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ABSTRACT

This work presents the fundamentals of transport phenomena, some equations of
thermodynamic state, the weak formulation of the finite element method applied to the
flow and some methods for solving the various fields of analysis of the flow, the turbulence
in incompressible and compressible flows, the combustion as reactive flow in a premixed
homogeneous mixture. A technical review of several chosen references addressing aspects of
the numerical solution, the turbulent model, the turbulence-combustion integration (TCI),
the premixture and the choice of fuel and oxidizer, including a table so that you can analyze
the complex relationship between all these aspects in publications checked. The main
objective of this work is to develop a theoretical and numerical analysis of incompressible
and compressible turbulent flows for several domains, developing a framework base to be
integrated into the simulation of reactive flows in rocket engines in the future. The equations
of continuity, momentum, energy and conservation of chemical species are discretized using
the Galerkin finite element method combined with the CBS (Characteristic Based-Split)
stabilization scheme, to obtain the fluid dynamic and thermal effects of the process. The
combustion process and flame front behavior was only analyzed theoretically and for
this, the Flamelet-Progress Variable method was employed. For the modeling of chemical
kinetics, the software Canterar is applied, which uses the GRI-3.0, a mechanism that
contains 325 reactions and includes 53 chemical species as a product of combustion. For this,
a premixed mixture of methane and oxygen was considered. A framework was developed
in Python with the algebraic system resulting from the temporal and spatial discretization
of finite elements with the application of Object Oriented Programming (OOP) and
local parallelism through process control. For the temporal and transient resolution, the
completely explicit Euler scheme was applied, while the Element-by-Element (EbE) method
was used to obtain the spatial behavior, based on the Biconjugated Gradient method for
solving linear systems, reducing computational costs. and memory space associated with
not using sparse arrays. For consistency analysis of the framework, results are presented
for several reference flows in the literature.

Keywords: Characteristic-based split. Python. Element-by-Element approach. Parallel
programming.



RESUMO

No presente trabalho são apresentados os fundamentos de fenômenos de transporte,
algumas equações de estado termodinâmico, a formulação fraca do método dos elementos
finitos aplicado à escoamento e alguns métodos para resolução dos diversos campos de
análise deste, a turbulência em escoamentos incompressíveis e compressíveis, a combustão
como escoamento reativo em uma mistura homogênea pré-misturada. Procede-se então
à apresentação em forma resumida de uma revisão técnica de várias referências escol-
hidas abordando aspectos da solução numérica, do modelo turbulento, da integração
turbulência-combustão (TCI), da pré-mistura e da escolha do combustível e comburente,
incluindo ainda uma tabela para que possa analisar a complexa relação entre todos esses
aspectos nas publicações verificadas. O principal objetivo neste trabalho é desenvolver
uma análise teórica e numérica de escoamentos incompressíveis e compressíveis turbu-
lentos para diversos domínios, desenvolvendo um framework base para futuramente ser
integrado a simulação de escoamentos reativos em motores à foguetes. As equações de
continuidade, momentum, energia e conservação de espécies químicas são discretizadas
aplicando o método de elementos finitos de Galerkin combinado o esquema de estabilização
CBS (Characteristic Based-Split), para se obter os efeitos fluidodinâmicos e térmicos do
processo. O processo de combustão e comportamento da frente de chama foi analisado
somente teóricamente e para isso foi empregado o método de Flamelet-Progress Variable.
Para a modelagem da cinética química é aplicado o software Canterar, o que utiliza o
GRI-3.0, mecanismo que contém 325 reações e inclui 53 espécies químicas como produto da
combustão. Para isso, foi considerado uma mistura pré-misturada de metano e oxigênio. Um
framework foi desenvolvido em Python com o sistema algébrico resultante da discretização
temporal e espacial de elementos finitos com aplicação de uma Programação Orientada à
Objetos (POO) e paralelismo local por meio de controle de processos. Para a resolução
temporal e transiente foi aplicado o esquema de Euler completamente explícito, já para a
obtenção do comportamento espacial foi empregado o método de Elemento por Elemento
(EbE), baseado no método de Gradiente Biconjugado para resolução de sistemas lineares,
reduzindo os custos computacionais e espaço de memória associados a não utilização de
matrizes esparsas. Para análise de consistência do framework é apresentado resultados
para diversos escoamentos de referência da literatura.

Palavras-chave: Characteristic-based split. Python. Método elemento por elemento. Pro-
gramação paralela.
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DT,i Thermal diffusion coefficient [kg/(m · s)]
R Gas constant [J/(kg ·K)]
lp Planck-mean absorption lenght [m]
σSB Stefan-Boltzmann constant [W/(m2 ·K4]
εem Surface Emissivity [−]
εabs Surface Absorption [−]
L Surface thickness [m]
∆h0

f,k Enthalpy of formation species k [J/kg]
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1 INTRODUCTION

From Tehran (in November 1943), passing through Yalta (February
1945) and arriving in Potsdam (July 1945), the three great allies (United
States, Great Britain and Soviet Union) poured in the revenue of a
weak alliance almost exclusively sustained in the fight against Hitler. It
concealed, however, the emergence of the antagonism that would lead
international society to other systemic parameters [...] SARAIVA, LESSA,
and ROCHA, 2007.

According to SARAIVA, LESSA, and ROCHA (2007), the antagonism displayed by
the two superpowers that emerged after the Second World War (1939 - 1945), the Soviet
Union and the United States, due to the confrontation of ideologies, generated tensions in
the international globe relations . In this period, known as the Cold War, also has emerged
a great advance in the technological field. Marked mainly by the arms and aerospace races,
the production of new technologies and investments in advanced studies have become
the hallmarks of the hegemony of the superpowers. As a consequence, aerospace research
centers have emerged in several parts of the world, distributed in ten countries/consortia1:
The United States, the USSR2, the European Aerospace Consortium, Japan, China, India,
Israel, Brazil, and North Korea I.-S. CHANG, 2000.

In the Cold War on October 4, 1957 the man reached the space for the first time,
by means of an artificial satellite placed in orbit by the USSR, with the Sputnik launch
vehicle (SL-1) using liquid propellant as fuel ANDERSON JR, 2015.

