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Abstract. In this paper some aspects on chaotic behavior and minimality in planar
piecewise smooth vector fields theory are treated. The occurrence of non-deterministic
chaos is observed and the concept of orientable minimality is introduced. Some relations
between minimality and orientable minimality are also investigated and the existence of
new kinds of non-trivial minimal sets in chaotic systems is observed. The approach is
geometrical and involves the ordinary techniques of non-smooth systems.

1. Introduction
Piecewise smooth vector fields (PSVFs) have become certainly one of the common
frontiers between mathematics and physics or engineering. Many authors have contributed
to the study of PSVFs (see for instance the pioneering work [5] or the didactic works
[1, 10], and references therein about details of these multi-valued vector fields). In
our approach Filippov’s convention is considered. So, the vector field of the model is
discontinuous across a switching manifold and it is possible for its trajectories to be
confined onto the switching manifold itself. The occurrence of such behavior, known
as sliding motion, has been reported in a wide range of applications. We can find
important examples in electrical circuits having switches, in mechanical devices in which
components collide with each other, in problems with friction, sliding or squealing, among
others (see [1]).

For smooth vector fields there is a very developed theory nowadays, mainly in the planar
case. In such environment, questions about chaotic behavior and minimality, for instance,
are completely answered. Indeed, the Jordan curve theorem assures that there is no chaotic
behavior in planar systems and the Poincaré–Bendixson theorem says that for a given flow
the minimal sets are just equilibria or limit cycles. Nevertheless, in higher dimension,
while minimal sets are described by the Denjoy–Schwartz theorem (under some suitable
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hypothesis; see [7]), chaotic systems have been intensively studied and yet a final theory
is still far from being reached.

A very interesting and useful subject is to study these kind of objects in the PSVF
scenario. Furthermore, we must observe that chaotic behavior and non-trivial minimality
have been little studied in the PSVF literature. In three-dimensional systems, some results
on chaotic behavior were obtained by Colombo and Jeffrey [3, 8]. As far as we know,
chaos has not been treated in planar PSVFs apart from the particular example exhibited in
[8]. In addition, some questions on non-trivial minimality were provided in [2] for planar
PSVFs.

The specific topic addressed in this paper concerns the occurrence of chaos in planar
PSVFs and some distinct definitions of minimal sets. Moreover, we study the occurrence
of non-trivial minimal sets different from those presented in [2]. We stress that a trivial
minimal set is either an equilibrium point or a closed periodic orbit. For smooth vector
fields this is a very important subject because minimal sets are an essential part of limit
sets. As far as the authors know, a first study about the minimal set theory for PSVFs and a
discussion about the validity of the Poincaré–Bendixson theorem for PSVFs is given only
in our previous paper [2]. In [2] we gave a definition of minimal sets for the PSVF scenario
and exhibited non-trivial minimal sets for such systems with sliding motion. Moreover, we
showed that an analogous theorem to the Poincaré–Bendixson theorem for PSVFs without
sliding motion can be achieved.

Following the approach in [2], here we present some special PSVFs and prove the
existence of compact invariant sets with chaotic flow. Actually, these sets will be non-
trivial minimal sets having no symmetry. We also propose definitions of minimal sets for
positive (and negative) flow of PSVFs (or orientable minimality) and study some relations
between them and the definition of a minimal set established in [2]. With these new
definitions we analyze the occurrence of new kind of non-trivial minimal sets for PSVFs
defined in R2 and the validity of a theorem analogous to the Poincaré–Bendixson theorem.

The paper is organized as follows: in §2 some concepts of the standard theory on PSVFs
and a brief introduction about Filippov systems are introduced. In §3 the results of the
paper are presented into two parts: first, in §3.1, the occurrence of chaos in a particular
set is verified. Later, in §3.2 definitions of minimal sets for positive (and negative) flow of
PSVFs are established, some correspondences between them are studied and the presence
of chaotic behavior in some minimal sets under these definitions are examined. Moreover,
a theorem relating orientable minimality and chaos is presented. Finally, in §3.3 a short
conclusion of the work developed in the present paper is presented.

