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Abstract

The pion distribution amplitude (DA) can be related to the fundamental QCD
Green’s functions as a function of the quark self-energy and the quark—pion
vertex, which in turn are associated with the pion wave function through the
Bethe—Salpeter equation. Considering the extreme hard asymptotic behavior in
momentum space allowed for a pseudoscalar wave function, which is limited
by its normalization condition, we compute the pion DA and its second
moment. From the resulting amplitude, representing the field theoretical upper
limit on the DA behavior, we calculate the photon—pion transition form factor
Fo (Q?). The resulting upper limit on the pion transition form factor is
compared with existing data published by CLEO, BaBar and Belle
Collaborations.

Keywords: non-perturbative QCD, pion distribution amplitude, hadron
physics

(Some figures may appear in colour only in the online journal)

A few years ago new data were published [1, 2] for the y*y — z° process, where one of the
photons is far off mass shell (large 0?) and the other one is near mass shell (0? ~ 0). These
measurements of the photon—pion transition form factor ', « (Q?), taken in the single-tagged

two-photon e*e™ — ete7° reaction, were performed in a wide range of momentum transfer
squared (4-40) GeV?). At sufficiently high Q7 it is expected that the standard factorization
approach can be applied [3-5] (for a review, see [6]). The amplitude for this process at high
virtuality has the form
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FW*(QZ) = % /01 dx qo,r(x)Tf,{(x, Qz). (1)

This equation is obtained assuming factorization of the pion distribution amplitude (DA)
@, (x) and the hard scattering amplitude 7, },IZ (x, Q) given by [7, 8]

1

T}Z(x’ QZ) = (1 _ X)Q2

[1+ 0] @

However the BaBar Collaboration data [1] seems to be in contradiction with this
approach since, in accordance with perturbative QCD (pQCD), Q°F o (Q* = o0) should be
limited to the value 2f, =~ 0.185 GeV [8], hereafter called the BL limit. At the same time, the
Belle Collaboration data [2] presented in the same range of transferred momenta show that the
pion transition form factor may not increase as fast as shown by the BaBar results.

As a consequence of these experiments there were many theoretical papers speculating
why the data should (or not) obey the BL limit [9-19]. The first attempt to explain the BaBar
result can be found in [20]. Among these there were proposals claiming that the pion dis-
tribution amplitude should be modified [9-11, 16], leading to a broader or flatter distribution
in the place of the asymptotic form gaf (x) = 6x(1 — x) [21]. A flat DA would be consistent
with the BaBar data, although a field theoretical support for such possibility is still missing.
Some papers claim that other transition form factors of heavier mesons are compatible among
themselves and with the saturation required by factorization theorems obtained from pQCD
[13, 22]. However, for heavier mesons than the pion the DA may be more peaked away from
the end points [12]. A common statement in all papers is the need for more data to settle this
problem.

Meanwhile, the pion transition form factor is the most sensitive physical quantity to
observe a non-perturbative contribution to the DA. Other quantities, for instance, like the pion
form factor, may already contain a hard scattering amplitude at leading order with a soft
behavior, due to the effect of extra coupling constants or gluon propagators [23]. This means
that they do not lead to such a simple integral over a DA as the one shown by equation (1). As
claimed in [24], we may assume that at present there is no definite conclusion on which is the
asymptotic form of the pion DA, and it is possible that in the future a combined analysis of
data of the processes involving pions will shed light on the pion distribution amplitude [25].
Notwithstanding, considering the possibility that a flatter pion DA seems to be favored by the
BaBar data [9-11, 16] , we can establish a field theoretical limit on how flat this DA can be,
and, consequently, compare this limit to the experimental data. In order to do this we will
study the DA dependence on the non-perturbative dynamics of the theory, and ultimately on
the asymptotic behavior of the pion-quark vertex and the quark self-energy.

