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Author: ALEXANDRE MERLIN 
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1. RESUMO

O fornecimento de P para as culturas em solos tropicais é geralmente deficiente devido à 

sua natureza pouco solúvel no solo, e a adição de fertilizantes P tem sido obrigatória para 

se atingir rendimentos elevados. Uma abordagem possível é a adoção de sistemas de 

cultivo com plantas de alta eficiência no uso do P. O objetivo deste estudo foi determinar 

os mecanismos da braquiária (Brachiaria ruziziensis), cultivada em rotação, aumentando 

a disponibilidade de P no solo. Foram desenvolvidos dois experimentos: para o ensaio de 

campo os tratamentos foram doses de fosfato solúvel e natural aplicadas à lanço, com e 

sem cultivo de braquiária (Brachiaria ruziziensis). A gramínea foi cultivada por 289 dias 

e após esse período o solo foi amostrado de 0-5 e 5-10 cm de profundidade. O segundo 

experimento, em casa de vegetação, Brachiaria ruziziensis e Brachiaria brizantha foram 

cultivadas em solução nutritiva com complexos de P em óxidos de Ferro e Alumínio. À 

campo, os níveis de fósforo disponível foram superiores após o cultivo da gramínea. No 

experimento em casa de vegetação, o desenvolvimento das espécies de braquiária foi 

normal nos tratamentos onde o fósforo estava adsorvido pelos óxidos de Ferro e 

Alumínio, indicando a capacidade dessas duas espécies em acessar formas indisponíveis 

de P tornandoas disponíveis para outras culturas.

___________________________
Palavras-chave: fosfato natural, superfosfato, frações de fósforo, disponibilidade no 
perfil, rotação de culturas.
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MECHANISMS OF ENHANCED PHOSPHORUS AVAILABILITY BY BRACHIARIA 
RUZIZIENSIS IN OXISOLS
Botucatu, 2011. 53 fl. Tese (Doutorado em Agronomia/Agricultura) - Faculdade de 
Ciências Agronômicas, Universidade Estadual Paulista.  
Author: ALEXANDRE MERLIN 
Adviser: CIRO ANTONIO ROSOLEM

2. SUMMARY

Phosphorus supply to crops in tropical soils is usually deficient due its sparingly 

soluble nature in soil, and the addition of P fertilizers has been mandatory in order to 

achieve high yields. One potential approach is to adopt cropping systems that could

increase plant available P in soil. The objective of this study was to examine the 

mechanisms of cover crop (Congo grass - Brachiaria ruziziensis) rotation in enhancing 

soil and fertilizer P availability using long-term field trials and laboratory chemical

fractionation approaches. The first experiment was a field cropped under no-till for five 

years. No P or 35 kg ha-1 of P was applied on the soil surface as triple superphosphate or 

Arad rock phosphate and Congo grass was grown for 289 days. After this, soil samples 

were taken down to 10 cm and soil P was fractionated. The second experiment was 

carried out in a green house where the treatments were Brachiaria species (Brachiaria 

brizantha and Brachiaria ruziziensis) and two mineral-P complexes (goethite and

amorphous Al-oxide) plus two controls with and without P as regular nutrient solution. In 

the first experiment, soil available P, as estimated by resin extraction was increased by 

congo grass down to10 cm when P fertilizers were applied. At the nutrient solution 

experiment, after 14 days of cultivation, the dry matter yields of both Brachiaria species 

were not affected by oxide-P (goethite-P or Al oxide-P) as sole P source, demonstrating 

that Brachiaria species could access non-labile adsorbed when P was supplied with Al 

oxide-P and goethite-P.

_______________________________

Key-words: natural phosphate, super phosphate, phosphorus fractionation, P availability 

in soil profile, crop rotation.
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3. Literature Review

3.1. Phosphorus dynamics in soil as a function of management system 

The maintenance of crop residues on the soil surface in reduced tillage 

systems change the nutrient cycling in the soil (Hedley et al., 1982). The changes in the 

management of crop residues resulting from the adoption of conservation tillage systems 

have the potential to alter the concentration and distribution of phosphorus (P) in the soil 

profile, especially in the upper layers. In general, the concentration of P in soils under no-

tillage increases in the top 5 cm of soil surface, and decreases with depth, as compared to 

systems with conventional till (Bayer et al., 2000; Rehnheimer and Anghinoni, 2001; 

Almeida et al., 2005). 

In long term experiments, the effect of no-tillage on the accumulation 

of nutrients in the soil surface layer is closely related to increased levels of organic matter 

(Amado and Mielniczuk, 2001). Among the macronutrients, P has the lowest mobility 

and has shown the largest increases, which may result in a level four to seven times 

greater in no-till  than that of tilled soils, in the 0-5 cm layer (Neumann et al., 1999). On 

till, there is also a significant decrease in content of soil organic matter, with consequent 

change in the reactions of inorganic available P form in microbial biomass and available 

in organic forms (Rehnheimer and Anghinoni, 2001). 

In general, soils under conservation tillage have a higher concentration 

of available P in the surface layer and stratification in profile, with marked reduction with 

increasing depth (Santos et al., 2003). Lal et al. (1990), in an experiment lasting 12 years, 

found 2.42 times higher available P in no-till as compared to the till in the soil layer of 0-

10 cm, but in the 10-50 cm layer the reverse is true. 
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Phosphorus accumulation in the surface layer of soils under no-till

results from the application of phosphate fertilizers, P released during plant and animal 

debris decomposition, and reduced P adsorption resulting form the slightest contact of P 

with soil constituents (Santos et al., 2003). 

Cropping systems have several effects on soil P. According to Franchini 

et al. (2000), the continuous flow of different forms of carbon (C) from crop residue 

decomposition results in competition for sites of positively charged colloids by inorganic 

compounds, and complex formation between organic ligands with Al3+, Fe 3+ and Mn2+.

The occupation positively charged sites of on the surface of inorganic colloids reduces 

phosphate adsorption, thus increasing P availability to plant (Rehnheimer and Anghinoni, 

2001). 

Silveira and Stone (2001) evaluated six crop rotations and  found no 

significant effect on the levels of available soil P, but in general the levels of P increased 

significantly with years of cultivation at all the rotations studied. 

3.2. Importance of organic matter to soil 

Soil organic matter (SOM) represents a large reservoir of plant 

nutrients, especially N, P and S. The elements in organic forms are not readily available 

to plants, but they become available upon mineralization of organic matter.  

Indirectly SOM also plays an important role in mineral nutrition of 

plants through effects on the chemical, physical and biological soil properties. Therefore, 

SOM is essential to the quality of tropical soils. It plays an important role in crop 

productivity as an important reservoir of nutrients, including P, in addition to influencing 

pH, ion exchange capacity, microbial activity and soil structure (Balesdent et al. 2000; 

Glatzela et al., 2003). In addition, the SOM may contribute to the sequestration of 

atmospheric C (Glatzela et al., 2003, Bayer et al., 2000). Its dynamics in the soil is an 

aspect of great interest in studying, because of its importance both in terms of soil fertility 

and environmental health. 

Soil OM consists of a mixture of compounds in various stages of 

decomposition, resulting from biological degradation of plant residues, and the activity of 

microorganisms. It can be grouped into humic and non humic substances. The non-humic 
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substances are composed of substances with defined chemical characteristics, such as 

polysaccharides, amino acids, sugars, proteins and organic acids of low molecular 

weight. The humic substances are not well-defined chemically and physically, and can be 

divided into humic acid, fulvic acid, and humus, based on their solubility characteristics 

(Stevenson, 1994). 

To maintain soil organic matter at a desired level, it is essential to adopt 

optimal management systems that enhance the input of organic carbon to the soil, 

subsequent soil quality and mitigation of CO2 emissions. 

3.3. Organic phosphorus 

Organic P (Po) in soil can contribute 3% to 75% of the total content of 

P. Generally, between 1 / 2 and 2 / 3 of the total P contained in the surface horizon of the 

soil is organic. Most forms of Po that naturally occur in soil are esters of phosphoric acid, 

where we highlight the inositol phosphate group that can get up to 60% of the total Po 

(Dalal, 1977). The stability of these compounds in soil depends on its nature, and they are 

used as a source of carbon and electrons by microorganisms, which results in the release 

of P. Some compounds, such as phosphate diesters (phospholipids and nucleic acids) are 

rapidly released. Phosphate monoesters exhibit high binding energy to the inorganic soil 

colloids, thus difficult to release and less available to plants (Dalal, 1977; Stewart and 

Tiessen, 1987). 

There is a definite proportion between the esters in soils with those 

present in living organisms from which they were derived. The cumulative amount of 

these compounds depends on its dynamics of production and decomposition. The 

development of microbially synthesized esters and other materials from which organic 

matter is formed, is affected by factors such as temperature, nutrients such as carbon, 

nitrogen and phosphorus, which may limit the production of SOM at low availability 

(Walker et al., 1958). 

Organic P becomes available to plants after mineralization. Van Diest et 

al. (1959) showed that in an incubated soil, Po decreased concomitantly with the increase 

in available inorganic P (Pi). The mineralization of Po in the soil is mostly due to the 



 

6 
 

combined action of soil microorganisms and free enzymes in the soil. Thus, the factors 

that regulate the activity of microorganisms govern the mineralization of Po in soil.

