conclude the local phase portrait. When
λ ∈ {−1, 0, 3} we have a saddle-node bifurcation at {(0, 1

4π), (0, 5
4π)}, {(0, 0), (0, π)} and

{(0, 3
4π), (0, 7

4π)}, respectively.
The fifth statement follows from general results on the Hopf bifrucation. See for

instance sections 3.4 and 3.5 of [27].

Proposition 3.13. The vector field X34 may admit the existence of some limit cycle only
if λ ∈ (1, 3). Moreover, there is a unique λ0 ∈ (1, 3) in which occurs the formation of a
polycicle between the origin and p− (and p+).

Proof. It follows from Proposition 2.13 that there is at least one singularity in the interior
of the bounded region limited by a limit cycle. From Theorem 3.6 we known that this
singularity cannot be the origin. Also it cannot be singularities p± because the x-axis is
invariant. For −1 < λ < 1 singularities q± are both saddles and therefore cannot have a
limit cycle surrounding them because the topological index of a saddle is −1 (otherwise
it must have another singularity in the bounded region limited by the limit cycle, which
is impossible). Therefore, if there is a limit cycle, then it surrounds one (and only one)
of the singularities q± and 1 < λ < 3. From now on we will focus on the q− singularity
at the second quadrant. The dynamics at q+ follows from the symmetry of the system.

At λ = 1 we have a saddle-node bifurcation between singularities p− and q−. At λ = 3
we have another saddle-node bifurcation, but now between a hyperbolic saddle at the blow
up of the origin and q−. Therefore, from the continuity of the vector field we conclude
that there is a bifurcation of a heteroclinic orbit Γ0 between the hyperbolic saddles p0
and p− for some value of the parameter λ = λ0, see Figure 3.12. Let x0 ∈ Γ0 and l0 be a
transversal section of Γ0 passing through x0. Following Section 2.6 we define n to be the
coordinate along the normal line l0 such that n > 0 outside the graph and n < 0 inside the
graph. We also denote by Γsλ and Γuλ the perturbations of Γ0, for |λ − λ0| small enough,
such that ω(Γsλ) = p− and α(Γuλ) = (0, 0). Let xsλ and xuλ be the intersection of Γsλ and Γuλ
with l0 and ns(λ), nu(λ) its coordinates along l0, respectively. We define the displacement
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λ = 1 + ε

Γ0

λ = λ0 λ = 3− ε

Figure 3.12: Heteroclinic orbit between the origin and p−. Figure source: Figure 8 of [13].

d(λ) > 0xuλ
xsλ

Γuλ
Γsλ

λ 6= λ0

Γ0
l0

x0

λ = λ0

d(λ) < 0xsλ
xuλ

ΓuλΓsλ

λ 6= λ0

Figure 3.13: The displacement function d(λ) defined for λ near λ0. Figure source: Figure 9
of [13].

function d(λ) = nu(λ) − ns(λ). See Figure 3.13. Let γ0(t) be a parametrization of Γ0,
with γ0(0) = x0. It follows from [49] that

d′(λ0) = − 1
||X34(x0;λ0)||

∫ +∞

−∞

[
e−
∫ t

0 Div(X34(γ0(s);λ0)) ds
]
X34(γ0(t);λ0) ∧ ∂X34

∂λ
(γ0(t);λ0) dt,

where (x1, x2) ∧ (y1, y2) = x1y2 − x2y1. One can see that

X34(x, y;λ) ∧ ∂X34

∂λ
(x, y;λ) = x3y − xy3 − x5y = H(x, y).

Therefore, the set {(x, y) ∈ R2 : H(x, y) = 0} is given by the union of the graphs of y = 0
and y = ±

√
x2 − x4. We denote y1(x) =

√
x2 − x4 when −1 6 x 6 0. The graph of y1

is given by the solid line of Figure 3.14. The dashed line denotes the points which satisfy
ẋ = 0, given explicitly by y = x

(
1−
√
λ+ 1− x2

)
when −

√
λ 6 x 6 0. One can see

that the flow of X34 is transversal to the graph of y1, except at q− = (q1, q2), for every
1 < λ < 3. Moreover it points outwards for x > q1 and inwards for x < q1. One can also
see that H, inside the second quadrant, is positive at the unbounded region delimited by
the graph of y1 and negative at the bounded region. The Taylor series of y1 at x = 0 is
given by

y1(x) = −x+ 3x3 +O(x5).
On the other hand the separatrix Γ0 is given, for |x| small, by

y2(x) = −x+ 1
8− 2λx

3 +O(x5).

Therefore, for x < 0 small enough we have

y2(x)− y1(x) =
( 1

8− 2λ − 3
)
x3 +O(x5).
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p−

q−

H < 0

H > 0

ẋ > 0

ẋ < 0

Figure 3.14: Plot of H(x, y) = 0 and ẋ = 0 at the second quadrant. Figure source:
Figure 10 of [13].

Hence, the heteroclinic orbit Γ0 is above the graph of y1 and therefore we conclude that

f(t;λ0) ∧ ∂f
∂λ

(t;λ0) > 0

for every t ∈ R, independently of the exactly value of λ0. Hence, d′(λ0) < 0. Thus, we
conclude that if a heteroclinic orbit Γ0 exists at λ = λ0, then for |λ − λ0| small enough
the displacement function is well defined and is given by

d(λ) = a1(λ− λ0) +O((λ− λ0)2),

with a1 < 0. Therefore, we have d(λ) > 0 if λ < λ0 and d(λ) < 0 if λ > 0. See Figure 3.13.
And this happens independently of the value of λ0. Hence, there is a unique λ0 ∈ (1, 3)
for which Γ0 exists.

If Γn is a graph with n hyperbolic saddles such that µi < 0 < νi are its eigenvalues,
then we say that Γn is simple if

H(Γn) =
n∏
i=1

|µi|
νi
6= 1.

Moreover Γn is stable ifH(Γn) > 1 and unstable ifH(Γn) < 1. See for instance [16, 55, 18].
The graph Γ that bifurcate at λ = λ0 is formed by p− and from two hyperbolic saddles
from the blow up of the origin. Hence, one can calculate that

H(Γ0) = λ− 1
3− λ.

To precise in an analytical way how many limit cycles exists in a given interval in
general is a very difficult task. But numerical computations (see chapters 9 and 10 of
[19]) points that λ0 = 2.3761.. and thus Γ is stable. Moreover the numerical computations
also indicates that there is no limit cycles for λ ∈ (1, λ0)∪ (1 +

√
2, 3) and that there is a

unique limit cycle for λ ∈ (λ0, 1 +
√

2). So to provide an analytic proof of these two facts
is an open problem. Knowing this, it follows from [48] that the limit cycle which ends at
the Hopf bifurcation belongs to an open maximal family of limit cycles which born at the
polycicle for λ = λ0.

In what follows we will study some cases of X34. The other cases can be obtained
similarly.
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Remark 3.14. To simplify the writing from now on we will call the origin of the charts
U2, V2, U1 and V1 of the Poincaré compactification (see Section 2.2) as north pole, south
pole, east pole (right) and west pole (left), respectively.

Proposition 3.15. The phase portrait of X34 for 1+
√

2 6 λ < 3 is the one in Figure 3.3.

Proof. From Propositions 3.11, 3.12, 3.13 and from the invariance of the x-axis we can
conclude Figure 3.15. We claim that separatrix 1 must have the west pole as its ω-limit.

1

2

3

4

5

6

Figure 3.15: Unfinished phase portrait ofX34 for 1+
√

2 6 λ < 3. Figure source: Figure 11
of [13].

To prove this consider Figure 3.16. Denote S = {(x, y) ∈ R2 : ẋ = 0} and observe that it

S

1
p+

p−

γ
y = 1−λ

2 x

q−

q+

Figure 3.16: Illustration of the zeros of ẋ = 0 and ẏ = 0. Figure source: Figure 12 of [13].

is given explicitly by
y = x±

√
x2(λ+ 1)− x4.

Observe that separatrix 1 must cross the y-axis because all its options for ω-limit are
at the second quadrant. At the bounded region limited by S we have ẋ > 0, therefore
separatrix 1 must pass above S, at least somewhere near γ. Observe that this does not
depend if separatrix 1 is tangential or not with S. One can prove using the Lagrange
Multipliers that the maximum value of y at S is given by

y0 =
√

2
8

(
2
√

3 + 4λ+
√

9 + 8λ+
√

3 + 12λ+ 8λ2 +
√

9 + 8λ
)
.
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At the region limited by y > 0 and y > 1−λ
2 x we have ẏ > 0 and therefore separatrix 1

will cross the straight line given by y = 1−λ
2 x at a point (x1, y1) such that y1 > y0. This

is enough to ensure that separatrix 1 cannot end at separatrix 3 nor at the stable node
because ẋ < 0 at the unbounded region delimited by S. Therefore, separatrix 1 ends at
the west pole and q− is in the bounded region limited by it. Separatrix 3 has no other
option than born at the origin. Once the stable node (i.e. the singularity q−) came from
a saddle-node bifurcation at the origin at λ = 3 we conclude that separatrix 5 end at this
node. The symmetry of the system is now enough to finish the phase portrait.

Proposition 3.16. The phase portrait of X34 for λ0 < λ < 1 +
√

2 is the one given by
Figure 3.3.

Proof. Similarly to Proposition 3.15, here we conclude Figure 3.17 and the fact that
separatrix 1 also end at the west pole with the limit cycle in the bounded region delimited
by it. Follows from Proposition 3.15 and the continuity of X34 with respect to λ that

1

2

3

4

5

6

Figure 3.17: Unfinished phase portrait of X34 for λ0 < λ < 1 +
√

2. Figure source:
Figure 13 of [13].

separatrix 3 must end at the limit cycle. Separatrix 5 has no other option than born at
the origin. Symmetry is now enough to finish the phase portrait.

Proposition 3.17. The phase portrait of X34 for 1 < λ < λ0 is the one given by Fi-
gure 3.3.

Proof. Similarly to Propositions 3.15 and 3.16, here we conclude Figure 3.18 and the fact
that separatrix 1 also end at the west pole with the unstable node (i.e. the singularity q−)
in the bounded region delimited by it. Once we have a generic saddle-node bifurcation
at λ = 1 we conclude that separatrix 5 born at the unstable node. Separatrix 3 has no
other option than end at the west pole. Symmetry is now enough to finish the phase
portrait.

Proposition 3.18. The phase portrait of X34 for 0 < λ < 1 is the one given by Figure 3.3.

Proof. Similarly to Proposition 3.15, 3.16 and 3.17 in this case we have Figure 3.19.
Observe that ẋ = −y2 if x = 0, therefore no orbit can cross the y-axis from left to
right. Remember that y = 1−λ

2 x imply ẏ = 0 and thus we conclude Figure 3.20. Observe
that separatrix 2 cannot end at separatrix 1 nor at separatrix 3, otherwise it would have
a singularity in the bounded region limited by it. If separatrix 2 ends at stable node,



Phase portraits 45

1

2

3

4

5

6

Figure 3.18: Unfinished phase portrait of X34 for 1 < λ < λ0. Figure source: Figure 14
of [13].

1
2

3
45

67
8

9
10

Figure 3.19: Unfinished phase portrait of X34 for 0 < λ < 1. Figure source: Figure 15 of
[13].

1
2

3
4

7
8

9
10

Figure 3.20: Local phase portrait of X34 at y = 1−λ
2 x for 0 < λ < 1. Figure source:

Figure 16 of [13].

then by Figure 3.20 separatrix 1 could not born anywhere. Therefore, the only option to
separatrix 2 is to end at the west pole. Separatrix 4 must end at the stable node because
we have a generic saddle-node bifurcation. There is no other option for separatrix 3 other
than born at the east pole. The fact that no orbit can cross the y-axis from left to
right give to separatrix 1 no other option than born at the origin (not at separatrix 5).
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Separatrix 5 cannot cross the y-axis, therefore it must end at the west pole. Symmetry is
now enough to finish the phase portrait.

Remark 3.19. The proofs for λ 6 0 and 3 6 λ are similarly as Propositions 3.15, 3.16,
3.17 and 3.18.

Remark 3.20. Theorem 3.6 in addition with observations as the invariance of the x-
axis, the fact that the index of a saddle is −1 and the Bendixson criterion proves the
nonexistence of any limit cycles at the others families of vector fields.

Proposition 3.21. The phase portrait of X12 for λ ∈ R are those given by Figure 3.2.

Proof. Once ẏ = 0 if, and only if x = 0 or y = 0 or λ = 1 one can see that the only
possible finite singularities are the origin and the points p± = ±(

√
λ, 0) if λ 6= 1, and the

algebraic curve −x2 − y2 + x4 = 0 if λ = 1. Doing a blow up at the origin and knowing
that

DX12(p+) =
(

2λ 3
2 0

0 (1− λ)
√
λ

)
,

one can understand the local behavior of X12, similarly as we did with X34. At the infinite
one will see that the only singularities are the origins of each chart. The origin of the
chart U1 (the east pole) is a stable node for every λ ∈ R. The origin of the chart U2
requires a blow up. First note that the field p(X12) at this chart is given by

u̇ = −v2 + u4 − u2v2, v̇ = (λ− 1)uv3.

Assume λ 6= 1. Doing a quasihomogeneous blow up with (α, β) = (1, 2) one will see that
the only singularities of our interest (i.e. those with r = 0) are given by the zeros of

sin θ(cos4 θ − sin2 θ) = 0,

for 0 6 θ < 2π. There are six singularities, given by θ = 0, θ = π and θ = θi, i ∈
{1, 2, 3, 4}, where θi is the solution of cos4 θ = sin2 θ at the i-th quadrant of S1. The linear
part of the vector field X0 = X0(r, θ) in each of these singularities are given by

DX0(0, 0) =
(

1 0
0 −2

)
, DX0(0, θ1) =

(
0 0
0 η

)
,

DX0(0, θ2) =
(

0 0
0 −η

)
, DX0(0, π) =

(
−1 0
0 2

)
,

DX0(0, θ3) =
(

0 0
0 −η

)
, DX0(0, θ4) =

(
0 0
0 η

)
,

where η = 4
√√

5− 2. Using the Hartman-Grobman Theorem at (0, 0) and (0, π) and
the Center Manifold Theorem at (0, θi), for i ∈ {1, 2, 3, 4} one can obtain Figure 3.21(a).
Remember that v̇ = (λ− 1)uv3 and therefore

sign(v̇) = sign(λ− 1)sign(u)sign(v),

where sign(x) denotes the signal of x, i.e. sign(x) = −1 if x < 0, sign(x) = 0 if x = 0 and
sign(x) = 1 if x > 0. Therefore, we can complete Figure 3.21(a), obtaining Figure 3.21(b)
for λ < 1 and Figure 3.21(c) for λ > 1. Observe that ẋ 6 0 if y = 0. The invariance of
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(a) (b) (c)

Figure 3.21: Local phase portrait of the blow up of the origin of chart U2. Figure source:
Figure 17 of [13].

the x-axis does not permit any limit cycle here. With this informations one can obtain
the phase portrait of X12 similarly as we did with X34. When λ = 1 the equation of the
vector field X12 becomes

ẋ = −x2 − y2 + x4, ẏ = 0.

So all the straight lines y = constant are invariant and the algebraic curve−x2−y2+x4 = 0
is filled up with singularities.

Proposition 3.22. The phase portrait of X21 for λ ∈ R are those given by Figure 3.4.

Proof. First assume λ 6= −1. Observe that the only possible singularities are the origin
and the points p± = ±(

√
λ, 0). With a blow up at the origin and an analysis of DX21(p±)

one can conclude the local behavior of X21. At the infinity only the origins of the charts
are singularities. The origin of U1 is an unstable node and a quasihomogeneous blow up
with (α, β) = (1, 2) at the origin of U2 is necessary. But in this case the analysis of this
blow up is much more simple than the last one. Finally, observe that X21 is also reversible
with ϕ(x, y) = (−x, y), i.e. it is reversible in respect to the y-axis and that no limit cycle
can exist due to the invariance of the x-axis. Also observe that ẋ < 0 if x = 0. When
λ = −1 the equation of the vector field X21 becomes

ẋ = −x2 − y2 − x4, ẏ = 0,

so all the straight lines y = constant are invariant. Note that the only finite singularity
is the origin because the algebraic curve −x2 − y2 − x4 = 0 is degenerated.

Proposition 3.23. The phase portrait of X43 for λ ∈ R are those given by Figure 3.5.

Proof. Note that the zeros of ẏ = 0 are given by y = 0 and y = 1+λ
2 x. The finite

singularities are the origin and the points

p± =
(
±
√
λ, 0

)
, q± = ±

(1
2

√
f(λ), 1

4(1 + λ)
√
f(λ)

)
,

where f(λ) = (λ+3)(λ−1). An analysis of DX43 at p± and q± and a blow up at the origin
is enough to obtain the local behavior of X43. The origin of the chart U1 is a stable node
and the origin of U2 requires an analysis similar to the vector field X12. The nonexistence
of limit cycles can be proved similarly as we did in Proposition 3.13. Finally, note that
ẋ < 0 if x = 0 and an analysis (as we did in Proposition 3.18) of the flow on the straight
line y = 1+λ

2 x is necessary to complete the phase portrait.
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Proposition 3.24. The phase portrait of X45 for λ ∈ R are those given by Figure 3.6.

Proof. The only finite singularities are the origin and the points p± = ±(
√
λ, 0). A blow

up at the origin and an analysis of DX45(p±) is enough to know the local behavior of X45.
The origin of the chart U1 is an unstable node for every λ ∈ R and the origin of the chart
U2 requires a quasihomogeneous blow up with (α, β) = (1, 2). The analysis of this blow
up is simple and there is no other infinite singularity for this vector field. The invariance
of the x-axis does not permit any limit cycle here. Finally, note that X45 is also invariant
with φ(x, y) = (−x, y) and that ẋ < 0 if x = 0.

Proposition 3.25. The phase portrait of X54 for λ ∈ R are those given by Figure 3.8.

Proof. The only finite singularities are the origin and the points p± = ±(
√
λ, 0). As

before, a blow up at the origin and an analysis of DX54 is enough to describe the local
behavior of X54. The origins of the charts are only infinite singularities. The origin of
U1 is a stable node and the origin of U2 requires a quasihomogeneous blow up, with
(α, β) = (1, 2), and an analysis similarly as we did with X12. The invariance of the x-axis
does not let any limit cycle to exist. Finally, observe that ẋ < 0 if x = 0 and that X54 is
invariant with ϕ(x, y) = (−x, y).

Proposition 3.26. The phase portrait of X13 for λ ∈ R are those given by Figure 3.4.

Proof. First observe that

ẏ =
[
y +

(
1 +
√
λ+ 1

)
x
] [
y +

(
1−
√
λ+ 1

)
x
]
.

Knowing this one can see that the only finite singularities are the origin and the points

p± = ±
(√

2 4
√
λ+ 1,−

(
1 +
√
λ+ 1

)√
2 4
√
λ+ 1

)
.

An analysis of the determinant of DX13(p±) is enough to describe the local phase portrait
of X13 at these singularities. A blow up at the origin is necessary. At this case the
singularities of the blow up are given by the zeros of

−λ cos3 θ − λ cos2 θ sin θ + cos θ sin2 θ + sin3 θ = 0,

which are given by

3π
4 ,

7π
4 , ± arctan

√
λ and π ± arctan

√
λ.

Therefore, a non usual number of bifurcations will occur at the origin. But they are all
very simple and almost never changes the phase portrait. The infinite singularities are
given by the origins of the charts. The origin of U1 is a stable node. As we did in X12,
a quasihomogeneous blow up with (α, β) = (1, 2) is required for the origin of U2. The
nonexistence of limit cycles can be prove similarly as we did in Proposition 3.13. Observe
that ẋ < 0 if x = 0. Finally, an analysis of the flow on the straight line y = −(1+

√
λ+ 1)x

is necessary to complete the phase portraits.

Proposition 3.27. The phase portrait of X24 for λ ∈ R are those given by Figure 3.7.
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Proof. First note that the zeros of ẏ = 0 are the union of the straight lines x = 0 and
y = −λx. Therefore, the only finite singularities are the origin and the points

p± = ±(λ− 1,−λ(λ− 1)).

An analysis of the determinant of DX24(p±) is enough to describe the local behavior of the
singularities p±. A blow up at the origin is necessary. Similarly to X13 the singularities
are given by

3π
4 ,

7π
4 , ± arctan

√
λ and π ± arctan

√
λ.

Once more the infinite singularities are the origins of the charts. The origin of U1 is a
stable node. A quasihomogeneous blow up, with (α, β) = (1, 2), is necessary at the origin
of U2 and the analysis is similarly to X12. An analysis of the straight line y = −λx, as
we did at Proposition 3.18, is necessary at every case. Finally, follows from the blow up
at the origin that for 0 < λ < 1 and for 1 < λ that the separatrix at the fourth quadrant
of the hyperbolic sector of the origin is always tangent to the line y = −x, which is,
respectively, bellow and above the straight line given by y = −

√
λx, for x > 0. Therefore,

the flow at this last straight line must be analyzed to complete the phase portrait.

