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Swing-by techniques are extensively used in interplanetary missions to minimize fuel consump-
tion and to raise payloads of spacecrafts. The effectiveness of this type of maneuver has been
proven since the beginning of space exploration. According to this premise, we have explored the
existence of a natural and direct link between low Earth orbits and the lunar sphere of influence to
get low-energy transfer trajectories to the Near Earth Objects (NEOs) 99942 Apophis, 1994 WR12,
and 2007 UW1 through swing-bys with the Moon. The existence of this link is related to a family of
retrograde periodic orbits around the Lagrangian equilibrium point L1 predicted for the circular,
planar, restricted three-body Earth-Moon-particle problem. The trajectories in this link are sensitive
to small disturbances. This enables them to be conveniently diverted reducing so the cost of the
swing-by maneuver. These maneuvers allow a gain in energy sufficient for the trajectories to escape
from the Earth-Moon system and to stabilize in heliocentric orbits between the Earth and Venus or
Earth and Mars. Therefore, the trajectories have sufficient reach to intercept the NEOs’ orbits.

Copyright q 2009 C. F. de Melo et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

The dynamics of the circular restricted three-body Earth-Moon-particle problem predicts the
existence of the retrograde periodic orbits around the Lagrangian equilibrium point L1. Such
orbits belong to the so-called Family G [1], and starting from them it is possible to define a
set of trajectories that form a natural round trip link between the Earth and Moon and a link
between the Earth, the Moon and the distant space of the Earth sphere of influence. These
links occur even for more complex dynamical systems as the complete Sun-Earth-Moon-
particle problem. In the last dynamical system, many kinds of transfers can be exploited.
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For example, the round trip link is useful for transfers between Low Earth Orbits (LEOs)
and Low Lunar Orbits (LLOs), including polar LLOs, since some of its trajectories pass a
few hundreds of kilometers from the Earth’s surface and a few dozens of kilometers from the
Moon’s surface (Figure 1) [2]. Moreover, the round trip link is also useful for transfer between
two LEOs with different altitudes and inclinations [3]. In these cases the Moon’s gravitational
field, which is near the Earth, works as an extra impulse and provides an efficient method
to minimize the fuel consumption to be used in plane change maneuvers. This is possible,
because the trajectories of the links can lead spacecrafts in a natural way to accomplish swing-
bys with the Moon. In this paper, we use the link between the Earth, the Moon and the distant
space of the Earth sphere of influence and the energy gain of the swing-by with the Moon to
get escape trajectories and to design missions to NEOs.

In general, a swing-by, or a flyby, consists of the alteration of small celestial bodies
orbits (comets, asteroids, or spacecrafts) when they have a close approach with a planet
or a moon. Literature presents many studies about this subject with general descriptions,
applications in interplanetary missions and in the Earth-Moon System. For example, Lawden
[4], Minovitch [5], and Broucke [6] present general descriptions of the mechanics of gravity-
assisted maneuvers. Successful examples in interplanetary missions were the Voyager 1 and
2 which accomplished several swing-bys with the visited planets to gain energy [7], and
Ulysses solar probe which accomplished a swing-by with Jupiter to get a perpendicular orbit
to the ecliptic and observe the Sun’s Poles [8]. Among the many studies on swing-bys in the
Earth-Moon system, we can highlight Dunham and Davis [9], who designed missions with
multiple swing-bys with the Moon; Uphoff [10], who gave a description about lunar gravity-
assisted maneuvers, and Prado [11], who presented a study to use flyby with the Moon to
accomplish transfers between Earth orbits with the same altitudes and different inclinations.
Among the missions that accomplished swing-bys with the Moon, we should mention the
ISEE-3 which after completing its mission in 1982 was renamed ICE (International Cometary
Explorer) and accomplished several lunar encounters to gain energy and intercept the comets
Giacobini-Zinner in September 1985 and Halley, in March 1986 [12]. On the other hand, also
in general, the literature does not present works focused on getting the trajectory that will
accomplish the swing-by. In this work we do not only use the swing-by to obtain transfer
trajectories, but we have included a study that involves the use of trajectories derived from
periodic orbits to accomplish the swing-by in an efficient way. This allows the reduction of
the swing-by maneuver costs.