2. Preliminaries

Let V be an arbitrarily small neighborhood of 0 ∈ R2 and consider a codimension-one
manifold 6 of R2 given by 6 = f −1(0), where f : V → R is a smooth function having
0 ∈ R as a regular value (i.e. ∇ f (p) 6= 0, for any p ∈ f −1(0)). We call 6 the switching
manifold that is the separating boundary of the regions 6+ = {q ∈ V | f (q)≥ 0} and
6− = {q ∈ V | f (q)≤ 0}. Observe that we can assume, locally around the origin of R2,
that f (x, y)= y.
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FIGURE 1. Filippov’s convention.

Designate by χ the space of Cr -vector fields on V ⊂ R2, with r ≥ 1 large enough for
our purposes. Call � the space of vector fields Z : V → R2 such that

Z(x, y)=
{

X (x, y) for (x, y) ∈6+,
Y (x, y) for (x, y) ∈6−,

(1)

where X = (X1, X2), Y = (Y1, Y2) ∈ χ . The trajectories of Z are solutions of q̇ = Z(q)
and we accept it to be multi-valued at points of 6. The basic results of differential
equations in this context were stated by Filippov in [5], that we summarize next. Indeed,
consider Lie derivatives

X · f (p)= 〈∇ f (p), X (p)〉 and X i
· f (p)= 〈∇X i−1

· f (p), X (p)〉, i ≥ 2

where 〈.,.〉 is the usual inner product in R2.
We distinguish the following regions on the discontinuity set 6:

(i) 6c
⊆6 is the sewing region if (X · f )(Y · f ) > 0 on 6c;

(ii) 6e
⊆6 is the escaping region if (X · f ) > 0 and (Y · f ) < 0 on 6e;

(iii) 6s
⊆6 is the sliding region if (X · f ) < 0 and (Y · f ) > 0 on 6s .

The sliding vector field associated to Z ∈� is the vector field Z s tangent to 6s and
defined at q ∈6s by Z s(q)= m − q with m being the point of the segment joining q +
X (q) and q + Y (q) such that m − q is tangent to 6s (see Figure 1). It is clear that if q ∈
6s , then q ∈6e for−Z and then we can define the escaping vector field on 6e associated
to Z by Z e

=−(−Z)s . In what follows we use the notation Z6 for both cases. In our
pictures we represent the dynamics of Z6 by double arrows.

In what follows we present the definition of local and global trajectories for PSVFs.
Before that, we remark that a tangency point of system (1) is characterized by
(X. f (q))(Y. f (q))= 0. If there exist an orbit of the vector field X (or Y ) reaching q
in a finite time, then such tangency is called a visible tangency for X (respectively Y ).
Otherwise we call q an invisible tangency for X (respectively Y ). In addition, a tangency
point p is singular if p is a invisible tangency for both X and Y . On the other hand, a
tangential singularity p is regular if it is not singular.

The definition of local trajectory can also be found in [6].

Definition 1. The local trajectory (orbit) φZ (t, p) of a PSVF given by (1) is defined as
follows.
• For p ∈6+\6 and p ∈6− \6 the trajectory is given by φZ (t, p)= φX (t, p) and

φZ (t, p)= φY (t, p) respectively, where t ∈ I .
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• For p ∈6c such that X · f (p) > 0, Y · f (p) > 0 and taking the origin of time at p,
the trajectory is defined as φZ (t, p)= φY (t, p) for t ∈ I ∩ {t ≤ 0} and φZ (t, p)=
φX (t, p) for t ∈ I ∩ {t ≥ 0}. For the case X · f (p) < 0 and Y · f (p) < 0 the
definition is the same reversing time.

• For p ∈6e and taking the origin of time at p, the trajectory is defined as
φZ (t, p)= φZ6 (t, p) for t ∈ I ∩ {t ≤ 0} and φZ (t, p) is either φX (t, p) or φY (t, p)
or φZ6 (t, p) for t ∈ I ∩ {t ≥ 0}. For the case p ∈6s the definition is the same
reversing time.

• For p a regular tangency point and taking the origin of time at p, the trajectory is
defined as φZ (t, p)= φ1(t, p) for t ∈ I ∩ {t ≤ 0} and φZ (t, p)= φ2(t, p) for t ∈
I ∩ {t ≥ 0}, where each φ1, φ2 is either φX or φY or φZ6 .