Proposition 3.28. The phase portrait of X1, X2, X3, X4 and X5 are those given by
Figure 3.1.

Proof. No bifurcations occurs at any of this five vector fields. The origin is always the
unique finite singularity. A blow up is enough to describe their local phase portrait at
the origin. The nonexistence of limit cycles follows from Theorem 3.6. Every infinite
singularity is hyperbolic. Finally, note that the straight lines y = ±x are invariant by X3,
X4 and X5.

3.4 Proof of theorem 3.7

Proof. It follows from Theorem 3.5 that to prove Theorem 3.7 it is enough to describe
the global phase portrait of each one of those normal forms given at Theorem 3.5. Hence,
the proof follows from Section 3.3.
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4.1 Statement of the main results

We recall that this is a co-work with professors Claudio Buzzi and Jaume Llibre and
it was submitted for publication, see [11]. Following the notation of Teixeira in [56] we
denote by Ω the space of germs of Ck, k > 3, ϕ-reversible vector fields of type (2; 1). It
follows from Property 2.11 that we can choose the coordinate system in R2, 0 in such a
way that ϕ(x, y) = (x,−y). From now on in this chapter any vector field will be a Ck,
k > 3, vector field, unless we say other thing.

Let M = {(u, v) ∈ R2 : ||(u, v)|| < ε, v > 0}, S the boundary of M and X the space
of all germs defined in M . A point p ∈ S is a S-singularity of F ∈ X if F (p) is tangent
to S at p. Two germs of vector fields F , G ∈ X are topologically equivalent if there if
there is a homeomorphism h : M →M which sends orbits of F to orbits of G preserving
or reversing the orientation of all orbits such that h(S) = S. F is structural stable in X
if there is a neighborhood N ⊂ X of F such that F is topologically equivalent to every
G ∈ N .

We denote set of the structural stable germs of Ω by ω0. We will also consider the set
Ω1 = Ω\ω0 and denote by ω1 the set of the structural stable germs, relative to Ω1, of Ω1.
Finally we define Ω2 = Ω1\ω1 and denote by ω2 the set of the structural stable germs,
relative to Ω2, of Ω2. In a similar way we denote set of the structural stable germs of X by
Σ0. We will also consider the set X1 = X\Σ0 and denote by Σ1 the set of the structural
stable germs, relative to X1, of X1. Finally we define X2 = X1\Σ1 and denote by Σ2 the
set of the structural stable germs, relative to X2, of X2.

Given X ∈ Ω it is clear that X =
(
yf(x, y2), 1

2g(x, y2)
)
, for some f and g. In the

half-plane y > 0 one can consider the change of variables (x, y) 7→ (u,
√
v) and thus obtain

system X1(u, v) = (
√
vf(u, v),

√
vg(u, v)). Following [56] we define F = (f(u, v), g(u, v))

and observe that F = F (X) and X are topologically equivalent at y > 0. Let νi =
{X ∈ Ω : F (X) ∈ Σi}, i ∈ {0, 1, 2}. Teixeira proved in [56] that ν0 = ω0, ν1 = ω1 and
ν2 ⊂ ω2. Moreover Teixeira also proved that νi is open and dense at Ωi, i ∈ {1, 2}.

Definition 4.1. Let J ⊂ Ri be an open set, i ∈ {1, 2}. Denote by Θi the space of
C1 mappings ξ : J → Ω endowed with the C1 topology. Its elements will be called
i-parameter families of germs of vector fields of Ω. We say that ξ is generic if

1. there is at most one µ0 ∈ J such that ξ(µ0) ∈ Ωi and in this case ξ(µ0) ∈ νi;

2. it is transversal to νi.

The following theorem proved by Teixeira [56] states the basis of our main result of
this chapter.

Theorem 4.2. The following statements hold.

(a) (Codimension zero classification) The C0-normal forms of the structurally stable
vector fields in Ω are:

1. X01 =
(
0, 1

2

)
;

51
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2. X02 = (y, εx), ε = ±1;

(b) (Codimension one classification) In the space of the one-parameter families of vector
fields in Ω, an everywhere dense set is formed by generic families such that their
(C0−) normal forms are:

1. the normal forms of C0-structurally stable vector fields in Ω;
2. X11 =

(
y, 1

2 (λ+ x2)
)
;

3. X12 =
(
εxy, 1

2 (2εy2 + x+ λ)
)
, ε = ±1;

4. X13 =
(
xy, 1

2 (−y2 + x+ λ)
)
;

5. X14 =
(
xy + y3, 1

2 (−x+ y2 + λ)
)
.

(c) (Codimension two classification) In the space of the two-parameter families of vector
fields in Ω, an everywhere dense set if formed by generic families such that their
(C0−) normal forms are:

1. All the normal forms listed in statement (b);

2. X21 =
(
y, 1

2 (bx3 + βx+ α)
)
, b = ±1;

3. i) X22a =
(
ay(x− y2) + βy(x+ y2), 1

2(α + (x+ y2)2)
)
, a = ±1;

ii) X22b =
(
y(x− y2) + βy(x+ y2), 1

2(α + a(x+ y2)2)
)
, a = ±1;

4. X23 =
(
−y3 + axy(α + x2 + y4), 1

2(ax− y2(α + x2 + y4) + β)
)
, a = ±1;

5. X24 =
(
axy + αy3, 1

2(x+ ay2 + β)
)
, a = ±1;

6. i) X25a =
(
xy, 1

2(αx− y2 + ax2 + β)
)
, a = ±1;

ii) X25b =
(
axy, 1

2(αx+ by2 + εx2 + β)
)
, ab > 0, ε = ±3

and {(a = ±1 and b = ±3) or (a = ±3 and b = ±1)}.

As in Chapter 3, we note that all the germs of vector fields which appear in the
statement of the previous theorem are polynomial. Theorem 4.2 motivated us to classify
the phase portrait of the differential vector fields which appear in its statement and thus
to extend the results of [56]. The next theorem summarize our results in this chapter.

Theorem 4.3. The phase portraits in the Poincaré disk of the vector fields in Theorem 4.2
are given in Figures 4.1-4.18.

Remark 4.4. As in Chapter 3, we observe that the phase portraits given in Figures 4.1-
4.18 does not represent the global phase portraits of all reversible vector fields of type (2; 1)
of low codimension. As stated in Remark 3.8, unless we are given a maximum degree,
there is infinitely many of such phase portraits. However, it follows from Theorem 4.2 that
a symmetrical singularity of codimension zero, one or two, of a reversible vector field of
type (2; 1), is topologically equivalent at the origin, for λ ≈ 0 or (α, β) ≈ (0, 0), to one of
the phase portraits given in Figures 4.1-4.18. Furthermore, as stated in the introduction,
we remember that Llibre and Medrado [30] already classified all the phase portraits of
the quadratic reversible vector fields of type (2; 1).
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X01 X02
ε = 1

X02
ε = −1

X11
λ < 0

X11
λ = 0

X11
0 < λ

X12
λ < 0, ε = 1

X12
λ = 0, ε = 1

X12
0 < λ, ε = 1

X13
λ < 0

X13
λ = 0

X13
0 < λ

X14
λ < 0

X14
0 6 λ

Figure 4.1: Phase portraits of X01, X02, X11, X12, X13 and X14. Figure source: made by
the author.
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β

α

α = 0

27α2 + 4β3 = 0

Figure 4.2: Phase portrait of X21 with b = 1. Figure source: made by the author.

β

α

α = 0

27α2 + 4β3 = 0

Figure 4.3: Bifurcation diagram of X21 with b = −1. Figure source: made by the author.
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α

β

β = −1

α = 0

Figure 4.4: Bifurcation diagram of X22a with a = 1. Figure source: made by the author.

α

β

β = 1 + 2
√
−α β = 1

α = 0

β1(α)

Figure 4.5: Bifurcation diagram of X22a with a = −1. Figure source: made by the author.
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α

β

α = 0 α = 1

β = 0

Figure 4.6: Bifurcation diagram of X24a with a = 1. Figure source: made by the author.

β = 1
4α

2

β

α

β = 0

Figure 4.7: Bifurcation diagram of X25a with a = 1. Figure source: made by the author.
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It follows from Theorem 4.2 that it is enough to give the complete global phase portrait
of each of those families, for any λ ∈ R and (α, β) ∈ R2. Once we already presented
our approach method in Chapter 3 we will in this chapter point out only some specific
argumentations to solve some problems that we faced, mainly in the two-parameters
families.

4.2 Approach method

As in Chapter 3, the backbone of our approach is first to study all the local phase
portrait at every finite singularity and at the infinity, to discover when it may exist some
limit cycle and when it may happen some bifurcation as the saddle-node, the center-focus
or the Hopf bifurcation. After this we study where a given separatrix must end or start.
To do this we use a large amount of convenient straight lines and curves to see at which
direction the flow crosses it.

Let us take system X12 as an example. We remember that system X12 is given by

ẋ = εxy, ẏ = 1
2
(
2εy2 + x+ λ

)
,

where ε ∈ {−1, 1}. First we observe that if ε = −1, then with the change of variables
(and parameter) (x, y;λ) 7→ (−x1,−y1;−λ1) we go back to the case ε = 1 and thus both
cases are equivalent. Therefore, we can assume ε = 1. Now we will only point out its
behavior near the infinity due the fact that it is the only system such that the infinity is
filled up of singularities.
Proposition 4.5. The following statements hold.
(a) p is a hyperbolic saddle if λ < 0 and a center if λ > 0;

(b) q+ (resp. q−) is a unstable node (resp. stable node) if λ < 0;

(c) The origin is the unique finite singularity if λ = 0 and its phase portrait is given by
Figure 4.19;

(d) X12 does not have any limit cycle.

Proof. Knowing that a symmetric singularity cannot be a focus, statements (a) and (b)
follows from the linear parts of X12 at the singularities p and q±:

DX12(p) =
(

0 −λ
1
2 0

)
, DX12(q±) = ±

( 1√
2

√
−λ 0
?

√
2
√
−λ

)
.

Doing a quasihomogeneous blow up at the origin when λ = 0, with weights (α, β) = (2, 1),
one will obtain the vector field X0 = X0(r, θ) or its differential system

ṙ = rR1(r, θ), θ̇ = cos θ
(
cos θ + sin2 θ

)
+ rR2(r, θ).

Therefore, the singularities of X0 such that r = 0 are given by θ ∈
{
±1

2π, θ
±
}
, where

θ± = ± arccos
(

1
2

(
1−
√

5
))

. Hence, statement (c) follows from

DX0
(
0,±π

2

)
= ±

(
1 0
0 −1

)
,

DX0(0, θ±) = ±


1
2

√
5
(√

5− 2
)

0

0
√

5
(√

5− 2
)
 .
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Statement (d) follows from the invariance of the y-axis and the fact that a limit cycle
cannot surround only a unique saddle.

Proposition 4.6. The infinity of X12 is filled up of singularities and its local phase
portrait is given by Figure 4.20.

Proof. At chart U1 of the Poincaré compactification system X12 becomes

u̇ = 1
2v + λ

2v
2, v̇ = −uv.

And at the chart U2 we have

u̇ = −1
2u

2v − λ

2uv
2, v̇ = −v − 1

2uv
2 − λ

2v
3.

Therefore, we conclude that the infinity is filled up of singularities. Doing a regularization
in v, i.e. dividing both systems by v, one can see that the flow of the regularized system
at v = 0 is given by Figure 4.21. Let X = X(u, v) be the regularized version of system
X12 at the chart U1, i.e. X is given by

u̇ = 1
2 + λ

2v, v̇ = −u.

Let h(u, v) = v, Xh(p) = 〈X(p),∇h(p)〉 and Xnh(p) = 〈X(p),∇Xn−1h(p)〉, where
〈·, ·〉 denotes the standard inner product of R2. One can easily conclude that h(0, 0) =
Xh(0, 0) = 0, X2h(0, 0) = −1

2 and thus we conclude Figure 4.21.

Now we have the Local Behavior of X12 in all its singularities, finite and infinite, and
thus we can start working on its separatrices.

Proposition 4.7. The phase portrait of X12 for λ < 0 is the one given in Figure 4.1.

Proof. From Propositions 4.5 and 4.6 we conclude Figure 4.22. First we observe that
the flow crosses the x-axis downwards if x < −λ and upwards if x > −λ. Therefore,
separatrix 4 cannot cross the x-axis, otherwise separatrix 2 would have no α-limit. Hence,
separatrix 4 has no other option than ending at the stable node. By symmetry separatrix
3 borns at the unstable node. Now separatrix 1 has no other option than ending at
some singularity of the first quadrant of the infinity and thus separatrix 2 borns at the
symmetrical singularity at the forth quadrant. Clearly separatrix 6 has no option than
ending at the stable node and therefore separatrix 5 borns at the unstable node.

Proposition 4.8. The phase portrait of X12 for λ = 0 is the one given in Figure 4.1.

Proof. From Propositions 4.5 and 4.6 we conclude Figure 4.23. We know that the flow
crosses the x-axis downwards if x < 0, therefore separatrix 4 has no other option than
glue up to separatrix 2 and thus by symmetry separatrix 1 glues up to separatrix 3.

Proposition 4.9. The phase portrait of X12 for λ > 0 is the one given in Figure 4.1.

Proof. From Propositions 4.5 and 4.6 we conclude Figure 4.24. Here we just need to
observe that separatrix 1 must cross the x-axis and thus by symmetry it will glue to
separatrix 2.
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With this same approach, one can also conclude the phase portraits of X01, X02, X11,
X13 and X14.

Before we study the systems of codimension 2 we must know when they are topo-
logically equivalent, at some finite singularity, to the origin of X11, X12, X13 or X14, for
λ ≈ 0.

Definition 4.10. Let p be a S-singularity of F ∈ X. We say that p is a

(a) cusp S-singularity if h(p) = Fh(p) = F 2h(p) = 0 and F 3h(p) 6= 0;

(b) nodal S-singularity if F (p) = 0, the eigenvalues of DF (p) (λ1 and λ2) are real,
distinct, λ1λ2 > 0 and the eigenspaces are transverse to S at p;

(c) saddle S-singularity if F (p) = 0, the eigenvalues of DF (p) (λ1 and λ2) are real,
distinct, λ1λ2 < 0 and the eigenspaces are transverse to S at p;

(d) focal S-singularity if p is a hyperbolic critical point of F and the eigenvalues of
DF (p) are λ = a+ ib with b 6= 0.

It follows from Lemma 4.2 of [56] that if p is a cusp, nodal, saddle or focal S-singularity,
then X is locally topologically equivalent at p to the origin of X11, X12, X13 or X14,
respectively, for λ ≈ 0.

4.3 System X21

Let us remember that system X21 is given by

ẋ = y, ẏ = 1
2
(
bx3 + βx+ α

)
,

where b ∈ {−1, 1}. From now on we will assume b = 1. Clearly the finite singularities of
X21 are given by (x0, 0), where x0 is a real root of the polynomial p(x) = x3 + βx + α.
Following the Cardano-Tartaglia formula (see Section 2.10) we define D = 1

27β
3 + 1

4α
2

and observe that D = 0 if, and only if, β = β(α) where β(α) = − 3
3√4

3
√
α2. Therefore,

(a) if β > β(α) we have a unique finite singularity;

(b) if β < β(α) we have three finite singularities;

(c) if β = β(α) and α 6= 0 we have two finite singularities;

(d) if β = β(α) and α = 0, then the origin is the unique finite singularity.

Moreover, denoting by x 1
3 the standard third root of x and by 3

√
x the real third root of

x (when it exists) we can denote the zeros of p(x) = 0 by

x1 = S + T, x2 = −1
2(S + T ) + 1

2
√

3(S − T )i, x3 = −1
2(S + T )− 1

2
√

3(S − T )i,

where

S = f
(
−α2 +D

1
2

)
, T = f

(
−α2 −D

1
2

)
, f(x) =

 3
√
x, if D > 0

x
1
3 , if D < 0.
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Proposition 4.11. The disposal of the real solutions of p is the following.

(a) If D < 0, then x2 < x3 < x1;

(b) If D = 0 and α < 0, then x2 = x3 < x1;

(c) If D = 0 and α > 0, then x1 < x2 = x3;

(d) Otherwise x1 is the unique real solution.

Proof. We start with statement (a), which will be separated in three parts. If D < 0
and α < 0, then S = (a+ ib)

1
3 , where a = −1

2α > 0 and b =
√
−D > 0. Therefore, if

we denote r =
√
a2 + b2 and θ = 1

3 arctan
(
b
a

)
we obtain S =

√
−β

3 (cos θ + i sin θ). In a
similar way one can see that T =

√
−β

3 (cos θ − i sin θ). Hence,

x1 = 2
√
−β

3 cos θ,
x2 = −

√
−β

3 (cos θ +
√

3 sin θ),
x3 = −

√
−β

3 (cos θ −
√

3 sin θ).

Observe that

b

a
=
√
−D
−1

2α
= − 2

α

√
−β

3

27 −
α2

4 = 2
|α|

√
−β

3

27 −
α2

4 =
√

4
27

(−β)3

α2 − 1.

Given β0 < 0 fixed we know that α ∈ (α(β0), 0), where α(β) = −
√
− 4

27β
3. Similarly,

given α0 < 0 fixed we know that β ∈ (−∞, β(α)). Therefore, it is not hard to see that
θ = θ(α, β) ∈

(
0, 1

6π
)
and

lim
D→0

θ(α, β) = 0 and lim
β→−∞

θ(α0, β) = lim
α→0

θ(α, β0) = π

6 .

Therefore, we conclude that in this case we have x2 < x3 < 0 < x1,

lim
D→0
|x2 − x3| = 0 and lim

β→−∞
x3(α0, β) = lim

α→0
x3(α, β0) = 0.

If D < 0 and α > 0 we have

x1 = 2
√
−β

3 cos θ,
x2 = −

√
−β

3 (cos θ +
√

3 sin θ),
x3 = −

√
−β

3 (cos θ −
√

3 sin θ),

where θ = 1
3 arctan

(
− 2
α

√
−D

)
+ 1

3π. Once we have α > 0 it follows that

− 2
α

√
−D = −

√
4
27

(−β)3

α2 − 1.

Given β0 < 0 fixed we know that α ∈ (0, α(β0)), where α(β) =
√
− 4

27β
3. Similarly, given

α0 > 0 fixed we know that β ∈ (−∞, β(α)). It is not hard to see that θ = θ(α, β) ∈(
1
6π,

1
3π
)
and

lim
D→0

θ(α, β) = π

3 and lim
β→−∞

θ(α0, β) = lim
α→0

θ(α, β0) = π

6 .
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Therefore, in this case we have x2 < 0 < x3 < x1,

lim
D→0
|x1 − x3| = 0 and lim

β→−∞
x3(α0, β) = lim

α→0
x3(α, β0) = 0.

If D < 0 and α = 0, then

S = 1
2

√
−β3

(√
3 + i

)
, T = 1

2

√
−β3

(√
3− i

)
,

and thus
x1 =

√
−β, x2 = −

√
−β, x3 = 0.

Moreover, observe that in this case we have

lim
D→0

x1(α, β) = lim
D→0

x2(α, β) = 0,

and one can conclude statement (a).
If D = 0, then S = T = 3

√
−1

2α and thus

x1 = 2 3

√
−1

2α, x2 = x3 = 3

√
1
2α. (4.1)

Statements (b) and (c) follows from (4.1) if one replace α 6= 0. Replacing α = 0 one
obtain x1 = x2 = x3 as in statement (d).

Finally, if D > 0, then the unique real zero is given by

x1 = 3

√
−α2 +

√
D + 3

√
−α2 −

√
D,

as in statement (d).

Remark 4.12. We observe that inside each case if we look at its boundary case (for
example if we look at the limit D → 0 when D < 0), then a permutation of the index of
the solutions may happen.

Proposition 4.13. Let pi = (xi, 0), i ∈ {1, 2, 3} be the singularities of X21. The local
phase portraits of X21 at these singularities are the following.

(a) If D > 0, then p1 is a saddle;

(b) If D < 0, then p1 and p2 are saddles and p3 is a center;

(c) If D = 0 and α 6= 0, then p1 is a saddle and p2 = p3 is a cusp, as in Figure 4.25;

(d) If D = α = 0, then p1 is a non-hyperbolic saddle.

Proof. One can easily see that the Jacobian matrix at a singularity pi is given by

DX21(pi) =
(

0 1
1
2β + 3

2x
2
i 0

)
.