I.-S. CHANG (2000) conducted a study about the World launches after the Sputnik
feat, from 1957 to 1998. The largest number of releases were by the United States and the
USSR, with 1125 and 2560 launches, and success rates of 87.5% and 93.5%, respectively.
The other countries with the most significant aerospace technology were the Europian
Consortium and Japan with 107 and 52 launches and success rates of 89.9% and 86.7%,
respectively.

The aeronautics and aerospace needs of that period brought the technological
advances in other sectors such as communication, geolocation, electhronics, material
science and many others. There has been a growth in the number of space agencies: DLR3

(Germany), ESA4 (Europe), UK Space (UK), Roscosmos (URSS) and NASA5 (United
States) ISECG, 2013.

Figure 1 depicts the launches between 2012 and 2017. Russia, the United States
and China together hold about 80% of them.
1 Alliances for development of joint research in aerospace.
2 Union of Soviet Socialist Republics
3 Deutsches Zentrum für Luft-und Raumfahrt (DRL)
4 European Space Agency (ESA)
5 National Aeronautics and Space Administration (NASA)
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Figure 1 – Global rocket launches during the period 2012 to 2017.

Source – Prepared by the author with data presented by HUOT (2017).

In the national scenario, the Brazilian Space Agency (AEB) is responsible for the
programs and development of technology in the aerospace sector, along other agencies
related to national security. Following the relationship between Brazil and China, the
Agreement for the Expansion of Sino-Brazilian Research, in the Aerospace Segment6, was
signed with intention of increasing the Brazilian performance in the sector. Due to its
strategic position, the national territory hosts most of the world’s satellite launches, with
savings of 20% or more in launch cost7.

During 2016, Brazil promoted the release of the VSB-30 V11 launch vehicle, product
of joint efforts among the Brazilian Air Force (FAB), Department of Aerospace Science
and Technology (DCTA) and AEB8. In the same year, the same vehicle was launched,
but using a propelent developed by DCTA. The launches took place at the Woomera
Launch Center - WIR (Woomera Instrumeted Range), located in Australia9, what shows
6 http://www.aeb.gov.br/acordo-ampliaca-esquisa-sino-Brazilian-in-segment-aerospace/
7 https://www.cnbc.com/2018/02/23/rocket-builders-looking-to-brazil-for-equatorial-launch-site.

html
8 http://www.fab.mil.br/noticias/mostra/28667/ESPA%C3%87O%20-%20Foguete%20suborbital%

20%C3%A9%20lan%C3%A7ado%20pela%20FAB%20no%20Maranh%C3%A3o
9 http://www.fab.mil.br/noticias/mostra/25901/ESPA%C3%87O%20-%20Foguete%20com%

20propulsor%20desenvolvido%20pelo%20DCTA%20%C3%A9%20lan%C3%A7ado%20na%20Austr%C3%
A1lia

http://www.aeb.gov.br/acordo-ampliaca-esquisa-sino- Brazilian-in-segment-aerospace/
https://www.cnbc.com/2018/02/23/rocket-builders-looking-to-brazil-for-equatorial-launch-site.html
https://www.cnbc.com/2018/02/23/rocket-builders-looking-to-brazil-for-equatorial-launch-site.html
http://www.fab.mil.br/noticias/mostra/28667/ESPA%C3%87O%20-%20Foguete%20suborbital%20%C3%A9%20lan%C3%A7ado%20pela%20FAB%20no%20Maranh%C3%A3o
http://www.fab.mil.br/noticias/mostra/28667/ESPA%C3%87O%20-%20Foguete%20suborbital%20%C3%A9%20lan%C3%A7ado%20pela%20FAB%20no%20Maranh%C3%A3o
http://www.fab.mil.br/noticias/mostra/25901/ESPA%C3%87O%20-%20Foguete%20com%20propulsor%20desenvolvido%20pelo%20DCTA%20%C3%A9%20lan%C3%A7ado%20na%20Austr%C3%A1lia
http://www.fab.mil.br/noticias/mostra/25901/ESPA%C3%87O%20-%20Foguete%20com%20propulsor%20desenvolvido%20pelo%20DCTA%20%C3%A9%20lan%C3%A7ado%20na%20Austr%C3%A1lia
http://www.fab.mil.br/noticias/mostra/25901/ESPA%C3%87O%20-%20Foguete%20com%20propulsor%20desenvolvido%20pelo%20DCTA%20%C3%A9%20lan%C3%A7ado%20na%20Austr%C3%A1lia
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the development of Brazil in this sector.
With respect to the subsystems of a launch vehicle, I.-S. CHANG, 2000 studied the

failure frequency with respect to each component. The propulsion subsystem accounted for
62.3% of launch failures in the world between 1983 and 1988, 50% for the United States,
71.4% for USSR and 83.3% for Europe. In Brazil it is even more alarming, because the
propulsion system was responsible for 100% of the failures that occurred in the launches.
In this way, it seems necessary a continuous advancement in technologies and studies
applied to the aerospace propulsion subsystem, in order to develop methods of prediction
and simulations to identify possible failures long before they occur.

SUTTON and BIBLARZ (2001), studying the propulsion of aerospace vehicles,
stated the high complexity of that subsystem requiring careful design and large production
costs. Within the propulsion system, the combustion chamber, which is responsible for the
production of the gases for thrust to accomplish the mission of the vehicle, still presents
challenges in the modeling of the flow through it mainly due to three factors: combustion
details WANG, 2016; interference of the turbulence on the process MAESTRO et al., 2016;
and, representation of the real conditions of the atmosphere CHEN and MATHIAS, 2002
due to the high altitudes reached by the prototypes.

In this research project the main objective is to develop a numerical analysis
of a transient compressible flow with turbulent combustion of homogeneous mixture
in a convergent-divergent nozzle with known geometry. FEM10 with CBS11 scheme for
stabilization, a suitable thermo-chemical model for a premixed combustion and a novel
LES12 subgrid closure model will be employed, coded in a modular way. The integration
turbulent-combustion will be characterized by the Flamelet/Progress Variable, as well as
the analysis of the behavior of the flame front, as presented by LIANG, FISHER, and
Y. M. CHANG (1986).