• For p a singular tangency point φZ (t, p)= p for all t ∈ R.

The following definitions were stated in [2].

Definition 2. A global trajectory (orbit) 0Z (t, p0) of Z ∈ χ passing through p0 is a union

0Z (t, p0)=
⋃
i∈Z
{σi (t, pi ) | ti ≤ t ≤ ti+1}

of preserving-orientation local trajectories σi (t, pi ) satisfying σi (ti+1, pi )= σi+1

(ti+1, pi+1)= pi+1 and ti →±∞ as i→±∞. A global trajectory is a positive
(respectively, negative) global trajectory if i ∈ N (respectively, −i ∈ N) and t0 = 0.

Definition 3. A set A ⊂ R2 is invariant for Z if for each p ∈ A and all global trajectory
0Z (t, p) passing through p it holds 0Z (t, p)⊂ A.

Definition 4. Consider Z ∈�. A set M ⊂ R2 is minimal for Z if:
(i) M 6= ∅;
(ii) M is compact;
(iii) M is invariant for Z ;
(iv) M does not contain proper subset satisfying (i)–(iii).

In the next section we present the main results of the paper.

3. Main results
3.1. Non-deterministic chaos in planar PSVFs. Since the dynamic on sliding and
escaping regions are set-valued, following the previous nomenclature of [3] and [9], it
is non-deterministic. In fact, as far as we know, the definition of non-deterministic chaos
for PSVFs was first introduced in [3], where the authors adapt the classical definition of,
for example [9], to this context. Of course, the definition must contemplate topological
transitivity and sensitivity to initial conditions. For this purpose, consider the following
definitions.

Definition 5. System (1) is topologically transitive on an invariant set W if for every pair
of non-empty, open sets U and V in W , there exist q ∈U , 0+Z (t, q) a positive global
trajectory and t0 > 0 such that 0+Z (t0, q) ∈ V .
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p– p p+ 1–1

FIGURE 2. The minimal set 3. The PSVF Z = ((1,−2x), (−2, 4x3
− 2x)) is chaotic on it.

Definition 6. System (1) exhibits sensitive dependence on a compact invariant set W if
there is a fixed r > 0 satisfying r < diam(W ) such that for each x ∈W and ε > 0 there
exist a y ∈ Bε(x) ∩W and positive global trajectories 0+x and 0+y passing through x and
y, respectively, satisfying

dH (0
+
x , 0

+
y )= sup

a∈0+x ,b∈0
+
y

d(a, b) > r,

where diam(W ) is the diameter of W and d is the Euclidean distance.

As observed in [3], the two previous definitions coincide with those used for smooth
systems when the flow is single-valued, making this a natural extension for a set-valued
flow. Now we define a non-deterministic chaotic set.

Definition 7. System (1) is chaotic on a compact invariant set W if it is topologically
transitive and exhibits sensitive dependence on W .

In what follows we present a chaotic set coming from a non-trivial minimal set.

THEOREM 8. Consider Z = (X, Y ) ∈�, where X (x, y)= (1,−2x), Y (x, y)=
(−2, 4x3

− 2x) and 6 = f −1(0)= {(x, y) ∈ R2
| y = 0}. Then the planar PSVF Z

is chaotic (see Figure 2) on the compact invariant set

3= {(x, y) ∈ R2
| −1≤ x ≤ 1 and x4/2− x2/2≤ y ≤ 1− x2

}. (2)

Before proving Theorem 8 we present the following lemma. It will be fundamental in
the proof of Theorem 8.

LEMMA 1. Consider the set3 defined in Theorem 8. Then, for any x, y ∈3, there exist a
positive global trajectory 0+(t, x) passing through x and t0 > 0 such that 0+(t0, x)= y.

The previous lemma says that any two points in 3 can be connected by some positive
global trajectory. Its proof is straightforward if we observe that a global trajectory of
any point in 3 meets p for some time t∗, as the authors argued in [2]. Now we prove
Theorem 8.