Our results, considering trajectories derived from periodic orbits of Family G and the
quasiperiodic orbits that oscillate around them, have allowed us to present the parameters to
design Earth-NEOs transfers. The trajectories studied in this work can offer a saving up to
4% in relation to the conventional methods used to send spacecrafts to these asteroids.

This article is laid out according to the following order: in Section 2, the dynamical
systems and the orbits of Family G are described; in Section 3, the set of trajectories of
interest are defined. In Section 4, the studies about the mechanism of the proposed transfers
between Earth and NEOs are shown and, in Section 5, we present and discuss the results. The
conclusions on the work are presented in Section 6.

2. Earth-Moon Link

The equations of motion of a small particle of negligible mass, m, moving under the
gravitational influence of two bodies with preponderant masses, written in a normalized
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rotating coordinate system (x, y), also-called synodic system, are

ẍ − 2nẏ =
∂U

∂x
, ÿ + 2nẋ =

∂U

∂y
, (2.1)

where n is the mean motion and U is a scalar function given by

U =
n2

2

(
x2 + y2

)
+
μ1

r1
+
μ2

r2
, (2.2)

μ1 and μ2 are the reduced masses of the two preponderant bodies, called primaries. r2
1 =

(x + μ2)
2 + y2 and r2

2 = (x − μ1)
2 + y2 are the distances between the primaries and m.

Equation (2.1) define the well-known restricted three-body problem in which the primaries
have circular orbits around their common centre of mass [1, 13].

Equation (2.1) presents a special number of solutions that can be achieved searching
for points in synodic frame where ẍ = ÿ = ẋ = ẏ = 0. There are five points with these
features and they are called of Lagrangiam equilibrium points, Li, i = 1, . . . , 5. The locations of
these points are obtained solving the simultaneous nonlinear equations ∂U/∂x = ∂U/∂y = 0.
Figure 1 shows the locations of these points for Earth-Moon-particle problem. In this case,
μ1 = μEarth = 0.9878494, μ2 = μMoon = 0.0121506, and n = 1.

In the Earth-Moon-particle problem, groups of periodic orbits around the Earth, the
Moon and the Li points are known. We have considered a particular family of periodic orbits
around L1 known as Family G [1–3]. In the normalized synodic frame, one of the groups of
initial conditions that allow us to obtain the Family G orbits has the form

(
x0, y0, z0, ẋ0, ẏ0, ż0

)
=
(
x0, 0, 0, 0, ẏ0, 0

)
, (2.3)

where (−μMoon +R∗E) < x0 < x(L1), with R∗E = RE/384,400 km = 0.016572, RE = 6, 370 km is the
average radius of the Earth, x(L1) = 0.836893 is the abscissa of the Lagrangian equilibrium
point L1, and −9.389476 ≤ ẏ0 ≤ 601.045381 [1], which corresponds to a variation between
−9.607 km/s and 614.964 km/s. The average Earth-Moon distance (384,400 km) is chosen as
the unit of length of the normalized system. According to (2.3), for any orbit of Family G,
in t = 0, the Earth, the particle and the Moon are aligned in this order, that is, in inferior
conjunction. All orbits in Family G are unstable and this feature is very important for the
transfers here exploited. Figure 1 also shows a typical orbit of Family G.

Periodic orbits as the one shown in Figure 1 and the quasiperiodic orbits that oscillate
around them are tangents to the Earth and Moon low orbits. In other words, they define a link
between the Earth and the lunar sphere of influence. This property allied with the instability
of Family G orbits allows the design of controlled swing-bys with the Moon to gain sufficient
energy to escape from the Earth-Moon system [2]. Moreover, we remark that these properties
allow the reduction of the swing-by maneuver costs besides providing the necessary energy
to win the Earth’s and the Moon’s gravitational fields [3, 14]. Controlled swing-bys also allow
the use of this energy to obtain trajectories inclination changes [3].