Thus, we can say that plants can use some Po sources efficiently due to 

their rapid hydrolysis to release Pi (Tarafdar and Claassen, 1988). The same authors 

reported that the limiting factor in the hydrolysis of Po to Pi as a supply to plants is not 

the availability of phosphatases, but hydrolysable Po, as they observed the activity of 

phosphatases that hydrolyze Po is capable of supplying 20 times more P than the amount 

absorbed by plants. Soil Po can act as a source or drain of available P, depending on soil 

management and fertilization (Novais and Smith, 1999). In natural ecosystems, where

there is no addition of phosphorus, its plant availability is closely related to organic P 

cycling. 

The increased P availability in the surface soil with the adoption of no-

till can result in greater transformation of Pi into Po. In a study conducted over a long 

period, Po in the surface soil layer increased with lower clay and iron oxides 

(Rehnheimer and Anghinoni, 2001). The same author mentioned that the inappropriate 

use of soils with these characteristics leads to high rates of decomposition of organic 

matter and drastically reduces the dust content of labile and moderately labile forms. This 

shows a low resilience, i.e., low capacity to continue operating without change for a 

disorder. However, when these soils are managed properly the levels of Po and organic 

matter recover quickly. 

The presence of plant reduces Po content in the soil near the roots 

(Thompson et al. 1954; Jungk et al., 1993). Thompson et al. (1954) attributed this effect 

to the transfer of substances between the colloids in solution and roots. 

The roots of cultivated plants have mechanisms that help in the 

mineralization of Po (Hinsinger, 1998, 2001; Raghothama, 1999), and a possible 

mechanism for this increase in efficiency is the acidification of the rhizosphere 

(Hinsinger et al. 2003, Neumann et al. 1999; Tang et al. 2004). Another mechanism 

studied is the exudation of carboxylic compounds (Neumann et al., 1999, Richardson et 

al. 2004; Wang et al. 2007). Moreover, the activity of enzymes in the mechanisms of 

dissolution of less soluble phosphates, for example, acid and alkaline phosphatases have 

been also evaluated and, for some species, the effects of these enzymes are evident 
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(Tabatabai et al. 1969; Rengel and Marschner, 2005). In a study of P fractionation in 

Oxisol, it was found that an increase of 33% labile P occurred in no-tillage as compared 

to conventional tillage and this result was attributed to the rise of Po and the absence of 

tilling (Selles et al. 1997). The same authors also found that, in tillage and no tillage, 

there could be more P available to plants due to the slow and continuous mineralization, 

held by the microbial population, resulting in the release of organic compounds that act 

by reducing the competition for adsorption sites. 

The participation of inorganic fractions (phosphorus geochemistry) and 

organic (biological phosphorus) in maintaining the availability of P for plants was 

demonstrated by Tiessen et al. (1984) in soils with different degrees of development. 

These authors observed that in undeveloped land 86% of P estimated by anion exchange 

resins (RTA) came from inorganic forms, while in most weathered soils 80% was from 

organic fractions. Guerra et al. (1996) also observed that the labile Po (NaHCO3

extractable) accounted for more than 60% of labile P in weathered soils in Central Brazil. 

When the soil is not fertilized and there are additions of plant residues, 

the fraction of organic P buffers the soil solution. On the other hand, fertilization 

promotes the accumulation of P in inorganic forms, which buffer the solution, the organic 

fraction is used to a lesser extent, allowing its accumulation. When phosphate fertilizers 

are applied, P in all fractions is redistributed in soil, but the accumulation is more 

pronounced in the labile inorganic. Over time, adsorption energy is increased and P is 

gradually transformed into forms of higher stability, which characterizes the process of 

"P ageing” (Novais and Smith, 1999). 

Araujo et al. (1997) reported that fertilization and cultivation of soil for 

25 years led to increased levels of organic and inorganic P, compared to a similar soil 

under native forest. However, in relative terms, the organic P decreased from 55.6% of 

total P in the soil to 25.1% in the cultivated soil, showing that the accumulation of P is 

preferably added in inorganic forms. 

Reports on the influence of soil organic matter in the availability of P 

have been inconsistent. There are claims that organic compounds in soil adsorb inorganic 

phosphate forming ternary complexes mediated by bridges of cations such as Fe and Al 

(Beldrok et al., 1997). Organic matter can increase soil phosphate adsorption by 
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preventing oxides crystallization and increasing the Feo / Fed ratio, which results in 

greater adsorption surface (Schwertmann et al., 1986). Other reports claim that organic 

acids and other intermediate compounds of anionic character, coming from decomposing 

plant residues, can compete with phosphate for adsorption sites on soil colloids, thus 

reducing their adsorption (Mesquita Filho and Torrent, 1993; Iyamuremye et al., 1996). 

3.4. Adsorption of P and organic matter 

In soils with high content of oxides and clay, much of the P in soil 

undergoes the process of specific adsorption, i.e., strong bonds between the clay and / or 

oxides and phosphate ions. This specific adsorption of phosphate occurs by exchange of 

ligands with surface-OH groups of oxy-hydroxides of Fe and Al, edges of clay minerals 

and clays, which strongly influences the concentration of P in soil solution (Parfitt, 1978). 

The specific adsorption is also regulated by the presence of humic and fulvic acids and 

organic acids (OA) of low molecular weight that compete with P for adsorption sites 

(Fontes et al., 1992). 

According to Rehnheimer and Anghinoni, (2001), the adsorption of 

phosphate in soil occurs in stages: in the first stage the neutralization of positive charges 

is dominant, and these sites are saturated when all the groups OH2
+ are shared by 

phosphate ions; in the second stage there is ligands exchange; and links occur in the third 

stage of low interaction energy. Further additions of phosphate after the third stage is 

reached tend to decrease the curvature of the adsorption isotherms (Barrow et al. 1998; 

Rehnheimer and Anghinoni, 2001). 

The increase in organic matter content in the soil causes a significant 

increase in specific surface of clay minerals and oxides, especially in Oxisols (Almeida et 

al., 2003). Likewise, the increase in P adsorption capacity in depth is also directly related 

to the reduction of organic matter that occurs in this sense, because the locking 

mechanism appears to occur by coating the surface of the oxides of molecules of humic 

acids and other organic anions (Fontes et al., 1992). 

Highly weathered tropical soils are known to have minerals such as 

goethite, hematite, gibbsite and kaolinite, which have surface Fe-OH or Al-OH on which 

the phosphate can be adsorbed, and this reduces the availability of the plant P 
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(Iyamuremye al., 1996). However, the availability of P can be increased if there is an 

increase in organic matter in soil, such as the permanence of soybeans straw and other 

crops (Basamba et al., 2006). The adsorption sites of goethite can be blocked by organic 

matter fractions such as humic acids, thus decreasing the adsorption of P. Organic 

compounds of low molecular weight such as oxalate and malate can also act the same 

way, blocking the adsorption sites of oxy-hydroxides, but these effects have been 

transient, as reported by Afif et al. (1995). 

In studies of soils from the Brazilian savannas (mostly Oxisols), 

Mesquita Filho and Torrent (1993) found that P adsorption increased dramatically after 

the removal of organic matter with hydrogen peroxide (H2O2). Although competitive 

adsorption is considered as the main mechanism of action of organic matter in the 

availability of P, the metal complexation reactions and the dissolution of Fe and Al 

oxides can potentially reduce the number of adsorption sites, also releasing P for 

absorption by plants (Guppy et al., 2005). The sorption of organic matter compounds can 

also increase the negative charge on the soil surface, or decrease the point of zero charge 

(PZC), making it harder to adsorption of P due to the presence of more negative charges 

in the adsorption sites. 

In tilled soils, the low molecular mass organic acids (LMOA) from the 

decomposition of organic material, root exudation and microbial synthesis form 

complexes with Fe and Al and/or are adsorbed to the surface oxide by exchange of 

ligands and thus block the adsorption of P (Rehnheimer and Anghinoni, 2001).

Specifically adsorbed anions are desorbed by competitors, only when 

these may occupy the adsorption sites. This leads to increased negative charged surface, 

i.e., the power of competition depends on the ability to increase surface charge. The 

sorption of anions occurs when there is exchange between anions or when there are free 

sites to be occupied. With increasing amounts of adsorbed anions, surface coverage of 

colloids increases, arising nucleation or small aggregates and generating surface 

precipitates. According to Sparks (1995), there is a continuum between adsorption and 

precipitation in the soil so the soil will never be free from the action of adsorption, even 

in minimum quantities. In fertilized soils, the products of reaction with the soil persists
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for a period long enough to allow recrystallization to more stable forms of P, consistent 

with the presence in solution. 

Ohno and Crannell (1996) suggest that organic acids affect the 

solubility of P in soil and that the molecular properties of OA, i.e. the functional groups 

involved in the reactions of coordination influence the magnitude of chemical reactions in 

the soil. The same authors also argue that the presence of acidic functional groups is one 

of the most important chemical characteristics of soluble carbon compounds, but their 

involvement in metal complexation reactions and mineralization depends on their specific 

chemical properties. 