Like in the Nambu—Jona-Lasinio four-fermion approach, in QCD or any asymptotically
free non-Abelian gauge theory, the fermion masses are dynamically generated along with
bound state Goldstone bosons (the pions). The dynamical quark mass (X (p?)), giving by the
Schwinger—Dyson equation is exactly identical to the pseudoscalar Bethe—Salpeter equation
(BSE) at zero momentum transfer (@Dé’s (P, @) 4-0), as demonstrated by Delbourgo and
Scadron [26]

() » Dhsp @) | g0, 3)

which is a consequence of the fact that they are related through the Ward—Takahashi identity.
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The homogeneous BSE can be, in general, written as

4

© d
ok Py =i [ (2734 K (k: 4. P)S(q)®(g: P)S(q). 4)

where the amplitude depends on the quarks total (P) and relative (g) momenta, with
qg.=q+nP, g =qg— 0 —nP, and 0 <y <1, where n is the momentum fraction
parameter. In equation (4) K is the fully amputated quark—antiquark scattering kernel, S (g;)
are the dressed quark propagators, and the homogeneous BSE is valid on-shell, i.e. P2 = 0 in
the pion case. Note that we suppressed all indices (color, etc...) in equation (4).

The BSE, equation (4), is an integral equation that can be transformed into a second order
differential equation. The two solutions of the differential equation can be found, for example,
in [27, 28] and are characterized by one soft asymptotic solution

3
oR(p?) ~ =X (p? > ) ~ 5, (5)
p
and by the extreme hard high energy asymptotic behavior of a bound state wave function
o (p*) ~ =1 (p* > u2) ~ ﬂ[l + be?(p?) ln(pz/ﬂz)]_y, (6)

where b = (11N, — 2ny) / 487%, ¢ =4/3 is the Casimir eigenvalue for quarks in the
fundamental representation (N, = 3 is the number of colors, and ny is the number of quark
flavors), and y = 3¢/167%b. The asymptotic expression shown in equation (6) was determined
in the appendix of [29] and it satisfies the Callan—Symanzik equation. This last solution is
constrained by the BSE normalization condition [30], which implies y > 1/2, or ny > 5
[27, 31], otherwise it is not consistent with a possible bound state solution in a SU (3) non-
Abelian gauge theory. We will take ny = 6 as will be explained later. This solution is one

alternative to the soft one (X (p?) ~ 1/p?) [32] which leads to the standard DA golfs (x).
Nowadays it is known that we may have solutions with a momentum behavior varying
between equation (5) and equation (6) depending on the theory dynamics [31, 33]. Note that
the BSE can be transformed into a second order differential equation. This equation has two
possible solutions, one that asymptotically behaves as 1/p? as in equation (5) and the other
one as [In (p?)]™ (equation (6)). However this result comes out from the homogeneous BSE.
The non-homogeneous BSE also includes a normalization condition, as discussed in
[27, 30, 31], that is obeyed by equation (5) but when applied to equation (6) implies Ny > 5.
This constraint appears because the wave function is very ‘hard’, i.e. decreases very slowly
with the momentum and cannot be normalized (square integrable) if y < 1/2. This condition
on y gives the bound Ny > 5. This limit on y was obtained by Mandelstam in [30], in QCD for
the first time in [27] and recently, in a different context, in [31]. If Ny < 6 only the solution of
equation (5) exists, because it would be the only one obeying the BSE normalization
condition. This also means that if Ny > 6 QCD may have a chiral broken phase whose self-
energy is given by equation (6). Nowadays it is known that the chiral phase diagram for a
non-Abelian theory may change considerably as we change the number of flavors. For
instance, if the theory contains contributions of higher order operators it may have its quark
self-energy or bound state solution varying between equations (5) and (6)as discussed in [33].
We are just saying that if Ny > 5 equation (6) is a possible bound state solution, and the
hardest one that we may have.

It has been argued that equation (6) may be a realistic wave function in a scenario where
the chiral symmetry breaking is associated to confinement and the gluons have a dynamically
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generated mass [31, 34, 35]. This solution also appears when using an improved renorma-
lization group approach in QCD, associated to a finite quark condensate [36], and it mini-
mizes the vacuum energy as long as ny > 5 [37]. Moreover, this specific solution is the only
one consistent with Regge-pole like solutions [28]. The important fact is that this is the
hardest (in momentum space) asymptotic behavior allowed for a bound state solution in a
non-Abelian gauge theory, and it is exactly for this reason that the constraint on y arises from
the BSE normalization condition. No matter if this solution is realized in nature or not, it will
lead to the flattest pion DA, any other flatter distribution than this one cannot be a realistic
BSE wave function, and would not be consistent with a composite pion. A totally flat DA can
only be related to a fundamental pion. A realistic DA, in principle, should be related to a
solution of the BSE and should obey a normalization condition peculiar to a well behaved
wave function.