In order to exploit these properties and to design more efficient and realistic Earth-
NEOs transfers, the Sun’s gravitational field must be introduced. That is, new equations of
motion must be considered, this time, taking into account the Sun, the Earth and the Moon
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Figure 1: Locations of Lagrangian equilibrium points and a typical periodic orbit of Family G in synodic
frame (x, y).

mutual gravitational attractions, besides the characteristics of the Earth’s orbit around the Sun
(eccentricity) and the Moon’s orbit around the Earth (eccentricity and inclination). Thus, we
define the full four-body Sun-Earth-Moon-particle problem, whose 12 equations of motion in
a Cartesian coordinates system (X, Y, Z) with origin in a fixed point of the space are

R̈i =
4∑
j=1
j /= i

μj

R3
ji

(
Rj − Ri

)
, (2.4)

where Rij = |Rj − Ri| = [(Xj −Xi)
2 + (Yj − Yi)2 + (Zj − Zi)

2]
1/2

, with j /= i, are the distances
between ith and jth bodies. The eccentricity of the Earth’s orbit and the eccentricity and
inclination of the Moon’s orbit are introduced through initial conditions.

The link between the Earth and the lunar sphere of influence continues existing, even
when the dynamical system given by (2.4) is considered. This can be seen in Figure 2(a)
that shows a trajectory found considering the full four-body problem. Figure 2(b) shows
the inclination gain relative to the ecliptic after the swing-by with the Moon. Note that the
trajectory inclination change is about 52 degrees. As a first conclusion, we can say that the
Moon gravitational field acts like a natural propeller, without fuel consumption. In the next
section, we are going to exploit this property in a controlled way. That is, taking advantage
of the existing natural link between the Earth and the lunar sphere of influence to obtain a
change in inclination and the energy gain needed for a determined sort of mission.

3. Escape Trajectories

The existence of the link between the Earth and the lunar sphere of influence for the full
four-body problem is essential to the design of the Earth-Moon system escape trajectories.
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Figure 2: (a) Derived trajectory of a Family G periodic orbit considering the full four-body problem in
geocentric frame (x′, y′, z′). (b) Trajectory inclination change as function of the time.

For this dynamical system, the initial conditions of an escape trajectory in a geocentric frame
(x′, y′, z′) are [3]

(
x′0, y

′
0, z

′
0, ẋ

′
0, ẏ

′
0, ż

′
0
)
=
(
x′0, 0, z

′
0, 0, ẏ

′
0, 0

)
, (3.1)

where

x′0 = (RE + h0) cos(iMoon),

y′0 = 0,

z′0 = (RE + h0) sin(iMoon),

ẋ′0 = 0,

ẏ′0 = VI,

ż′0 = 0.

(3.2)
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Quantity VI is called injection velocity. Considering a circular LEO, VI = VCE + ΔV1,
where VCE is the LEO’s velocity, VCE = [GMEarth/(RE + h0)]

1/2, G is the gravitational constant,
MEarth is the Earth’s mass, and h0 is the LEO’s altitude. iMoon is the inclination of the Moon’s
orbit. ΔV1 is the velocity increment that must be provided to the spacecraft. ΔV1 is a function
of the h0 and VCE and its value is given by

ΔV1 =
VCE

2

(
−2.3340 × 10−6h0 + 0.8085 ± 0.0001

)
+ δ + ϑ. (3.3)

Quantity δ assumes values that will take into account the relative position among
the Sun, the Earth, and the Moon. In other words, the values assumed by δ reflect the
influence of the eccentricities of the Earth’s orbit and, mainly, of the Moon’s orbit in the
distance between them. Equations to estimate the values assumed by δ as a function
of the true anomalies of the Earth’s and Moon’s orbits are given by de Melo et al.
[3].