In soils with the presence of hydrolysable or exchangeable Al, the 

action of the OA would be more effective in Al complexed in the same soil (Fox et al., 

1990). At low concentrations the presence of OA tends to increase the exchangeable Al 

in clays by inhibiting the hydrolysis of the same. In general, the formation of high 

stability complexes with Al tends to increase P availability and reduce P adsorption, 

while those with low stability complexes have less influence on the adsorption of P (Fox 

et al., 1990). 

As for soil organic P, the monoester orthophosphates are the most 

stable and also the predominant form, being formed by inositol phosphates, including 

acid myoinositol hexaphosphate, which is phytic acid (Magid et al., 1996). Data 

presented by Condron et al. (1985) showed that there was accumulation of over 90% of 

organic P in this form after the application of three decades of superphosphate as a 

fertilizer in soils of New Zealand. 

Extracellular enzymes have been used to characterize organic P in 

animal manure, soil extracts and solutions leachate (Dao, 2004), because the substrate 

specific phosphatases by these enzymes provides a good estimate of the analytical 

determination obtained. However, enzymatic methods have shown the difficulty of 

determining the relative low recovery of P in soils (Hayes et al., 2000). 

Complexed inositol phosphates in the soil are relatively resistant to 

enzymatic hydrolysis, for complex polymer compounds are formed via intra and 

intermolecular bonds with polyvalent cations, limiting the availability of substrates for 

the phytases (Dao, 2004). It has been observed that organic anions facilitate the 
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enzymatic release of phosphate in Ultisols, however, no difference in the efficiency of 

clearance by exchange of ligands between the organic anions, such as oxalate is more 

effective than the format (Fox et al. 1990). The forms of phosphate determined by 

enzymatic methods are called bioactive P soil (Dao, 2004). 

It is clear from the dependence of organic matter accumulation on 

phosphate that the latter must be immobilized in some circumstances, but the literature on 

the immobilization of phosphate is not extensive. Part of the reason must be that 

mineralization and immobilization occur simultaneously and both show considerable 

spatial variability. Hedley et al. (1982) found evidence of immobilization when soil was 

incubated, both when cellulose and nitrogen were added and when they were not. 

Rewetting and incubating an air-dried Rhodesian (now Zimbabwean) soil also 

immobilized phosphate (Salmon, 1965). However, when Addiscott (1969) incubated a 

rewetted Tanzanian hill sand soil for 10 days, phosphate seemed to be immobilized 

during the first 4 days and then rereleased during the next 6 days, so that the final 

concentration of phosphate differed little from that at the start.



 

12 
 

4. Introduction

The low phosphorus (P) use efficiency by crops in tropical soils is 

mostly due to soil P-fixation through adsorption or precipitation reactions (Tisdale et al., 

1993). The sparingly soluble nature of soil P impairs crop yields and additional P sources 

must be applied as fertilizers in order achieve economic yields (Lindsay, 1979). One 

potential approach is to adopt cropping systems that could increase the level of plant 

available P in soil. Cropping systems that utilize green and animal manures have had 

positive impact crop yields and reduces dependency on chemical fertilizers (Karlen et al., 

1994; Tisdale et al., 1993). Organic amendments can directly affect soil P availability 

through interaction with soil components (Iyamuremye and Dick, 1996). 

Between 30 % to 50% of total soil P is organic P, appearing mainly as 

phytates, nucleic acids (and their derivatives) and phospholipids (Paul and Clark, 1989). 

Some of this organic P is contained in or originates from crop residues. Therefore, 

returning crop residues to the soil is important in P cycling. In a 16-week soil incubation 

study, Reddy et al. (2001) observed that soybean (Glycine max) and wheat residues 

favored build-up of labile inorganic and organic P at the expense of recalcitrant P. In field 

studies, crop residues applied together with rock phosphate resulted in increased soil P 

availability, cereal P uptake and yields more than application of rock phosphate alone 

(Sharma and Prasad, 2003; Waigwa et al., 2003).

Similarly, Essington and Howard (2000) reported that plots under no till 

had significantly higher values of organic P than those under conventional tillage. To 

become plant available, organic P must be mineralized (Frossard et al., 1995). Similarly, 

the availability of P held in the soil microbial biomass, or in plant debris, depends on the 

disruption of protecting cell structures. McGill and Cole (1981) defined biological 
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mineralization as the release of inorganic P from organic materials during oxidation of C 

by soil organisms. 

Whitbread et al. (2000) reported greater P content in wheat where 

legume residues had been retained as compared with plots where they had been removed. 

In a greenhouse experiment, Cavigelli and Thien (2003) reported a greater sorghum 

biomass following three out of four winter cover crops than biomass in the control 

treatment.

Congo grass  has been widely used in crop rotation and crop-livestock 

integrated systems in Brazil because of its good adaptation to low fertility soils (Garcia et 

al., 2008), high yield potential, good forage quality, and ready desiccation (Klutchcouski 

et al., 2003). Besides, this tropical grass has been reported to increase soil P availability 

(Crusciol et al., 2009).

Mineralization of organic P is mediated by soil microorganisms but the 

rate and pattern is regulated by environmental conditions and residue quality. Changes in 

both soil moisture and temperature affect microbial activity and thereby P mineralization 

(Kabba and Aulakh, 2004). Net P mineralization is often positively correlated with 

residue P concentration (Kwabiah et al., 2003) and negatively correlated with C/P ratio 

(Hundal et al., 1987) and lignin concentration or lignin/P ratio (Lupwayi and Haque, 

1999).

The objective of this study was to evaluate the effectiveness of congo 

grass (Brachiaria ruziziensis) grown as a cover crop in enhancing soil P availability and 

its relationship with carbon behavior using long-term field trials and laboratory chemical 

fractionation approaches.

Phosphorus (P) deficiency is a factor limiting crop production on 

tropical and sub-tropical soils (Fairhust et al., 1999; Mokwuny et al., 1986; Sanchez and 

Salinas, 1981). Correcting P deficiency by applications of P fertilizers is often too 

expensive for resource-poor farmers in these regions, especially for soils with high P-

fixing capacity. Under such conditions, the integration of crop species and/or crop 

cultivars that can make efficient use of soil residual P, combined with application of 

maintenance fertilizers represents a key element of sustainable cropping systems (Ae et 

al., 1990; Lynch, 1998).
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Previous studies indicated that plants most capable of surviving on acid 

soils with low P availability are likely those with inherently slow rates of growth as these 

plants are often adapted to survive rather than to be productive (Chapin 1983; Helyar 

1994; Rorison 1986). Slow growers often have high tissue mass densities and longer 

tissue life spans which contribute to nutrient conservation, use efficiency and reduced 

losses (Vazquez de Aldana and Berendse 1997; Poorter and De Jong 1999; Ryser and 

Urbas 2000). Nutrient accumulation has also been suggested as an important ecological 

strategy of perennials (Chapin, 1980).

Plants can also activate a set of adaptive responses to enhance P 

acquisition and P recycling by reprogramming metabolism and restructuring root system 

architecture (Vance et al., 2003; Jain et al., 2007) to maintain their growth rate as high as 

possible (Gutschick and Kay 1995). Root attributes such as length, surface area, fineness, 

and root hair density influence plant adaptation to low-P soils (Rao et al., 1999b). A large 

root system is either a constitutive or an inducible trait (Marschner 1998) and is of great 

value for P uptake as diffusion to the root surface is the rate-limiting step, especially in 

high P-fixing tropical soils in which nutrient supply could be patchy (Rao et al., 1999b; 

Hodge, 2004). Not only do plant roots respond to P deficiency through greater root 

growth and lateral root formation (Hermans et al. 2006; Hammond and White 2008), but 

enhanced production and secretion of acid phosphatases (APases), release of H+ or 

OH

the increase of reduction capacity (Holford and Patrick, 1979), will allow the plant to 

assess poorly available inorganic and organic soil P fractions and thus increase the pool 

of soil/fertilizer P which contributes to plant P nutrition. It is the suite of morphological 

and physiological attributes that determine resource uptake by plants (Jackson et al., 

1999; Hammond et al., 2004; Lambers et al. 2006).

With this scenario the wide adoption of Brachiaria brizantha is 

attributed to its excellent adaptation to infertile acid soils (soil pH<5.5), which 

contributes to its superior persistence in long-term pastures (Rao et al., 1996a). Rao 

(2002) reported that P is often the most limiting nutrient for pasture establishment and 

production in highly weathered acid soils of tropical America. Amongst 55 Brachiaria 

genotypes, including apomictic signalgrass, subjected to field evaluation in low fertility 
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acid soils, a tetraploid sexual Brachiaria ruziziensis (congo grass) that facilitates 

Brachiaria breeding was found the least efficient in acquiring P and N and also, the least 

productive grass in the short-term (5.5 months after pasture establishment) (Rao et al., 

1998). Other field studies indicated that the diploid sexual ruzigrass is better than 

tetraploid sexual ruzigrass during the first six months of pasture establishment; but even 

the diploid ruzigrass does not persist beyond 2 years in low P acid soils (CIAT, 1995; 

Rao et al., 1998; CIAT, 2007; Ricaurte et al., 2007).