Let us first work statement (a). In this case p1 is the unique finite singularity. Clearly
it is a saddle if β > 0. If β < 0, then

1
2β + 3

2x
2
1 = 3

2(S2 + T 2)− 1
2β > 0.
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Therefore, if D > 0, then the unique finite singularity is always a hyperbolic saddle.
Let us now work statement (b) assuming D < 0. Using the expressions of this case

one can see that
1
2β + 3

2x
2
1 = −β

(
2 cos2 θ − 1

2

)
> 0,

because β < 0 and θ ∈
(
0, 1

3π
)
. Therefore, p1 is a hyperbolic saddle. Observe now that

1
2β + 3

2x
2
2 = −β sin θ(sin θ +

√
3 cos θ) > 0,

because β < 0 and θ ∈
(
0, 1

3π
)
. Therefore, p2 is also a hyperbolic saddle. Finally,

1
2β + 3

2x
2
3 = −β sin θ(sin θ −

√
3 cos θ) < 0,

because β < 0 and θ ∈
(
0, 1

3π
)
. This, in addition with the fact that p3 is a symmetric

singularity ensures that it is a center.
Let us now work statement (c). Observe that

1
2β + 3

2x
2
1 = 9

2
3

√
α2

4 > 0, 1
2β + 3

2x
2
2 = 0,

because β = −3 3
√

α2

4 . Therefore, (x1, 0) is a hyperbolic saddle and (x2, 0) is degenerated.
Translating (x2, 0) to the origin and then doing a quasihomogenous blow up with (α, β) =
(2, 3) one will obtain Figure 4.25.

Finally, assuming the hypothesis of statement (d) one will obtain α = β = 0 and then
the origin is the unique finite singularity and it is clearly a non-hyperbolic saddle.

Proposition 4.14. The phase portrait of X21 with b = 1 is the one given by Figure 4.2.

Proof. First we observe that X21 cannot hold any limit cycle because every finite singu-
larity is symmetric. Using the same approach of Section 4.2 one can conclude the phase
portraits of X21 when D > 0. Knowing that X21 is ϕ-reversible with ϕ(x, y) = (−x, y)
when α = 0 one can conclude its phase portrait when D < 0 and α = 0. Knowing that
singularity p2 = p3 is a cusp S-singularity of F (X21) when D = 0 and α 6= 0 one can
also conclude the phase portrait for D < 0, but near the boundary D = 0. Now we must
prove that this last phase portrait holds for any (α, β) such that D < 0 and α 6= 0.

If D < 0 we know that we have three finite singularities, a center p3 in the middle
and a hyperbolic saddle p2 on its left side and another hyperbolic saddle p1 on its right
side. Let µ0 = (α0, β0) ∈ R2 be such that there is a heteroclinic orbit Γ0 connecting both
hyperbolic saddles, x0 ∈ R2 the intersection of Γ0 with the y-axis and l0 a transversal
section of Γ0 passing through x0. Following Section 2.6 we define n to be the coordinate
along the normal line l0 such that n > 0 outside the polycycle (observe that there is
another heteroclinic connection due the symmetry) and n < 0 inside the polycycle. We
also denote Γs and Γu the perturbations of Γ0, for |(α − α0, β − β0)| small enough, such
that ω(Γs) = p1 and α(Γu) = p2. Let xs and xu be the intersections of Γs and Γu with
l0, respectively, and let ns and nu be its coordinates along the line l0. We now define the
displacement map d(α, β) = nu − ns. See Figure 4.26. Let γ0(t) be a parametrization of
Γ0 with γ0(0) = x0. It follows from [49] that

∂d

∂α
(µ0) = 1

||X21(x0;µ0)||

∫ +∞

−∞

(
e−
∫ t

0 Div(X21(γ0(s);µ0)) ds
)
X21(γ0(t);µ0)∧∂X21

∂α
(γ0(t);µ0) dt,
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where (x1, x2) ∧ (y1, y2) = x1y2 − x2y1. Knowing that

X21(x, y;α, β) ∧ ∂X21

∂α
(x, y;α, β) = 1

2y,

one can see that ∂d
∂α

(µ0) > 0 whenever d is defined. Hence, given β = β0 < 0 fixed and
α0 = α0(β0) such that d(α0, β0) = 0 we conclude that d(·, β0) increases for α ≈ α0 and
thus α0 if α0 exists it is unique. But we already know that d(0, β) = 0 for every β < 0
and thus given β = β0 < 0 fixed it follows that α = 0 is the unique value that satisfy
d(α0, β0) = 0.

In a similar way one can prove that the phase portrait of X21 with b = −1 is the one
given by Figure 4.3.

4.4 System X22

Let us remember that system X22a is given by

ẋ = (β + a)xy + (β − a)y3, ẏ = α

2 + 1
2x

2 + xy2 + 1
2y

4,

where a ∈ {−1, 1}. On the other hand, system X22b is given by

ẋ = (β + 1)xy + (β − 1)y3, ẏ = α

2 + a

2x
2 + axy2 + a

2y
4,

where a ∈ {−1, 1}. Observe that they are both equal if we replace a = 1. Moreover, if
one replace a = −1 on X22b and then apply the change of variables and parameters

(x, y;α, β) 7→ (x1,−y1;−α1,−β1)

one will obtain system X22a with a = −1. Hence, both systems are equivalent and we will
focus on X22a.

Let us define Sx = {(x, y) ∈ R2 : ẋ(x, y) = 0} and Sy = {(x, y) ∈ R2 : ẏ(x, y) = 0}. In
this case it is easy to see that

Sx = {(x, y) ∈ R2 : y = 0 or x = a−β
a+βy

2},

Sy = {(x, y) ∈ R2 : x = −y2 ±
√
−α}.

Proposition 4.15. The phase portrait of X22a with a = 1 is the one given by Figure 4.4.

Proof. Approaching system X22a as in Section 4.2 (which include the study of F (X22a))
and knowing that the Bendixson Criterion (see Section 3.9 of [50]) prevents any limit
cycles in this case, one can work a lot of the separatrices. But here one must look also at
the flows at sets Sx and Sy. Take for example Figure 4.27. One will obtain this with an
analysis of the flow on the sets Sx and Sy together with an analysis at the eigenvectors
of the hyperbolic saddles. Now one can conclude that separatrix 1 must cross the x-axis
and thus it will glue with separatrix 8 due to symmetry. At other hand, separatrix 3 is
trapped between the x-axis and Sy and thus it will end at infinity. Finally, separatrix 7
has no other option than either ending at infinity (precisely at the west pole) or crossing
the x-axis. Let q = q(α, β) be the hyperbolic saddle inside the half-plane y < 0 and
λ− < 0 < λ+, λ± = λ±(α, β), the eigenvalues of DX22a(q). Let v = v(α, β) be an
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eigenvector of DX22a(q) with respect to λ+, l(t) = q+ tv and t0 = t0(α, β) such that l(t0)
is the intersection of l and the x-axis. Calculations shows that separatrix 7 is above l and
if t is between 0 and t0, then the flow of X22a is transversal to l and it points upwards.
Therefore, separatrix 7 cannot cross l and thus it must cross the x-axis and hence it glues
up with serparatrix 4 due to the symmetry.

The unique special analysis lies in the case of Figure 4.28. To prove that separatrix
2, which borns at the singularity p = (

√
−α, 0), ends at the north pole we calculate the

flow at the parabola x = −1
2y

2 +
√
−α and observe that it points upwards if y 6= 0. We

also calculate that separatrix 2 near p is given by (f(y), y), where

f(y) = −

√
−4
√
−α− α + α

2α y2 +O(y4).

Knowing that

−1
2 6 −

√
−4
√
−α− α + α

2α ,

with the right hand side equals −1
2 if and only if α = −16, one can concludes that if

α < −16, then separatrix 2 ends at the north pole. Moreover, if α = −16, then

f(y) = −1
2y

2 + 1
32y

4 +O(y6)

and thus separatrix 2 goes to the north pole in this case too.

Proposition 4.16. The phase portrait of X22a with a = −1 is the one given by Figure 4.5.

Proof. Here we point out two things. First we assume α < 0 and β > 1 + 2
√
−α. In this

case one can see that the local behavior is given by Figure 4.29. We want to prove that
for β big enough separatrix 6 will end at the north pole. Doing the change of coordinates
(x, y) = (x1,

√
y1) for y > 0 one will get system X1 = X1(x1, y1) given by

ẋ1 = √y1[(β − 1)x1 + (β + 1)y1], ẏ1 = √y1[α + x2
1 + 2x1y1 + y2

1].

The fact that separatrix 6 at system X22a crosses the set Sx above the unstable node
implies, at system X1, that separatrix 6 also crosses the set Sx1 above the unstable node
q+. See Figure 4.30. Taking β > 1 + 2

√
−α + 4 4

√
−α and defining the line

l = q+ + t

(
1, α

(−α) 3
4 − α

)

one can conclude that the flows crosses l upwards and thus separatrix 6 must cross the
line of Sy1 which contains p+. But at the right side of this line we have ẏ1 > 0 and thus
separatrix 6 cannot end at p+ and hence it must end at the north pole.

Second, we must prove the relative position of the curves β1(α) and βh(α) = 1+2
√
−α

as in Figure 4.5, i.e. we must prove β1 < βh for α < 0 large enough and βh < β1 for α < 0
small enough. We remember that β1 represents the moment when it exists a heteroclinic
connection between both saddles. From now on we will assume (α, β) = (λ, 1 + 2

√
−λ),

λ 6 0, and we will prove that for α < 0 large enough the connection already broke and
thus β1 < βh. Translating the saddle on the left to the origin and then doing a simple
blow up at the y direction one will obtain system X2 = X2(x2, y2) given by

ẋ2 = 2λ+
√
−λx2

2 + 3
√
−λx2y2 + 2(1 +

√
−λ)y2

2 − 1
2x

3
2y2 − x2

2y
2
2 − 1

2x2y
3
2,

ẏ2 = −
√
−λx2y2 −

√
−λy2

2 + 1
2x

2
2y

2
2 + x2y

3
2 + 1

2y
4
2.
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In this coordinates set Sx2 has a closed component. Let p1 = (x0, y0) be the higher point
in this closed component. Calculations shows that p1 lies on the left of the straight line
r given by x2 + y2 = −

√
−λ. Let p2 = (−y0, y0) be the projection of p1 on r and observe

that p2 is above the focus p3, which lies in the same line. See Figure 4.31. Follows from
an analysis at set Sx2 that separatrix s must cross r above point p2. Let l be the segment
given by p2 + t

(
1,−1

2

)
such that it ends at the other component r1 of Sy2 . For α < 0

large enough calculations shows that the flow at l points upwards and thus separatrix s
must cross r1. But at the right side of r1 we have ẏ1 > 0 and thus s must end at the
north pole. Therefore, for α < 0 large enough we have β1 < βh. Once we cannot give β1
explicitly and that there is nothing that prevents either β1 < βh or βh < β1 it turns out
to be a very difficult task to understand completely and in a analytical way the relative
position of βh and β1. But numerical computations (see chapters 9 and 10 of [19]) shows
that λ0 ≈ −2

3 is the unique intersection of β1 and βh. Moreover it also shows that βh < β1
if λ ∈ (λ0, 0) and β1 < βh if λ ∈ (−∞, λ0). So to provide an analytic proof of these facts
is an open problem.

4.5 System X23

Let us remember that system X23 is given by

ẋ = aαxy − y3 + ax3y + axy5, ẏ = β

2 + a

2x−
α

2 y
2 − 1

2x
2y2 − 1

2y
6,

where a ∈ {−1, 1}.
Once this system has a particular higher degree than the previous one it is not practical

to find analytic expressions for the finite singularities as we did with the previous systems.
Therefore, we will change our approach. First we do the change of variables given by
(x, y) = (x1,

√
y1), obtaining, with a = 1, the vector field

ẋ1 = √y1(−y1 + x1(x2
1 + y2

1 + α)), ẏ1 = √y1(x1 − y1(x2
1 + y2

1 + α) + β).

Dividing both equations by √y1 we obtain the vector field Y = (ẋ2, ẏ2), given by

ẋ2 = −y2 + x2(x2
2 + y2

2 + α), ẏ2 = x2 − y2(x2
2 + y2

2 + α) + β.

Observe that X23 and Y are topologically equivalent for y > 0 (which is equivalent to
y2 > 0) and Y has degree 3 while X23 has degree 6. Therefore, the approach is the
following. We will study Y at y2 > 0 and then draw conclusions for X23 for y > 0
(and thus for y < 0 too due to its symmetry) and study locally the unique singularity
p = (−aβ, 0) of X23 at the x-axis.

Proposition 4.17. The following statement holds.

(a) p is hyperbolic saddle if β(α + β2) < 0 and a center if β(α + β2) > 0;

(b) p is a center if {β = 0 and − 1 6 α < 1} or {α + β2 = 0 and |β| < 1};

(c) Otherwise the local phase portrait of X23 at p is given by Figure 4.32.
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Proof. Statement (a) follows from

DX23(p) =
(

0 −β(α + β2)
1
2 0

)

and the fact that p is a symmetric singularity. Statements (b) and (c) follows from a
quasihomogeneous blow up with (α, β) = (2, 1).

Let us define the following functions.

p1(x2) = 2x2
2 + βx2 + α;

p2(x2) = 4x5
2 + 5βx4

2 + (4α + β2)x3
2 + 2αβx2

2 + (α2 − 1)x2 − β;

f(x2) =
√
x2(x2 + β);

R(α, β) = −256(α2 − 1)3 − 192α(α4 + 7α2 + 28)β2

+60(α4 − 28α2 − 72)β4 − 4α(α2 − 108)β6 − 27β8.

(4.2)

In what follows we will list some analytic properties of the finite singularities of Y at
y2 > 0.

Proposition 4.18. Let q = (x0, y0) ∈ R2 such that y0 > 0. The following statements
holds.

(a) q is a finite singularity of Y if, and only if,

y0 = x0 + β

p1(x0) = x0p1(x0) = f(x0);

(b) If q is a finite singularity of Y , then p2(x0) = 0 and x0p1(x0) > 0;

(c) If q0 = (x0, f(x0)) is such that p2(x0) = 0 and x0p1(x0) > 0, then q0 is a finite
singularity of Y ;

(d) If q is a non-hyperbolic finite singularity of Y , then either β = 0 or R(α, β) = 0.

Proof. Isolating u = x2
2 + y2

2 + α at ẋ2 = 0 and ẏ2 = 0 we see that a necessary condition
for a point (x0, y0) be a singularity of Y is that it satisfies

y0

x0
= x0 + β

y0
.

Knowing that y0 > 0 we obtain y0 = f(x0). Statement (a) now follows from Y (x0, f(x0)) =
(0, 0).

From statement (a) one concludes that if q is a finite singularity of Y , then x0p
2
1(x0)−

(x0 + β) = 0 and x0p1(x0) = f(x0) > 0. Statement (b) now follows from the fact that
x0 6= 0 and p2(x0) = x0p

2
1(x0)− (x0 + β).

To prove statement (c) first observe that p2(x0) = 0 implies x0p1(x0)2 = x0 + β and
thus

x0p1(x0)2 = x0 + β = f(x0)2

x0
.

Hence, x2
0p1(x0)2 = f(x0)2. Squaring both sides and knowing that x0p1(x0) > 0 we obtain

statement (c).
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Now observe that the Jacobian matrix of Y is given by

DY (x2, y2) =
(

3x2
2 + y2

2 + α 2x2y2 − 1
1− 2x2y2 −(x2

2 + 3y2
2 + α)

)
.

Replacing y0 = f(x0) and calculating the trace and the determinant and then replacing
f(x0) = x0p1(x0) we obtain

Tr(x0) = −2x0β, Det(x0) = −p′2(x0).

It follows from the Trace-Determinant Theory (see Section 4.1 of [25]) that a singularity
q is non-hyperbolic if Tr(x0) = 0, Det(x0) = 0 or both. Statement (d) now follows from
the fact that it is impossible that x0 = 0 and that R(α, β) is the resultant (expect by a
constant) in x2 between p2 and p′2.

In what follows we will list some properties of R(α, β) and the parabola α + β2 = 0.

Proposition 4.19. The following statement holds.

(a) R(α, β) = 0 has four branches (two positives and two negatives) if α 6 −1, two
branches (one positive and one negative) if −1 < α ≤ 1 and no branch at all if
α > 1;

(b) Let β+ be the negative branch that borns at α = 1 and β− the negative branch that
borns at α = −1. Then µ1 ≈ (−3.398..,−1.849..) is the unique intersection between
β+ and β−;

(c) µ2 ≈ (−3.389..,−1.841..) is the unique intersection between the parabola α+ β2 = 0
and R(α, β) = 0 at β < 0. Moreover it occurs at β−. See Figure 4.33.

Proof. Fortunately R(α, β) is biquadratic at β and thus we can do the change of variables
β 7→ ±

√
b (both will give the same result) and obtain the quartic polynomial in b

R1(α, b) = −256(α2 − 1)3 − 192α(α4 + 7α2 + 28)b
+60(α4 − 28α2 − 72)b2 − 4α(α2 − 108)b3 − 27b4.

Given α0 ∈ R fixed we want to know how many positive roots the polynomial R1(α0, b)
has. The discriminant in b of R1 is given, except by a constant, by

D(α) = −1 871 773 696− 10 034 479 104 α2 − 19 980 402 688 α4

−17 398 321 152 α6 − 5 393 464 832 α8 + 250 599 680 α10

+64 492 352 α12 + 870 480 α14 − 190 633 α16 − 9 567 α18

−167 α20 − α22.

Computations shows that D(α) 6 0 with the equality happening only if α = ±3.398...
It is well known that if D < 0, then R1 has two distinct real roots and two complex
conjugate roots. If {b1, b2, b3, b4} are the four roots in b of R1, then

R1(α, β) = −27(b− b1)(b− b2)(b− b3)(b− b4)
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and thus 27b1b2b3b4 = 256(α2 − 1)3. Supposing that b1, b2 are the real solutions and b3,
b4 the complex solutions we conclude that sign(b1b2) = sign(α2 − 1). Hence, there is a
unique positive solution at −1 < α < 1. Moreover b1 and b2 can change signal only if
α = ±1. Choosing arbitrarily α = ±2 we see that there is no positive solutions for α = 2
and there is two positive real solutions for α = −2. Hence, we conclude that there is
no branch of positive real solutions of R1 if α > 1; one branch if −1 < α 6 1 and two
branches if α 6 −1. Squaring those branches and then reflecting it at the x-axis one can
conclude statement (a). For more details about the nature of the roots of a polynomial
of degree four see [52].

If the two branches β± intersect each other, then we have a double positive real solution
of R1 which requires D(α) = 0 and thus α = −3.398... Replacing this at R1 one can see
that there is two complex conjugate solutions and a double positive real root and thus we
have statement (b).

Knowing that R(α,−
√
−α) = 256 + 288α2 − 27α4 one can calculate its roots and see

that the unique root α0 6 −1 is given by α0 = −4
3

√
3 + 2

√
3 and thus µ2 = (α0,−

√
−α0)

is the unique intersection between the sets α + β2 = 0 and R(α, β) = 0. The relative
position of µ1, µ2 and the parabola α + β2 = 0 and the fact that β± are the graphs of
some continuous function implies that µ2 ∈ β− and thus we have statement (c).

Numerical computations shows that the branches −β± of R(α, β) = 0 perturb the
double roots x0 of p2 which do not satisfy x0p1(x0) > 0 and thus perturb the roots that
are not related to the finite singularities of Y and thus can be ignored. Moreover, the
negative branches β± perturb the double roots x0 of p2 which do satisfy x0p1(x0) > 0 and
thus perturb the roots that are related to the finite singularities. One can now draw the
backbone of the bifurcation diagram of X23, with a = 1, and thus obtain the solid lines
of Figure 4.13.

Proposition 4.20. Let (α0, β0) ∈ R2 such that β0 = β±(α0) (i.e. be a point in one of
the brunches β±), with β0 < 0, and γ(t) = (t + α0, β0), |t| < ε, be a transversal segment
through β±. Then a saddle-node bifurcation happens at γ(0) in such way that it vanishes
as t increases.

Proof. We know that at t = 0 we have a double real root x0 of p2 which do satisfy
x0p1(x0) > 0. Therefore, it follows from statement (c) of Proposition 4.18 that q0 =
(x0, f(x0)) is a non-hyperbolic finite singularity of X23. Since β0 < 0 we know that the
trace of DX23(q0) is not zero and thus DX23(q0) has only one eigenvalue equal zero.
Hence, q0 is a non-hyperbolic saddle, a non-hyperbolic node or a saddle-node.

Computations shows that if t < 0, then the double root x0 splits in two simple real
roots x−, x+ satisfying x±p1(x±) > 0. Hence, it follows from Proposition 4.18 that
q± = (x±, f(x±)) are both hyperbolic finite singularities of X23. The proof now follows
from the fact that if t > 0, then the double real root x0 goes to the complex realm and
thus the finite singularity q0 vanishes.

Calculating the infinity of X23, with a = 1, one will see that the only singularities are
the origins of the charts U1 and U2. While the origin of U2 is an unstable node, the local
phase portrait at the origin of U1 is given by Figure 4.34. To prove this last claim, one
must do a quasihomogeneous directional blow up at the direction x+ with (α, β) = (3, 2)
and then a quasihomogenous blow up with (α, β) = (1, 4) at the unique singularity that
will appear. Therefore, it follows from Theorem 2.14 that the sum of the Poicaré indexes
of all the finite singularities must always be equal to −1.
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Studying the system F = F (X23) one can conclude thatX23 with a = 1 is topologically
equivalent at p = (−λ, 0) to the origin of

(a) X12 when α0 + β2
0 = 0, |β0| > 1 and |β − β0| < ε;

(b) X13 when β0 = 0, |α0| > 1 and |β| < ε;

(c) X14 when α0 + β2
0 = 0, 0 < |β0| < 1 and |β − β0| < ε.