Proof of Theorem 8. In order to prove that the PSVF Z is topologically transitive on3, we
observe that 3 is compact and invariant since it is minimal (see [2, Proposition 1]). Now
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consider non-empty open sets U and V in 3. Since U and V are non-empty, there exist
at least an element λ1 in U and another one λ2 in V . By Lemma 1, there exist a positive
global trajectory 0+(t, λ1) passing through λ1 and t0 > 0 such that 0+(t0, λ1)= λ2 ∈ V .
Consequently the PSVF Z is topologically transitive on the invariant set 3.

Now we prove that Z exhibits sensitive dependence on 3. Indeed, take m = diam(3)
and consider r = m/2> 0. Since r < m, then there exists two elements a and b in 3 such
that d(a, b) > r . Now consider x ∈3, ε > 0 and fix y ∈ Bε(x) ∩3. By Lemma 1 there
exist positive global trajectories 0+Z (t, x) of x and 0+Z (t, y) of y and numbers t1, t2 > 0
such that 0+Z (t1, x)= a and 0+Z (t2, y)= b. Then dH (0

+

Z (t1, x), 0+Z (t2, y))= d(a, b) > r
and consequently Z exhibits sensitive dependence on 3. Thus, the planar PSVF Z is
chaotic on the invariant compact set 3.

We should note that apart of topologically transitive and sensitive dependence, the
classical definition of chaos given by Devaney in [4] demands also that periodic trajectories
of the considered system are dense in 3. However, system Z exhibited in Theorem 8
also presents such a property, as we can see in Theorem 10. Before that, we introduce
the notion of periodic trajectory for PSVF. Actually, it is analogous to the definition of
periodic trajectory for smooth systems.

Definition 9. Let 0Z (t, q) a global trajectory of the PSVF Z = (X, Y ). We say that 0Z is
periodic if 0Z is periodic in the variable t , i.e. if there exist T > 0 such that 0Z (t + T, q)=
0Z (t, p), for all t ∈ R.

THEOREM 10. Consider Z and3 as presented in Theorem 8. The periodic trajectories of
Z are dense in 3.

Proof. The proof is completed if we show that for every point x ∈3 passes a periodic
trajectory of Z . In order to see that, consider σ0 the closed arc connecting point x with
itself (σ0 6= {x}). The existence of such arc is due to Lemma 1. Then the global trajectory

0Z (t, x)=
⋃
i∈Z
{σi (t, x) | ti ≤ t ≤ ti+1}

satisfying σi = σ0 for all i ∈ Z is t1-periodic and passes through x . Observe that
σi (kt1, x)= x , for all k ∈ Z and for all i ∈ Z. �

The concepts of chaos in PSVF are also discussed through the next section, where we
present new examples of chaotic PSVF and an interesting relation between chaotic PSVF
and orientable minimality.

3.2. Orientable minimality and chaos. In the recent theory of PSVFs there exist a lot
of examples where the dynamics in the non-smooth context is richer than their smooth
analogous. It happens basically due to the non-existence of a theorem that assure the
uniqueness of a trajectory crossing the switching manifold. In fact, the orbit passing
through a sliding or escaping segment on the switching manifold can run out from
such segment when the time goes to future or past. Supported by these facts, in the
present section we introduce some definitions concerning minimal sets by distinguishing
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invariance for positive and negative global trajectories. That is what we call orientable
minimality. The advantage by taking into account such approach is to consider some
interesting sets that are not properly minimal but also present invariance and compactness
in some sense.

In addition, we will verify the existence of some minimal sets that do not have a canard
structure, i.e. coincidence of a visible and an invisible tangencies separating a sliding from
an escaping region on the switching manifold. In particular, it means that the conditions
in order to find a non-trivial minimal set are not so strong as the situation when the canard
phenomena happen. Finally, we must observe that some of these new objects also present
a chaotic behavior. This emphasizes that, in PSVFs, systems having non-trivial minimal
sets and chaotic behavior on them have some intersection, as we can see in Theorem 14.

In what follows we present new definitions on invariance and minimality. Then we
compare some special sets taking into account such definitions.