Here, we are interested in Earth-Moon escape trajectories. Then, we can consider the
Earth and the Moon in circular orbits, with the average radius of the Moon’s orbit equal to
384,400 km. This does not represent a significant loss of precision. This way, we can assume
that δ = 0 in (3.3) and, then, we just analyze the quantity θ whose values will determine
the spacecraft position relative to the Moon and the Earth during the passage by the lunar
sphere of influence and the swing-by. For −1.50 × 10−4 km/s ≤ ϑ ≤ 1.50 × 10−4 km/s, we
will have collision trajectories with the Moon, for ϑ < −1.50 × 10−4 km/s, the trajectories will
have periselenium in the region close to the Moon, between itself and the Earth (anterior
region). For ϑ > 1.50 × 10−4 km/s, the periselenium will be in the posterior region to the
Moon relative to the Earth. For ϑ < −1.50 × 10−4 km/s, it is possible to design transfers
between LEOs and LLOs of any altitudes and also between two Earth orbits of different
inclinations and altitudes, both at a low cost [2, 3]. Our interest, however, is the trajectories
generated for ϑ > 1.50 × 10−4 km/s. In those cases, the gain of energy with the swing-by
guarantees the necessary velocity increment to win the Earth’s and the Moon’s gravitational
fields.

The spacecraft must reach the velocity VI when the Earth, the spacecraft and the Moon
are aligned in this order. This is necessary because the trajectory is derived from a Family G
orbit, and this is the only situation in which the orbits of Family G are tangent to the circular
LEOs. Note that this condition does not impose significant restrictions in practical purpose.
For instance, if a satellite is in a LEO with an altitude of 200 km, this condition will occur every
1.48 hour, approximately, which is the period of the LEO. Figure 3 shows a typical escape
trajectory derived from Family G orbits. From now on, we will call them of escape trajectories
G.

It is important to note that the trajectories evolution of the Earth-Moon and escape
links shown here (Figures 2 and 3) do not suffer any intervention since they start from the
LEO. That is, the inclination and the energy gain occur naturally during the passage through
the lunar sphere of influence. However, it is possible to take advantage of the inherent
instability of these trajectories to control the spacecraft passage through the lunar sphere of
influence [2, 15]. This idea will be exploited in the next section to generate specific escape
trajectories for determined missions.
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Figure 3: (a) Typical escape trajectory from the Earth-Moon system. (b) Energy gain relative to the Earth
as function of the time for the trajectory. Note that it is a typical swingy-by energy gain.

4. Escape Trajectories to Design Earth-NEOs Transfers

The basic idea is to find transfer trajectories between the Earth and the NEOs starting from
escape trajectories derived from Family G periodic orbits. This will be done to three NEOs:
the 99942 Apophis, the 1994 WR12, and the 2007 UW1. All these are NEOs of the Aten
asteroids class and they are defined by having semimajor axes of less than one astronomical
unit (1 AU is equal to 149.6 × 106 km). Some data about these objects are provided in Tables
1 and 2. Table 1 shows the orbital elements: semimajor axis (a), eccentricity (e), inclination
(i), longitude of ascending node (Ω), argument of perihelion (w), and the orbital period
(P). Table 2 brings other information as average orbital velocity (Vave), Escape velocity (Vesc),
Aphelion, Perihelion, Mass, and diameter. In Table 3, the three next Closest Point Approaches
(CPA) with the Earth are presented for 99942 Apophis, the 1994 WR12, and the 2007 UW1.

Once the mission target is determined, it is necessary to find the point in the asteroid’s
orbit where the spacecraft will reach it. However, our goal here is not to find an optimal
trajectory exactly. We intend to show that transfer trajectories derived from periodic orbits
around L1, generated after swing-bys with the Moon, can reach an NEO with ΔVs smaller
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Table 1: NEOs orbital elements.

Asteroid a (UA) e i∗∗ (deg) Ω (deg) w (deg) P (yr)
Apophis 0.992 0.191 3.331 304, 5 126, 7 0.89
1994WR12 0.757 0.397 6.864 62, 85 205, 9 0.66
2007UW1 0.907 0.121 8.224 26, 04 146, 5 0.86
∗∗Inclination relative to the ecliptic. Source: http://neo.jpl.nasa.gov/.

Table 2: Some characteristics of the NEOs orbits.