Although we have the local equivalence between p at X23 and the origin of X12, X13 or
X14 we do not have the direction of the bifurcation, i.e. as β increases do λ increase or
decrease? The following proposition set this up.

Proposition 4.21. Let λ be the parameter of X12, X13 and X14 and (α0, β0) ∈ R2 fixed.
The following statement holds.

(a) If α0 + β2
0 = 0, |β0| > 1 and |β − β0| < ε, then as |β| increases λ also increases;

(b) If β0 = 0, |α0| > 1 and |β| < ε, then as β increases λ increases if α0 > 1 and
decreases if α0 < −1;

(c) If α0 + β2
0 = 0, 0 < |β0| < 1 and |β − β0| < ε, then as β increases λ also increases.

Proof. All statements follows from statement (a) of Proposition 4.17 and the fact that
if λ > 0, then X12, X13 and X14 has a lonely center while if λ < 0 it has a hyperbolic
saddle.

Finally we point out that at β = 0 and α < −1 we have a center-focus problem at the
singularity p0 = 1√

2(−
√
−1− α,

√
−1− α) of Y . Translating this singularity to the origin

one will obtain system Y1 given by

ẋ = −(2 + α)x+ αy − 3√
2
√
−1− αx2 +

√
2
√
−1− αxy −

√
−1− α√

2
y2

+x3 + xy2

ẏ = −αx+ (2 + α)y −
√
−1− α√

2
x2 +

√
2
√
−1− αxy − 3√

2
√
−1− αy2

−x2y − y3.

Knowing that system Y1 is ϕ-reversible with ϕ(x, y) = (−y,−x) we conclude that p0 is a
center.

Proposition 4.22. The bifurcation diagram of X23 with a = 1 is the one given by Fig-
ures 4.13, 4.14 and 4.16.

Proof. With an analysis of f(x2) and x2p1(x2) (see the functions defined at (4.2)) one can
see that at region 1 of Figure 4.13 there is only one pair of singularities aside p = (−λ, 0)
and at region 23 there is no other singularity other than p.

Using the same techniques as in the previous systems, and the information that we
already have, one can conclude phase portraits 1, 2, 3, 4, 5, 13, 23, 31 and 32. Looking
at 13 and 23 and knowing that at 22 we have the “closing” of the saddle-node bifurcation
one can obtain 22. Again if we “close” the saddle-node of 5 we will obtain phase portrait
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14. As we get down at β− this saddle-node get away from p and phase portraits 15 and
16 rise and with them 6 and 7, respectively.

At the intersection of β+ and β = 0 if get down at β+, then a saddle-node will born
at p. Calculations shows that near β = 0 the direction of the unstable manifold of this
saddle-node is very near the direction of the straight line y = x and thus we obtain 24. As
we follow β+ the direction of the unstable manifolds approach the direction of y = 0 and
then we can see 25 and 26. Looking at 26 and 22 we can see 21. At 20 we know that the
saddle-node at the right will open and then we obtain its phase portrait and thus we also
obtain 11. From 20 and 32 and knowing the bifurcation that happens at p at α+ β2 = 0
we can conclude 19. Now we can conclude 17 and 18 if we look at 16 and 19. From it one
can obtain 8, 9 and 10. From 11 and 13 we have 12. From 24 we obtain 27. From 26 we
obtain 29. From 27 and 29 we obtain 28. Finally, from 29 and 31 we obtain 30.

We observe that it follows from the continuity that it is impossible that the curves
defined by 8 and 6 intercept each other. On the other hand it is possible that the curves
defined by 28 and 30 intercept each other, rising Figure 4.15, and thus region defined by
29 will be disconnected.

Let X23a = (P,Q) be X23 with a = 1 and X23b be X23 with a = −1. Observe that if we
do the change of coordinates (x, y) 7→ (−x, y) at X23b, then we will obtain X23b = (−P,Q).
Hence, a huge amount of information of X23a can be carry on to X23b. The most important
ones are the following.

1. The relative position of the finite singularities are the same. Hence, the solid lines
of Figure 4.13 are carried on to the bifurcation diagram of X23b;

2. The determinant of the Jacobian matrices at the finite singularities are the same
except by a factor of −1. Therefore, if q is a saddle (focus/node) of X23a, then it is
a focus/node (saddle) of X23b;

3. If β(α + β2) 6= 0, then p = (−β, 0) is center (saddle) at X23a if, and only if, it is a
saddle (center) at X23b.

With the same approach as the previous cases, mainlyX23a, one can conclude the following
proposition.

Proposition 4.23. The phase portrait of X23 with a = −1 is the one given by Figures 4.17
and 4.18.

4.6 Systems X24 and X25

Let us remember that X24 is given by

ẋ = axy + αy3, ẏ = β

2 + 1
2x+ a

2y
2,

where a ∈ {−1, 1}. First we observe that if we replace a = −1 and then do the change of
variables

(x, y, α, β) = (−x1,−y1, α1,−β1),
then we will get the same system with a = 1. Therefore, from now on we will assume
a = 1. In this system we point out that it is the unique system which the maximum
degree depends on the parameters. Observe that the maximum degree is three if α 6= 0
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and two if α = 0. Therefore, one must do an analysis at each case. Here we only point
out some information about the local phase portrait at the origin of chart U1 for α = 1
and β 6= 0. In this case the local phase portrait of the blow up is incomplete due the
existence of two singularities with a unique eigenvalue (the radial one) equal zero. See
Figure 4.35. Calculations shows that in this case a center manifold of the origin of chart
U1 such that v < 0, |v| < ε, is given by the graph of

v(u) = −u2 − β

2u
4 +O(u6).

This in addition with the fact that

v̇|α=1 = −uv(u2 + v)

is enough to calculate the direction of the flow on the center manifold and thus to complete
the blow up when β 6= 0. See Figure 4.36.

Let us remember that system X25b is given by

ẋ = axy, ẏ = β

2 + α

2 x+ ε

2x
2 + b

2y
2,

where ab > 0, ε ∈ {−3, 3} and

{(a ∈ {−1, 1} and b ∈ {−3, 3}) or (a ∈ {−3, 3} and b ∈ {−1, 1})} .

Here we observe that with the change of variables

(x, y, α, β)→ (x1,−y1,−α1,−β1)

it is enough to study only the four cases given by

(a) a = 1, b = 3 and ε = 3;

(b) a = 1, b = 3 and ε = −3;

(c) a = 3, b = 1 and ε = 3;

(d) a = 3, b = 1 and ε = −3.
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β = −1
4α

2

β

αβ = 0

Figure 4.8: Bifurcation diagram of X25a with a = −1. Figure source: made by the author.

α

β

β = 1
12α

2

β = 0

Figure 4.9: Bifurcation diagram of X25b with (a, b, ε) = (1, 3, 3). Figure source: made by
the author.



Systems X24 and X25 73

α

β

β = − 1
12α

2

β = 0

Figure 4.10: Bifurcation diagram of X25b with (a, b, ε) = (1, 3,−3). Figure source: made
by the author.

α

β

β = 1
12α

2

β = 0

Figure 4.11: Bifurcation diagram of X25b with (a, b, ε) = (3, 1, 3). Figure source: made by
the author.
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α

β

β = − 1
12α

2

β = 0

Figure 4.12: Bifurcation diagram of X25b with (a, b, ε) = (3, 1,−3). Figure source: made
by the author.
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Figure 4.13: Bifurcation diagram of X23 with a = 1. We observe that it may be an
intersection between 28 and 30. Figure source: made by the author.
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Figure 4.14: Phase portraits of X23a with a = 1. Figure source: made by the author.
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21 22 23 24 25

26 27 28 29 30

31 32 Figure 4.15: Possible interception of 28 and 30.
Figure source: made by the author.

Figure 4.16: Phase portraits of X23a with a = 1. Figure source: made by the author.
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β
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β = 0

α + β2 = 0
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β−(α)

1
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3

45
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89
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111213

14

15

Figure 4.17: Bifurcation diagram of X23b with a = −1. Figure source: made by the
author.
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Figure 4.18: Phase portraits of X23 with a = −1 and (x, y) 7→ (−x, y). Figure source:
made by the author.

Figure 4.19: Local phase portrait of X12 at the origin where λ = 0. Figure source: made
by the author.

Figure 4.20: Local phase portrait of X12 at the regularized infinity. Figure source: made
by the author.
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Figure 4.21: Unfinished local phase portrait of X12 at the regularized infinity. Figure
source: made by the author.
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Figure 4.22: Local behavior of the phase portrait of X12 for λ < 0. Figure source: made
by the author.

1

2

3

4

Figure 4.23: Local behavior of the phase portrait of X12 for λ = 0. Figure source: made
by the author.

2

1

Figure 4.24: Local behavior of the phase portrait of X12 for λ > 0. Figure source: made
by the author.
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α < 0 0 < α

Figure 4.25: Local phase portrait of X21 at p2 = p3 when D = 0. Figure source: made by
the author.

xs
xu

d < 0

Γu

Γs

(α, β) 6= (α0, β0)

Γ0 x0

l0

(α, β) = (α0, β0)

xu
Γu

d > 0
Γs

xs

(α, β) 6= (α0, β0)

Figure 4.26: The displacement map d(α, β) defined near (α0, β0). Figure source: made
by the author.
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l

Figure 4.27: Illustration of the flow of X22a with a = 1 and β < −1 at the sets Sx and
Sy. Figure source: made by the author.
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Figure 4.28: Unfinished phase portrait of X22a with a = 1, β − 1 and α 6 −16. Figure
source: made by the author.
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6

7

8

Figure 4.29: Unfinished phase portrait of X22a with a = −1, α < 0 and β > 1 + 2
√
−α.

Figure source: made by the author.

6
p− p+

q+
Sx1

Sy1

6 l

Figure 4.30: Illustration of the flow of X1 at the sets Sx1 and Sy1 . Figure source: made
by the author.

Sy2

Sx2

s

l

p1

p2

p3

r r1 y

Figure 4.31: Illustration of the flow of X2 at the sets Sx2 and Sy2 . Figure source: made
by the author.
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β = 0 and α < −1 α + β2 = 0 and |β| > 1 β = 0 and α > 1

Figure 4.32: Specific local phase portraits of X23 at p. Figure source: made by the author.

β = 0 α = −1 α = 1

α + β2 = 0
−β+

−β−

β+

β−

µ2

µ1

Figure 4.33: Plot of the sets R(α, β) = 0 and α + β2 = 0. Figure source: made by the
author.

Figure 4.34: Local phase portrait of p(X23), with a = 1, at the origin of U1. Figure source:
made by the author.
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Figure 4.35: Unfinished blow up of the origin of chart U1 of X24 with α = 1. Figure
source: made by the author.

β < 0 β > 0

Figure 4.36: Local phase portrait of X24 the origin of chart U1 with a = 1, α = 1 and
β 6= 0. Figure source: made by the author.





5 THE FRIEDMANN-ROBERTSON-WALKER SYSTEM

5.1 Introduction and statement of the main results

We recall that this is a co-work with professors Claudio Buzzi and Jaume Llibre and it
was already published, see [12]. In astrophysics the study of the dynamics of the universe
is an area where the application of the techniques of the dynamical systems provide good
results, mainly in galactic dynamics, see the articles [4, 37, 42, 43, 58] and the references
cited therein.

Recently chaotic motion has been detected in the following simplified version of the
Friedmann-Robertson-Walker Hamiltonian

H = 1
2(p2

Y − p2
X) + 1

2(Y 2 −X2) + b

2 X
2Y 2, (5.1)

introduced by Calzeta and Hasi in [15]. In fact this model is too simplified in order
to be considered realistic, but it is interesting due to its simplicity and for showing the
existence of chaos in cosmology, look for more details in [15]. Hawking [24] and Page [41]
used analogous models to analyze the relation between the thermodynamic arrow of time
and the cosmology.

A large number of potentials in galactic dynamics are of the form V (x2, y2), see the
article [51] and the previous mentioned articles on galactic dynamics. These potentials
show a reflection symmetry with respect to both axes. Then in [29] was studied the
following generalized version of the Calzeta–Hasi’s model

H = 1
2(p2

Y − p2
X) + 1

2(Y 2 −X2) + a

4 X
4 + b

2 X
2Y 2 + c

4 Y
4. (5.2)

Following the classical restricted circular three-body problem in which its dynamics is
better understand in a rotating frame that in a sideral frame of coordinates, our objective
is to study the dynamics of the generalized version of the Calzeta–Hasi’s model (5.2)
in rotating coordinates. More precisely, we consider the following generalized version of
the Calzeta–Hasi’s model in rotating coordinates that itself is a simplified version of the
Friedmann-Robertson-Walker Hamiltonian

H = 1
2
(
y2 − x2 + p2

y − p2
x

)
+ 1

4
(
ax4 + 2bx2y2 + cy4

)
− ω (xpy − ypx) , (5.3)

where a, b, c, ω ∈ R and ω > 0. Therefore, the corresponding Hamiltonian system is

ẋ = ωy − px,
ẏ = −ωx+ py,
ṗx = x+ ωpy − ax3 − bxy2,
ṗy = −y − ωpx − bx2y − cy3.

(5.4)

In the qualitative theory of differential equations any orbit or trajectory is homeomor-
phic either to a straight line, or to a circle, or to a point. The equilibrium points are the
orbits homeomorphic to a point and the periodic orbits are the ones homeomorphic to a
circle. These two types of orbits are relevant in the study of the dynamics of a differential
system, and usually their study is simpler than the study of the orbits homeomorphic to

85
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straight lines, that in general exhibit more complicate dynamics. Therefore, in order to
understand the dynamics of a differential system we must start analyzing its equilibrium
points and its periodic solutions.

The objective of this chapter is to study analytically the periodic orbits of the Hamil-
tonian system (5.4) in each Hamiltonian level H = h varying h ∈ R. For obtaining the
results we shall use the averaging theory for computing periodic solutions. We shall give
sufficient conditions on the parameters of the Hamiltonian system (5.4) implying the ex-
istence of continuous families of periodic orbits parameterized by h, and the expression
of these families are provided explicitly up to first order in a small parameter.

Our main result is the following one.

Theorem 5.1. In section 5.2 we provide sufficient conditions for the existence of twelve
families of periodic orbits of the Hamiltonian system (5.4) parametrized by the values of the
Hamiltonian (5.3). Six of these families only exist for positive values of the Hamiltonian,
two only exist for negative values of the Hamiltonian, and the remaining four families
can exist either for positive or negative values of the Hamiltonian depending on the values
of the parameters a, b and c. All these twelve families are born at the equilibrium point
localized at the origin of coordinates of the Hamiltonain system (5.4).

5.2 Proof of theorem 5.1

To prove Theorem 5.1 we apply the Averaging Theorem (see Section 2.7) to the Hamil-
tonian system (5.4). Generically the periodic orbits of a Hamiltonian system with more
than one degree of freedom are on cylinders fulfilled of periodic orbits, see [1]. Therefore,
we cannot apply Averaging Theorem directly to system (5.4), because the Jacobian will
always be zero. Then we must apply Averaging Theorem at each Hamiltonian fixed level
where the periodic orbits generically are isolated.

In order to apply Averaging Theorem we need a small parameter ε > 0. So in the
Hamiltonian system (5.4) we scaling the variables as follows

(x, y, px, py) =
√
ε(X, Y, pX , pY ). (5.5)

In these new variables system (5.4) becomes

Ẋ = ωY − pX ,
Ẏ = −ωX + pY ,
ṗX = X + ωpY − ε (aX3 + bXY 2) ,
ṗY = −Y − ωpX − ε (bX2Y + cY 3) .

(5.6)

This system is again Hamiltonian with Hamiltonian

Y 2 −X2 + p2
Y − p2

X

2 + ε(aX4 + 2bX2Y 2 + cY 4)
4 − ω (XpY − Y pX) . (5.7)

Therefore, for all ε 6= 0 the original and the transformed systems (5.4) and (5.6) have
essentially the same phase portrait. The linear part of system (5.6) at the origin of
coordinates is

L =


0 ω −1 0
−ω 0 0 1
1 0 0 ω
0 −1 −ω 0

 .
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One can see that L has two eigenvalues of multiplicity two, given by ±i
√

1 + ω2. There-
fore, we can apply a linear change of variables (X, Y, pX , pY ) to (u, v, pu, pv) such that the
new system has the linear part

J =


0

√
1 + ω2 0 0

−
√

1 + ω2 0 0 0
0 0 0

√
1 + ω2

0 0 −
√

1 + ω2 0


at the origin of coordinates in the real Jordan normal form. A linear change of variables
doing this is

X = u, Y = pu +
√

1 + ω2v

ω
, pX = pu, pY =

√
1 + ω2pv − u

ω
.

Therefore, the new system becomes

u̇ =
√

1 + ω2v,

v̇ = −
√

1 + ω2u+ ε
aω2u3 + bu

(
p2
u + 2

√
1 + ω2puv + (1 + ω2) v2

)
ω2
√

1 + ω2
,

ṗu =
√

1 + ω2pv − ε

au3 +
bu
(
pu +

√
1 + ω2v

)2

ω2

 ,

ṗv = −
√

1 + ω2pu − ε

(
pu +

√
1 + ω2v

) (
bω2u2 + c

(
pu +

√
1 + ω2v

)2
)

ω2
√

1 + ω2
,

(5.8)

and the old Hamiltonian becomes the first integral

1 + ω2

2ω2

(
u2 + v2 + p2

u + p2
v + 2

√
1 + ω2 (vpu − upv)

)
+ε1

4

au4 +
2bu2

(
pu +

√
1 + ω2v

)2

ω2 +
c
(
pu +

√
1 + ω2v

)4

ω4

 . (5.9)

Now we apply a generalized polar change of coordinates given by

u = r cos θ, v = r sin θ, pu = ρ cos(θ + φ), pv = ρ sin(θ + φ).

We recall that this is a change of variables when r > 0 and ρ > 0. Moreover, doing this
change of variables, the angular variables θ and φ appear in the system. Later on the
variable θ will be used for obtaining the periodicity necessary for applying the averaging
theory. After this change of variables the first integral writes

H0 = 1 + ω2

2ω2

(
r2 + ρ2 − 2rρ

√
1 + ω2 sinφ

)
+ εW1, (5.10)

where
W1 = 1

4

(
ar4 cos4 θ + 2b

ω2 r
2 cos2 θ W 2

2 + c

ω4W
4
2

)
,

W2 = ρ cos(θ + φ) + r
√

1 + ω2 sin θ.
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In the new variables system (5.8) writes

ṙ = ε
r cos θ sin θ
ω2
√

1 + ω2
W3,

θ̇ = −
√

1 + ω2 + ε
cos2 θ

ω2
√

1 + ω2
W3,

ρ̇ = −ε
(
r cos θ cos(θ + φ)W5 + 1√

1 + ω2
W6

)
,

φ̇ = ε

(
r cos θ
ρ

W7 −
cos2 θ

ω2
√

1 + ω2
W3 −

cos(θ + φ)
ρ
√

1 + ω2
W8

)
,

(5.11)

where
W3 = bρ2 cos2(θ + φ) + aω2r2 cos2 θ + b r sin θ W4,

W4 = 2ρ
√

1 + ω2 cos(θ + φ) + r(1 + ω2) sin θ,

W5 = ar2 cos2 θ + b

ω2W
2
2 ,

W6 = W2

(
br2 cos2 θ + c

ω2W
2
2

)
sin(θ + φ),

W7 =
(
ar2 cos2 θ + b

ω2W
2
2

)
sin(θ + φ),

W8 = W2

(
br2 cos2 θ + c

ω2W
2
2

)
.

In order to apply the averaging theory we take θ as the new independent variable, and
denote by a prime the derivative with respect to θ. With this change of independent
variable system (5.11) goes over to

r′ = −εr cos θ sin θ
ω2(1 + ω2)W3 +O(ε2),

ρ′ = ε√
1 + ω2

(
r cos θ cos(θ + φ)W5 + 1√

1 + ω2
W6

)
+O(ε2),

φ′ = −ε√
1 + ω2

(
r cos θ
ρ

W7 −
cos2 θ

ω2
√

1 + ω2
W3 −

cos(θ + φ)
ρ
√

1 + ω2
W8

)
+O(ε2).

(5.12)

This system has only three equations because we do not need the θ̇ equation of (5.11).
Observe that system (5.12) is 2π-periodic in the variable θ. To apply Averaging Theorem
we must fix the value of the first integral at h ∈ R. By solving equation (5.10) in ρ we
obtain

ρ = r
√

1 + ω2 sinφ+
√

2hω2 − r2(1 + ω2) + r2(1 + ω2)2 sin2 φ

1 + ω2 +O(ε).