The infrared behavior of the gap equation (or BSE) is approximately constant at small
momenta, E(p2 — 0) ~ u, where p, of order of a few hundred MeV, is the characteristic
scale of dynamical quark mass generation. In order to compute the pion DA we will perform
an integral over the wave function in the full range of momenta (i.e. up to p> — oo, this is
why we will consider ny= 6). To obtain the extreme field theoretical limit on the pion DA, we
shall also work with a simple interpolating expression that roughly reflects the full behavior of
the ‘hardest’ quark self-energy (or BSE solution) discussed in the previous paragraphs,
namely [31, 35]

2 o2\
2(p?) :ﬂ[l + bg*(4?) 1n(7p A )] . 7)
U
Note that the u factor introduced into the logarithm denominator leads to the right infrared
(IR) behavior (X (p*> — 0) = p). Furthermore, this is just one possible ansatz for the full
behavior of the self-energy and other possible interpolations between the IR and ultraviolet
(UV) behaviors are possible, but as long as X (p?) shows the logarithmic UV behavior our
final result will not change. The coupling constant g” is calculated at the chiral symmetry
breaking scale u, and given by

1
2(k2) = , 8
£(+) b1n[(k2+4m§)/A5CD] ®
which is an infrared finite coupling determined in QCD where gluons have an effective
dynamical mass m, [38] and is consistent with the models of [31, 34, 35]. Aqcp is the QCD
characteristic scale.
Within this approach, the pion distribution amplitude at leading twist, as a function of the
quark self-energy and the pion—quark vertex, is given by [39]

N. © di oo F(u+i/1)€,u—i/1x)
=< hadd d
%) 4n’f? /_m 2 /0 “Du - i2x)D(u + Ax)
X [xZ(u + %) + X2 (u — i/lx)], 9)

where the u-variable plays the role of the quark transverse momentum squared, Ax and —A%
are the longitudinal projections of the quark momentum on the light cone directions
(¥ = (1 — x)), X (u) is the dynamical quark mass given by (7),

D) = u+ 2*®u), (10)
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and the function F is the momentum dependent part of the quark—pion vertex, which can be
approximated by F (p?, p'?) = X (p*)Z (p'?), where p and p’ are the quark and anti-quark
momenta. The pion DA at leading twist is normalized as

/Oldxq;,(x)=1. 11

It is also useful to write down the expression for the pion DA in the form found in [11]
(the so called Schwinger representation)

N, o dL L2 _
X)=—— —e“Y| x0,,(xL)o (XL
w0 = [ T ot (xL)
T
+ (x & f)], (12)
where o (a) and o6, (a) are the Laplace transformations of

21/2 (u) and 23/2(1/!) ,
D (1) D (u)

correspondingly. For example,

21/2 (u)
D (u)

= foo dae ™o (o). 13)
0

For the model calculations we take the following parameters: p = 100 MeV,
Aqgcp = 300 MeV and m, = 321.18 MeV [40]. To describe figure 1 we used Agcp = 300
MeV and for ny= 6 a more appropriate value would be Aqgcp ~ 200 MeV [41]. However it
should be noticed that the result is more dependent on the ratio my/Aqcp than on the proper
Aqcp value. We also emphasize that the largest origin of uncertainty in our result is the
assumption of equation (7) for the self-energy in the full range of momenta. In the inter-
mediate and infrared region of momenta equation (7) may give a poor description of the self-
energy, although the good point is that the flat DA behavior is totally credited to the hard
asymptotic self-energy behavior. Within the model considered we take the expression for the
pion decay constant in the so-called Pagels—Stokar form [42]

N. o ux 1
£ = 4_,,sz du MD2EZ;(Z(M) - 5uZ/(u)), (14)

where X'(u) = dX (u)/du. With the given set of parameters we obtain f, = 92.4 MeV.
Actually, it is possible to obtain this f, value with different values for y and m,, just changing
the formula that interpolates between the IR and UV regimes, although these values should
stay around a few hundreds of MeV.