Definition 11. A set A ⊂ R2 is positive-invariant (respectively, negative-invariant)
if for each p ∈ A and all positive global trajectory 0+Z (t, p) (respectively, negative
global trajectory 0−Z (t, p)) passing through p it holds 0+Z (t, p)⊂ A (respectively,
0−Z (t, p)⊂ A).

Remark 1. It follows directly from Definition 11 that a given set is invariant if and only if
it is positive-invariant and negative-invariant.

Definition 12. Consider Z ∈�. A set M ⊂ R2 is positive-minimal (respectively, negative-
minimal) if:
(i) M 6= ∅;
(ii) M is compact;
(iii) M is positive-invariant (respectively, negative-invariant);
(iv) M does not contain proper subset satisfying (i)–(iii).

The following lemma is a trivial consequence of Definition 12.

LEMMA 2. Consider M ∈ R2 and Z a PSVF. If M is positive-minimal and negative-
minimal, then M is minimal.

Proof. In fact, since M is positive-minimal and negative-minimal, then M is a non-empty
compact set and from Remark 1 M is invariant and does not contain a proper non-empty
compact invariant subset. �

Throughout this paper we will see that the converse of Lemma 2 does not holds.
We stress that a canard cycle of kind III is a closed trajectory of Z with, at least,

one tangency point of X or Y with the switching manifold (for a precise definition, see
[2, Definition 5]). A pseudo-equilibria is any point q such that Z6(q)= 0, where Z6

represents the sliding vector field associated to Z .

Example 1. We know that canard cycle of kind III and pseudo-equilibria are positive or
negative invariants compact sets, but they are not positive and negative at the same time. It
holds due to Definition 1 of local trajectories. Consequently they are positive-minimal or
negative-minimal, depending on the orientation of the trajectories, but not minimal.
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FIGURE 3. Canard cycle of kind III.

q p+p–
p

FIGURE 4. The minimal set 31 for Z1. Here 31 is neither positive-minimal nor negative-minimal.

In [2] is exhibited examples of minimal sets of PSVFs. In those examples it is
always verified the occurrence of fold–fold singularities (which is characterized by the
coincidence of a fold point of X and a fold point of Y ); however, at the next example of a
minimal set this fact is not required.

Example 2. Consider Z1 = (X, Y ) ∈�, where X (x, y)= (1,−2x + 1), Y (x, y)=
(−1, (−2+ x)(−22+ x(−7+ 4x))) and 6 = f −1(0)= {(x, y) ∈ R2

| y = 0}. The
parametric equation for the integral curves of X and Y with initial conditions
(x(0), y(0))= (0, k+) and (x(0), y(0))= (0, k−), respectively, are known and
their algebraic expressions are given by y =−(−4+ x)(3+ x)+ k+ and y =
(−4+ x)(−2+ x)2(3+ x)+ k−, respectively. It is easy to see that p = (1/2, 0) is
an invisible tangency point of X , q = (2, 0) is a visible tangency point of Y and the points
p± = ((7±

√
401)/8, 0) are both invisible tangency points of Y . Note that, in 6, between

p− and p there exists an escaping region with a repeller pseudo equilibrium p̃ on it and
between q and p+ there exists a sliding region. Further, every point between (−3, 0) and
p− or between p and q belong to a sewing region. Consider now the particular trajectories
of X and Y for the cases when k+ = 0 and k− = 0, respectively. These particular curves
delimit a bounded region of plane that we call 31. Figure 4 summarizes these facts.

Example 2 leads to the next proposition.

PROPOSITION 1. Consider Z1 = (X, Y ) ∈�, where X (x, y)= (1,−2x + 1), Y (x, y)=
(−1, (−2+ x)(−22+ x(−7+ 4x))) and 6 = f −1(0)= {(x, y) ∈ R2

| y = 0}. The set

31 = {(x, y) ∈ R2
| −3≤ x ≤ 4 and (−4+ x)(−2+ x)2(3+ x)≤ y

≤ −(−4+ x)(3+ x)}. (3)

is minimal for Z1 but it is neither positive-minimal nor negative-minimal.