Substituting ρ into equations (5.12) we obtain the two differential equations

r′ = −εr cos θ sin θ
ω2(1 + ω2)W 3 +O(ε2),

φ′ = −ε√
1 + ω2

(
r cos θ
ρ

W 7 −
cos2 θ

ω2
√

1 + ω2
W 3 −

cos(θ + φ)
ρ
√

1 + ω2
W 8

)
+O(ε2),

(5.13)
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where W i = Wi(θ, r, ρ(r, φ), φ) with

ρ(r, φ) = r
√

1 + ω2 sinφ+
√

2hω2 − r2(1 + ω2) + r2(1 + ω2)2 sin2 φ

1 + ω2 . (5.14)

We observe that in order to apply the first order averaging theory it is not necessary to
have information about the terms in O(ε2).

One can now see that system (5.13) satisfies the assumptions of Averaging Theorem,
and it has the form (2.3) with T = π and F = (F1, F2) analytic where

F1 = −r cos θ sin θ
ω2(1 + ω2)W 3,

F2 = − 1√
1 + ω2

(
r cos θ
ρ

W 7 −
cos2 θ

ω2
√

1 + ω2
W 3 −

cos(θ + φ)
ρ
√

1 + ω2
W 8

)
.

The averaging function of first order is

f(r, φ) = (f1(r, φ), f2(r, φ)) = 1
π

∫ π

0
(F1(θ, r, φ), F2(θ, r, φ)) dθ,

becomes

f1(r, φ) =
br cosφ ρ(r, φ)

(
sinφ ρ(r, φ)− r

√
1 + ω2

)
4ω2(1 + ω2) ,

f2(r, φ) = −Ar
3 sinφ+Br2ρ(r, φ) + Cr sinφρ(r, φ)2 +Dρ(r, φ)3

8ω2
√

1 + ω2ρ(r, φ)
,

(5.15)

where

A = (1 + ω2) (b+ 2bω2 + 3 (c+ (a+ c)ω2)) ,

B = −
√

1 + ω2(b+ 6c+ 3(a+ b+ 2c)ω2 − (2b+ 3c+ (b+ 3c)ω2) cos(2φ)),
C = 3(1 + ω2)(b+ 3c),

D = −
√

1 + ω2(2b+ 3c+ b cos(2φ)).

According with Averaging Theorem we must find the zeros (r0, φ0) of the function f =
(f1, f2) and check that the Jacobian determinant of f at these points is not zero.

From f1(r, φ) = 0 we obtain r = r(φ), and in order that ρ(r(φ), φ) 6= 0 (otherwise
f2(r, φ) is not defined), we get that

r(φ) =


R0 with h > 0,
R1 with h > 0 and sinφ > 0,
R2(φ) with h(1 + ω2 − (1 + 2ω2) sin2 φ) > 0,

where

R0 = 0, R1 =
√

2hω2

1 + ω2 , R2(φ) =

√√√√ 2hω2

(1 + ω2)(1 + ω2 − (1 + 2ω2) sin2 φ) sinφ.
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Substituting r = R0 into f2(r, φ) = 0, and solving with respect to φ we obtain the
following two zeros of the averaged function f(r, φ)

(r1, φ1) =
0, arccos

√
−b+ 3c

2b

 ,
(r2, φ2) =

0,− arccos
√
−b+ 3c

2b

 .
Since the value of

ρ(ri, φi) =
ω
√

2h (ω2 + 1)
1 + ω2 for i = 1, 2,

and the determinant of the Jacobian matrix of f at these two zeros is

3h2(b+ c)(b+ 3c)
8 (1 + ω2)4 ,

it follows from the Averaging Theorem that if

h > 0, 0 < −b+ 3c
2b ≤ 1, and (b+ c)(b+ 3c) 6= 0,

then the zeros (ri, φi) provide two periodic solutions of the differential system (5.13), and
consequently of the Hamiltonian system (5.4) in every level H = h > 0.

Substituting r = R1 into f2(r, φ) = 0, and solving with respect to φ we obtain the
following six zeros of the averaged function f(r, φ)

(r3, φ3) =
(√

2hω2

1+ω2 , π
)
,

(r4, φ4) =
(√

2hω2

1+ω2 , 0
)
,

(r5, φ5) =
(√

2hω2

1+ω2 ,− arccos
√

b(4ω2+3)−
√
b(12(ω2+1)(ω2(a+c)+c)+b(24ω4+36ω2+13))

8b(1+ω2)

)
,

(r6, φ6) =
(√

2hω2

1+ω2 , arccos
√

b(4ω2+3)−
√
b(12(ω2+1)(ω2(a+c)+c)+b(24ω4+36ω2+13))

8b(1+ω2)

)
,

(r7, φ7) =
(√

2hω2

1+ω2 ,− arccos
√

b(4ω2+3)+
√
b(12(ω2+1)(ω2(a+c)+c)+b(24ω4+36ω2+13))

8b(1+ω2)

)
,

(r8, φ8) =
(√

2hω2

1+ω2 , arccos
√

b(4ω2+3)+
√
b(12(ω2+1)(ω2(a+c)+c)+b(24ω4+36ω2+13))

8b(1+ω2)

)
.

Since the value of

ρ(r3, φ3) = ρ(r4, φ4) = 0,

ρ(r5, φ5) = ρ(r6, φ6) = ω

√
h(b(4ω2+5)+

√
b(12(ω2+1)(ω2(a+c)+c)+b(24ω4+36ω2+13)))

b(1+ω2) ,

ρ(r7, φ7) = ρ(r8, φ8) = ω

√
h(b(4ω2+5)−

√
b(12(ω2+1)(ω2(a+c)+c)+b(24ω4+36ω2+13)))

b(1+ω2) .

Since ρ(ri, φi) cannot be zero, otherwise f2 is not defined, for the zeros ρ(ri, φi) with
i = 3, 4 the averaging theory does not provide any information about if these zeros
produce or not periodic solutions of the differential system (5.13).
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The determinant D(r, φ) of the Jacobian matrix of f at the other four zeros is

D(r5, φ5) = D(r6, φ6) = h7/2ω7(ω2+1)6
sin(2φ)(bF+eD)(2A

√
hω(ω2+1)−√2BC)

8b2 ,

D(r7, φ7) = D(r8, φ8) = h7/2ω7(ω2+1)6
sin(2φ)(bF−eD)(2A

√
hω(ω2+1)−√2BC)

8b2 ,

where

A =
√√√√−2ω4(3a+ 2b+ 3c)− 2ω2(3a+ b+ 6c) + b− 6c−D

b (ω2 + 1)2 ,

B =
√
hω2 (1 + ω2) (4bω2 + 5b+D)

b
,

C =
√
b (4ω2 + 3)−D

b (1 + ω2) ,

D =
√
b (12 (ω2 + 1) (ω2(a+ c) + c) + b (24ω4 + 36ω2 + 13)),

E = 3ω4 (15ab− 9ac+ 34b2 − 15bc− 9c2) + ω2 (42ab− 27ac+ 145b2 − 66bc− 54c2)
+9(b− c)(5b+ 3c),

F = 18ω6(3a+ 14b− 9c)(a+ 2b+ c) + ω4(54a2 + 579ab− 225ac+ 1082b2

−147bc− 495c2) + 3ω2 (72ab− 39ac+ 247b2 − 24bc− 168c2)
+3(b− c)(55b+ 57c).

From Averaging Theorem if for i = 5, 6 we have that

0 ≤
b(4ω2 + 3)−

√
b (12 (ω2 + 1) (ω2(a+ c) + c) + b (24ω4 + 36ω2 + 13))

b(1 + ω2) ≤ 1,

b(4ω2 + 5) +
√
b (12 (ω2 + 1) (ω2(a+ c) + c) + b (24ω4 + 36ω2 + 13))

b(1 + ω2) ≥ 0,

h > 0, sinφi > 0, ρ(ri, φi) > 0 and D(ri, φi) 6= 0,

then these two zeros (ri, φi) provide two periodic solutions of the differential system (5.13),
and consequently of the Hamiltonian system (5.4) in every level H = h > 0.

From Averaging Theorem if for i = 7, 8 we have that

0 ≤
b(4ω2 + 3) +

√
b (12 (ω2 + 1) (ω2(a+ c) + c) + b (24ω4 + 36ω2 + 13))

b(1 + ω2) ≤ 1,

b(4ω2 + 5)−
√
b (12 (ω2 + 1) (ω2(a+ c) + c) + b (24ω4 + 36ω2 + 13))

b(1 + ω2) ≥ 0,

h > 0, sinφi > 0, ρ(ri, φi) > 0 and D(ri, φi) 6= 0,

then these two zeros (ri, φi) provide two periodic solutions of the differential system (5.13),
and consequently of the Hamiltonian system (5.4) in every level H = h > 0.

Substituting r = R2 into f2(r, φ) = 0, and solving with respect to φ we obtain the
following

φ = ± arccos

√√√√ −(a+ b)ω2

b+ c+ (c− a)ω2

 .
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Substituting these values of φ into R2 we get the following two zeros of the averaged
function f(r, φ)

(r9, φ9) =
(√

−2(b+ c)h
(a+ 2b+ c)(1 + ω2) ,− arccos

√
−(a+ b)ω2

b+ c+ (c− a)ω2

)
,

(r10, φ10) =
(√

−2(b+ c)h
(a+ 2b+ c)(1 + ω2) , arccos

√
−(a+ b)ω2

b+ c+ (c− a)ω2

)
.

We cannot guarantee that these last two solutions are all the solutions for r = R2, these
are the ones that we can obtain explicitly.

Since the value of

ρ(ri, φi) =
(
ω2|a+ b|+ (1 + ω2)(b+ c)

)√ −2h
(1 + ω2) (a+ 2b+ c)(b+ c+ (c− a)ω2) ,

for i = 9, 10, and we denote the determinant of the Jacobian matrix of f at these two
zeros by D(ri, φi), we do not give its huge expression here.

It follows from the Averaging Theorem that if

0 ≤ −(a+ b)ω2

b+ c+ (c− a)ω2 ≤ 1, −2(b+ c)h
a+ 2b+ c

> 0, ρ(ri, φi) > 0, and D(ri, φi) 6= 0,

then the zeros (ri, φi) for i = 9, 10 provide two periodic solutions of the differential system
(5.13), and consequently of the Hamiltonian system (5.4) in every level H = h.

From f1(r, φ) = 0 we obtain φ = φ(r), and in order that ρ(r(φ), φ) 6= 0 (otherwise
f2(r, φ) is not defined), we get that

φ(r) =


Φ1 with h < 0,

Φ2(φ) with (b+ 3c)h
(3a+ 2b+ 3c) < 0,

where

Φ1 = ±π2 , Φ2 = ± arcsin
 r(1 + ω2)√

r2(1 + 3ω2 + 2ω4) + 2hω2

 .
Substituting φ = Φ1 into f2(r, φ) = 0, and solving with respect to r we obtain the

following four zeros of the averaged function f(r, φ)

(r11, φ11) =
(√
− 2h

1 + ω2 ,−
π

2

)
,

(r12, φ12) =
(√
− 2h

1 + ω2 ,
π

2

)
,

(r13, φ13) =
(√
− 2(b+ 3c)h

(3a+ 2b+ 3c)(1 + ω2) ,−
π

2

)
,

(r14, φ14) =
(√
− 2(b+ 3c)h

(3a+ 2b+ 3c)(1 + ω2) ,−
π

2

)
.
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Since the value of

ρ(ri, φi) =
√
−2h for i = 11, 12,

ρ(r13, φ13) =
√

2h(3a+ b)ω2

(1 + ω2)(3a+ 2b+ 3c) +
√
− 2h(b+ 3c)

3a+ 2b+ 3c,

ρ(r14, φ14) =
√

2h(3a+ b)ω2

(1 + ω2)(3a+ 2b+ 3c) −
√
− 2h(b+ 3c)

3a+ 2b+ 3c.

and the determinant of the Jacobian matrix of f at these four zeros is

D(ri, φi) = bh2(3a+ b)
8 (1 + ω2)4 for i = 11, 12,

D(ri, φi) = − bh2(3a+ b)(b+ 3c)
4(1 + ω2)4(3a+ 2b+ 3c) for i = 13, 14.

Again, from Averaging Theorem we obtain that

h < 0, and D(ri, φi) 6= 0,

then the two zeros (ri, φi) for i = 11, 12 provide two periodic solutions of the differential
system (5.13), and consequently of the Hamiltonian system (5.4) in every level H = h < 0.

Also from Averaging Theorem we get that

ri > 0, ρi > 0, D(ri, φi) 6= 0,

then the two zeros (ri, φi) for i = 13, 14 provide two periodic solutions of the differential
system (5.13), and consequently of the Hamiltonian system (5.4) in every level H = h.

Substituting φ = Φ2 into f2(r, φ) = 0, and solving with respect to r we obtain again
the solutions (ri, φi) for i = 9, 10, 11, 12. Again we cannot guarantee that these last four
solutions are all the solutions for φ = Φ2, because these four solutions are the ones that
we can obtain explicitly.

For i = 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and according with Theorem 2.15 the zero
(ri, φi) provides a periodic solution (r̄i(θ, ε), φ̄i(θ, ε)) of the differential system (5.13) such
that

(r̄i(0, ε), φ̄i(0, ε))→ (ri, φi) when ε→ 0.

Going back to the differential system (5.12) we obtain for this system a periodic solution
(r̄i(θ, ε), ρ̄i(θ, ε), φ̄i(θ, ε)) such that

(r̄i(0, ε), ρ̄i(0, ε), φ̄i(0, ε))→ (ri, ρi, φi) when ε→ 0,

where ρi = ρ(ri, φi). Now going back to the differential system (5.11) we get for this
system a periodic solution (r̄i(t, ε), θ̄(t, ε), ρ̄i(t, ε), φ̄i(t, ε)) such that

(r̄i(0, ε), θ̄(0, ε), ρ̄i(0, ε), φ̄i(0, ε))→ (ri, 0, ρi, φi) when ε→ 0.

Again going back to the differential system (5.8) we have for this system a periodic solution
(ū(t, ε), v̄(t, ε), p̄u(t, ε), p̄v(t, ε)) such that

(ū(0, ε), v̄(0, ε), p̄u(0, ε), p̄v(0, ε))→ (ri, 0, ρi cosφi, ρi sinφi) when ε→ 0.
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Going back to the Hamiltonian system (5.6) we have for this system a periodic solution
(X̄(t, ε), Ȳ (t, ε), p̄X(t, ε), p̄Y (t, ε)) such that

(X̄(0, ε), Ȳ (0, ε), p̄X(0, ε), p̄Y (0, ε))→
(
ri,
ρi cosφi

ω
, ρi cosφi,

√
1 + ω2ρi sinφi − ri

ω

)

when ε→ 0. Finally going back to the Hamiltonian system (5.4) we have for this system
a periodic solution (x̄(t, ε), ȳ(t, ε), p̄x(t, ε), p̄y(t, ε)) such that

(x̄(0, ε), ȳ(0, ε), p̄x(0, ε), p̄y(0, ε))→
√
ε

(
ri,
ρi cosφi

ω
, ρi cosφi,

√
1 + ω2ρi sinφi − ri

ω

)
→ (0, 0, 0, 0),

when ε→ 0. In summary, these 12 families of periodic orbits of the Hamiltonian system
(5.4) born at the equilibrium localized at the origin of coordinates. This completes the
proof of Theorem 5.1.



6 POLYCYCLES IN NON-SMOOTH VECTOR FIELDS

6.1 Introduction and description of the results

The field of Dynamic Systems had developed and now have many branches, being one
of them the field of non-smooth vector fields, a common frontier between mathematics,
physics and engineering. See [3, 21] for the pioneering works in this area. A polycycle is a
simple closed curve composed by a collection of singularities and regular orbits, inducing
a first return map. There are many works in the literature about polycycles in smooth
vector fields, take for example some works about its stability [16, 18, 55], the number of
limit cycles which bifurcates from it [38, 20, 23], the displacement maps [49, 26, 22, 17]
and some bifurcation diagrams [20]. As far as we know, there are not many works in the
literature about the extension of well established results of smooth vector fields to the non-
smooth realm. Take for example the relatively new extension of the Poincaré-Bendixson
theory to non-smooth vector fields [10].

Therefore, the main goal of this paper is to extend to non-smooth vector fields some
of the results established about polycycles in smooth vector fields. To do this, we lay, as
in the smooth case, mainly in the idea of obtaining global properties of a polycycle from
local properties of its singularities. Based on the works [38, 20], of Mourtarda, and the
work [2], of Andrade, Gomide and Novaes, we established some results about the stability
of a polycycle and the number of limit cycles which bifurcates from it. Take for example
the polycycle Γ given by Figure 6.1. Let 2k be the contact of the non-smooth vector field

p1

p2

Figure 6.1: A polycycle Γ composed by a hyperbolic saddle p1 and a tangential singularity
p2. Figure source: made by the author.

at p2, ν < 0 < λ be the two eigenvalues of the hyperbolic saddle p1 and r1 = |ν|
λ

the
hyperbolicity ratio of p1. Knowing that p1 contracts the flow if r1 > 1, and repels it if
r1 < 1, and that p2, in the orientation given by Γ, contract the flow with strength of order
2k, it was possible to prove that Γ attract the flow in the bounded component delimit by
it if

2kr1 > 1,

and repels it if the above constant is less than one. See Theorem 6.4. Thus, to overwhelm
p2 and force the whole polycycle to repel the flow, p1 needs not only to repel the flow

95
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itself, but to do it with strength greater than 2k. But, if p1 and p2 help themselves and
they both contract the flow, then it follows from Theorem 6.8 that at most one limit cycle
can bifurcate from Γ and, if it does, then the limit cycle is hyperbolic and it also contract
the flow. Furthermore, if p1 and p2 disturb themselves, i.e. one contract the flow while
the other one repels it, then it follows from Theorem 6.9 that there exists an arbitrarily
small perturbation of Γ such that at least two limit cycles bifurcates from it. In fact, if we
have a polycycle with n hyperbolic singularities and m tangential singularities such that
the singularities perturb themselves in a particular way, then at least n + m limit cycles
will bifurcate from it. On the other hand, if every singularity contracts (resp. repels) the
flow, then at most one limit cycle can bifurcate and if it does, it is hyperbolic and also
contract (resp. repels) the flow.

Moreover, in Theorem 6.9 we give the unfolding of the polycycle Γ with k = 1 and
r1 ∈ R+\{1

2 , 1}. See Figures 6.2, 6.3 and 6.4. See also [2, 40] for the bifurcation diagrams
of others polycycles.

β1

β2

d∗1 = 0

d∗2 = 0

1

2 4

3

5

6

78

9

10

11

12

13

Figure 6.2: Bifurcation diagram of Γ for r1 > 1. The blue lines represents either a
stable polycycle or a hyperbolic and stable limit cycle. The green lines represent a sliding
polycycle. Figure source: made by the author.

The chapter is organized as follows. In Section 6.2 we establish the main theorems.
Theorems 6.4 and 6.7 are proved in Section 6.4. In Sections 6.5 and 6.6 we prove some
minors results about the displacement maps d and d∗ and their partial derivatives. The-
orem 6.8 is proved in Section 6.7 and Theorem 6.9 is proved in Section 6.8.
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Figure 6.3: Bifurcation diagram of Γ for 1
2 < r1 < 1. The blue (resp. red) lines represents

either a stable (resp. unstable) polycycle or a hyperbolic stable (resp. unstable) limit
cycle. The green lines represents either a sliding polycycle or a semi-stable limit cycle.
Figure source: made by the author.

6.2 Main results

Let Z = (X1, . . . , XM), M > 2, be a planar non-smooth vector field depending on
a parameter µ ∈ Rr with N > 1 discontinuities Σ1, . . . ,ΣN , Σ = ∪Ni=1Σi, given by
h1(x) = 0, . . . , hN(x) = 0, x ∈ R2, with eachXi = Xi(x, µ) of class C∞ in (x, µ) ∈ R2×Rr,
hj = hj(x) of class C∞ in x ∈ R2 and 0 a regular value of h1, . . . hN , i.e, ∇hj(x) 6= 0 for
all x ∈ h−1

j (0), j ∈ {1, . . . , N}. Let A1, . . . , AM be the open connected components of
R2\Σ with each Xi defined over Ai, i ∈ {1, . . . ,M}.

Let p ∈ Σi ⊂ Σ, with p 6∈ Σj ∩ Σk for any j 6= k, and let X be one of the two
components of Z defined at p. The Lie derivative of hi in the direction of the vector field
X at p is defined as

Xhi(p) = 〈X(p),∇hi(p)〉 ,

where 〈 , 〉 is the standard inner product of R2.

Definition 6.1. We say that a point p ∈ Σi ⊂ Σ is a tangential singularity if

(a) p /∈ Σj ∩ Σk for any j 6= k;

(b) Xahi(p)Xbhi(p) = 0 andXa(p), Xb(p) 6= 0, whereXa andXb are the two components
of Z defined at p.