The pion DA obtained with above parameters and equation (7) and (9) is shown in
figure 1; for comparison we also draw the asymptotic wave function ¢:" (x). The DA turns out
to be quite flat, and we have not observed any significant variation as we change m, and u as
long as we do not modify the f, value in equation (9) and maintain the logarithmic UV
behavior, which is at the origin of the flat DA behavior. The DA flatness is totally dependent
on the logarithmic behavior of the self-energy.

The asymptotic behavior as x — 0 for the model considered here is given by

1 —y/2
t/;,(x—>0)~(1n —) , (15)
X
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Figure 1. Pion DA computed with equations (9) and (7), and using the parameters
mg = 322 MeV and pu = 100 MeV (solid curve). The perturbative-QCD asymptotic

pion DA, ¢2*(x) = 6x (1 — x), is shown by the dashed curve for comparison.

where ¢, (x = 0) = ¢, (x = 1) = 0. This behavior is actually the expected one for a pion DA

with a vertex function F (p?, p,2) similar to ours, where F (p?, prz) goes to zero in the limit
p’ — oo [11]. In the appendix we determine the asymptotic behavior shown in equation (15).

Our pion DA numerical result can be reasonably reproduced by using the normalized
form

rQ + 2e)

(1 = x)°, 16
r2(1+e)x( . 1o

@ (x) =
where € =~ 0.024802. However, it is worth noting that the calculations performed in this work
have been carried out using numerical values of the pion DA obtained from equation (9).

The leading asymptotic behavior of the form factor is expressed through the pion DA
(16) as [11]

F ey (0: 02, 0) sz / q)”() (17)

If we were considering a totally flat DA this integral would diverge. However, as emphasized
by Radyushkin [9], the finite size R & 1/M of the pion should provide a cut-off for the x
integral. Therefore the xQ” in the denominator of equation (17) will be changed as

x0? = xQ* + M>. (18)

In principle the factor M should be related to the dynamical quark mass. It was also proposed
by Radyushkin that M could be treated as an effective gluon mass. Indeed the meson radius
may have a deep connection with the effective gluon mass as discussed in [43]. Therefore,
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Figure 2. The photon—pion transition form factor F i (Q?) computed with the extreme

DA calculated in this work. The continuous red curve is the limit obtained with
equation (19). The horizontal hatched area correspond to the asymptotic BL limit. The
experimental data are taken from the CLEO (), Belle (°) and BaBar (e)
Collaborations.

regardless of if we have one case or another, the transition form factor will be given by

1
Fay(0:0%0) =21, [ dxm. (19)

M being a dynamical mass should have a momentum dependence showing the decrease of the
mass with the momentum. However when xQ? is small we can safely substitute M (xQ%) by M
in equation (19), and for large xQ? the momentum behavior of M (xQ?) is negligible. The
result for the transition form factor given by equation (19) is shown in figure 2. In figure 2 we
are just assuming M = 320 MeV regardless of if this is a quark or gluon dynamical mass. We
are neglecting the effects of the QCD evolution in equation (19) and, consequently, in
figure 2, because, as verified by Radyushkin [9], these effects are small for such a flat DA.

The result of figure (2) for the photon-pion transition form factor can be compared to the
parameterization fit of the BaBar [1] and Belle [2] Collaborations,

o Y
0| F,ppe(22) =A(m) ’ (20)

where A = 0.182 + 0.002 GeV and g = 0.25 + 0.02 for BaBar, and A = 0.169 + 0.006
GeV and g = 0.18 + 0.05 for Belle.

With our numerical pion DA we can also compute the second moment of the DA, which
is given by
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<§2>(Q2)=f0l dr ¢, (x, 0?)22, 1)

where £ = (2x — 1). Our result can be compared to the lattice value (£2) = 0.28(1)(2) [44],
where the first error is statistical and the second is systematic. The (£2) lattice value has been
computed at the scale 02 = 2.5 GeV?, while our DA calculation is obtained at the scale of the
chiral symmetry breaking. Since the DA evolution with the momentum can only diminish the
IR value of the integral in equation (21) we can consider our result as an upper limit on the
value of the second moment of the DA, i.e.