1.1 Study of the Art

As for the discretization method

In the most of the references analyzed, the FVM13 has been used with the help
of some softwares such as Ansys CFXr MÜHLBAUER et al., 2012, FLUENTr CAO
et al., 2015, FIREr code DEKENA and PETERS, 1999, AVBPr MARTIN et al., 2006,
NTMIX-3Dr BOGER et al., 1998. A few works have used the FDM14 such as MARTIN
et al. (2006) and there LES/CAA15 coupling analysis with the existing AVSPr code. Must
be mentioned the theoretical work of OEFELEIN (2015) and ALBAYRAK and POLIFKE
10 Finite Element Method
11 Characteristic-Based Split
12 Lard Eddy Simulation
13 Finite Volume Method
14 Finite Difference Method
15 Computational Aeroacustic
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(2017), the latter for laminar flow. Note that it has not being possible to determine the
kind of numerical solution method presented by Y. LIU et al. (2012), HUO and YANG
(2017) and A. N. LIPATNIKOV et al. (2017).

Among the severals methods of discretization, is extremely difficult to identify
the most suitable method. In the books by CHUNG (2002) and HIRSCH (1994), for
example, although they use all three methods for the same combustion problem, there
is no comparison between them under the same conditions, especially, for problems with
available experimental data in the literature.

It has been verified that the FVM was a preferred initial choice for solving flow
problems due to its robust way to deal with the inherent non-linearities present in the
Navier-Stokes equations, which were not easily solved by using the classical Galerkin
approach of the FEM due to stability problems, and, therefore, FEM was initially applied
only to conductive problems. With respect to the FDM, its reduced utilization is associated
with its difficult application to situations with complex geometries and with unstructured
meshes.

One of the most contrasting differences between the FVM and FEM is the conserva-
tiveness property. Considered a good property to respect when solving flow problems, the
FVM includes this property by construction, both locally and globally FERZIGER and
PERIĆ, 2002. On the contrary, the FEM yields only global conservation of the equations
– the local conservation is not guaranteed when considering the internal product of the
equation by the weight function CONNOR and BREBBIA, 1976.

Also FEM uses the weak formulation of the equations then yielding the disappear-
ance of the derivatives of higher order during the integration process, leading to an easier
modeling and, consequently, programming, if compared with the FVM, which uses the
strong formulation of the conservation equations.

Therefore, FEM was assessed as more suitable for the analysis of the problem
proposed in this scope. However, due to the instabilities caused by the pure Galerkin
method, it is necessary to employ a proper stabilizer method, and the CBS or Taylor-
Galerkin method has been found to be adequate. Moreover, due to the robustness of the
CBS method, it can be applied for both incompressible and compressible problems with
the same general formulation ZIENKIEWICZ, TAYLOR, and NITHIARASU, 2014.

As for the turbulence model

Although most of the references analyzed employed the LES methodology with
the kinetic energy subgrid (SGS) closure method, SCHLIMPERT et al. (2016) and
MÜHLBAUER et al. (2012) used the RANS16 methodology, the last with the closing
model κ − ε. In the work of SCHLIMPERT et al. (2016), the low-dissipation AUSM17

16 Reynolds-averaged Navier–Stokes
17 Advection Upstream Splitting Method
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was applied to the spatial discretization of the advective terms and for discretization in
time a third-order Runge-Kutta scheme. The DNS18 method was selected by BOGER
et al. (1998), A. N. LIPATNIKOV et al. (2017) and Y. LIU et al. (2012). In particular
DOMINGO et al. (2005) compared results between DNS and LES, whereas POTTURI,
PATTON, and EDWARDS (2017) used the hybrid model of LES/RANS with the least
squares closure model NAGHIAN, LASHKARBOLOK, and JABBARI, 2017.

Since the accuracy of a method is related to its ability to discretize the behavior of
the smaller, or Komolgorov, scales, the different methodologies for turbulence analysis are
distinguished by this aspect. Therefore, the methodologies may be classified in descending
order of accuracy by DNS, LES and RANS.

However, the discretization ability of the smaller scales is directly linked to the
computational cost, resulting in the non-applicability of the DNS methodology for the
present work. From the analyzed works that apply DNS, as a way to counteract the
excessive computational cost they have employed some simplifications for the problem,
such as isotropic turbulence and homogeneity BOGER et al., 1998 or statistically planar
turbulence Y. LIU et al., 2012; A. N. LIPATNIKOV et al., 2017.

An alternative to DNS is the LES methodology, which obtains the average flow
through an analysis of both the small and large vortices, evaluating with some precision
the energy contained in the flow. In this methodology the small scales are not simulated as
in the DNS. Once, they influence the rest of the flow, this influence occurs in a passive way,
such that the larger vortices usually contain greater energy values, which increase their
importance in the simulation. In short, the success of the LES methodology is obtained by
the fact that the energy and other information of the flow travels from the direction of
the largest to the smallest vortex scales, a phenomenon known as the energy cascade, but
almost never in the opposite direction DAVIDSON, 2004.

The RANS model provides results for the average flows with engineering precision
employing moderate cost of computing. As a comparison, it is about 1% to 10% of the cost
employed in LES, the latter requiring a much more refined mesh. However, for anisotropic
vortex flow situations, the mean quantities are less satisfactory with RANS. In addition,
LES provides instability in the data that is indispensable for modeling a chaotic flow as is
the case of real turbulence, but cannot be used for symmetric flows in space FRÖHLICH
and TERZI, 2008.

Considering the strengths of RANS and LES methodologies, it was natural for
some authors to combine both to ally the computational speed of one with the applicability
and reliability of the other through hybrid models POTTURI, PATTON, and EDWARDS,
2017 as it is the case of THAKUR et al. (2012) with DES19, a hybrid model used in
FVM for axissimetric flow. NGUYEN, POPOV, and SIRIGNANO (2017) used the same
18 Direct Numerical Simulation
19 Detached Eddy Simulation
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DES, also for axissimetric flows with chemical multispecies, but with FDM associated to a
variation of the classical JST20 method.

Finally, the applicability of each methodology must be consistent with the level of
accuracy and computational cost that should be previously established for each problem.
With this in mind, and taking into account the strengths presented, the LES methodology
will be used in the present work. In addition, both LES and RANS, because of the
application of the filters and averages to the modeling, demand some way of closing the
system of equations. The novel closure that will be proposed in the present work is a
variation of the subgrid scale model involving the concept of turbulent kinetic energy
OEFELEIN, 2015; FOSTER and MILLER, 2015; MAESTRO et al., 2016.