The identification of morphological and physiological traits and 

mechanisms responsible for the high level of tolerance to low-P stress would help 

establish a promising agronomic approach for the integration into the cropping system of 

P mobilizing plant species as inter-crops or in rotation with Brachiaria genotypes. Thus, 

the main objective of the present study was to determine the physiological responses of 

signalgrass and ruzigrass that were grown in nutrient solution supplied with two mineral-

oxides bound P as a sole source, which is similar to chemically fixed P in highly 

weathered acidic soils.
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5. Material and Methods

5.1. First Experiment

The long-term field trial site is located in Botucatu, São Paulo State 

(22º51’ S, 48º26’ W Grw and altitude 840 m). The soil is a Haplortox (Latossolo 

Vermelho distroférrico, according to EMBRAPA, 2006), sandy loam with 670 g kg-1 of 

sand and 210 g kg-1 of clay.  Selected chemical characteristics of the soil are presented in 

Table 1. 

The crop rotation system was first established in 1998 and consisted of 

triticale (X Triticosecale Wittmack) and black oat (Avena stringosa) grown in autumn-

winter, pearl millet (Pennisetum glaucum) grown in the spring and soybean (Glycine 

max) in the summer. In 1998 and 2001 the experiment received 0 (control) and 35 kg P

ha-1 (total P) as triple superphosphate or Arad reactive rock phosphate. 
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Table 1. Soil chemical and granulometric characteristics by the time the experiment was 
installed. (March/2008).

Chemical characteristics
Depth pH O.M P H+Al K Ca Mg CEC
(cm) CaCl2

(0.01 mol L-1) g dm-3 mg dm-3 -----------------mmolc dm-3-------------------

0-5 4.8 21 9.7 32 3.7 25.2 14.3 64
5-10 4.6 18 6.8 41 1.2 18.5 12.6 57

Granulometric characteristics
Depth Sand Clay Silt Texture
(cm) -----------------------------g kg-1----------------------------
0-5 670 210 20 Sandy
5-10 670 220 10 Sandy

The impact of congo grass (B. ruziziensis) has been studied since 2006, 

when the rotation was changed from triticale, black oat, or pearl millet to Congo grass. In 

2006 and 2009, the treatments consisted of 0 and 35 kg P ha-1 which was applied as triple 

superphosphate (soluble) or natural Arad rock phosphate (reactive) to the same plots 

previously receiving the same fertilizers. The triple superphosphate had 180 g kg-1 of P, 

79 g kg-1 of Ca and 12 g kg-1 of S. The reactive Arad phosphate had 143 g kg-1 of P, 269 

g kg-1 of Ca and 8.5 g kg-1 of S. In February 2009, the P fertilizers were applied on the 

soil surface and B. ruziziensis was planted (without potassium or nitrogen fertilizer) in 

half of the plots at 30 kg ha-1 of seeds (42% of viable seeds) and desiccated 289 days after 

emergence (DAE) using glyphosate at 2.88 kg ha-1 (a.i.). In plots without Congo grass, 

glyphosate was applied twice to prevent weed grow. 

In order to estimate Congo grass dry matter yields, plant residues were 

sampled at six randomized sites per plot using a 0.25 m2 (0.5 x 0.5 m) wooden frame and 

dried in a forced air oven at 60º C for 72 hours. The plant samples were weighed and sub-

samples were analyzed for N, P, K, Ca and Mg concentrations. The remaining material 

was returned to their original sites. Nitrogen in plant samples was determined by sulfuric 

acid digestion and steam distillation, and P, K, Ca, and Mg were determined using atomic 

absorption spectrometry (AA-7000, Shimadzu Scientific Instruments, Japan) after wet 

acid digestion as described by Malavolta et al. (1997). 

In November 2009, six soil samples were randomly collected with an 

auger at two depths (0-5 and 5-10 cm) from each plot and combined into one composited 
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sample per depth for analysis. Soil pH was determined in 0.01 M CaCl2 at 1:2.5 

soil/solution (w/v) ratio using a pH meter (DM-22, Digimed, Brazil); and available P was 

determine by pearl resin methods as described by Raij et al. (2001).

Organic carbon concentration in soil samples was determined by dry 

combustion using a C/N Analyzer (Vario Max Macro Elemental Analyzer, Elemental 

Analyses System GmbH, Hanau, Germany), at the University of Florida Indian River 

Research and Education Center in Fort Pierce, FL. Soil organic P fractionation was 

conducted according to Bowman and Cole (1978), modified by Sharpley and Smith 

(1985) and Ivanoff et al. (1998).  In order to estimate labile organic P, 0.5 g of soil was 

shaken in a water suspension for 16 h on a horizontal shaker (end-over-end) with 0.5 M

NaHCO3 (pH 8.5), inorganic P (Pi) and total P (Pt) were determined in the extract and 

labile organic P was calculated as the difference between them. Moderately labile organic 

P was determined by the difference between Pi and Pt extracted with 1.0 M HCl. Organic 

P bound to fulvic (Pf) and humic (Ph) substances was extracted with 0.5 M NaOH. To 

separate Pf from Ph, an aliquot of the 0.5 M NaOH extract was taken and acidified to pH 

1.0 - 1.5 with concentrated HCl. At this pH, humic acids precipitate, and fulvic acids 

remain in the solution. Total P in the acidified sample is a measure of Pf. The Ph fraction 

was determined by subtracting Pf from the total P measured in the 0.5 M NaOH extract.

Phosphorus concentration in the solutions was determined by the 

ascorbic-reduction molybdate blue colorimetric method (Murphy and Riley 1962). All 

samples were analyzed in triplicate. Carbon concentration in the extracts containing 

fulvic and humic substances was determined by a Liquid Total Organic Carbon Analyzer 

(liquid TOC trace, Elemental Analyses System GmbH, Hanau, Germany). Carbon to P 

ratio was calculated using the values obtained from the analyses described above.

The experimental design was a 3 x 2 factorial with three P initial 

treatments with and without Congo grass and ten replications for each treatment. Data for 

each soil depth was analyzed separately. Plots were 5.0 x 8.0 m. Results were submitted 

to statistical analyses using the SAS - System for Windows 9.2 (SAS Inc. 2001) program, 

through the GLM procedure, and means were compared by LSD (P < 0.05).
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5.2. Second Experiment

Seeds of Brachiaria brizantha and Brachiaria ruziziensis were surface 

sterilized and germinated in the dark (25 °C) for 7 days on a filter paper saturated with 

deionized water. The seedlings were grown for two weeks in sand culture in growth 

chambers with a day/night cycle of 12-h at 25 °C and 12-h at 18 °C, 60% relative 

humidity and a light intensity of 250 mol m s . This step was included as Brachiaria

grasses do not grow fast in the beginning due to their small seed size. At this point of 

time all seeds received the nutrient supply to sand cultures (mg kg sand) contained: 2.6 

P, 2.5 N, 3.1 K, 1.0 Ca, 0.38 Mg, 0.38 S, 0.02 Zn, 0.03 Cu, 0.001 B and 0.001 Mo. After 

this period plants were transferred to plastic containers where P treatments were applied.

Goethite and amorphous Al-oxide were artificially synthesized with 

methods proposed by Atkinson et al. (1972) and McLaughlin et al. (1981), respectively. 

Goethite was synthesized from freshly prepared 0.2 M Fe (NO3)3 after the pH solution 

was adjusted to 11.0 using 0.5 M NaOH. The resultant suspension was stored at room 

temperature (22 oC) for 2 days followed by heating to 90 oC for 16 h. The precipitates 

were thoroughly washed with deionized water. Amorphous Al-oxide was synthesized 

from freshly prepared 1.4 M AlCl3 solution after the pH was adjusted to 4.7 using 0.2 M 

NaOH. The resultant suspension was heated at 80 oC for 4 h. After thorough washing, the 

suspension was dialyzed for 14 days at 20 oC. Some physico-chemical properties of the 

minerals were described by He et al. (1989, 1991). According to these properties mineral-

P complexes were prepared by equilibrating variable P amounts (as KH2PO4) with 

goethite and amorphous Al-oxide in 10 mM CaCl2 solution (pH adjusted to 7.0) for one 

month at 25 oC to saturate 85% of the maximum adsorption capacity. After this period the 

mineral-P complexes were dialyzed with deionized water four times until no P was 

detectable in the washing water to ensure that only non-labile P remained on the solid 

surface. 

The experimental design was a randomized complete block with three 

replicates. The treatments were Brachiaria species (Brachiaria brizantha and Brachiaria 

ruziziensis) and two mineral-P complexes (goethite and amorphous Al-oxide) plus two 
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controls with and without P as regular nutrient solution, due to the evapotrasnpiration the 

nutrient solution was added to maintain the original volume (Table 1).

In this experiment each 5-L pot was divided into two separate 

compartments of equal volume, one compartment containing Hoagland nutrient solution 

without P and the other containing only goethite-P or amorphous Al-oxide-P. Pots 

containing Hoagland solution with and without soluble P were used for the controls in 

order to keep consistency, it was also placed some vials containing water and they were 

collected on each sampling time with the objective of detect any environment 

contamination.