(£%) < 0.329, (22)

which is the highest value for all the parameters that we have considered.

Radyushkin [9] and Polyakov [10] have proposed a flat behavior for the pion DA in the
light of BaBar data. This behavior, if it indeed happens in nature, should be a justified field
theoretically. We have verified that a flat behavior for the pion DA is totally dependent on the
asymptotic UV logarithmic behavior of the self-energy. When the pion DA is calculated with
equation (9) using softer quark self-energies the result turns out to be more peaked at x = 0.5.
The effect of the self-energy behavior at small and intermediate momenta are erased by the
normalization condition equation (11).

The high energy limit of the pion transition form factor with a flat DA must have a
natural cut-off (M) as proposed by Radyushkin [9] and Polyakov [10], and this one was
introduced by us in equation (19). We have assumed a cut-off of the order of the dynamical
masses of the theory, while in [9, 10] these values are quite high and difficult to associate to
some physical scale. This is why our calculation can only be considered as an upper limit on
the pion transition form factor. If we had assumed a larger M value we would have a better
agreement with the BaBar data. Of course, radiative corrections may also bring down the red
curve in figure 2 implying a better adjust of the data. Hence our result provides a field
theoretical limit on the pion DA and transition form factor based on the hardest asymptotic
quark self-energy allowed in QCD. We also obtained a limit on the second moment of the
pion DA compatible with the one of recent QCD lattice simulation.
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Appendix

Let us find the small x behavior of ¢, (x) by using the Schwinger representation (12). We also
make the following approximation for the denominators of the integrand

D(p?) =p* + 22(p*) = Di(p?) = * + K.
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Then, first we need to find the Laplace transformation of the factor X!/ 2( pz) / D, ( p2)

Zl/z(pz) u”2 1
Dy ( p? PR ~ 2 .2\T7?
(»?) L+ 5| 2K
u
L_ daa?’?-
p*+ it L

stz

12 ab
H L daa?’>~ e~ H
P+ P+

1/2

daar? e ( 12 ab
A (#)
g

r(1+ab ¢ ¢
72

7/2 / dﬂe—ﬁp e’
[ e
y/zf(l + a)

E/dﬁe_ﬂ”zGuz(ﬁ),

where b = bg? and

ar’2-1 (Mzﬁ)"

1 [¢5) _
G = e‘/’”zﬂ — / dae®
1) = rd+a)

b;//2 I"

Similarly we obtain the Laplace transform of the factor X3 2( pz) / D, ( pz) as

3y2-1( ,29\*
2 /43/2 1 /'°° dae_a/ga ’ ('u ﬂ)

G =e
2(F) 572 Ly rd+a

Next we substitute these expressions in (12) keeping in mind that we are interested in the
x — 0 behavior. Then one has for the integrand
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)TGO,m(XL, JTL) = )TG]/z(xL)Gyz()TL)

x—0 —L? 1z

P —
2 MY B

[ a0
a (04

I'id+a)
3yr2-1( 2
/ ﬂ —/f/bﬂ (ﬂ L)
ra+p
and for the pion DA

N © dL
zf f TG()’m(xL, _YL)

0 2
Nc / dLe_Lﬂz U

4n’f? L br, y2l3,

@ (x— 0)=

/ dae—a/b a?’/z l(ﬂ XL)

r'd+a)
3y2-1( 2
[
I'a+p
= NC ﬂz
4”2fﬂ2 Ezrl}/zlfwz

(o) —
dae—a/hay/Z— lxaf ((I),

where

I'(x+p)
rd+a)ld+p)

fla) = /°° dpeP/Bpdr2-1
0
In the asymptotic regime x — 0, we can take f () at @ = 0 and obtain

N 2 _ —y/2
px—>0) ~ ———F (1+blnl) .
4% b (3y/2 — 1) X

This is the result given above in equation (15). Note, that this last result is proportional to X'/?
with the argument ( p*+ ﬂz) / u~ of log substituted by 1/x. If y < 2 then the convergence to
this asymptotic behavior is rather slow.
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