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RESUMO 
 

Aglomerantes ativados alcalinamente (AAA) são obtidos da combinação de um precursor 

solido (geralmente um aluminosilicato) e uma solução alcalina de alta concentração. As 

vantagens de utilizar este novo tipo de aglomerante comparado ao cimento Portland, um 

aglomerante convencional, são as menores emissões de CO2, menor consumo de energia e 

a possibilidade de utilizar matérias prima renováveis e/ou resíduos. Neste sentido, este 

trabalho apresenta um novo resíduo da indústria da cada de açúcar: a folha de cana de 

açúcar. A folha apresenta um poder calorífico interessante; portanto, ela pode ser utilizada 

como biomassa para produzir energia através um processo de queima. Depois deste 

procedimento, é gerado um novo resíduo: a cinza de folha de cana de açúcar (CF). Esta 

cinza não apresenta uma destinação correta, então este trabalho tem como intenção utilizar 

esta cinza como material prima em AAA. A CF foi avaliada de duas formas: como 

precursor solido e como matéria prima para produzir a solução alcalina. No primeiro 

modo, a CF foi utilizada em sistemas combinados com a escória de alto forno (EAF) 

ativado com ambas soluções de NaOH e NaOH/silicato de sódio. No segundo modo, a CF 

foi utilizada como fonte de sílica para produzir a solução alcalina com o NaOH em AAA 

baseados em EAF. Os sistemas foram estudados através da resistência a compressão de 

argamassas e pelo estudo da microestrutura de pastas. Ensaios realizados para avaliar a 

microestrutura foram a difração de raios-X (DRX), espectroscopia de infravermelho por 

transformada de Fourier (EITF), análise termogravimétrica (ATG), microscopia eletrônica 

de varredura (MEV) e porosimetria por intrusão de mercúrio (PIM). Resultados dos 

ensaios mostraram que a CF melhorou as propriedades mecânicas dos AAA baseados em 

EAF nos dois modos, como precursor solido e como fonte de silício para a solução 

ativadora. Estes resultados permitem concluir que a CF pode ser utilizada em AAA, dando 

uma destinação ao resíduo. 

 

Palavras chave: Material alternativo. Material sustentável. Resistência à compressão. 

Estudos microestruturais. 

 
 

 



ABSTRACT 

Alkali-activated binders (AAB) are obtained from a combination of a solid precursor 

(generally an aluminosilicate) and a high concentrated alkaline solution. The advantages of 

using this new type of binder compared to the Portland cement, a conventional binder, are 

the less CO2 emissions, lower energy consumption and the possibility of using renewable 

and/or residues as raw materials. In this way, this work presents a new residue from the sugar 

cane industry: the sugar cane straw. The straw presents an interesting calorific value; 

therefore, it can be utilised as biomass to produce energy by a burning process. After this 

procedure, it is generated another waste: the sugar cane straw ash (SCSA). This ash does not 

have an appropriate destination, then this work intends to utilise this ash as raw material in 

AAB. SCSA was evaluated in both ways: as solid precursor and as raw material to produce 

the alkaline solution. In the first way, SCSA was utilised in combined systems with blast 

furnace slag BFS activated with both NaOH and NaOH/sodium silicate solutions. In the 

second one, the SCSA was utilised as silica source to produce the alkaline solution with 

NaOH in BFS-based systems. These systems were assessed by the compressive strength of 

mortars and by microstructural studies on pastes. Tests carried out to assesses their 

microstructure were X-ray diffraction (XRD), Fourier transform infrared spectroscopy 

(FTIR), thermogravimetric analysis (TGA), field emission scanning electron microscopy 

(FESEM), and mercury intrusion porosimetry (MIP). Results of the tests showed that the 

SCSA improved the mechanical properties of BFS-based AAB in both methods, as solid 

precursor and as silica source to produce the activating solution. These results allow to 

conclude that the SCSA can be utilised in AAB, giving it a suitable destination. 

Keywords: Alternative material. Sustainable material. Compressive strength. 

Microstructural studies. 
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1 INTRODUCTION 

Alkali-activated binders (AAB) are the new trend in the research of building 

construction materials. This type of material is obtained when a silico-aluminous material 

(also known as solid precursor) is combined with a high concentrated alkaline solution 

(activating solutuin) in appropriate proportions. The studies on this type of binder started in 

the last century with the purpose to reduce the Portland cement consumption. Authors 

highlighted some advantages of alkali-activated binders’ mixtures when compared to the 

Portland cement: similar or higher compressive strength, improved durability and, mainly, 

less CO2 emissions and energy consumption. However, these new kinds of binders present 

the desavantages of handling difficult due the high alkalinity, and the several proportions 

and factors to analyse that influence the mechanical properties of the material (for example, 

the solid precursor and alkaline solution compositions). 