Six plants of each specie were transplanted into each pot, Brachiaria

roots were split in two parts, one being inserted in the P-free nutrient solution (Nutrient 

Solution “NS” compartment) and the other into the solution with the minerals-P

complexes. The same split were done for the controls: Control without P starvation where 

one part of the roots was placed into a P-free nutrient solution (Nutrient Solution “NS” 

compartment) and the other in the complete Hoagland nutrient solution; Control with P 

starvation where one part of the roots was placed into a P-free nutrient solution (Nutrient 

Solution “NS” compartment) and the other in deionized water.

Nutrient solution was sampled at the intervals of 24 h, 3, 7, 14 days 

after treatments were applied in the compartment. 

Plants were harvested at 14 d and were dried in a forced air oven at 60 

ºC for 72 h. After dry weight was recorded, subsamples of the plant biomass were 

digested with concentrated HNO3 and analyzed for P, K, Ca and Mg concentrations using  

inductively coupled plasma optical emission spectroscopy (ICP-OES, Ultima 2, JY 

Horiba Group, Edison, NJ, USA) .

The concentration of inorganic P in nutrient solution was determined by 

the ascorbic-reduction molybdate blue colorimetric method (Murphy and Riley 1962). 

Total P was determined as described by Hedley et al. (1982). Organic P was determined 

by the difference between inorganic P and total P values. All samples were analyzed in 

triplicate. Dissolved organic carbon concentration in nutrient solution samples was 

determined using a liquid total organic carbon analyzer (liquid TOC Trace, Elemental 

Analyze system GmbH, Hanau, Germany).
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Results were submitted to statistical analyses using the SAS -

System for Windows 9.2 (SAS Inc. 2001) program, through the GLM procedure, and 

means were compared by LSD (P < 0.05).
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6. Results

6.1. First Experiment

6.1.1. Brachiaria ruziziensis 

The average dry matter yield of Congo grass was significantly 

increased by P fertilizers (Table 2), irrespective of P sources. Phosphorus concentrations 

in plant tissue were also increased by P fertilization (Table 2), but were higher for the 

soluble source. 

Table 2. Mean values of Brachiaria ruziziensis dry matter and phosphorus content under 
broadcast application of phosphorus sources and Brachiaria ruziziensis.

Means followed by different letters within the same row indicate significant differences P<0.05

The average concentrations of N, K, Ca and Mg in plant tissue were 

13.7, 20.1, 7.8 and 5.2 g kg-1, respectively, without significant differences due to P 

fertilization. These nutrient concentrations are within the adequate range reported by 

Malavolta et al. (1997), showing that there was no nutrient deficiency other than P during 

the experiment.  

Treatments Dry Matter P content

kg of P ha-1 kg ha-1 g/kg

0 3142 b 0.73 c

35 Reactive phosphate 3524 a 1.15 b

35 Soluble phosphate 3855 a 1.58 a
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6.1.2. Inorganic and Organic P

Soil inorganic available P (resin-P) was increased by Congo grass at 

both depths in P fertilized plots (Table 3), and no difference was observed between the 

two P sources. Moreover, the cover crop increased 0.5 M NaHCO3 extractable organic P 

at the 0-5 cm depth of plots receiving soluble or reactive P fertilizer, but had no effect on 

organic P or resin-P for the plots without P fertilizers (Table 3). No differences in 1.0 M

HCl extractable P was observed.

Humic substances bound organic P (Ph) contents in soils from Congo 

grass fertilized plots were significantly higher than those without the cover crop (Table 

3). With the cover crop, P fertilization increased Ph at the 0-5 and 5-10 cm depth. Fulvic 

substances bound organic P (Pf) was not affected by P sources or the cover crop.

The P sources and the cover crop increased organic P pools and 

consequently affected total organic P content in the soil. The highest content was 

observed for soluble phosphate with B. ruziziensis cultivation at the 0-5 cm depth (Table 

3).

6.1.3. Organic Carbon and C:P ratio

Cover crop treatment had the greatest influence on soil C fractions 

regardless of the rate or source of P fertilizers (Table 4). Growing Congo grass also 

increased the carbon content in the humic fraction at both depths (Table 4). The highest 

carbon content of the humic fraction was found in the soil receiving rock reactive 

phosphate at the 0-5 cm depth. It was observed an increase in C: P ratio (P=0.05) in plots 

under Congo grass (Table 5), regardless of soil depth. The humic fraction C:P ratio was 

also higher in plots cropped to Congo grass, regardless of soil depth.
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Table 3. Mean values of available P (P-resin), labile organic P (0.5 M NaHCO3), moderately labile organic P (1.0 M HCl), humic 
substance bound organic P (Ph), fulvic substances bound organic P (Pf)  and total organic P (Pt)  levels in the soil at 0-5 and 5-10 cm 
and 5-10 cm depths under broadcast application of phosphorus sources and Brachiaria ruziziensis (presence; absence).

Means followed by different letters within the same row indicate significant differences P<0.05

Treatments P-resin 0.5 M NaHCO3 1.0 M HCl Ph Pf Pt

kg of P ha-1 With Without With Without With Without With Without With Without With Without

Depth 0-5 cm

----------------------------------------------------------------------mg kg-1---------------------------------------------------------------------

0 30.1 b 34.9 a 22.6 a 13.1 b 25.6 a 28.0 a 36.8 b 49.2 a 15.1 a 14.4 a 111.5 a 119.8 a

35 Reactive phosphate 60.9 a 56.1 b 17.6 a 12.5 b 31.9 a 28.6 a 44.3 a 38.6 b 13.7 a 18.3 a 103.1 a 96.0 b

35 Soluble phosphate 54.4 a 47.1 b 21.0 a 15.2 b 21.6 a 26.5 a 46.3 a 34.3 b 17.8 a 16.7 a 109.2 a 96.1 b

Depth 5-10 cm

---------------------------------------------------------------------- mg kg-1---------------------------------------------------------------------

0 20.5 a 24.5 a 15.7 a 14.5 a 21.8 a 19.7 a 43.0 a 43.7 a 23.0 a 21.8 a 112.6 a 98.1 b

35 Reactive phosphate 48.8 a 34.9 b 18.7 a 16.4 b 28.5 a 26.7 a 42.1 a 37.3 b 22.9 a 21.7 a 106.8 a 99.5 b

35 Soluble phosphate 37.8 a 19.0 b 18.2 a 13.7 b 17.3 a 16.8 a 45.4 a 32.4 b 25.4 a 23.2 a 106.8 a 94.4 b
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Table 4. Mean values of dissolved carbon in the extractant 0.5 M NaOH in the humic 
fraction (Humic - C), fulvic fraction (Fulvic - C) and Total (Total - C) in the soil at 0-5
and 5- 10 cm depths under broadcast application of phosphorus sources and Brachiaria 
ruziziensis (presence;absence).

Means followed by different letters within the same row indicate significant differences (P<0.05)

Table 5. Mean values of carbon and phosphorus (C:P) ratio in the soil at 0-5 and 5- 10
cm depths under broadcast application of phosphorus sources and Brachiaria ruziziensis 
(presence; absence).

Means followed by different letters within the same row indicate significant differences P<0.05

Treatments Humic - C Fulvic - C Total - C

kg of P ha-1 With Without With Without With Without

Depth 0-5 cm

g kg-1

0 0.967 a 0.857 b 0.208 a 0.195 a 1.175 a 1.052 b

35 Reactive phosphate 1.001 a 0.797 b 0.186 a 0.194 a 1.196 a 0.983 b

35 Soluble phosphate 0.884 a 0.759 b 0.209 a 0.171 b 1.093 a 0.930 b

Depth 5-10 cm

g kg-1

0 0.738 a 0.558 b 0.182 a 0.187 a 0.921 a 0.744 b

35 Reactive phosphate 0.731 a 0.569 b 0.186 a 0.184 a 0.918 a 0.755 b

35 Soluble phosphate 0.638 a 0.481 b 0.183 a 0.179 a 0.821 a 0.661 b

Treatments C:P Humic - C:P Fulvic - C:P

kg of P ha-1 With Without With Without With Without

Depth 0-5 cm

0 94.8 a 75.9 b 133.5 a 92.4 b 40.6 a 42.7 a
35 Reactive phosphate 84.3 a 66.6 b 113.0 a 85.3 b 36.5 a 34.1 a
35 Soluble phosphate 79.3 a 72.5 a 103.3 a 104.6 a 39.3 a 38.7 a

Depth 5-10 cm
0 90.7 a 65.9 b 141.8 a 80.1 b 39.4 a 41.6 a

35 Reactive phosphate 81.1 a 65.1 b 118.0 a 89.3 b 36.0 a 36.9 a
35 Soluble phosphate 71.0 a 69.8 a 99.1 a 88.2 b 35.9 a 33.8 a
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6.2. Second Experiment

5.2.1 Dry matter yields and P content

After 14 days of cultivation, the dry matter yields of both Brachiaria

species were not affected by oxide-P (goethite-P or Al oxide-P) as sole P source (Table 

6). Their growth was similar to those supplied with water soluble P. In both cases the 

shoot and root dry matter yield was higher when Brachiaria was cultivated in amorphous 

aluminum oxides treatment. There was a significant decrease on dry matter yield when P 

was not supplied (control), regardless of species. 