We also suppose that at µ = µ0 we have a polycycle Γn composed by n singularities
p1, . . . , pn ∈ R2 such that each pi is either a hyperbolic saddle or a tangential singularity.
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Figure 6.4: Bifurcation diagram of Γ for r1 <
1
2 . The blue (resp. red) lines represents

either a stable (resp. unstable) polycycle or a hyperbolic stable (resp. unstable) limit
cycle. The green lines represents either a sliding polycycle or a semi-stable limit cycle.
Figure source: made by the author.

Let L1, . . . , Ln denote the heteroclinic connections of Γn such that ω(Li) = pi and α(Li) =
pi+1, with α(Ln) = p1. Let us also assume that if Li intersects Σ\{p1, . . . , pn}, then it
does at most in a finite number of points {xi,0, xi,1, . . . , xi,n(i)} and xi,j /∈ Σr ∩ Σs, for
any r 6= s, j ∈ {0, . . . , n(i)}. In this case let γi(t) be a parametrization of Li such that
γi(ti,j) = xi,j, 0 = ti,0 > ti,1 > · · · > ti,n(i). Let us also assume that around each xi,j there
is a neighborhood Ni,j of xi,j such that Σ∩Ni,j is a crossing region of Σ, i.e. if xi,j ∈ Σr and
Xs, Xu are the two components of Z defined at xi,j, then Xshr(xi,j)Xuhr(xi,j) > 0. If Li
does not intersect Σ, then take any point xi,0 ∈ Li and a parametrization γi(t) of Li such
that γi(0) = xi,0. Let us also assume that Γn is a connected component of the boundary
of some open ring A ⊂ R2. See Figure 6.5. Furthermore, we say that the cyclicity of Γn
is k if at most k limit cycles can bifurcate from a arbitrarily small perturbation of Γn.

Definition 6.2. Let p ∈ Σi ⊂ Σ be a tangential singularity, X one of the components of
Z defined at p and let Xkhi(p) =

〈
X(p),∇Xk−1hi(p)

〉
, k > 2. We say that X hasm-order

contact with Σ at p, m > 1, if m is the first positive integer such that Xmhi(p) 6= 0.

Definition 6.3. Let p ∈ Σi ⊂ Σ be a tangential singularity of Γn, Ls and Lu the hetero-
clinic connections of Γn such that ω(Ls) = p and α(Lu) = p. Let Xa and Xb be the two
components of Z defined at p and let Aa, Ab be the respective connected components of
R2\Σ such that Xa and Xb is defined over Aa and Ab. Let As, Au ∈ {Aa, Ab} be such
that As ∩ Ls 6= ∅ and Au ∩ Lu 6= ∅. Let Xs, Xu ∈ {Xa, Xb} denote the components of
Z defined at As and Au. Observe that we may have As = Au and thus Xs = Xu. See
Figure 6.6. We define the unstable and stable contact order of p as the contact order ns
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p1
p2

p3

L1

L2

L3

x1,0

x1,1

x2,0
x3,0

Σ

Figure 6.5: An example of Γ3 with the open ring A contained in the bounded region
delimited by Γ3. Figure source: made by the author.

and nu of Xs and Xu with Σ at p, respectively. Furthermore we also say that Xs and Xu

are the stable and unstable components of Z defined at p, respectively.

p

Lu

Ls

(a)

p
Lu

Ls

(b)

Figure 6.6: Examples of a tangential singularity p such that (a) As 6= Au and (b) As = Au.
Figure source: made by the author.

Theorem 6.4. Let Z and Γn be as above. Let ni,s and ni,u be the stable and unstable
contact orders of the tangential singularities pi of Γn, νi < 0 < λi be the eigenvalues of
the hyperbolic saddles pi of Γn and in either case define ri = ni,u

ni,s
or ri = |νi|

λi
, respectively.

Finally, let

p(Γn) =
n∏
i=1

ri. (6.1)

If p(Γn) > 1 (resp. p(Γn) < 1), then there is a neighborhood N0 of Γn such that the orbit
of Z through any point p ∈ N0 ∩ A has Γn as ω-limit (resp. α-limit).

Let Γn,l denote a polycycle composed by n singularities p1, . . . , pn ∈ R2 such that
each pi is either a hyperbolic saddle or a tangential singularity, and by l semi-hyperbolic
singularities q1, . . . , ql ∈ R2\Σ, i.e. each qi has a unique non-zero eigenvalue. Let us
also suppose that the heteroclinic connections Ls,i and Lu,i of Γn,l such that ω(Ls,i) = qi,
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α(Lu,i) = qi are the boundaries of a hyperbolic sector of qi contained in the open ring
A, e.g. a saddle-node or a degenerated saddle. Assume that Γn,l satisfies the established
hypothesis for Γn. With little adaptations in the proof of Theorem 6.4, one can use
Subsection 2.9 to prove the following result.

Corollary 6.5. Let Z and Γn,l, l > 1, be as above. Let λi ∈ R\{0} denote the non-zero
eigenvalue of the semi-hyperbolic singularity qi. If every λi < 0 (resp. every λi > 0), then
there is a neighborhood N0 of Γn,l such that the orbit of Z through any point p ∈ N0 ∩ A
has Γn,l as ω-limit (resp. α-limit).

Definition 6.6. Given a hyperbolic saddle pi of a polycycle Γn,l let ri ∈ R+ be as in
Theorem 6.4. We say that pi is a stable singular point (resp. unstable singular point) of
Γn,l if ri > 1 (resp. ri < 1). Given a tangential singularity pi of Γn,l we say that pi is a
stable singular point (resp. unstable singular point) if ns = 1 (resp. nu = 1). Furthermore,
if qi is a semi-hyperbolic singularity of Γn,l with its unique non-zero eigenvalue given by
λi ∈ R\{0}, then qi is a stable singular point (resp. unstable singular point) of Γn,l if
λi < 0 (resp. λi > 0).

Theorem 6.7. Let Z and Γn,l, n + l > 1, be as above. Suppose that each singularity pi
and qj is a stable (resp. unstable) singular point of Γn,l. If a small perturbation of Γn,l
has a limit cycle, then it is unique, hyperbolic and stable (resp. unstable). Furthermore,
the cyclicity of Γn,l is one.

Theorem 6.8. Let Z0 and Γn be as in Section 6.2 and define Ri = r1 . . . ri, i ∈ {1, . . . , n}.
Suppose Rn 6= 0 and, if n > 2, suppose (Ri−1)(Ri+1−1) < 0 for i ∈ {1, . . . , n−1}. Then,
there exists a C∞ map g(x, µ) = O(||µ||), µ ∈ Rn, such that the vector field Z = Z0 + g
has at least n limit cycles in a neighborhood of Γn for some µ arbitrarily near the origin.
Therefore, the cyclicity of Γn is at least n.

Theorem 6.9. Let Γ be polycycle composed by a hyperbolic saddle p1 and a quadratic-
regular tangential singularity. Then the bifurcation diagrams of Γ for r1 > 1, 1

2 < r1 < 1
and r < 1

2 are those given by Figures 6.2, 6.3 and 6.4, respectively.

6.3 Transition map near a tangential singularity

Let p be a tangential singularity of Γn and Xs, Xu be the stable and unstable com-
ponents of Z defined at p0 with µ = µ0. Let B be a small enough neighborhood of p0
and Φ : B × Λ → R2 be a C∞ change of coordinates such that Φ(p0, µ0) = (0, 0) and
Φ(B∩Σ) = Ox. Let ls = Φ(B∩Ls), lu = Φ(B∩Lu) and τs, τu two small enough transver-
sal sections of ls and lu, respectively. Furthermore, let σ = [0, ε[×{0}, σ =]− ε, 0]× {0}
or σ = {0} × [0, ε[, depending on Γn. It follows from [2] Φ can be choose such that the
transition maps T s,u : σ×Λ→ τs,u given by the flow of Xs,u in this new coordinate system
are well defined and given by

T u(hµ(x), µ) =
nu−2∑
i=0

λui (µ)xi + ku(µ)xnu +O(xnu+1),

T s(hµ(x), µ) =
ns−2∑
i=0

λsi (µ)xi + ks(µ)xns +O(xns+1),

with λs,ui (µ0) = 0, ks,u(µ0) 6= 0, hµ : R → R a diffeomorphism, and with hµ and λs,ui
depending continuously on µ. See Figure 6.7.
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T uT s

(a)

T u

T s

(b)
T u

T s

(c)

Figure 6.7: Illustration of the maps T u and T s. The choosing between (a) and (c) depends
whether the Poincaré map is defined in the bounded or unbounded region delimited by
Γn. Figure source: made by the author.

6.4 Proofs of theorems 6.4 and 6.7

Proof of Theorem 6.4. For simplicity let us assume that Σ = h−1(0) with 0 a regular value
of h, and Z = (X1, X2). Let also Γ = Γ3 be composed by two tangential singularities p1,
p2 and by a hyperbolic saddle p3. See Figure 6.8. Following [55], let Bi be a small enough
neighborhood of pi and let Φi : Bi × {µ0} → R2 be chosen as in Section 6.3, i ∈ {1, 2}.
Let also B3 be a neighborhood of p3 and Φ3 : B3×{µ0} → R2 be chosen as in Section 2.8.
Knowing that T s,ui : σi × {µ0} → τ s,ui and D : σ × {µ0} → τ , let

σi = Φ−1
i (σi) τ si = Φ−1

i (τ si ), τui = Φ−1
i (τui )

Js = Φ−1
3 (σ), Ju = Φ−1

3 (τ),

with i ∈ {1, 2}. Let also

ρ1 : τu1 → τ s2 , ρ2 : τu2 → Js, ρ3 : Ju → τ s1

be defined by the flow of X1 and X2. See Figure 6.8. Finally let

ρ1 = Φ2 ◦ ρ1 ◦ Φ−1
1 , ρ2 = Φ3 ◦ ρ2 ◦ Φ−1

2 , ρ3 = Φ1 ◦ ρ3 ◦ Φ−1
3 ,

and
T
s
i = Φ−1

i ◦ T si ◦ Φi, T
u
i = Φ−1

i ◦ T ui ◦ Φi, D = Φ−1
3 ◦D ◦ Φ3

with i ∈ {1, 2}. See Figure 6.8. Let ν < 0 < λ be the eigenvalues of p3 and denote r = |ν|
λ
.

Let also ni,s and ni,u denote the stable and unstable order of qi, i ∈ {1, 2}. Therefore, it
follows from Sections 2.8 and 6.3 that

T si (x) = ki,sx
ni,s +O(xni,s+1), T ui (x) = ki,ux

ni,u +O(xni,u+1),

D(x) = axr +O(xr+1), ρj(x) = ajx+O(x2),

with ki,s, ki,u, aj, a 6= 0, i ∈ {1, 2} and j ∈ {1, 2, 3}. Therefore, if we define

π = ρ2 ◦ T u2 ◦ (T s2 )−1 ◦ ρ1 ◦ T u1 ◦ (T s1 )−1 ◦ ρ3 ◦D,

then one can conclude that

π(x) = Kxn0 +O(xn0+1),
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Figure 6.8: Illustration of the maps used in the proof of Theorem 6.4. Figure source:
made by the author.

with K 6= 0 and n0 = p(Γ), as in (6.1). Hence, if x is small enough we conclude that
π(x) < x if n0 > 1 and π(x) > x if n0 < 1. The result now follows from the fact that the
Poincaré map

P = ρ2 ◦ T
u
2 ◦

(
T
s
2

)−1
◦ ρ1 ◦ T

u
1 ◦

(
T
s
1

)−1
◦ ρ3 ◦D

satisfies P = Φ−1
3 ◦ π ◦ Φ3. �

Proof of Theorem 6.7. Let us suppose that every singular point of Γn,l is attracting.
Following [20] and the proof of Theorem 6.4, we observe that the Poincaré map, when
well defined, can be written as a composition

Pµ = Gk ◦ Fk ◦ · · · ◦G1 ◦ F1,

where each Fi is the transition map near a hyperbolic saddle, a semi-hyperbolic singularity,
or a tangential singularity, and each Gi is the composition of a finite number of regular
transitions, i.e. a C∞ diffeomorphism in x. We call y1 = F1(x1), x2 = G1(y1), . . . ,
yk = Fk(xk), xk+1 = Gk(yk). Thus,

P ′µ(x1) = G′k(yk)F ′k(xk) . . . G′1(y1)F ′1(x1).

Therefore, it follows from Sections 2.8 and 2.9 that for all ε > 0 there exists a neighborhood
Λ of µ = µ0 and neighborhoods Wi of xi = 0, i ∈ {1, . . . , k + 1} such that if x1 ∈ W1,
then xi ∈ Wi and |F ′i (xi)| < ε for all i ∈ {1, . . . , k + 1} and µ ∈ Λ. Also, if Λ and each
Wi are small enough, then each G′i(yi) is bounded, and bounded away from zero. Hence,
for ε > 0 small enough it follows that P ′µ(x1) < 1 for (x1, µ) ∈ W1 × Λ and thus a unique
limit cycle exists and it is hyperbolic and attracting. The repelling case follows by time
reversing. �

6.5 The displacement map

Let Z and Γn be as in Section 6.2. For simplicity let p1 ∈ A1 and p2 ∈ A2 be
two hyperbolic saddles of Γn with the heteroclinic connection L0 such that ω(L0) =
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p1, α(L0) = p2 and L0 ∩ Σ = {x0}, Σ = h−1(0). Let γ0(t) be a parametrization of
L0 such that γ0(0) = x0 and u0 be an unitarian vector orthogonal to Tx0Σ such that
sign(〈u0,∇h(x0)〉) = sign(X1h(x0)) = sign(X2h(x0)). See Figure 6.9. Let us define

p1

p2

x0

u0

Σ

L0

Figure 6.9: Illustration of u0. Figure source: made by the author.

ω0 ∈ {−1, 1} such that ω0 = 1 if the orientation of Γn is counterclockwise and ω0 = −1
if the orientation of Γn is clockwise. We denote by DX(p, µ∗) the Jacobian matrix of
X|µ=µ∗ at p, i.e. if X = (P,Q), then

DX(p, µ∗) =


∂P

∂x1
(p, µ∗) ∂P

∂x2
(p, µ∗)

∂Q

∂x1
(p, µ∗) ∂Q

∂x2
(p, µ∗)

 .
Following [49], we know from the Implicit Function Theorem that if µ ∈ Λ, then

pi(µ) ∈ Ai is a hyperbolic saddle of Xi and pi(µ) → pi as µ → µ∗, with pi(µ) of class
C∞, i ∈ {1, 2}. Let (yi,1, yi,2) = (yi,1(µ), yi,2(µ)) be a coordinate system with its origin
at pi(µ) and such that the yi,1-axis and the yi,2-axis are the one-dimensional stable and
unstable spaces Es

i (µ) and Eu
i (µ) of the linearization of Xi(·, µ) at pi(µ), i ∈ {1, 2}. It

follows from the Stable Manifold Theorem that the stable and unstable manifolds Sµi and
Uµ
i of Xi(·, µ) at pi(µ) are given by

Sµi : yi,2 = Ψi,2(yi,1, µ) and Uµ
i : yi,1 = Ψi,1(yi,2, µ),

where Ψi,1 and Ψi,2 are C∞ functions, i ∈ {1, 2}. Restricting Λ if necessary, it follows
that there is δ > 0 such that

ysi (µ) = (δ,Ψi,2(δ, µ)) ∈ Sµi and yui (µ) = (Ψi,1(δ, µ), δ) ∈ Uµ
i ,

i ∈ {1, 2}. If Ci(µ) is the diagonalization of DXi(pi(µ), µ), then at the original coordinate
system (x1, x2) we obtain

xsi (µ) = pi(µ) + Ci(µ)ysi (µ) ∈ Sµi and xui (µ) = pi(µ) + Ci(µ)yui (µ) ∈ Uµ
i ,

i ∈ {1, 2}. Furthermore, xsi (µ) and xui (µ) are also C∞ at Λ. Let φi(t, ξ, µ) be the flow of
Xi(·, µ) such that φi(0, ξ, µ) = ξ and Ls0 = Ls0(µ), Lu0 = Lu0(µ) be the perturbations of L0
such that ω(Ls0(µ)) = p1(µ) and α(Lu0(µ)) = p2(µ). Then it follows that

xs(t, µ) = φ1(t, xs1(µ), µ) and xu(t, µ) = φ2(t, xu2(µ), µ)
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are parametrizations of Ls0(µ) and Lu0(µ), respectively. Since L0 intersects Σ it follows
that there are ts0 < 0 and tu0 > 0 such that xs(ts0, µ0) = x0 = xu(tu0 , µ0) and thus by the
uniqueness of solutions we have

xs(t+ ts0, µ0) = γ0(t) = xu(t+ tu0 , µ0),

for t ∈ [0,+∞) and t ∈ (−∞, 0], respectively.

Lemma 6.10. Restricting Λ if necessary, there exists unique C∞ functions τ s(µ) and
τu(µ) such that τ s(µ) → ts0 and τu(µ) → tu0 , as µ → µ0, and xs0(µ) = xs(τ s(µ), µ) ∈ Σ
and xu0(µ) = xu(τu(µ), µ) ∈ Σ for µ ∈ Λ. See Figure 6.10.

p1

p2

xs0
xu0

Σ

Lu0

Ls0

Figure 6.10: Illustration of xs0(µ) and xu0(µ). Figure source: made by the author.

Proof. Let X1 denote a C∞ extension of X1 to a neighborhood of A1 and observe that
now xs(t, µ0) is well defined for |t − ts0| small enough. Define S(t, µ) = h(xs(t, µ)) and
observe that S(ts0, µ0) = h(x0) = 0 and

∂S

∂t
(ts0, µ0) = 〈∇h(x0), X1(x0)〉 6= 0.

It then follows from the Implicit Function Theorem that there exist a C∞ function τ s(µ)
such that τ s(µ0) = ts0 and S(τ s(µ), µ) = 0 and thus xs0(µ) = xs(τ s(µ), µ) ∈ Σ. In the
same way one can prove the existence of τu.

Definition 6.11. It follows from Lemma 6.10 that the displacement function

d(µ) = ω0[xu0(µ)− xs0(µ)] ∧ u0,

where (x1, x2) ∧ (y1, y2) = x1y2 − y1x2, is well defined near µ0 and it is of class C∞. See
Figure 6.11.

Remark 6.12. We observe that L0 can intersect Σ multiple times. In this case, following
Section 6.2 we would have L0 ∩ Σ = {x0, x1, . . . , xn} and γ0(t) a parametrization of L0
such that γ0(ti) = xi, with 0 = t0 > t1 > · · · > tn. Therefore, applying Lemma 6.10 one
shall obtain xun(µ) and then applying the Implicit Function Theorem multiple times one
shall obtain xui (µ) as a function of xui+1(µ), i ∈ {0, . . . , n− 1}, and thus the displacement
function would still be defined at x0.
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ΣΣ xu0xu0 xs0xs0

d(µ) > 0 d(µ) < 0

Figure 6.11: Illustration of d(µ) > 0 and d(µ) < 0. Figure source: made by the author.

Let us define
xsµ(t) = φ1(t, xs0(µ), µ) for t > 0 and
xuµ(t) = φ2(t, xu0(µ), µ) for t 6 0,

new parametrizations of Ls0(µ) and Lu0(µ), respectively. In the following Lemma we will
denote by Xi some C∞ extension of Xi at some neighborhood of Ai, i ∈ {1, 2}, and
thus xsµ(t) and xuµ(t) are well defined for |t| small enough. The following Lemma is an
adaptation of [33].

Lemma 6.13. For any µ∗ ∈ Λ and any i ∈ {1, . . . , n} the maps

∂xsµ∗

∂µi
(t) and

∂xuµ∗

∂µi
(t)

are bounded as t→ +∞ and t→ −∞, respectively.

Proof. Let us consider a small perturbation of the parameter in the form

µ = µ∗ + εei, (6.2)

where ei is the ith vector of the canonical base of Rr. The corresponding perturbation of
the singularity p2(µ∗) takes the form

p2(µ) = p2(µ∗) + εy0 + o(ε).

Knowing that X2(p2(µ), µ) = 0 for any ε it follows that

0 = ∂X2

∂ε
(p2(µ), µ) = DX2(p2(µ), µ)[y0 + o(ε)] + ∂X2

∂µ
(p2(µ), µ)ei

and thus applying ε→ 0 we obtain

y0 = −F−1
0 G0ei,

where F0 = DX2(p2(µ∗), µ∗) and G0 = ∂X2
∂µ

(p2(µ∗), µ∗). Hence,

∂p2

∂µi
(µ∗) = −F−1

0 G0ei.
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θ1 θ2

Σ

u0 u0

Figure 6.12: Illustration of θs > 0 and θu < 0. Figure source: made by the author.

Therefore, it follows from the C∞-differentiability of the flow near p2(µ) that

lim
t→−∞

∂xuµ∗

∂µi
(t) = ∂p(µ∗)

∂µi
= −F−1

0 G0ei

and thus we have the proof for xuµ∗ . The proof for xsµ∗ is similar.

Let θi ∈ (−π, π) be the angle between Xi(x0) and u0, i ∈ {1, 2}. See Figure 6.12. For
i ∈ {1, 2} we denote by Mi the rotation matrix of angle θi, i.e.