Asteroid Vave (km/s) Vesc (m/s) Aphelion (UA) Perihelion (UA) Mass (kg) Diameter (m)
Apophis 30.728 0.144 1.099 0.746 2.7 × 1010 270
1994WR12 34.706 0.050 1.058 0.455 2.0 × 109 110–260
2007UW1 31.509 0.047 1.017 0.798 1.3 × 109 80–190

Source: http://neo.jpl.nasa.gov/.

than the ones required by trajectories that leave from the Earth directly. In order to do so, we
only considered trajectories that are tangents to the NEOs’s orbits. In order to find an escape
trajectory that will reach an NEO’s orbit, for example, an algorithm integrates a number
of them starting from the interception point backward in time until they reach the closest
point approach with the Moon during the swing-bys. These integrations are supplied for
initial conditions determined starting from previous numerical simulations of trajectories
that escape naturally from the Earth-Moon system, as the one shown in Figure 3. In these
simulations, a group of trajectories that have a point closer to the NEO’s orbit is selected. The
positions and the velocities of these trajectories are analyzed and adjusted to form a group of
initial conditions for the integrations beginning in the interception point of the NEO’s orbit.
When the closest point approach with the Moon is found, the algorithm calculates a small
ΔV to determine which escape trajectory G is more suitable for the transfer. In other words,
it calculates the components values of the spacecraft’s initial condition in the LEO (3.1). The
algorithm provides a group of solutions with ΔVTotal, ΔV1, and ΔVintermediary, transfer time
and other quantities of interest. Besides the ΔVintermediary applied in the closest point approach
with the Moon, the algorithm also calculates another ΔVintermediary applied in the first apogee
of trajectory G. This apogee is reached about eight days after the departure from the LEO and
prior to the passage by the lunar sphere of influence (Figure 3). This is the best point to do
velocity and inclination changes. In this point, the trajectories G velocities are very small; so
small ΔVs can provide significant velocity and inclination changes.

A similar procedure is used to find the transfer trajectory between the Earth and the
NEO for Patched-conic approximation. In this method, the transfers are designed seeking for
a heliocentric conic arc that links an LEO to an orbit around the asteroid [16].

5. Results

The results of the intercept missions to the NEOs Apophis, 1999 WR12, and 2007 UW1
are in Tables 4 and 5. Table 4 presents the values found for the missions conceived by
escape trajectories G, and Table 5 presents the correspondent values found for the missions
conceived by Patched-conic approach. For each sort of mission, the ΔVs applied in the
departure from the LEO, for occasional velocity and inclination changes, the spacecraft
velocities relative to the asteroids in the closest point approach (CPA), and the transfer times
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Table 3: Three next closest point approaches.

Asteroid
Date Apophis 1994WR12 2007UW1

1st Date 2013/01/09.48850 2017/11/22.55300 2020/04/24.60600
Minimum possible distance (UA) 0.096662 0.001781 0.137462

2nd Date 2029/03/06.05209 2019/11/24.23939 2026/10/07.03002
Minimum possible distance (UA) 0.112651 0.001731 0.002622

3rd
Date 2036/04/14.60516 2021/12/05.05848 2039/06/0.832120

2039/10/22.06710

Minimum possible distance (UA) 0.000254 0.001540 0.099407
0.001451

Sources: http://neo.jpl.nasa.gov/.

Table 4: Missions’ data of the Earth-NEOs transfer by escape trajectories G.

Asteroid ΔV ∗1 ΔV ∗∗int 1 ΔV ∗∗∗int 2 ΔVTotal T1 V ∗∗∗∗1 T2 V ∗∗∗∗∗2

(km/s) (km/s) (km/s) (km/s) (days) (km/s) (days) (km/s)
Apophis 3.148 0.010 0.018 3.176 81 0.800 225 0.550
1994WR12 3.147 0.018 — 3.165 53 3.700 103 3.600
2007UW1 3.149 0.018 0.012 3.169 153 0.490 — —
∗Departure, ∗∗1st apogee, ∗∗∗CPA with the Moon, ∗∗∗∗spacecraft velocity relative to the asteroid in T1, and ∗∗∗∗∗spacecraft
velocity relative to the asteroid in T2.