There was no difference in plant P concentration for both root and shoot 

independent of Brachiaria specie. Plant P concentration for the treatment without P had 

the smallest observed values (Table 7).

Table 6. Mean values of Brachiaria ruziziensis and Brachiaria brizantha shoot and root 
dry matter.

Means followed by different letters within the same row indicate significant differences P<0.05

Treatments Shoot Root

g plant-1

Brachiaria ruziziensis

Without P 1.2 b 0,4 b

Water soluble P 8.6 a 1.4 a

Goethite-P 8.3 a 1.2 a

Amorphous Al oxide-P 8.9 a 1.6 a

Brachiaria brizantha

Without P 1.8 b 0,7 b

Water soluble P 9.2 a 2.1 a

Goethite-P 8.9 a 1.9 a

Amorphous Al oxide-P 9.6 a 2.3 a
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Table 7. Mean values of Brachiaria ruziziensis and Brachiaria brizantha shoot and root 
P content on plant tissue.

Means followed by different letters within the same row indicate significant differences P<0.05

5.2.2 Inorganic and organic P in nutrient solution

No inorganic P was detected in P-free nutrient solution (NS) 

compartment throughout the entire experiment if no plant was grown (the control), while 

with the presence of plant, P started to appear in the NS after 7 d of culture, suggesting 

that some P was released from the plants (Table 7). However, when the plants were 

supplied with oxide-P (goethite-P or Al oxide-P) in a separate compartment using split 

root culture, inorganic P was detected within 24 h of plant growth, indicating that the 

plants were capable of using chemically adsorbed P on Fe, Al oxides, which are similar 

in nature to residual P in the highly weathered tropical soils such as Oxisols. The 

concentration of P in the NS compartment increased with the time of plant culture from 

approximately 0.5-0.9 mg L-1 at the 24 h sampling event to 1-5 mg L-1 after 14 d of plant 

growth.  In comparison, Al oxide-P appeared to be more available to these plants than 

goethite-P as higher concentration of P was observed in the NS compartment when the 

plants were supplied with Al oxide-P and goethite-P (Table 8).  Compared with B.

ruziziensis, B. brizantha species seemed more efficient as evidenced by the higher P 

Treatments Shoot Root

g kg-1

Brachiaria ruziziensis

Without P 0.03 b 0.07 b

Water soluble P 1.8 a 2.4 a

Goethite-P 1.6 a 2.1 a

Amorphous Al oxide-P 1.7 a 2.1 a

Brachiaria brizantha

Without P 0.05 b 0.09 b

Water soluble P 2.1 a 2.7 a

Goethite-P 1.9 a 2.3 a

Amorphous Al oxide-P 2.0 a 2.5 a
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concentration in the NS compartment regardless of the type of oxide-P. Higher P 

concentration was measured in the NS compartment when water soluble P was supplied 

as compared with oxide bound P, which is expected as plants can take up more P with a 

luxury supply (Table 8). It was not detected any P concentration in the vials containing 

water irrespective the sampling time. 

Unlike inorganic P, organic P was detected only in NS samples 

collected on the 14th day after plant culture (Table 9). It is somewhat unexpected as we 

commonly believe plant roots excrete organic substances and organic P is among those.  

However, we did not detect any organic P in the 24 h, 3 d and 7 d sampling events. It is 

speculated that the organic P released at the early stage of plant growth might belong to 

simple organic molecules and readily mineralized through the action of enzymes on root 

surface. Similar trend was obtained for different treatments in this study, which may 

support the above assumption. More elaborate study is needed to prove this.

5.2.3 Dissolved Organic Carbon

Dissolved organic carbon (DOC) was detected in NS compartment for 

all the sampling dates with both Brachiaria species. The DOC concentration was higher 

when mineral-P was applied and its levels increased with time. The supply of water 

soluble P in nutrient solution inhibited the exudation of organic compounds in both 

compartments with this treatment and the same effect was observed with no P in nutrient 

solution.

There was no difference in DOC concentration for both Brachiaria

species studied, and the highest DOC level occurred in nutrient solution 14 days after 

treatment for both genus on amorphous aluminum oxides (Table 10), indicating that 

presence of Al oxide might have stimulated the release of DOC by plants.
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Table 8. Mean values of inorganic P in nutrient solution under P treatments with and without plants.

C1= P-free Hoagland nutrient solution; C2= (NS+G-P) = Goethite complex in suspension with P adsorbed; (NS+Al-P) = Amorphous 
aluminum complex in suspension with P adsorbed; (CHNS) = Complete Hoagland nutrient solution; (NS+W-P) = Water.
Control = Vials containing P-free Hoagland nutrient solution without plant cultivation and vials containing water without plant cultivation. 
Means followed by different letters within the same row indicate significant differences P<0.05

Treatments
NS+G-P NS+Al-P NS + W-P Control

C1 C2 C1 C2 C1 C2 C1 C2

Sampling Time -----------------------------------------------------------mg L-1------------------------------------------------------------

Brachiaria ruziziensis

24 h n.d 6 0.55 c n.d 6 0.63 c 5.92 b 8.28 a n.d 6 n.d 6

3 d n.d 6 0.63 c n.d 6 1.39 c 4.97 b 7.26 a n.d 6 n.d 6

7 d 0.44 d 2.07c 0.68 d 2.72c 3.76 b 5.68 a n.d 6 n.d 6

14 d 1.03 d 2.99 c 1.07 d 3.45 c 2.65 b 3.96 a n.d 6 n.d 6

Brachiaria brizantha

24 h n.d 6 0.74  c n.d 6 0.86 5.92 8.72 a n.d 6 n.d 6

3 d n.d 6 1.63 c n.d 6 1.83 4.27 6.19 a n.d 6 n.d 6

7 d 0.65 d 3.02 c 0.69 d 3.52 c 3.01 b 4.41 a n.d 6 n.d 6

14 d 1.27 d 4.07 c 1.38 d 5.08 c 2.35 b 2.89 a n.d 6 n.d 6
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Table 9. Mean values of organic P in nutrient solution under P treatments with and without plants.

C1= P-free Hoagland nutrient solution; C2= (NS+G-P) = Goethite complex in suspension with P adsorbed; (NS+Al-P) = Amorphous 
aluminum complex in suspension with P adsorbed; (CHNS) = Complete Hoagland nutrient solution; (NS+W-P) = Water.
Control = Vials containing P-free Hoagland nutrient solution without plant cultivation and vials containing water without plant cultivation. 
Means followed by different letters within the same row indicate significant differences P<0.05

Treatments
NS+G-P NS+Al-P NS + W-P Control

C1 C2 C1 C2 C1 C2 C1 C2

Sampling Time -------------------------------------------------------mg L-1------------------------------------------------------

Brachiaria ruziziensis

24 hr n.d 6 n.d 6 n.d 6 n.d 6 n.d 6 n.d 6 n.d 6 n.d 6

3 d n.d 6 n.d 6 n.d 6 n.d 6 n.d 6 n.d 6 n.d 6 n.d 6

7 d n.d 6 n.d 6 n.d 6 n.d 6 n.d 6 n.d 6 n.d 6 n.d 6

14 d 0.54 d 1.67 c 0.62 d 1.89 c 2.26 b 3.75 a n.d 6 n.d 6

Brachiaria brizantha

24 hr n.d 6 n.d 6 n.d 6 n.d 6 n.d 6 n.d 6 n.d 6 n.d 6

3 d n.d 6 n.d 6 n.d 6 n.d 6 n.d 6 n.d 6 n.d 6 n.d 6

7 d n.d 6 n.d 6 n.d 6 n.d 6 n.d 6 n.d 6 n.d 6 n.d 6

14 d 0.64 d 1.72 c 0.72 d 2.07 b 2.59 b 4.15 a n.d 6 n.d 6
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Table 10. Mean values of dissolved organic carbon in nutrient solution under different P treatments with and without plants.