Mi =
(

cos θi − sin θi
sin θi cos θi

)
.

Defining

nu(t, µ) = ω0[xuµ(t)− x0] ∧ u0 and ns(t, µ) = ω0[xsµ(t)− x0] ∧ u0

it follows from Definition 6.11 that

d(µ) = nu(0, µ)− ns(0, µ)

and thus
∂d

∂µj
(µ0) = ∂nu

∂µj
(0, µ0)− ∂ns

∂µj
(0, µ0). (6.3)

Therefore, to understand the behavior of the displacement function d(µ) it is enough to
understand the behavior of xsµ(t) and xuµ(t) relatively to x0. Let Xi = (Pi, Qi), i ∈ {1, 2}.
Knowing that γ0 is a parametrization of L0 such that γ0(0) = x0 let L+

0 = {γ0(t) : t >
0} ⊂ A1 and

I+
j =

∫
L+

0

eD1(t)
[
(M1X1) ∧ ∂X1

∂µj
(γ0(t), µ0)− sin θ1R1,j(γ0(t), µ0)

]
dt,

where
Di(t) = −

∫ t

0
DivXi(γ0(s), µ0)ds,

and
Ri,j = ∂Pi

∂µj

[(
∂Qi

∂x1
+ ∂Pi
∂x2

)
Qi +

(
∂Pi
∂x1
− ∂Qi

∂x2

)
Pi

]

+∂Qi

∂µj

[(
∂Pi
∂x2

+ ∂Qi

∂x1

)
Pi +

(
∂Qi

∂x2
− ∂Pi
∂x1

)
Qi

]
,

i ∈ {1, 2}, j ∈ {1, . . . , r}. The following Proposition is an adaptation of [49].
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Proposition 6.14. For any j ∈ {1, . . . , r} it follows that

∂ns

∂µj
(0, µ0) = ω0

||X1(x0, µ0)||I
+
j .

Proof. From now on in this proof we will denote X1 some C∞ extension of X1 at some
neighborhood of A1 and thus xsµ(t) is well define for |t| small enough. Let j ∈ {1, . . . , r}.
Defining

ξ(t, µ) =
∂xsµ
∂µj

(t)

it then follows that

ξ̇(t, µ) =
∂ẋsµ
∂µj

(t)

= ∂X1

∂µj
(xsµ(t), µ)

= DX1(xsµ(t), µ)ξ(t, µ) + ∂X1

∂µj
(xsµ(t), µ).

Let (s, n) = (s(t, µ), n(t, µ) be the coordinate system with origin at xsµ(t) such that the
angle between X1(xsµ(t), µ) and s equals θ1 and n is orthogonal to s, pointing outwards
in relation to G. See Figure 6.13. Observe that the component of ξ in the direction of n

n

n

s

s

θ1

θ1

Σ

Figure 6.13: Illustration of (s, n) along xsµ(t). Figure source: made by the author.

is precisely equals to ∂ns

∂µj
(t, µ) and thus we conclude

∂ns

∂µj
(t, µ) = ω0

ξ ∧M1X1(xsµ(t), µ)
||X1(xsµ(t), µ)|| . (6.4)

Denoting M1X1 = (P0, Q0), ξ = (ξ1, ξ2) and

ρ(t, µ) = ξ ∧M1X1(xsµ(t), µ) (6.5)

we conclude that
ρ = ξ1Q0 − P0ξ2,

where
P0 = P1 cos θ1 −Q1 sin θ1,

Q0 = Q1 cos θ1 + P1 sin θ1.
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Hence,
ρ̇ = ξ̇1Q0 − ξ̇2P0 + ξ1Q̇0 − ξ2Ṗ0. (6.6)

Knowing that
Ṗ1 = ẍ1 = ∂P1

∂x1
P1 + ∂P1

∂x2
Q1,

Q̇1 = ẍ2 = ∂Q1

∂x1
P1 + ∂Q1

∂x2
Q1,

we conclude,

Ṗ0 = ∂P1

∂x1
P1 cos θ1 + ∂P1

∂x2
Q1 cos θ1 −

∂Q1

∂x1
P1 sin θ1 −

∂Q1

∂x2
Q1 sin θ1,

Q̇0 = ∂Q1

∂x1
P1 cos θ1 + ∂Q1

∂x2
Q1 cos θ1 + ∂P1

∂x1
P1 sin θ1 + ∂P1

∂x2
Q1 sin θ1.

(6.7)

Replacing (6.7) in (6.6) one can conclude

ρ̇ = DivX1ρ−M1X1 ∧
∂X1

∂µj
+ sin θ1R1,j. (6.8)

Solving (6.8) we obtain

ρ(t, µ)eD1(t)
∣∣∣t1
t0

=
∫ t1

t0
eD1(t)

[
sin θ1R1,j(xsµ, µ)−M1X1 ∧

∂X1

∂µj
(xsµ(t), µ)

]
dt. (6.9)

Observe that X1(xsµ(t), µ)→ 0 as t→ +∞. Therefore, it follows from (6.4) and (6.5) that
ρ(t, µ)→ 0 as t→ +∞ (since from Lemma 6.13 we know that ∂ns

∂µj
is bounded). Thus, if

we take t0 = 0 and let t1 → +∞ in (6.9) it follows that

ρ(0, µ) =
∫ +∞

0
eD1(t)

[
M1X1 ∧

∂X1

∂µj
(xsµ(t), µ)− sin θ1R1,j(t, µ)

]
dt

and thus it follows from (6.4) and (6.5) we have that

∂ns

∂µj
(0, µ0) = ω0

||X1(x0, µ0)||I
+
j .

Remark 6.15. Observe that L+
0 was defined in such a way that there is no discontinuities

on it. Therefore, if L0 ∩ Σ = {x0}, then L−0 = {γ0(t) : t < 0} also has no discontinuities
and thus as in Proposition 6.14 one can prove that

∂nu

∂µj
(t, µ) = ω0

ρ(t, µ)
||X2(xuµ(t), µ)||

with ρ satisfying (6.8) but with xuµ instead of xsµ and X2 instead of X1. Furthermore we
have ρ(t, µ)→ 0 as t→ −∞ and thus by setting t1 = 0 and letting t0 → −∞ we obtain

ρ(0, µ) = −
∫ +∞

0
eD2(t)

[
M2X2 ∧

∂X2

∂µj
(xuµ(t), µ)− sin θ2R2,j(t, µ)

]
dt.
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Hence, in the simply case where L0 intersects Σ in a unique point x0 it follows from (6.3)
and from Proposition 6.14 that

∂d

∂µj
(µ0) = −ω0

(
1

||X2(x0, µ0)||I
−
j + 1
||X1(x0, µ0)||I

+
j

)
,

with
I+
j =

∫
L+

0

eD1(t)
[
(M1X1) ∧ ∂X1

∂µj
(γ0(t), µ0)− sin θ1R1,j(γ0(t), µ0)

]
dt,

I−j =
∫
L−

0

eD2(t)
[
(M2X2) ∧ ∂X2

∂µj
(γ0(t), µ0)− sin θ2R2,j(γ0(t), µ0)

]
dt.

Remark 6.16. If we drop the hypothesis of non-smooth vector field and suppose Z = X
a planar C∞ vector field defined in the entire R2, then all this section holds and thus we
can just assume X1 = X2 and take u0 = X(x0,µ0)

||X(x0,µ0)|| . In this case θ1 = θ2 = 0 and therefore
we conclude

∂d

∂µj
(µ0) = −ω0

||X(x0, µ0)||

∫ +∞

−∞
e−
∫ t

0 DivX(γ0(s),µ0)ds
[
X ∧ ∂X

∂µj
(γ0(t), µ0)

]
dt,

as in [49, 26, 22].

Remark 6.17. The hypothesis of a polycycle is not necessary. In fact if we drop this and
suppose only a heteroclinic connection between saddles, then again all this section holds
and thus we can define the displacement function as

d(µ) = [xu0(µ)− xs0(µ)] ∧ u0,

and therefore,

∂d

∂µj
(µ0) = −

(
1

||X2(x0, µ0)||I
−
j + 1
||X1(x0, µ0)||I

+
j

)
.

It is only necessary to pay attention at which direction we have d(µ) > 0 or d(µ) < 0. The
inclusion of ω0 was only to follow [49, 17] in a standardization of the external direction of
the polycycle as the positive direction of the displacement function.

Remark 6.18. If we suppose that pi is a tangential singularity instead of a hyperbolic
saddle such that the perturbation Zµ of Zµ0 is such that there is a neighborhood B of
pi such that for µ ∈ Λ we have a C∞ map pi(µ) such that pi(µ) is C∞-equivalent to pi,
pi(µ) → pi as µ → µ0 and B is free of any other singularity and tangential singularity
other than pi(µ), then one can apply the Implicit Function Theorem at the orbit xs(t, µ)
through the point pi(µ) and obtain once again Lemma 6.10. Therefore, the displacement
map

d(µ) = ω0[xu0(µ)− xs0(µ)] ∧ u0

is well defined and of class C∞ whether pi is a hyperbolic saddle or a tangential singularity
satisfying the above conditions.

Proposition 6.19. Let p1 be a tangential singularity satisfying the above hypothesis.
Then for any j ∈ {1, . . . , r} it follows that

∂ns

∂µj
(0, µ0) = ω0

||X1(x0, µ0)||(I
+
j +H+

j ),
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where
H+
j = eD1(t1) ∂γ0

∂µj
(t1) ∧M1X1(p1, µ0),

with γ0 a parametrization of L0 such that γ0(0) = x0 and γ0(t1) = p1.

Proof. It follows from Proposition 6.14 that

∂ns

∂µj
(t, µ) = ω0

ρ(t, µ)
||X1(xsµ(t), µ)|| ,

with
ρ(t, µ) = ξ ∧M1X1(xsµ(t), µ)

satisfying

ρ(t, µ)eD1(t)
∣∣∣t1
t0

=
∫ t1

t0
eD1(t)

[
sin θ1R1,j(xsµ, µ)−M1X1 ∧

∂X1

∂µj
(xsµ(t), µ)

]
dt. (6.10)

Let t0 = 0, t1 be such that γ0(t1) = p1 and L+
0 = {γ0(t) : 0 < t < t1}. Then it follows

from (6.10) that
ρ(0, µ0) = I+

j + eD1(t1)ρ(t1, µ0).

Thus, the result follows from the fact that H+
j = eD1(t1)ρ(t1, µ0).

The hypothesis over the perturbation ensuring the existence of a C∞ function pi(µ) for
µ ∈ Λ such that pi(µ) and pi are C∞-equivalent seems to be too strong and, in fact it, is.
But as we shall see in further sections, this hypothesis will not be a problem here because
we will take perturbations that are suitable for our goals. In fact, we will construct
perturbations that play no role near any tangential singularity. Nevertheless, we point
out the fact that regular-quadratic tangential singularities, i.e. a tangential singularities
such that nu = 2 and ns = 1 or vice-versa, satisfies this hypothesis for any small enough
perturbation. The following Proposition is an adaptation of [49].

Proposition 6.20. Under the hypotheses of this section, suppose that ∂d
∂µ1

(µ0) 6= 0, with
µ0 = (µ1, . . . , µr). Then given ε > 0 there exists δ > 0 and a unique C∞ function
h(µ2, . . . , µr) for |µj − µj| < δ, j ∈ {2, . . . , r}, with h(µ2, . . . , µr) = µ1, such that system
Z with µ1 = h(µ2, . . . , µr) has a unique heteroclinic connection in an ε-neighborhood of
L0; i.e. Z has a unique, local, (r − 1)-dimensional heteroclinic connection bifurcation
surface S : µ1 = h(µ2, . . . , µr) through the point µ0 ∈ Rr.

Proof. Applying the Implicit Function Theorem at d we have the existence of h(µ2, . . . , µr)
of class C∞ in a neighborhood of (µ2, . . . , µr) such that d(h(µ2, . . . , µr), µ2, . . . , µr) = 0.
Therefore, if µ1 = h(µ2, . . . , µr), then xs0(µ) = xu0(µ) and thus the heteroclinic connection
L0(µ) can be parametrized by xuµ for t 6 0 and by xsµ for t > 0. Inside of each Ai we can
apply the continuity of solutions with respect to the initial conditions and thus

lim
µ→µ0

xsµ(t) = γ0(t), for t > 0,

lim
µ→µ0

xuµ(t) = γ0(t), for t 6 0,

with the convergence being uniform on any compact time interval −a 6 t 6 0 (or 0 6 t 6
a). And according to the Stable Manifold Theorem, in the case where pi is a hyperbolic
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saddle, for sufficiently large a > 0 the limits above are uniform for all t. Thus, given ε > 0
there exist a δ > 0 such that for t ∈ R and ||µ− µ0|| < δ, µ = (h(µ2, . . . , µr), µ2, . . . , µr),
we have both ||xsµ(t)−γ0(t)|| < ε and ||xuµ(t)−γ0(t)|| < ε, i.e. the heteroclinic connection
L0(µ) is in a ε-neighborhood of Γ0. The uniqueness of L0(µ) follows from the uniqueness
of h.

Remark 6.21. Observe that in the former proposition we could have supposed ∂d
∂µj

(µ0) 6=
0 for any j ∈ {1, . . . , r}. In fact, we supposed ∂d

∂µ1
(µ0) 6= 0 only to simplify the notation.

Proposition 6.22. Let Z and Γn be as in Section 6.2 and di : Λ→ R, i ∈ {1, . . . , n}, be
the displacement maps defined at the heteroclinic connections of Γn. Let σ0 ∈ {−1, 1} be
a constant such that σ0 = 1 (resp. σ0 = −1) if the Poincaré map is defined in the bounded
(resp. unbounded) region delimited by Γn. Then following statements holds.

(a) If p(Γn) > 1 and µ ∈ Λ is such that σ0d1(µ) 6 0, . . . , σ0dn(µ) 6 0 with σ0di(µ) < 0
for some i ∈ {1, . . . , n}, then at least one stable limit cycle Γ bifurcates from Γn.

(b) If p(Γn) < 1 and µ ∈ Λ is such that σ0d1(µ) > 0, . . . , σ0dn(µ) > 0 with σ0di(µ) > 0
for some i ∈ {1, . . . , n}, then at least one unstable limit cycle Γ bifurcates from Γn.

Proof. For the simplicity we will use the same polycycle Γ3 used in the proof of Theo-
rem 6.4. Let xi,0 ∈ Li be as in Section 6.2 and li be transversal sections of Li through
xi,0, i ∈ {1, 2, 3}. Let Ri : li × Λ → li−1 be functions given by the compositions of the
functions used in the demonstration of Theorem 6.4, i ∈ {1, 2, 3}. See Figure 6.14(a).
Hence, if di(µ) 6 0, i ∈ {1, 2, 3}, then a new Poincaré map P : l1×Λ→ l1 can be written
as

P (x, µ) = R3(R2(R1(x, µ), µ), µ).

We observe that P is C∞ in x, continuous in µ, and it follows from the proof of Theorem 6.4
that P (·, µ0) is non-flat. It follows from Theorem 6.4 that there is an open ring A0 in

R1

R2

R3

(a) (b)

Figure 6.14: Illustration of R1, R2 and R3 with di(µ) = 0 in (a), and di(µ) < 0 in (b).
Observe that if di(µ) > 0, then the composition may not be well defined. Figure source:
made by the author.

the bounded region limited by Γ3, with Γ3 as the connect external boundary of A0, such
that the orbit Γ through any point q ∈ A0 spiral towards Γ3 as t → +∞. Let p be the
interception of Γ3 and l1, q0 ∈ A0 ∩ l1, ξ a coordinate system along l1 such that ξ = 0
at p and ξ > 0 at q0 and let we identify this coordinate system with R+. Observe that
P (q0, µ0) < q0 and thus by continuity P (q0, µ) < q0 for any µ ∈ Λ. See Figure 6.15.
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q0

P (q0, µ)

Figure 6.15: Observe that the arc of orbit between q0 and P (q0, µ) together with the
perturbation of Γ3 creates a positive invariant set in which we can apply the Poincaré-
Bendixson theory. Figure source: made by the author.

Therefore, it follows from the Poincaré-Bendixson theory for non-smooth vector field (see
[10]) and from the non-flatness of P that at least one stable limit cycle Γ0 bifurcates from
Γ3. Statement (b) can be prove by time reversing.

6.6 The further displacement map

Let Z and Γn be as in Section 6.2. Let Lui (µ) and Lsi (µ) be the perturbations of Li
such that α(Lui ) = pi+1 and ω(Lsi ) = pi, i ∈ {1, . . . , n}, with each index being modulo
n. Following [23], let Ci = xi,0. If Ci /∈ Σ, then let vi be the unique unitarian vector
orthogonal to Z(Ci, µ0) and pointing outwards in relation to Γn. Now, if Ci ∈ Σ, then let
vi be the unique unitarian vector tangent to TCiΣ and pointing outwards in relation to
Γn. In both cases, let li be the transversal section normal to Li at Ci. It is clear that any
point B ∈ li can be written as B = Ci + λvi, with λ ∈ R. See Figure 6.16.

p1
p2

p3

C1

x1,1

C2 C3

Σ

l1

l2

l3

Figure 6.16: An example of the construction of the points Ci and the lines li. Figure
source: made by the author.
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Now, if Ci ∈ Σ, then let Ni be a small enough neighborhood of Ci and Ji = Ni ∩Σ. It
then follows that any point B ∈ Ji can be orthogonally projected on the line li : Ci + λvi,
λ ∈ R, and thus it can be uniquely, and smoothly, identified with Ci + λBvi, for some
λB ∈ R. Either Ci ∈ Σ or Ci 6∈ Σ, observe that if λ > 0, then B is outside Γn and if
λ < 0, then B is inside Γn. For each i ∈ {1, . . . , n} we define

Bu
i = Lui ∩ li = Ci + bui (µ)vi, Bs

i = Lsi ∩ li = Ci + bsi (µ)vi. (6.11)

Therefore, it follows from Section 6.5 that

di(µ) = bui (µ)− bsi (µ),

i ∈ {1, . . . , n}. Also, define ri = |νi(µ0)|
λi(µ0) if pi is a hyperbolic saddle, and ri = ni,u

ni,s
if pi is

a tangential singularity, i ∈ {1, . . . , n}. If ri > 1 and di(µ) < 0, then following [23], we
observe that

B∗i−1 = Lui ∩ li−1 = Ci−1 + b∗i−1(µ)vi−1

is well defined and thus we define the further displacement map as

d∗i−1(µ) = b∗i−1(µ)− bsi−1(µ).

See Figure 6.17. On the other hand, if ri < 1 and di−1(µ) > 0, then

B∗i = Lsi−1 ∩ li = Ci + b∗i (µ)vi

is well defined and thus we define the further displacement map as

d∗i−1(µ) = bui (µ)− b∗i (µ).

B∗1
Bs

1

Bu
1

Bu
2

Bs
2

p1

p2

r2 > 1 and d∗1 < 0.

B∗2
Bs

1

Bu
1

Bu
2

Bs
2

p1

p2

r2 < 1 and d∗1 < 0.

Figure 6.17: Illustration of d∗1 < 0 for both r2 > 1 and r2 < 1. Figure source: made by
the author.

Remark 6.23. We observe that in both cases ri < 1 and ri > 1 we have that di−1(µ) > 0
and di(µ) < 0 are necessaries conditions for d∗i−1(µ) = 0. Furthermore, observe that the
signal of d∗i−1 has the same topological meaning whether ri < 1 or ri > 1.

The following Proposition is an adaptation of [23].
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Proposition 6.24. For i ∈ {1, . . . , n} and Λ ⊂ Rr small enough we have

d∗i−1(µ) =

 di−1(µ) +O(||µ− µ0||ri) if ri > 1,

di(µ) +O(||µ− µ0||
1
ri ) if ri < 1.

Proof. For simplicity let us assume i = n and rn > 1. Following [23], it follows from the
definition of d∗n−1 and dn−1 that

d∗n−1 = (b∗n−1 − bun−1) + dn−1. (6.12)

Let B = Bs
n + λvn ∈ ln, λ < 0, with |λ| small enough and observe that the orbit through

B will intersect ln−1 in a point C which can be written as

C = Bu
n−1 + F (λ, µ)vn−1.

Therefore, we have a function F : ln → ln−1 with F (λ, µ) < 0 for λ < 0, |λ| small enough,
such that F (λ, µ)→ 0 as λ→ 0. From (6.11) we have

Bu
n = (Cn + bsnvn) + (bun − bsn)vn = Bs

n + dnvn

B∗n−1 = (Cn−1 + bun−1vn−1) + (b∗n − bun−1)vn−1 = Bu
n−1 + (b∗n − bun−1)vn−1.

(6.13)

Since B∗n−1 is the intersection of the positive orbit through Bu
n with ln−1, it follows from

(6.13) that
b∗n − bun−1 = F (dn, µ).