Proof. It is easy to see that 31 is compact and has non-empty interior. In order to see
that 31 is invariant it is enough to observe that, by Definition 1, on ∂31\ {q} we have
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p2

p3

p4

FIGURE 5. The minimal set 32 for Z2.

uniqueness of trajectory (here ∂B means the boundary of the set B). Since q is a visible
tangency point for Y , according to the fourth bullet of Definition 1 any trajectory passing
through q remain in 31. Consequently 31 is invariant.

The trajectory of X passing through p− meets 6 at p1
− = ((1+

√
401)/8, 0), we

conclude that the global trajectory of any point in 31 meets q for some time t∗. Let
3′1 ⊂31 be a invariant set. Then, by the invariance of 3′1 and the previous comment it
is clear that q ∈3′1. Now take a point u ∈31 and note that there exists a time tu > 0 for
which the positive trajectory 0+(t, u) through u satisfies 0+(tu, u)= q ∈3′1. Then, by
the invariance of 3′1, we have that u ∈3′1. Therefore, 3′1 =31 and then 31 is minimal
for Z1.

Moreover, since ∂31 is positive-invariant, the set 31 is not positive-minimal and since
p̃ is negative-invariant the set 31 is not negative-minimal. �

Example 3. The minimal set presented in Theorem 8 is also positive-minimal and
negative-minimal. The proof of this fact follows the same lines of the proof of
Proposition 1.

The next example is a small variation of the Example 3.

Example 4. Consider Z2 a PSVF presenting the phase portrait exhibited in Figure 5. Here,
there exists a compact set 32 bounded by trajectories of X and Y . As illustrated, p1 and
p3 are invisible tangency points of X , p2 is a visible tangency point of X , p1 and p3 are
visible tangency points of Y and p0, p2 and p4 are invisible tangency points of Y . It is
easy to see that 32 is invariant and there is not a proper subset which is compact and
invariant. So, 32 is minimal for Z2. Assume that there exists a pseudo-equilibrium p̃
between p1 and p2. Following the orientation of the trajectories at Figure 5 and the third
bullet of Definition 1 we conclude that 32 is not negative-minimal since { p̃} is a compact
negative-invariant set. Moreover, 32 is positive-minimal since it is positive-invariant and
it have not a compact proper subset which is positive-invariant.

PROPOSITION 2. Consider the notation of Example 4. The set 32 is minimal for Z2 and
also positive-minimal but not negative-minimal for this PSVF.

Proof. Straightforward, following the argumentation on Example 4. �

The next remark is an analogous of Proposition 2 by considering the opposite
orientation of the time.
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Remark 2. Consider a PSVF presenting the phase portrait exhibited in Figure 5 with
opposite orientation and the notation of Example 4. Then, following the same ideas of
this example, we obtain that 32 is minimal for Z2 and negative-minimal but not positive-
minimal for this PSVF.

The previous propositions, examples and remarks of this subsection say that non-trivial
minimality can occur in non-symmetrical sets having no canard points. We must note
that the example exhibited in [8] of a chaotic planar system on a special set neither
present symmetry nor the set is minimal. Moreover, in our examples we can observe
some similarity between symmetrical minimal sets and systems that are positive-minimal
and negative-minimal simultaneously. Also, by observing Examples 1–4 we note that the
presence of sliding and escaping regions on 6 generates many different objects with very
rich dynamics. We should note that the case where do not exist sliding or escape regions
was studied in [2] and was shown that in such case there are no non-trivial minimal sets.
In particular, we see that even considering different definitions of minimal sets and non-
symmetrical sets having no canard points we cannot generalize the classical Poincaré–
Bendixson theorem to the non-smooth context.

The following result indicates the presence of chaos in the systems studied in this
section.

THEOREM 13. Consider the PSVF Z2 and the set 32 as presented in Proposition 2. Then
Z2 is chaotic on 32.

Proof. The proof of Theorem 13 follows the same lines as the proof of Theorem 8 by using
a similar result to Lemma 1 for the minimal set 32. �

One should note that Theorems 8 and 13 present examples of PSVFs that are chaotic
on minimal sets. This fact suggests a relation between chaoticity and minimality in PSVF
that we make clear in the following theorem.

In what follows we denote by med(·) the Lebesgue measure.

THEOREM 14. Let Z be a planar PSVF and 3⊂ R2 a compact invariant set. If 3 is
positive-minimal and negative-minimal satisfying med(3) > 0, then Z is chaotic on 3.