C1= P-free Hoagland nutrient solution; C2= (NS+G-P) = Goethite complex in suspension with P adsorbed; (NS+Al-P) = Amorphous 
aluminum complex in suspension with P adsorbed; (CHNS) = Complete Hoagland nutrient solution; (NS+W-P) = Water.
Control = Vials containing P-free Hoagland nutrient solution without plant cultivation and vials containing water without plant cultivation. 
Means followed by different letters within the same row indicate significant differences P<0.05

NS+G-P NS+G-P NS+Al-P NS + W-P Control

C1 C1 C2 C1 C2 C1 C2 C1 C2

Sampling Time -----------------------------------------------------------mg L-1-----------------------------------------------------------

Brachiaria ruziziensis

24 hr 21.4 c 52.7 a 32.4 b 62.7 a 42.9 b 12.5 d n.d 6 n.d 6

3 d 32.5 c 67.9 a 42.7 b 78.1 a 45.7 b 15.8 d n.d 6 n.d 6

7 d 45.9 c 92.5 a 65.3 b 103.5 a 48.9 c 21.4 d n.d 6 n.d 6

14 d 59.7 c 122.5 a 78.4 b 142.7 a 53.1 c 27.8 d n.d 6 n.d 6

Brachiaria Brizantha

24 hr 28.6 c 63.5 a 36.7 b 65.9 a 38.3 b 9.7 d n.d 6 n.d 6

3 d 43.1 b 72.9 a 47.3 b 82.7 a 40.3 b 12.5 c n.d 6 n.d 6

7 d 52.1 c 108.2 a 71.7 b 111.3 a 50.9 c 23.7 d n.d 6 n.d 6

14 d 61.3 c 143.1 a 88.2 b 172.4 a 59.6 c 29.5 d n.d 6 n.d 6
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7. Discussion

7.1. First Experiment

7.1.1. Brachiaria ruziziensis 

The original soil P level (on average 9.9 mg dm-3 of P-resin) was inadequate 

for congo grass growth, since there was response in the average dry matter yield. Corrêa and 

Haag (1993) emphasized the importance of P supply for grasses in the first year of cropping in 

Brazilian soils. Brachiaria brizantha has been recommended for low P soils since this species 

is well adapted, and in some cases it can produce three times more dry matter than other 

Brachiaria. Hence, Congo grass may be not well adapted to low P availability soils. However, 

dry matter yield differences among Brachiaria species was not observed at high P supply 

(Corrêa and Haag, 1993). The same authors observed a decrease on P fertilization response 

after the second crop of Brachiaria species in the same area, probably due to a higher access 

to native soil P.

Phosphorus concentration in plant tissue was significantly higher due to P 

fertilization and an even higher concentration was observed with the soluble P source. Similar 

results were found by Corrêa and Haag (1993) studying critical levels of phosphorus for the 

establishment of pasture grass on a red yellow latosol. Phosphorus accumulation in plant tissue 

may vary by specie and on Corrêa and Haag (1993) experiment Brachiaria species had a 

greater capacity to accumulate P than Panicum. This characteristic is important on the decision 

of which crop to use as a cover crop since the ability to accumulate nutrient plus the capability 

of adaptation to low fertility can determine the success of P cycling in the system. 
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7.1.2. Inorganic and Organic P

Growing Congo grass increased soil available P as estimated by resin 

extraction at both soil depths when P fertilizers were applied. The buildup of available P in the 

topsoil by B. ruziziensis cultivation under no-till supports the findings of several other studies, 

such as Ellis and Howse, (1980); Resende et al. (2006); Merlin et al. (2007); Galvani et al. 

(2008). This effect may result from the influence of organic acids on P sorption (Iyamuremye 

et al., 1996), since Brachiaria can exude citrate or oxalate under low pH conditions (Wenzl et 

al., 2002; Wang et al., 2007; Louw-Gaume et al., 2010). In addition, the activities of root acid 

phosphatases and phytases of some grasses such as Brachiaria brizantha and Congo grass 

were higher under low P supply conditions (Rao et al., 1999;). Findings of Louw-Gaume et al. 

(2010) support the hypothesis that roots of Brachiaria can modify their P acquisition capacity 

by adjusting their physiological, morphological and architectural traits to meet changes in 

plant P demand (Hammond et al. 2004). These findings are supported by other authors as Duff 

et al. (1994) and Merlin et al., 2010 who reported that root tissue activity of alkaline 

phosphatases and phytases of Brachiaria ruziziensis and Brachiaria brizantha were higher 

with low P supply.

Soil organic P may be utilized by plants after mineralization and subsequent 

release of Pi. Some root exudates such as acid phosphatases, which catalyzes hydrolytic 

cleavage of the C-O-P ester bond of organic P present in soil (Eivazi and Tabatabai, 1977) and 

releases P as plant-available Pi forms (H2PO4
-, HPO4

2-), may originate from plant and soil 

microorganisms (Tarafdar and Jungk, 1987; Tarafdar 1989). In most agricultural soils, organic 

P forms comprise 20-85% of the total P, of which the largest fraction (50%) appears to be in 

the form of phytin and its derivatives (Dalal 1978). Organic P forms such as phytin, lecithin 

and glycophosphate may be important in the P nutrition of plants (Tarafdar and Claassen 

1988). In this experiment, Congo grass increased some organic P forms. The higher increase 

was observed in 0.5 M NaHCO3 fraction at the 0-5 cm depth of plots receiving soluble or 

reactive P fertilizer. This effect may be explained by root activity, since there is evidence that 

enhanced phosphatase activity in the rhizosphere is implicated in the depletion of organic P 

forms from P-deficient Oxisols (George et al., 2006). 

The 0.5 M NaHCO3 fraction, though not directly taken up by plants, is 

generally considered to be readily or potentially available because of its low molecular weight 
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and because it can be readily mineralized (Hedley et al., 1982; Gatiboni et al., 2007). The 

increase in 0.5 M NaHCO3 fraction is in agreement with the increase in available P, indicating 

that Congo grass can enhance P availability in high P fixing soils. Tarafdar and Jungk (1987) 

reported a linear relationship between acid phosphatases activity and release of inorganic P 

from different organic P forms has been observed which could be a mechanism to explain this 

increase in the 0.5 M NaHCO3 fraction. Some plants start to secret organic compounds as soon 

as their roots emerge and the maximum secretion occurs under P-deficient conditions, and the 

secretion stops after the soil inorganic P concentrations increase.

Interestingly Congo grass increased humic substances bound organic P (Ph) 

contents in soils from fertilized plots. The increase of Ph has a great effect on P availability 

since P in these humic fractions has been suggested to represent a moderately to highly 

resistant P pool in soils (Browman and Cole, 1978). Knowledge of its chemical nature seems 

essential for an understanding of its role in P cycling. Makarov et al. (1996) who investigated 

the P-species distribution in humic fractions from A horizons reported that the labile P in 

humic fractions indicate limited microbial activity, resulting in accumulation of organic P 

forms. Indirectly, the organic P accumulation observed in the same treatments could be a side 

effect of the higher content of P in humic substances. This great P pool can be the reservoir of 

organic P which supply the increase of inorganic P found after the cover crop cultivation.

In an agreement of this findings Hong and Yamane (1980) found that 60% of 

the organic P fractions in fulvic acid, generally considered a heavy fraction component, was 

found as inositol hexakisphosphate, and 40% was  found as other forms of organic P which 

can be rapidly mineralized and become available to plants (Paing et al.,1999; Williams and 

Steinbergs, 1958).

7.1.3. Organic Carbon and C:P ratio

The carbon content in the humic fraction of the SOM was increased by 

Congo grass. No-till has been recommended as part of a strategy to reduce C loss from 

agricultural soils (Kern and Johnson, 1993). Dry matter decomposition rates are generally 

slower in no-till compared with conventional tillage, in which the decomposition of SOM is 

hastened by revolving the soil and alterations in the soil microclimate (Gatiboni et al., 2007). 

Holland and Coleman (1987) suggested that C sequestration is increased under no-till because 
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the surface residue is primarily decomposed by fungi which have higher assimilation 

efficiency than the bacteria, which dominate the decomposition processes of residues mixed 

into the soil. 

Five and ten year tillage with corn indicated that soil organic matter 

increased significantly in no-till compared to conventional till (Blevins et al., 1984). Tyler et 

al., (1983) showed, after 2 years in soybean plots, significantly higher levels of organic matter 

in no-till than in conventional till treatments.

Not only C and organic P were increases under Congo grass, but it was 

observed that C:P ratio was also increased. This effect brings extra benefits of growing grasses 

as cover crops. Soil microbial C:P ratios are highly variable. In the review paper by Manzoni 

et al. (2010) they reported mass C:P ratios for soil microbial biomass ranging from 23 to 333. 

According to Benintende et al. (2008) reported that soil microbial C:P is a sensitive variable to 

evaluate effects of crop rotation and other agricultural management practices. Growing forage 

species for grazing or mowing has shown benefits in terms of soil C accumulation (Cerri et al., 

2004; Franzluebbers et al., 2010; Salton et al., 2008), although soils under hayed management 

are reported to accumulate less than those under grazed management (Franzluebbers et al., 

2010). For integrated crop-livestock in the Brazilian Cerrado region (savannah), Salton et 

al.(2008) reported soil C accumulation rates of 0.44Mg ha-1 year-1 in a 9-year old integrated 

production system with soybean for two years followed by brachiaria (Brachiaria brizantha)

pasture for another two years. Franzluebbers and Stuedemann (2008) did not observe a 

negative influence of integrated crop-livestock system on soil C and N fractions and thus 

recommended this system as a viable conservation approach for intensifying agricultural land 

use. Forages accumulate more C in soils, compared to grain crops, due to a higher root 

biomass production stimulated by grazing. Souza et al. (2008), in a study conducted in 

Southern Brazil, showed increases in oat plus ryegrass root biomass production due to grazing, 

but worldwide results of grazing effects on root biomass are not consistent (Milchunas and 

Lauenroth, 1993). For cash and cover crops, the role of shoots and roots as sources of soil 

organic matter has been the subject of several studies (Balesdent and Balabane, 1996; Gale 

and Cambardella, 2000). Results from these studies suggest that in croplands, root-derived C 

is the predominant contributor to soil organic C. 
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Dos Santos et al. (2011) reported that forage-based rotations of semi-

perennial alfalfa and annual ryegrass for hay production contribute more to soil organic C 

sequestration than rotations based on cover crops (oat or vetch), although a large proportion of 

the net primary productivity is exported from the field by haying. The authors conclude that 

this can be explained by the roots, and either forage-based or cover crop-based rotations play a 

more relevant role in building up soil C stocks in this no-till Ferralsol than shoot residues.