Therefore, it follows from (6.12) that

d∗n−1 = F (dn, µ) + dn−1. (6.14)

If pi is a hyperbolic saddle, then F is, up to the composition of some diffeomorphisms
given by the flow of the components of Z, the Dulac map Di defined at Section 2.8. If pi is
a tangential singularity (we remember that we are under the hypothesis of Remark 6.18),
then F is, up to the composition of some diffeomorphisms given by the flow of the com-
ponents of Z, the composition T ui ◦ (T si )−1 defined at Section 6.3. In either case it follows
that

− F (λ, µ) = |λ|rn(A(µ) +O(1)), (6.15)

with A(µ0) 6= 0. Since dn = O(||µ||) it follows from (6.15) that

F (dn, µ) = O(||µ||rn)

and thus from (6.14) we have the result. The case rn < 1 follows similarly from the fact
that the inverse F−1 has order r−1

n in λ.

Corollary 6.25. For each i ∈ {1, . . . , n} the further displacement map d∗i is continuous
differentiable with the j-partial derivative given either by the j-partial derivative of di or
di+1. Furthermore, a connection between pi and pi−2 exists if and only if d∗i−2(µ) = 0 and
di−1(µ) 6= 0.
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6.7 Proof of theorem 6.8

Proof of Theorem 6.8. Let Z = (X1, . . . , XM) and denote Xi = (Pi, Qi), i ∈ {1, . . . ,M}.
Let {p1, . . . , pn} be the singularities of Γn and Li the heteroclinic connections between
them such that ω(Li) = pi and α(Li) = pi+1. If Li ∩ Σ = ∅, then take xi,0 ∈ Li and
γi(t) a parametrization of Li such that γi(0) = xi,0. If Li ∩ Σ 6= ∅, then let Li ∩ Σ =
{xi,0, . . . , xi,n(i)} and take γi(t) a parametrization of Li such that γi(ti,j) = xi,j with
0 = ti,0 > ti,1 > · · · > ti,n(i). In either case denote L+

i = {γi(t) : t > 0} if pi is a hyperbolic
saddle or L+

i = {γi(t) : 0 < t < ti}, where ti is such that γi(ti) = pi, if pi is a Σ-singularity.
Following [23], for each i ∈ {1, . . . , n} let Gi,j, j ∈ {1, 2}, be two compact disks small
enough such that

1) Γn ∩Gi,j = L+
i ∩Gi,j 6= ∅, j ∈ {1, 2};

2) Gi,1 ⊂ IntGi,2;

3) Gi,2 ∩Gs,2 = ∅ for any i 6= s;

4) Gi,j ∩ Σ = ∅.

Let ki : R2 → [0, 1] be a C∞-bump function such that

ki(x) =
{

0, x /∈ Gi,2,
1, x ∈ Gi,1.

See Figure 6.18. Let µ ∈ Rn and gi : R2 → R2, i ∈ {1, . . . , n}, be maps that we yet have

p1

p2

p3

Σ

G1,j

G2,j

G3,j

l1

l2

l3

Figure 6.18: Illustration of the sets Gi,j. Figure source: made by the author.

to define. Let also
g(x, µ) =

n∑
i=1

µiki(x)gi(x),

and for now one let us denote Xi = Xi + g. Let Λ be a small enough neighborhood of the
origin of Rn. It follows from Section 6.5 that each displacement map di : Λ→ R controls
the bifurcations of Li near xi,0. It follows from Definition 6.11 that

di(µ) = ω0[xui,0(µ)− xsi,0(µ)] ∧ ηi,
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where ηi is the analogous of u0 in Figure 6.9. But from the definition of g we have that
each xui,0(µ) does not depend on µ and thus xui,0 ≡ xi,0. Furthermore it follows from the
definition of ki that each singularity pi of Γn also does not depend on µ and thus ∂γi

∂µj
(ti) = 0

for every tangential singularity pi. Therefore, it follows from Propositions 6.14 and 6.19
that

∂di
∂µj

(0) = − ω0

||Xi(x0, µ0)||

∫
L+
i

eDi(t)
[
(MiXi) ∧

∂Xi

∂µj
(γi(t), 0)− sin θiRi,j(γi(t), 0)

]
dt,

with
Di(t) = −

∫ t

0
DivXi(γ0(s), µ0)ds,

and
Ri,j = ∂Pi

∂µj

[(
∂Qi

∂x1
+ ∂Pi
∂x2

)
Qi +

(
∂Pi
∂x1
− ∂Qi

∂x2

)
Pi

]

+∂Qi

∂µj

[(
∂Pi
∂x2

+ ∂Qi

∂x1

)
Pi +

(
∂Qi

∂x2
− ∂Pi
∂x1

)
Qi

]
,

i, j ∈ {1, . . . , n}. We observe that if Li∩Σ = ∅, then θi = 0. It follows from the definition
of the sets Gi,j that ∂di

∂µj
(0) = 0 if i 6= j. Let MiXi = (P i, Qi) and Ri,i = ∂Pi

∂µi
Fi,1 + ∂Qi

∂µi
Fi,2,

where
Fi,1 =

(
∂Qi

∂x1
+ ∂Pi
∂x2

)
Qi +

(
∂Pi
∂x1
− ∂Qi

∂x2

)
Pi,

Fi,2 =
(
∂Pi
∂x2

+ ∂Qi

∂x1

)
Pi +

(
∂Qi

∂x2
− ∂Pi
∂x1

)
Qi.

Let gi = (gi,1, gi,2) and observe that

(MiXi) ∧
∂Xi

∂µi
− sin θiRi,i = ki[gi,2(P i − sin θiFi,2)− gi,1(Qi + sin θiFi,1)].

Therefore, if we take gi = −ω0(−Qi − sin θiFi,1, P i − sin θiFi,2), then we can conclude
that

di(µ) = aiµi +O(||µ||2), (6.16)
with ai = ∂di

∂µi
(0) > 0, i ∈ {1, . . . , n}. If n = 1, then it follows from Proposition 6.22 that

any µ ∈ R arbitrarily small such that (R1− 1)σ0µ < 0 result in the bifurcation of at least
one limit cycle. Suppose n > 2 and that the result had been proved in the case n− 1. We
will now prove by induction in n. For definiteness we can assume Rn > 1 and therefore
Rn−1 < 1 and thus rn > 1. Moreover it follows from Theorem 6.4 that Γn is stable. Define

D = (d1, . . . , dn−2, d
∗
n−1).

It follows from Proposition 6.24 and from (6.16) that we can apply the Implicit Func-
tion Theorem on D and thus obtain unique C∞ functions µi = µi(µn), µi(0) = 0,
i ∈ {1, . . . , n− 1}, such that

D(µ1(µn), . . . , µn−1(µn), µn) = 0

for |µn| small enough. It also follows from (6.16) that dn 6= 0 if µn 6= 0, with |µn| small
enough. Therefore, if µi = µi(µn) and µn 6= 0, then it follows from the definition of D = 0
that there exist a Γn−1 = Γn−1(µn) polycycle formed by n − 1 singularities and n − 1
heteroclinic connections L∗i = L∗i (µn) such that
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1) Γn−1 → Γn,

2) L∗n−1 → Ln ∪ Ln−1 and

3) L∗i → Li, i ∈ {1, . . . , n− 2},

as µn → 0. See Figure 6.19.

p1

p2

p3

Σ
l1

l2

l3

Before the perturbation.

p1

p2

p3

Σ
l1

l2

l3

After the perturbation.

Figure 6.19: Illustration of the induction process with R3 > 1 and R2 < 1. Blue (resp.
red) means a stable (resp. unstable) polycycle or limite cycle. Figure source: made by
the author.

Let
R∗j = r1 . . . rj

∣∣∣
µi=µi(µn), i∈{1,...,n−1}

,

j ∈ {1, . . . , n− 1}. Then it follows from the hypothesis

(Ri − 1)(Ri+1 − 1) < 0

for i ∈ {1, . . . , n− 1} and from the hypothesis Rn−1 < 1, that

(R∗i − 1)(R∗i+1 − 1) < 0

for i ∈ {1, . . . , n − 2} and R∗n−1 < 1 for µn 6= 0 small enough. Thus, it follows from
Theorem 6.4 that Γn−1 is unstable while Γn is stable. It then follows from the Poincaré-
Bendixson theory (see [10]) and from the non-flats of the Poincaré map that at least one
stable limit cycle γn(µn) exists near Γn−1. In fact both the limit cycle and Γn−1 bifurcates
from Γn. Now fix µn 6= 0, |µn| arbitrarily small, and define the non-smooth system

Z∗0 = Z∗(x) + g∗(x, µ),

where Z∗(x) = Z(x) + g(x, µ1(µn), . . . , µn−1(µn), µn) and

g∗(x, µ) =
n−1∑
i=1

µiki(x)gi(x),

with µi = µi − µi(µn). It then follows by the definitions of Gi,j and L∗i that

Γn−1 ∩Gi,j = (L∗i )+ ∩Gi,j 6= ∅,
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i ∈ {1, . . . , n − 1} and j ∈ {1, 2}. In this new parameter coordinate system the bump
functions ki still ensures that ∂di

∂µj
(µ) = 0 if i 6= j. Since ai > 0 it also follows that at

the origin of this new coordinate system we still have ∂di
∂µi

(0) > 0. Therefore, it follows
by induction that at least n− 1 crossing limit cycles γj(µ), j ∈ {1, . . . , n− 1}, bifurcates
near Γn−1 for arbitrarily small |µ|. We observe that γn(µn) persists for µ small enough.
�

6.8 Proof of theorem 6.9

Let Z0 = (X1, X2) be a planar non-smooth vector field with a discontinuity Σ = h−1(0)
and Γ = Γ2 be a polycycle composed by a hyperbolic saddle p1 ∈ A1 and a regular-
quadratic tangential singularity p2 ∈ Σ such that nu = 2 and ns = 1. Let also L1 and
L2 be the heteroclinic connections such that ω(Li) = pi, i ∈ {1, 2}, and without loss of
generality let us suppose L1 ∩ Σ = {x1,0} and L2 ∩ Σ = ∅. See Figure 6.20(a). Following
Section 6.5 we take any point x2,0 ∈ L2 and any small enough neighborhood U of Z0 and
define the displacement maps di : U → R near the point xi,0, i ∈ {1, 2}. Since p1 and p2
are both structural stable it follows from the previous sections that to describe any small
enough bifurcation of Γ it is enough to look at the two parameters β = (β1, β2) ∈ R2, 0
given by βi = di(Z), i ∈ {1, 2}. See Figure 6.20(b). Let ν < 0 < λ be the eigenvalues of
p1 = p1(Z0) and r1 = |ν|

λ
the hyperbolicity ratio of p1.

p1

p2 q1

L1

L2

Σ

(a)
p1

p2

β1 > 0

β2 < 0

Σ

(b)

Figure 6.20: Illustration of Γ unperturbed (a) and perturbed (b). Figure source: made
by the author.

Lemma 6.26. If (β1, β2) ∈ R2 is close enough to the origin, then following statements
holds.

(a) If r1 > 1, then the cyclicity of Γ is one and when a limit cycle bifurcate from Γ it is
hyperbolic and stable;

(b) If 1
2 < r1 < 1, then the following statements holds:

(i) The cyclicity of Γ is two and when two limit cycles bifurcates from Γ, then both
are hyperbolic and the inner one is stable while the outer one is unstable;

(ii) Let β∗ = (β∗1 , β∗2), β∗1 > 0, be such that two limit cycles exists. Then β∗2 < 0
and there exists at least one β2 ∈ (β∗2 , 0) such that a saddle-node bifurcation
happens between these two limit cycles at β = (β∗1 , β2);
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(c) If r1 <
1
2 , then the following statement holds:

(i) The cyclicity of Γ is two and when two limit cycles bifurcates from Γ, then both
are hyperbolic and the inner one is unstable while the outer one is stable;

(ii) Let β∗ = (β∗1 , β∗2), β∗1 < 0, be such that two limit cycles exists. Then β∗2 > 0
and there exists at least one β2 ∈ (0, β∗2) such that a saddle-node bifurcation
happens between these two limit cycles at β = (β∗1 , β2).

Proof. First observe that statement (a) follows directly from Theorem 6.7. Let Lsi =
Lsi (βi) and Lui = Lui (βi) be the perturbations of Li such that ω(Lsi ) = pi, i ∈ {1, 2},
α(Lu1) = p2 and α(Lu2) = p1. Let τi be a transversal section through Li at xi,0, σ1 be a
transversal section through L1 close enough to p1 and σ2 = Σ ∩ A. See Figure 6.21. Let

p1

p2

F2

F1

G1G2

Σ
y1 = 0

y1 = β1

x1 = 0
y2 = 0

y2 = β2

Figure 6.21: Illustration of the maps Fi and Gi, i ∈ {1, 2}, with β1 > 0 and β2 < 0.
Observe that the point p2 is equivalent to x2 = 0. Figure source: made by the author.

Gi : τi → σi and Fi : σi → τi−1 be given by the flow of Z. It follows from Sections 2.8 and
2.9 that we can assume

Gi(yi) = yi − βi, F−1
1 (y2) = xs1(A(β) + ϕ(y2, β)), F2(x2) = kx2

2 +O(x3
2),

with k > 0, A1(β) > 0 and s1 = 1
r1
. See Figure 6.21. Following [20] we define

H(x2) = G1 ◦ F2(x2)− F−1
1 ◦G−1

2 (x2)
= kx2

2 +O(x3
2)− β1 − (x2 + β2)s1(A(β) + ϕ(x2 + β2, β)),

(6.17)

and observe that

H ′(x2) = 2kx2 +O(x2
2)− s1(x2 + β2)s1−1(A(β) + ψ(x2 + β2, β)),

H ′′(x2) = 2k +O(x2)− s1(s1 − 1)(x2 + β2)s1−2(A(β) + ξ(x2 + β2, β)).
(6.18)

Therefore, if 1
2 < r1 < 1, then s1 − 2 < 0 and thus it follows from (6.18) that

lim
(x2,β)→0

H ′′(x2) = −∞

and hence at most two limit cycles can bifurcate from Γ, i.e. the cyclicity of Γ is at most
two. From Theorem 6.8 we have that there is some bifurcation which two limit cycles
bifurcates and thus the cyclicity of Γ is two. Moreover, since H ′′(x2) < 0 for ||(x2, β)||
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small enough it follows that when we have two limit cycles, then the inner one is stable
and the outer one is unstable and thus we have statement (b)(i).

Statement (b)(ii) follows from an analysis of the degrees of G1 ◦ F2 and F−1
1 ◦ G−1

2 .
Let β∗ = (β∗1 , β∗2), β∗1 > 0, be such that we have two limit cycles near Γ. Let 0 <
x2,1(β) < x2,2(β) be the respective zeros of H which gives those limit cycles and observe
that H ′(x2,1) > 0 and H ′(x2,2) < 0. Observe also that x2 +β2 > 0 is a necessary condition
for the well definition of H. Therefore, since H ′(x2,1) > 0 and 0 < s1 − 1 < 1 it follows
that β∗2 < 0. Moreover, since 1 < s1 < 2 it follows from (6.17) and (6.18) that H(x2) < 0
and H ′(x2) < 0 if |β2| is small enough. Then if we fix β1 = β∗1 and make β2 → 0 we will
have the collapse of x2,1 and x2,2 and thus the birth of a semi-stable limit cycle at some
β2 ∈ (β∗2 , 0).

Statement (c) is similar, just observe that r1 <
1
2 implies s1 > 2.

Lemma 6.27. The tangencies of the curves d∗1 = 0, d∗2 = 0 and γ at β = 0 are those
given by Figures 6.2, 6.3 and 6.4.

Proof. Since the tangential singularity p2 is structural stable it follows from Section 6.6
and Proposition 6.24 that d∗1(β) = β1 + f(β), with f(0) = ∂f

∂βi
(0) = 0, i ∈ {1, 2}, and

d∗2(β) =

 β2 + g(β), if r1 > 1,
β1 + g(β), if r1 < 1,

with g(0) = ∂g
∂βi

(0) = 0, i ∈ {1, 2}. Therefore, ∇d∗1(0) = (1, 0) and

∇d∗2(0) =

 (0, 1), if r1 > 1,
(1, 0), if r1 < 1.

Hence, the tangencies of the curves d∗1 = 0 and d∗2 = 0 at β = 0 are those given by
figures 6.2, 6.3 and 6.4. Let F = (F1, F2) be given by

F1(x, β1, β2) = H(x, β1, β2), F2(x, β1, β2) = ∂H

∂x
(x, β1, β2).

It follows from (6.17), (6.18) and from Section 2.8 that

lim
(x,β)→0

∂F1

∂β1
= −1, lim

(x,β)→0

∂F1

∂β2
= 0, lim

(x,β)→0

∂F2

∂β2
= −∞,

and that lim
(x,β)→0

∂F1
∂β1

is bounded for (x, β) near the origin. Therefore,

∂F

∂β1∂β2
=


∂F1

∂β1

∂F1

∂β2

∂F2

∂β1

∂F2

∂β2


is invertible for all (x, β) near the origin. Let (x∗, β∗1 , β∗2) small enough be such that
F (x∗, β∗1 , β∗2) = 0. In fact, it follows from Theorem 6.8 that we can take β∗ arbitrarily near
to the origin. It follows from the Implicit Function Theorem that there exist two unique
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functions β1 = β1(x) and β2 = β2(x), at least of class C1, such that F (x, β1(x), β2(x)) ≡ 0,
with βi(x∗) = β∗i , i ∈ {1, 2}. It also follows from the Implicit Function Theorem that

 β′1(x∗)
β′2(x∗)

 = −
[

∂F

∂β1∂β2

]−1

·


∂F1

∂x
∂F2

∂x

 . (6.19)

Since ∂F1
∂x

= F2 it follows from (6.19) that

dβ1

dβ2
= −∂F1

∂β2
·
(
∂F1

∂β1

)−1

. (6.20)

It follows from (6.17) that β∗2 → 0 implies (x∗, β∗)→ 0 and thus from (6.20) we have that

lim
β∗

2→0

dβ1

dβ2
= 0.

Hence, the tangency of the curve γ is the one given at Figures 6.3 and 6.4.

Remark 6.28. It follows from the uniqueness of the functions βi(x) of Lemma 6.27 that
βi, from statements (b)(ii) and (c)(ii) of Lemma 6.26, are also unique. Furthermore, as
we shall see, the restrictions β∗1 > 0 and β∗1 < 0 of statements (b) and (c) of Lemma 6.26
are in fact no restrictions at all since these conditions are necessary for the existence of
two limit cycles.

Proof of Theorem 6.9. First let us suppose r1 > 1. Then from Theorem 6.4 we know that
Γ is stable and it follows from Theorem 6.7 that if a limit cycle bifurcates from Γ, then it
is unique, hyperbolic and stable. Therefore, it follows from Theorem 6.7 that if β1 6 0,
β2 6 0 and β2

1 +β2
2 > 0, then a unique stable and hyperbolic limit cycle bifurcates from Γ

and thus we have phase portraits 8, 9 and 10. It also follows from the Poincaré-Bendixson
theory for non-smooth vector fields (see [10]) that if d∗1 < 0 or d∗2 < 0, then again a unique
stable and hyperbolic limit cycle bifurcates from Γ and thus we have phase portraits 7
and 11. By definition of d∗i = 0 it follows that if d∗1 = 0 or d∗2 = 0, then a new polycycle Γ∗
composed either by p1 or p2, respectively. Since Γ∗ is stable in both cases we can ensure
from Theorem 6.7 that no limit cycle bifurcates from it and hence we have phase portraits
6 and 12. Clearly if β2 > 0 and d∗2 > 0, then a sliding polycycle Γs composed by p1 and
p2 bifurcates from Γ, giving us phase portraits 2 and 13. The other phase portraits are
obtained in a similar way.

Let us now suppose 1
2 < r1 < 1. In this case it follows from statement (b) of

Lemma 6.26 that at most two limit cycles can bifurcate from Γ and in this case the
outer one is necessary unstable. Therefore, the phase portraits of the first, the second
and the third quadrant follows in a similar way to the previous case. Hence, we will focus
on the fourth quadrant. Phase portrait 9 follows from the Poincaré-Bendixson Theory
for non-smooth vector fields (see [10]) and from Statement (b) of Lemma 6.26. If d∗1 = 0,
then the polycycle Γ∗ composed by p1 is unstable and thus we have phase portrait 8.
From Theorem 6.7 a unique hyperbolic unstable limit cycle bifurcate from Γ∗ if d∗1 > 0
and thus we have phase portrait 7. Phases portrait 5 and 6 follows from statement (b)(ii)
of Lemma 6.26. The case r1 <

1
2 is similar to the previous two cases. �





7 CONCLUSION

We would like to point out that we are very impressed on how the systematic chasing
for convenient curves such that the flow crosses it in a convenient way proved to be a very
fruitful tool in the classification of the phase portraits of the planar reversible vector fields.
We also point out the qualitative simplification done in the Friedmann-Robertson-Walker
system, shrinking the dimensional from four to two and hence recovering all the theory of
planar vector fields. Finally, we point out the fact that polycycles in non-smooth vector
fields, at least when generic, behaves in a very similar way from its siblings in the smooth
realm.
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