Table 5: Missions’ data of the Earth-NEOs transfer by Patched-conic approach.

Asteroid ΔV ∗1 (km/s) ΔV ∗∗int 1 (km/s) ΔVTotal (km/s) T1 (days) V ∗∗∗1 (km/s) T2 (days) V ∗∗∗∗2 (km/s)
Apophis 3.280 0.020 3.308 155 1.200 198 1.350
1994WR12 3.225 0.035 3.260 131 4.100 — —
2007UW1 3.250 0.028 3.278 111 0.690 — —
∗Departure, ∗∗middle curse, ∗∗∗spacecraft velocity relative to the asteroid in T1, and ∗∗∗∗spacecraft velocity relative to the
asteroid in T2.

were calculated. The altitude of the circular departure LEO was considered equal to 200 km,
and the altitude of the CPA with the asteroids was considered equal to 1 km. For the transfers
between the Earth and Apophis and the Earth and 1994 WR12, it was possible to find two
CPAs between the spacecraft and the asteroids. In Tables 4 and 5, we call these times of T1 for
the 1st CPA and T2 for the 2nd CPA. It is interesting to note that spacecraft velocities relative
to the asteroids are different in each CPA, and, depending on the mission goals, the choice of
one of them could represent an extra fuel saving in an occasional insertion maneuver of the
spacecraft into an orbit around the asteroid.

Figure 4(a) shows the Earth’s and the Apophis’s orbits and the heliocentric ellipse arc
generated by the Patched-conic approach. The times of the 1st and 2nd CPA are 155 and 198
days after the departure from the LEO, respectively, and the distances from the Earth to these
points are 11.2× 106 km and 113.6× 106 km, respectively. The values of T1 and T2 of the other
transfers are in Tables 4 and 5.

By analogy, Figure 4(b) shows the escape trajectory G found for the Earth-Apophis
transfer. The 1st and the 2nd CPAs take place 86 and 225 days after the departure from the
LEO, and the distances from the Earth to these points are 52.27 × 106 km and 204.45 × 106 km,
respectively.
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Figure 4: (a) Earth’s and Apophis’s orbits and the transfer trajectory found for Patched-conic transfer. (b)
Earth’s and Apophis’s orbits and transfer trajectory G (heliocentric frame).
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The analysis of Tables 4 and 5 shows that the procedure described in Section 4 to
generate transfer trajectories between the Earth and NEOs, derived from periodic orbits
of Family G, requires ΔVs of 2% up to 4% less than the transfers conceived by Patched-
conic approach. Besides, the spacecraft velocities relative to the asteroids in the CPAs, for
the trajectories G, are the smallest. This can also provide fuel saving in occasional insertion
maneuvers into an orbit around the asteroids. However, the smallest relative velocities
always correspond to the longest transfer times.

6. Conclusions

In this work, a procedure capable of generating transfer trajectories between the Earth and
the NEOs has been presented. These trajectories are derived from the periodic orbits around
the Lagrangian point L1 and escape from the Earth-Moon system after a swing-by with the
Moon.

In terms of ΔVTotal, those required by escape trajectories G are, in general, fewer than
the ones required by conventional transfers (Patched-conic), between 2% up to 4%. Besides,
the spacecraft velocities relative to the asteroids are also, in general, less than those found by
the conventional methods.

With regard to the transfer time, we verify that in two cases (Apophis and 1994 WR12)
it was possible to find two CPAs. The time longest always corresponds to the smallest relative
velocity in CPA for trajectories G. We also verify that there are not any discrepancies between
the transfer times of the two considered methods.

This way, we can conclude that the escape trajectories G presented in this work are a
good alternative to design future missions destined to the NEOs.

Finally, future studies of techniques to accomplish a swing-by with the Earth and, thus,
to gain more energy and a larger reach could provide the planning of transfers to more distant
objects, including the internal planets.
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