As for the turbulence-chemical integration

Due to its simplicity and ease of implementation, the G-Equation model that detects
the flame front was employed in the great majority of works analyzed SCHLIMPERT
et al., 2016; NOGENMYR et al., 2008; ALBAYRAK and POLIFKE, 2017; DEKENA and
PETERS, 1999; LAGENESTE and PITSCH, 2002. The works of A. N. LIPATNIKOV et al.
(2017), BOGER et al. (1998), DOMINGO et al. (2005) employ the Flame Surface Density
(FSD) model. The Thickened Flame modelMARTIN et al., 2006; ANGELBERGER,
VEYNANTE, and EGOLFOPOULOS, 2000. MERK et al. (2018) used Linear Eddy Model
(LEM), whereas FLEMMING, SADIKI, and JANICKA (2007) worked with Flamelet Model;
Steady Flamelet Model BUI, SCHRÖDER, and MEINKE, 2008; MÜHLBAUER et al.
(2012) and CECERE et al. (2011) applied Flamelet/Progress Variable. OEFELEIN (2015)
compared the models Laminar Flamelet Model LADEINDE and LOU, 2017, Transported
Probability Density Function FERRARO, GE, and PFITZNER, 2015 and LEM BILGER,
2011, whereas HUO and YANG (2017) compared Flamelet Model and Flamelet/Progress
Variable and ZONG, RIBERT, and YANG (2008) compared Conserved Scalar Approach
and Direct-closure Approach.

Despite the progress in turbulent combustion, a truly predictive, universal, multi-
regime and multi-application model is still undefined. The main models analyzed in this liter-
ature review are the Flamelet models – including Steady Flamelet Model, Flamelet/Progress
Variable and Unsteady Flamelet/Progress Variable Model PITSCH and IHME, 2005 –
LEM and Filtered Density Function (FDF) Y. LIU et al., 2012, all them employing the
LES methodology.

The Flamelet models, wich are limited by the reduction in the number of chemical
species, do not produce good results for flows of pure substances. Still, the simplest Flamelet
model is the Steady Flamelet, in which the turbulent combustion can be characterized by
the chemical kinetics of some reaction GLASSMAN and YETTER, 2008. To circumvent
20 Jameson–Schmidt–Turkel
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such limitations of the model, one has the most robust model of Flamelet/Progress Variable,
to be discussed in the present work.

For LEM, molecular diffusion is considered directly along some directions within
the flow. However the strong multidimensional nature of the flames and the turbulent
convection of the sub-grid scale acting on the level-set function of mapping of the flame
front, which limits the characterization of the flame, do not easily justify that procedure
FOSTER and MILLER, 2015.

In the FDF model with LES the source terms of the level-set transport equation are
naturally closed, which limits the performance due to modeling difficulties of the filtered
conditional diffusion, or the filtered conditional dissipation in the reactive flows. In fact,
there may be substantial differences in behavior within different places in the domain,
between regions of high and low variance of turbulent small scale closure FOSTER and
MILLER, 2015.

In the Flamelet models, the LES transport equations for the fraction of the
filtered mixture and/or progress variables can converge to their exact equations; however,
combustion will always be dictated by a suitable flamelet library, not by the solution of
the detailed coupled chemistry. As a way to bypass such limitation some authors have
used the opensource GRI 3.0 (also called GRI-Mech 3.0) library MAESTRO et al., 2016;
HUO and YANG, 2017; ANGELBERGER, VEYNANTE, and EGOLFOPOULOS, 2000,
that aggregates 325 reactions and 53 chemical species21 for methane-oxygen combustion.

For this work, the Flamelet/Progress Variable model will be used in conjunction
with Canterar – a Python developed library – that includes GRI 3.0.

As for the premixed mixture

Most references used homogeneous premixed mixture prior to combustion. How-
ever, non-premixed combustion was also detected in the works by OEFELEIN (2015),
MÜHLBAUER et al. (2012), HUO and YANG (2017), FLEMMING, SADIKI, and JAN-
ICKA (2007), and BUI, SCHRÖDER, and MEINKE (2008). Finally, DEKENA and
PETERS (1999) and A. N. LIPATNIKOV et al. (2017) worked with partially premixed
blends.

As for fuel and oxidizer

Most of the references used methane as fuel and molecular oxygen as oxidizer.
POTTURI, PATTON, and EDWARDS (2017), MARTIN et al. (2006), ANGELBERGER,
VEYNANTE, and EGOLFOPOULOS (2000) and Y. LIU et al. (2012) worked with the
propane/oxygen ratio. CAO et al. (2015) and HUO and YANG (2017) applied hydrogen
to molecular oxygen. Some laborers chose more elaborate mixtures of fuel, such as the
21 http://combustion.berkeley.edu/gri-mech/version30/text30.html

http://combustion.berkeley.edu/gri-mech/versio n30/text30.html
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hydrogen-nitrogen mixture with molecular oxygen in BUI, SCHRÖDER, and MEINKE
(2008) and FLEMMING, SADIKI, and JANICKA (2007) and the mixture of dilute nitrogen
in methane-hydrogen with application of oxygen as oxidizer MÜHLBAUER et al. (2012).
Finally, DEKENA and PETERS (1999) analyzed the behavior of gasoline-air mixture
during the combustion process.

As for the code development

In all the references analyzed, even those in which the use of some kind of commercial
or open source software in the various aspects of transport phenomena was informed, the
authors omitted or somehow trivialized the solution methodology employed, as well as
the choice of some important physical parameters involved directly in solving the specific
problem, making it impossible to further analyze in detail or even to reconstruct their
procedures.

A complete schematic analysis of these references can be seen in Appendix A.
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2 METHODOLOGY

The analysis and modeling of highly complex problems require their breakdown
into a set of submodules, which although interconnected, can be modified or suppressed
according to the hypotheses underlying each problem. A block diagram with submodules
can be seen in Figure 2.

Figure 2 – Block diagram of the submodule structure for the problem.

Source – Prepared by the author.

From problem statements, in a specific geometrical situation, the system of equations
to be solved was produced. Linked directly to the flow and geometry, the boundary and
initial conditions were set.

After establishing the system of equations and the conditions of the problem, the
discretization was carried out applying FEM. The FEM and the programming language
Python were proposed from the start, due to its ease of programming coupled with the
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modern methods of stabilization of the Galerkin method, such as the one used in this
project, CBS, with which better results are obtained when compared to other methods of
stabilization ZIENKIEWICZ, TAYLOR, and NITHIARASU, 2014.