Recent studies focused on the obtainment of new materials source (solid precursors 

and alkaline solution) for alkali-activated binders’ production. The usual materials used as 

solids precursors are the blast-furnace slag, fly ash and metakaolin. About the alkaline 

sources in the preparation of the activating solution, hydroxides and silicates are the most 

common activators. New materials that are being researched in the preparation of alkali-

activated binders are, in majority, residues from industry, agro-industry and building 

construction. This thesis presents a new agro-industry residue from sugar cane production in 

order to obtain an alkali-activated binder: the sugar cane straw ash (SCSA). 

The issue of sugar cane starts in the increase of its production in the last years in 

Brazil due the production of alcohol and sugar: in only ten years (from 2004/2005 to 

2014/2015), the increase was 64%. The state of Sao Paulo, where this research takes place, 

is the major sugar cane production in Brazil, which represents over than 50% of total 

production. Another important issue of the sugar cane is the harvesting process. Some years 

ago, the sugar cane harvesting used to be performed by a burning process in the cultivation 

area. However, an Agro-environmental protocol was signed to put an end on this burning 

procedure, making that the mechanized harvesting gains in importance on this scenario. In 

this type of harvesting, is generated a by-product that is composed by the dried and green 

leaves, which are mostly left on the cultivation field: the sugar cane straw. Due its interesting 
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calorific value, which is compared to the sugar cane bagasse, authors are studying new 

methods to collect and generate energy from this by-product. After this process to obtain 

energy from the straw, an ash is obtained: the sugar cane straw ash (SCSA). This residue 

does not present a suitable valorisation, and similar to other ashes from agro-industry (rice 

husk ash and sugar cane bagasse ash), it can be utilised in the building construction in alkali-

activated binders.  
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9 GENERAL CONCLUSIONS 

 

 
Sugar cane straw ash (SCSA) was successfully assessed as both solid precursor and 

silica source for the activating solution in alkali-activated binders based on blast furnace slag 

(BFS) with NaOH solutions.  

SCSA obtained from an autocombustion process showed high reactivity since early 

curing times (see Chapters 3 and 4). Studies of thermogravimetric analysis (TGA) and 

Fourier transform infrared spectroscopy (FTIR) on pastes of SCSA and calcium hydroxide 

(CH) showed that the ash consumed all the CH in the first 3 days of curing at 40 ºC. In the 

electrical conductivity tests, the SCSA was classified as medium reactivity (Chapter 3). 

Regarding to the use of the SCSA in mortars of Portland cement (as pozzolan) and blast-

furnace slag (alkali-activated binders), the ash high reactivity was observed after 3 days of 

curing, where the SCSA-mortars presented similar or higher compressive strength. 

As solid precursor in alkali-activated binders, SCSA partially replacing the BFS 

improved the alkali-activated mortars activated with NaOH for Na+ concentration of 4-10 

mol.kg-1 (see Chapters 5, 6 and 7). Compressive strength of SCSA-mortars activated with 

only NaOH reached higher values than the control with only blast-furnace slag/NaOH. In 

addition, the role of SCSA in the mixture was similar to the sodium silicate: SCSA mortars 

activated with only NaOH reached comparable compressive strength to a mortar with only 

BFS activated by both, sodium silicate and sodium hydroxide (see Chapters 5 and 6). 

Microstructural studies showed that the SCSA-containing mixtures presented a denser gel 

than one with only BFS and favoured the formation of zeolites. Therefore, the optimum use 

of SCSA in alkali-activated binders was replacing the BFS until 30% and using a Na+ 

concentration between 4-6 M  

In the last part of the thesis, SCSA was successfully utilised as silica source in 

sodium solutions to produce a BFS-based alkali-activated binders (see Chapter 8). A certain 

amount of SCSA was mixed with NaOH in a thermal bottle during a determined time to 

produce the activating solution. The optimum dissolution time was 24 hours, and the 

optimum amount of SCSA, represented by the SiO2/Na2O molar ratio of the solution, was 

1.46. Comparing the solution produced with SCSA/NaOH to other solutions, it presented 

similar better results in compressive strength tests to a solution prepared with only NaOH. 
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Related to other silica sources, SCSA/NaOH samples presented similar results to 

RHA/NaOH ones, and lower values when it was compared to the commercial sodium silicate 

and NaOH specimens. Microstructural analysis showed that the specimens produced from 

the SCSA-activating solution presented more similar results to the samples obtained from 

the sodium silicate/NaOH than the specimens produced by the activating solution with only 

NaOH.  