Theorem 14 is a very interesting result because it presents a connection between two
important different objects of the recent theory of PSVF, namely, the chaotic planar
systems and the non-trivial minimal sets.

In order to prove Theorem 14, we introduce the next two lemmas. The first is a
generalization of Lemma 1.

LEMMA 3. Under the same hypotheses of Theorem 14, it holds that for any x, y ∈3, there
exist a global trajectory 0(t, y) passing through y and t∗ > 0 such that 0+(t∗, y)= x.

Proof. Since med(3) > 0, by the Poincaré–Bendixson theorem for PSVF presented in
[2], there exist at least a set A ⊂6 ∩ (6e

∪6s). Otherwise, we have 6 ∩3=6c
∪6t

and then by the referred theorem we get med(3)= 0, where 6t is the set of tangencies
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points of Z . For each a ∈ A, denote by5+a the set of all positive global trajectories passing
through a and by 5−a its negative analog. Now consider the sets

A±a =
⋃

0a∈5
±
a

0a(t, a)⊂3.

Actually we have A±a =3, since A±a is positive-invariant (respectively negative-invariant)
restrained in the positive-minimal (respectively negative-minimal) set 3. In order to see
that A+a is positive-invariant, let p be a point in A+a and0p(t, p) a positive global trajectory
passing through p. Since p ∈ A+a , then there exists a positive global trajectory 0̃a(t, a)
passing through a and t0 > 0 such that 0̃a(t0, a)= p. Consequently 0p(t, p) belongs to
A+a once it is restrained to the positive global trajectory 0̂a(t, a)= 0̃a(t, a) ∪ 0p(t, p)⊂
A+a . Analogously we can prove that A−a is negative-invariant.

Now consider x, y ∈3 arbitrary points. Since A−a =3= A+a , there exists 0+a (t, a) ∈
A+a a positive global trajectory, 0−a (t, a) ∈ A−a a negative global trajectory and values tx >
0, ty < 0 such that 0+a (tx , a)= x and 0+a (ty, a)= y. Consequently there exists a global
trajectory 0(t, y) passing through y and t∗ = tx + |ty |> 0 such that 0(t∗, y)= x . �

LEMMA 4. Under the same hypotheses of Theorem 14, if any two points of 3 can be
connected by a global trajectory of Z, then Z is chaotic on 3.

Proof. The proof of Lemma 4 is similar to the proof of Theorem 8 by using Lemma 3
instead of Lemma 1. �

Proof of Theorem 14. The proof is straightforward from Lemmas 3 and 4. �

Remark 3. One should note that we cannot change the hypotheses of Theorem 14
by considering minimal sets instead of positive-minimal sets and negative-minimal
sets simultaneously. Indeed, consider the PSVF Z1 and the set 31 as presented in
Proposition 1. It holds that 31 is minimal for Z1. Nevertheless, Z1 is not chaotic on 31,
since it is not topologically transitive on 31. In order to see that, consider a non-empty
open set U located in 6+ just above the sliding segment S between q and p+ in such way
that all points of U reach S from 6+ to 6 and do not enter in the region 6−\6. Consider
also a non-empty open set V under the same conditions of U , however located under S
on 6−. Thus, it is clear that all points of U and V reach S and slides to ∂31 through the
point q . However, since ∂31 is positive-minimal, it follows that the trajectories of U and
V do not escape from ∂31 for positive values of time. Consequently we cannot connect
points of U and V through a positive global trajectory and therefore Z1 is not topologically
transitive on 31.

3.3. Conclusion. In this paper we have verified the existence of non-deterministic chaos
in planar PSVFs without symmetry or presenting a canard structure. As far as the authors
know, this is the first time that non-smooth systems with such characteristic are observed in
the planar case. Moreover, we introduce definitions of minimal sets of PSVFs taking into
account the fact that PSVFs have a strong dependence of the orientation of the trajectories,
as we can see in Definition 1. Finally, we verify the presence of chaotic behavior in planar
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PSVFs and present a result relating chaotic behavior with orientable minimality, which
emphasizes the importance of providing the definition of orientable minimality.
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