As for the mesh generation, the BlockMesh toolbox of the software OpenFOAM was
applied, due to its practicability and efficiency for simple geometries. In order to compare
different mesh generators and to verify the robustness of the developed framework, Gmsh
was also used for the generation of both structured and unstructured meshes.

As for the post-processing, the open-source visualization software Paraview was
chosen, since it provides practicality in the manipulation of complex geometries and it has
large amounts of tools for better analysis of the results.

In the following sections, all the methods and strategies used to solve the problem
will be presented in detail, concerning the main global aspects.

2.1 Mathematical Model

The proposed problem is the characterization of the flame front and the effects
generated by a turbulent compressible premixed combustion. For this, after the definition
of the geometry and the coordinate system, the system of transport equations to be solved
was obtained.

For the LES methodology, a spatial filter of Favré was applied and a model of
subgrid closure was developed. For the subgrid terms an isotropic flow was assumed.

For the combustion modeling, a premixed mixture of GCH4/GO2 was selected, and
the flamelet/progress variable method was used to characterize the flame front. Following,
the system of transport equations as well as the other hypotheses employed in the present
work are set POINSOT and VEYNANTE, 2005:

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0 (1)

∂(ρui)
∂t

+ ∂

∂xj
[ρuiuj + pδij − τij] − ρgi = ρ

N∑
k=1

Ykfk,i (2)

∂(ρYk)
∂t

+ ∂

∂xi
[(ρui + ρVk,i)Yk] = ω̇k, for k = 1, . . . , N

by definition:
N∑
k=1

YkVk,i = 0 and
N∑
k=1

ω̇k = 0

From these definitions, one has to locally analyze the mass fraction Yk for each
specie, since mass is not globally preserved. With this, there is a need to add a correction
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speed WILLIAMS, 1985, resulting in

∂(ρYk)
∂t

+ ∂

∂xi
[(ρui + ρV c

i )Yk + ρVk,iYk] = ω̇k (3)

where
V c
i =

N∑
k=1

Dk
∂Yk
∂xi

Applying Fick’s Law, the last term on the left hand side is:

Vk,iYk = −Dk
∂Yk
∂xi

The total energy conservation equation is

∂ (ρE)
∂t

+ ∂

∂xj
[ρujE + ujp− uiτij + qj] = ω̇T + ρ

N∑
k=1

Ykfk,i (ui + Vk,i) (4)

where

ω̇T = −
N∑
k=1

∆h0
f,kω̇k (5)

qi = −k ∂T
∂xi︸ ︷︷ ︸

Conduction

+
∑
k

ρVk,iYkhk︸ ︷︷ ︸
Mass Diffusion

+ RT
∑
k

DT,k

T

∂T

∂xi︸ ︷︷ ︸
Soret effect

+ qRi︸︷︷︸
Radiation

(6)

The Dufour effect is an induced heat flow caused by the concentration gradient.
These effects represent examples of couplings between two vector field flows. The cross-
phenomenological coefficients relate the Dufour and Soret effects DEMIREL, 2007. Heat
and mass transport give rise to the Soret effect, which is the mass diffusion due to heat
transfer, and the Dufour effect, which is the heat transport due to mass diffusion.

It is not obvious that the cross-transport effects are unimportant in ignition stability
because it will be found that changes in diffusion coefficients or Lewis numbers by amounts
on the order of 10% can be significant, and Soret effects typically may reach 10% of those
of the ordinary diffusion processes. Analysis has shown that there are conditions, Soret
and Lewis numbers, under which may even change the character of the instability, but
for usual flames, including mixtures containing hydrogen (for which the effect might be
anticipated to be greatest), its only influence appears to be a relatively small quantitative
modification to the stability boundaries WILLIAMS, 1985.

Rewriting the complete heat flow equation. taking into account the Dufour effect,
results

qi = −k ∂T
∂xi︸ ︷︷ ︸

Conduction

+
∑
k

ρVk,iYkhk︸ ︷︷ ︸
Mass Diffusion

+ R̄T
∑
j

∑
k

xkDT,j

MjDjk

(Vj,i − Vk,i)︸ ︷︷ ︸
Dufour Effect

+ qRi︸︷︷︸
Radiation

(7)
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In many problems, the only significant effects of radiation are those concerning
radiant transfer to and from solid surfaces WILLIAMS, 1985. With this, the effects of
radiation was taken into consideration only near the wall regions, such that the normal
component from the surface is

qR · ~n = εσSBT
4 (8)

where εem = 4L/lp is the engineering emissivity. Absorbance is generally given by
WILLIAMS, 1985

εabs = 1 − e−4L/lp (9)

Disregarding the effects of body forces between species, the system of PDE for the
instantaneous variables becomes:

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0 (10a)

∂(ρui)
∂t

+ ∂

∂xj
[ρuiuj + pδij − τij] − ρgi = 0 (10b)

∂(ρYk)
∂t

+ ∂

∂xi
[ρ (ui + V c

i )Yk + ρVk,iYk] = ω̇k (10c)

∂ (ρE)
∂t

+ ∂

∂xj
[ρujE + ujp− uiτij + qj] = ω̇T (10d)

Following, the equations for LES will be obtained. Setting Favre Filter as

f̃ = ρf

ρ̄
; (11a)

any variable f can be written as:

f = f̃ + f ′. (11b)

As a consequence of the definition:

f ′ = f − f̃ −→ ρf ′ = ρf − ρf̃ = ρ̄f̃ − ρ̄f̃ = 0. (11c)

By LES methodology, variables can be filtered in the spectral space or physical
space. The filtered amount is defined by POINSOT and VEYNANTE, 2005:

f̃(x) =
∫

Ω
f(x′)F (x − x′) dx′ (12)

where F may be one of the LES filters: Cut-off filter, or Box filter, or Gaussian filter.
These filters are described in sequence.
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The Cut-off filter in spectral space is defined by

F (k) =

1 if k ≤ κc = π/∆

0 otherwise
(13)

The Box filter in physical space is defined as:

F (x) =

1/∆3
if |xi| ≤ ∆/2, i = 1, 2, 3

0 otherwise
(14)

The Gaussian filter in physical space is defined in the form:

F (x) =
( 6
π∆2

)3/2
exp

[
− 6

∆2

(
x2

1 + x2
2 + x2

3

)]
(15)

Applying the Favre filter, the system of equations for LES is the following:

∂ρ̄

∂t
+ ∂

∂xj
(ρ̄ũi) = 0 (16)

∂

∂t
(ρ̄ũi) + ∂

∂xj

[
ρ̄ũiũj + τ sgsij + p̄δij − τ ij

]
− ρ̄g̃i = 0 (17)

∂
(
ρ̄Ỹk

)
∂t

+ ∂

∂xi

[
ρ̄
(
ũi + Ṽ c

i

)
Ỹk + ρ̄Ṽk,iYk + Y sgs

k,i

]
= ω̇k (18)

∂
(
ρ̄Ẽ
)

∂t
+ ∂

∂xj

[
ρ̄ũjẼ + ũj p̄− ũiτij + Hsgs

j + σsgsj + q̄j
]

= ω̇T (19)

where
q̄i = −k̄ ∂T̃

∂xi
+ ρ̄

∑
k

h̃kṼk,iYk + R̄
∂T̃

∂xi

∑
k

DT,k + qRi + qi,sgs (20)

with the variables that need closure modeled by using the turbulent viscosity approach, as
follow:

τij = 2µ(T̃ )
(
S̃ij −

1
3 S̃kkδij

)

τ sgsij = −2ρνt
(
S̃ij −

1
3 S̃kkδij

)
+ 2

3 ρ̄k
sgsδij

p̄ = ρ̄R̃T̃ + ρ̄RuT
sgs

T sgs =
Ns∑
k=1

(
ỸkT − ỸkT̃

)
Wk

Y sgs
k,i = − ρ̄νt

Sckt

∂Ỹk
∂xi

−
N∑
k=1

ρ̄νt
Sckt

∂Ỹk
∂xi
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Ṽk,iYk = −
˜
ρDk

∂Yk
∂xi

≈ −ρ̄Dk
∂Ỹk
∂xi

Ẽ = ẽ + 1
2 ũkuk

= ẽ + 1
2 ũkũk + 1

2(ũkuk − ũkũk)
= ẽ + 1

2 ũkũk + ksgs

ẽ =
Ns∑
k=1

Ỹk∆h0
f,k +

Ns∑
k=1

Ỹk

∫ T̃

T0
cV,k(T )dT +

Ns∑
k=1

Esgs
k

Hsgs
i + σsgsi = − (ρνt + µ) ∂k

sgs

∂xi
− ρνtcp

Prt

∂T̃

∂xi
+ ũjτ

sgs
ij

qsgs = −
∑
k

hk
ρ̄Dk

Sct

∂2Ỹk
∂x2

i

According to Smagorinsky the turbulent viscosity νt is modelled as SCHIESTEL
(2008)

νt = Cν∆
2|S| (21)

Assuming, the conditions of high Reynolds numbers, isotropic flow and considering
that ∆/η >> 1, where the cutoff wavenumber κc is defined by κc = π/∆ POPE, 2000,
thus κcη << 1. In this way, since the exponential of the spectral distribution of the flow
can be ignored,

E∗(κ) = αε
2
3κ−

5
3 (22)

The turbulent viscosity can be obtained by applying the closed spectral theory of
KRAICHNAN (1976) applied to isotropic flows:

νt = 0.441α
3
2

√
E∗(κc)
κc

(23)

where α is Kolmogorov constant (α ≈ 1.5).
The dissipation rate can be approximated by εsgs ≈ ε = 0.931 (ksgs)3/2

∆ GÉN,
2009. Therefore, equalling equations 21 and 23 the subgrid kinetic energy becomes

ksgs = 22.5523|S|2C2
ν∆2 (24)

This novel model of the subgrid kinetic energy proposed in this work differs from the
method presented by GÉN (2009) and LIN (2010) and POPE (2000) with the purpose of
avoiding the addition of one more transport equation, this way, reducing the computational
cost and the complexity of the system of equations.
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The application of the LES methodology implies directly in minimally refined
mesh for convergence. Thus, one way to verify this refining is by applying the concept
of spectral distribution, which is addressed in Figure 3 and explained in Section D. As
shown in Figure 3, in LES, if the mesh is suficiently refined, 80% of the energy spectrum
is simulated, while the small vortices or viscous subgrid effects are modeled.

Figure 3 – Comparated small scale analised by differents methodologies.

Source – Adapted by the author from HIRSCH (2007).

Analyzing from the point of view of combustion, laminar combustion generates a
stable and well defined flame front, in contrast turbulence generate perturbations in the
fire flame front appearing as a flame brush as shown in Figure 4.
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Figure 4 – Scheme of laminar (left) and turbulent (right) premixed flames.

Source – A. LIPATNIKOV (2013).

As shown in Figure 5, the characterization of the turbulent flame front might
become such more complex, for example, in the case when the combustion presents the
contour of a turbulent flame in a injector. The detection of the flame front or reaction
front is developed by scanning some chemical species, thus, the phenomenon of turbulence,
distorts the flame front, which makes it difficult to map.

Figure 5 – Contours of instantaneous flame boundaries in turbulent flame in a injector.

Source – GLASSMAN and YETTER (2008).

Turbulent premixed flame front was characterized by the Flamelet/ Progress
Variable model, presented in detail in Appendix E. With this, CECERE et al. (2011), the
proposal of this method is the resolution of two additional transport equations for the
non-normalized progress variable G̃ζ and for the squared variable G̃ζ

2. For more details of
the progress variable definition and its normalization see Section E. Thus, the variance of
the progress variable is given by G̃ζv = G̃2

ζ − G̃ζ

2.
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CECERE et al. (2011) also stated that the progress variable might be any scalar
that characterizes the flame (mass fraction of the species, temperature, etc.), but this
must be a monotonic function of the spatial coordinates. It is still suggested in that work,
for a methane/oxygen mixture, that the progress variable be a combination of the CO2

and CO species. This way, the mass fraction will be used as a progress variable with the
following correlation

G = ỸCO2 + ỸCO (25)

The normalization of the progress function is given by

ζ = G(~x) − Gu(~x)
Gb(~x) − Gu(~x) (26)

where �u represents the unburnt gases, similarly, �b the flared gases.
Thus, additional non-normalized transport equations are:

∂ρ̄G̃ζ

∂t
+ ∂

∂xj

(
ρ̄ũjG̃ζ

)
= ∂

∂xk

(
ρ̄αGζ

∂G̃ζ

∂xk

)
+ ρ̄ω̃Gζ + ∂fζk

∂xk
(27)

and

∂ρ̄G̃2
ζ

∂t
+ ∂

∂xj

(
ρ̄ũjG̃2

ζ

)
= ∂

∂xk

(
ρ̄αGζG̃2

ζ

)
+ ∂fζ2

k

∂xk
− 2ρ̄X̃Gζ + 2ρ̄ω̃GζGζ (28)

where

fζk = ρ̄αtGζ
∂G̃ζ

∂xk

and
αtGζ = CGζ∆

2|S|Sij

Although for the constant CGζ GERMANO et al. (1991) propose a dynamic
calculation, in the present work it is proposed that the calculation be performed taking
into account the subgrid kinetic energy, see Section D. For further details seek also
Section E, such that

CGζ(x, t) = −0.4655 ksgs
3
2

∆̄3|S|S2
ij

(29)

The proposal of the equations 24 and 29 is reducing the turbulence control parame-
ters, so the only external parameter to be controlled is the Smagorinsky constant, together
with the analytical closure of the transport equations.
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The closure of the balance equation of progress variable becomes

fζ2k = ρ̄αtG2
ζ

∂G̃2
ζ

∂xk

ρ̄X̃Gζ = ρ̄D|∇G̃ζ |2 + s̄XGζ

By VEYNANTE and VERVISCH (2002) if a linear relaxation of the fluctuations
generated by micromixing is postulated, then

s̄XGζ = ρ̄G̃ζv

τt

Following DOMINGO et al. (2005) the turbulent Schmidt number is assumed to
be 0.7.

For full details of the turbulent equation see Appendix F.
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3 NUMERICAL MODEL

CBS scheme was originally introduced for a solution in the fully explicit form, later
it was extended to the semi-implicit form and could be applied for both compressible and
incompressible flows. From the outset, it has been realized that the explicit solution to the
fully incompressible fluid dynamics equations using the CBS scheme is possible, provided an
artificial compressibility method is employed. The solution of transient problems with CBS
was achieved using a two-step time-staging approach. Recently, the method was extended
to solve problems of viscoelastic flow NITHIARASU, CODINA, and ZIENKIEWICZ, 2006.

3.1 General CBS

Consider the transport equation of any scalar φ

∂φ(~x, t)
∂t

+ ~u · ∇φ − ∇ · (kφ∇φ) = Sφ (30)

For coordinates along the characteristic line so that

dx′ = dx − udt (31)

Equation 30 can be rewritten as and considering the terms n+1/2 being approxi-
mated by terms n, one gets:

dφ(x′, t)
dt

− ∇ · (kφ∇φ) = Sφ (32)

Where it is implied, now, that one is in a mobile coordinate system. Suppose, the
one-dimensional case, as illustrated in the Figure 6, and that in the time interval a shift
δ = u∆t in x occurred.

Figure 6 – Scheme of characteristic-Galerkin procedure.

Source – ZIENKIEWICZ, TAYLOR, and NITHIARASU (2014).
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The time discretization of the one-dimensional equation leads to:

φn+1 − φnx−δ
∆t ≈ θ [∇ · (kφ∇φ) + Sφ]n+1 + (1 − θ) [∇ · (kφ∇φ) + Sφ]nx−δ (33)

The problem is that the terms at time n are in different positions than the terms
n + 1, a consequence of being in a mobile coordinate system. However, by Taylor series
expansion, the terms in the position x− δ can be transformed to the x position, that is,

φnx−δ ≈ φnx − δ
∂φnx
∂x

+ δ2

2
∂2φnx
∂x2 + O

(
∆t3

)
(34a)

(1−θ)
[
∂

∂x

(
kφ
∂φ

∂x

)]n
x−δ
≈ (1−θ)

[
∂

∂x

(
kφ
∂φ

∂x

)]n
− (1−θ)δ ∂

∂x

[
∂

∂x

(
kφ
∂φ

∂x

)]n
+ O

(
∆t2

)
(34b)

(1− θ) (Sφ)nx−δ ≈ (1− θ)Snφ − (1− θ)δ
∂Snφ
∂x

+ O
(
∆t2

)
(34c)

Thus, the Equation 33 can be rewritten as

φ(n+1) = φnx − u∆t∂φ
n
x

∂x
+ ∆t2

2 u
∂

∂x

(
u
∂φnx
∂x

)
+ θ∆t

[
∂

∂x

(
kφ
∂φ

∂x
+ Sφ

)](n+1)

+ (35)

+ (1− θ)∆t
[
∂

∂x

(
kφ
∂φ

∂x

)]n
− (1− θ)∆t2u ∂

∂x

[
∂

∂x

(
kφ
∂φ

∂x

)]n
+

+ (1− θ)∆tSnφ − (1− θ)∆t2u
∂Snφ
∂x

for theta = 0.5

φ(n+1) = φnx − u∆t∂φ
n
x

∂x
+ ∆t2

2 u
∂

∂x

(
u
∂φnx
∂x

)
+ ∆t

2

[
∂

∂x

(
kφ
∂φ

∂x
+ Sφ

)](n+1)

+ (36)

+ ∆t
2

[
∂

∂x

(
kφ
∂φ

∂x

)]n
− ∆t2

2 u
∂

∂x

[
∂

∂x

(
kφ
∂φ

∂x

)]n
+

+ ∆t
2 Snφ −

∆t2
2 u

∂Snφ
∂x

Whereas
(�)

(
n+ 1

2

)
= 1

2 (�)n + 1
2 (�)(n+1) (37)

thus

φ(n+1) = φnx − ∆t

uφnx
∂x
− ∂

∂x

(
kφ
∂φ

∂x

)(n+ 1
2

)
− S

(
n+ 1

2

)
φ

 + (38)

+ ∆t
{

∆t
2 u

∂

∂x

(
u
∂φnx
∂x

)
− ∆t

2 u
∂

∂x

[
∂

∂x

(
kφ
∂φ

∂x

)]n
− ∆t

2 u
∂Snφ
∂x

}
(39)
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applying the approximation Equation 37 you get

φ(n+1) = φn −∆t
[
u
∂φ

∂x
− ∂

∂x

(
kφ
∂φ

∂x

)
− Sφ

]n
+ ∆t2

2 u
∂

∂x

[
u
∂φ

∂x
− ∂

∂x

(
kφ
∂φ

∂x

)
− Sφ

]n
(40)