6.2 Second Experiment  

6.2.1 Dry matter yields and P content

The absence of difference in dry matter yields and plant P content between 

oxide-P and water soluble P supply indicates the great ability of Brachiaria species to access 

non labile P. This ability of the cover crop has been observed in fields by many authors 

(Lynch and Beede, 1995; Pelleta and El-Sharkawy, 1993; Rao et al., 1993), but the plant traits 

and mechanisms that contribute to the greater P acquisition and/or utilization in these 

genotypes are poorly understood. System could benefit from greater P acquisition by 

enhancing P cycling through residues. Following the concept of ‘synchrony’ of nutrient 

release and crop demand in systems (Swift, 1984), P cycling could be enhanced by 

intercepting P released from residues before it moves into less labile pools.

Understanding this mechanism and cycling would enable us to design better 

systems and management interventions which minimize undesirable P flows out of the cycle, 

through “fixation” reactions.

Phosphorus acquisition by plants depends on root system size and 

distribution, P uptake kinetics and P mobilizing capacity (Barber, 1984). 

6.2.2 Inorganic and organic P in nutrient solution

The absence of detection in the first two sampling events may partly as 

attributed to the determination method, as the ascorbic-reduction molybdate blue colorimetric 

method has detection limit of 0.02 mg L-1(Murphy and Riley 1962), which does not allow the 

detection of P concentration in sample solution below 0.03 mg L-1 considering the reagent 

needed for color development.



 

37 
 

The presence of inorganic P in the P-free NS compartment when the plants 

were supplied with mineral-P complex indicates the utilization of oxide bound P by the cover 

crop. Similar phenomena may occur in fields when these plants grow in high P-fixation soils. 

Several species has the ability to access non labile P forms. Some of them 

are well known in the scientific community, such as chickpea (Cicer arietinum), ground nut 

(Arachis hypogea), white lupin (Lupinus albus), Pigeon pea (Cajanus cajan), wheat (Triticum 

aestivum) and recently Brachiaria species.

White lupin (Lupinus albus) exuded organic acids to mobilize sparingly 

soluble phosphates which are made more available for wheat as compared to monoculture 

(Horst and Waschkies, 1987; Kamh et al., 1999). Pigeon pea increased P uptake of the 

intercropped sorghum by exuding piscidic acid that chelates Fe3+ and subsequently releases P 

from FePO4 (Ae et al., 1990). In a field experiment, faba bean was found to facilitate P uptake 

by maize (Li et al., 1997, 2003). However, all these studies were focused on inorganic P in the 

soil.

Brachiaria species are the most widely planted tropical forage grasses in the 

world. Brachiaria species are well adapted to low-fertility acidic soils in the tropical and 

subtropical regions because they are highly tolerant to high aluminum, low P, and low calcium 

(Rao et al. 1996a, Rao et al. 1996b, Wenzl et al. 2003). Under P-deficient conditions, the 

grasses improve their P acquisition by enhancing root growth, uptake efficiency, and ability to 

use poorly available plant P (Rao et al., 2002). Although they have much lower internal 

requirements for P than do other grasses, they show interspecific differences (Rao et al. 

1996b).

According to Nanamori et al. (2004) the tolerance of low P in the Brachiaria

hybrid involved marked differences in P recycling and carbon metabolism. For the Brachiaria

hybrid, low-P tolerance involves two major strategies: (1) increasing the ability to efficiently 

use P by inducing APase and RNase in shoots under P deficiency stress; and (2) enhancing 

sugar metabolism and subsequent synthesis of amino acids and organic acids in leaves under P 

deficiency. 

The results from this experiment indicates that Brachiaria species can 

contribute to inorganic P pools in addition to the ability to solubilize various forms of 

insoluble P fractions (Richardson, 1994, 2001; Whitelaw et al., 1999). 
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This fact can be explained as a response to persistently low levels of 

available inorganic P in the rhizosphere, and some plant species, such as Brachiaria sp. have 

developed highly specialized physiological and biochemical mechanisms to acquire and utilize 

inorganic P from the environment. The ultimate consequences of these modifications are 

increased inorganic P availability in the rhizosphere and enhanced P uptake. 

Modification of root growth and architecture is a well-documented response 

to inorganic P starvation (Lynch, 1995; Lynch, 1997). An increase in the root-shoot ratio

under inorganic P starvation is a hallmark of plant response to inorganic P deficiency, 

enhancing the total surface area available for soil exploration and acquisition of nutrients for a 

particular species of plant. Plants with a more proliferated root system that is efficient in 

uptake are well suited to exploit soil inorganic P. In addition to increased root mass, root 

diameter decreases under inorganic P stress, while the amount of absorptive surface area 

relative to root volume increases.

The exudation of organic acids (OA), in dicots, particularly legumes, is more 

efficient than monocots in producing and excreting organic acids to the rhizosphere to enhance 

inorganic P solubilization under inorganic P deficiency. The root exudates of inorganic P-

deficient plants contain a large number of organic acids (Grierson, 1992). The roots of rape 

excrete organic acids into the rhizosphere and solubilize inorganic P from rock phosphate 

(Hoffland et al., 1989).

6.2.3 Dissolved organic carbon

Dissolved organic carbon (DOC) detected in all samples indicates an intense 

and quick response of the root system to the treatments application. These index levels 

indicate, indirectly, the exudation of enzymes and OA as a strategy to access the non labile P 

forms on the mineral-P complexes.

This result supported the increase of inorganic and organic P in NS 

compartment when plants were cultivated. Since OA are low-molecular weight CHO 

containing compounds which are found in all organisms and which are characterized by the 

possession of one or more carboxyl groups. It is also well established that P deficiency 

significantly increases the leakiness of the root plasma membrane to solutes indicting that for 

some exudation studies the observed increases in organic acid release may be an indirect root 
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response of minimal importance (Ratnayake et al., 1978). This is especially true where only 

small increases (

are observed upon long-term P deficiency (Lipton et al., 1987), and where the calculation of 

results may cause significant biasing.

Malate and citrate appear to be the primary components released by roots 

under P deficiency. In Brassica napus the 4-fold increase in organic acid exudation is largely 

associated with the root apex, while smaller amounts are also released from mature root 

regions (Hoffland et al., 1989, 1992). In contrast, except under extremely high P levels, lupin 

and other species with cluster roots (e.g., Banksia) induce the development of short branched, 

tertiary lateral roots (proteoid or ‘cluster’ roots) (Dinkelaker et al., 1995; Keerthisinghe et al., 

1998). These roots are directly responsible for the 13–40-fold increase in the citrate and 

malate excretion which constitutes >90% of the total root exudate under P deficiency and 

which commences 3 days after proteoid root development (Dinkelaker et al., 1989; Gardner et 

al., 1983; Grierson, 1992; John son et al., 1996a, b). This organic acid exudation under P 

deficiency constitutes a drain of 5–25% of the plant’s photosynthetically fixed C, however, 

this does not appear to significantly affect dry matter production (Dinkelaker et al., 1989; 

Gardner et al., 1983; Johnson et al., 1996a, b; Keerthisinghe et al., 1998). To sustain this level 

of root exudation obviously requires a sustained production of organic acids as exudation 

under P stress can deplete the entire root organic acid reserves within hours (Johnson et al., 

1996a). In lupins, it appears that C is mainly supplied in the form of phloem-translocated 

sugars (70%) whilst some is also supplied in the form of root-fixed inorganic C (30%) 

(Johnson et al., 1996a, b). The phloem-translocated sugars are subsequently converted to 

organic acids via the enzymes PEP carboxylase, malate dehydrogenase and citrate synthase at 

the site of release (Hoffland et al., 1992; Johnson et al., 1994, 1996a, b). The transport 

mechanisms controlling organic acid release and the number and regulation of genes 

determining this P deficiency trait, however, have still to be identified.
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8. Conclusions

8.1. First Experiment

Congo grass is responsive to P fertilization and increased residual inorganic 

P in the soil in presence of P fertilizers.

Growing Congo grass as a cover crop increases soil C pools and C:P ratio,

resulting in benefits on soil characteristics such as humic acid bound P fraction and organic P 

pools as sources of available P.

8.2. Second Experiment

Brachiaria specie could access non-labile adsorbed when P was supplied 

with Al oxide-P and goethite-P, indicating that the plants were capable of using chemically 

adsorbed P on Fe, Al oxides. 

Brachiaria species used O.A. exudation to access the non-labile forms on Fe 

and Al oxides.

Brachiaria dry matter was not affected by the absence on available P in the

nutrient solution.
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