In multidimensions there is

φ(n+1) = φn − ∆t
[
uj
∂φ

∂xj
− ∂

∂xj

(
kφ
∂φ

∂xj

)
− Sφ

]n
+ (41)

+ ∆t2
2 uk

∂

∂xk

[
uj
∂φ

∂xj
− ∂

∂xj

(
kφ
∂φ

∂xj

)
− Sφ

]n
or

φ(n+1) = φn −∆t [~u · ∇φ − ∇ · (kφ∇φ) − Sφ]n + ∆t2
2 ~u·∇ [~u · ∇φ − ∇ · (kφ∇φ) − Sφ]n

(42)
Using a conservative form of the transport equation, the equation resulting from

the CBS is

φ(n+1) = φn − ∆t [∇ · (~uφ)− ∇ · (kφ∇φ) − Sφ]n + (43)

+ ∆t2
2 ~u · ∇ [∇ · (~uφ)− ∇ · (kφ∇φ) − Sφ]n

3.2 Temporal Discretiztion of the Momentum Equation

Let the Equation 10b be rewritten as

∂Ui
∂t

= − ∂

∂xj
(ujUi) + ∂τij

∂xj
− ∂p

∂xi
+ ρgi (44)

where Ui represents the mass flow given by

Ui = ρui

To apply the CBS to the Equation 10b, similar what has been done for obtention
of Equation 42, and introduce introduce the approximations there are two alternatives:
Split A and Split B, but in present work it was chosen Split B. Assuming in each split a
time increment ∆t = tn+1 − tn.

In the split B, the auxiliary variable ∆U∗i is also introduced, keeping the known
values of ∂pn/∂xi, i.e.,

∆U∗i = ∆t
[
− ∂

∂xj
(ujUi) + ∂τij

∂xj
− ∂p

∂xi
+ ρgi + (45)

+∆t
2 uk

∂

∂xk

(
∂

∂xj
(ujUi) + ∂p

∂xi
− ρgi

)]n
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By including the pressure term, this equation gives a better approximation for U∗i .
Now a correction term is given by:

∆U∗∗i = −θ2∆t∂∆p
∂xi

(46)

Therefore, for θ2 = 0, no correction (∆U∗∗i ) will be required. The density variation
becomes

∆ρ = −∆t
[
∂Un

i

∂xi
+ θ1

∂∆U∗i
∂xi

− ∆tθ1θ2
∂2∆p
∂x2

i

]
(47)

3.3 Space Discretization

Using spatial approximations by Galerkin FEM, variables are interpolated as
ZIENKIEWICZ, TAYLOR, and NITHIARASU, 2014:

Ui = NuÛi ∆Ui = Nu∆Ûi ∆U∗i = Nu∆Û∗i

∆U∗∗i = Nu∆Û∗∗i ui = Nuûi p = Npp̂ ρ = Nρρ̂

where the vectors of node variables and interpolation functions are

Ûi =
[
Û1
i Û

2
i ... Ûa

i ... Ûm
i

]T
N =

[
N1 N2 ... Na ... Nm

]
and a is the node number identification, which varies between 1 and m.

The shear stress tensor is defined as

τij = 2µSij

where the deformation rate is given by,

Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)

for incompressible flows, the last term in the deformation rate disapears.
For convenience, the components of the shear strain tensor can be put in matrix

form as:

S = [S11 S22 S33 2S12 2S23 2S31]T (48)

Thus, for incompressible flow the rate of volumetric deformation is

Sv = Sii = S11 + S22 + S33 = 0 (49)
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The rate of shear strain can be rewritten as

Sd = IdS (50)

where

Id =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(51)

By introducing the concept of the derivation matrix of the velocities and rates of
deformation it is shown that the strain tensor can be defined as:

S = S∗u (52)

where
u = [u1 u2 u3]T

Thereby,

S∗ =



∂

∂x1
0 0

0 ∂

∂x2
0

0 0 ∂

∂x3
∂

∂x2

∂

∂x1
0

0 ∂

∂x3

∂

∂x2
∂

∂x3
0 ∂

∂x1



(53)

A matrix B is defined as a relation between the rate of deformation and velocities
by

B = S∗Nu (54)

Thus, the solution to ∆U∗i is
Step 1

∆Û∗i = −M(−1)
u ∆t

[
(CuÛ + Kτ û + GT p̂ − f) − (55)

− ∆t
(

KuÛ + fs + ∆t
2 Pp̂

)]n
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Values with notation �̂ represent the nodal values. The matrices of coefficients in
the above equation are:

Mu =
∫

Ω
NT
u NudΩ (56a)

Cu =
∫

Ω
NT
u (∇(uNu))dΩ (56b)

Kτ =
∫

Ω
BTµIdBdΩ (56c)

f =
∫

Ω
NT
u ρgdΩ +

∫
Γ
NT
u tdΓ (56d)

Ku = −1
2

∫
Ω

[
∇T (uNu)

]T [
∇T (uNu)

]
dΩ (56e)

fs = −1
2

∫
Ω

[
∇T (uNu)

]T
ρgdΩ (56f)

In a Step 2, the pressure field is obtained from

(Mp + ∆t2θ1θ2H)∆p̂ = ∆t
[
GÛ + θ1G∆Û∗ − fp

]n
(57)

and then, the additional correction term defined Eq. (32) is calculated from
Step 3

∆Û∗∗ = −M−1
u ∆t

[
θ2GT∆p̂

]
(58)

In a Step 4 the energy equation is solved. By the approximate functions for energy
and temperature inside a finite element:

ρE = NEÊ and T = NT T̂ (59)

and the discretized equation or algebraic equation for energy is:

∆Ê = −ME
−1∆t

[
CEÊ + Cpp̂ + KTT̂ + KτEû (60)

+ fe − ∆t(KuEÊ + Kupp̂ + fes)
]n

where Ẽ are the nodal values of ρE and the matrices and vectors are similar to those
shown above.

ME =
∫

Ω
NT
ENEdΩ
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CE =
∫

Ω
NT
E∇T (uNE)dΩ

Cp =
∫

Ω
NT
E∇T (uNp)dΩ

KT =
∫

Ω
(∇NE)Tk∇NTdΩ

KτE =
∫

Ω
BTµuαv IdBdΩ

KuE = −1
2

∫
Ω

(∇T (uNE))T (∇NE)dΩ

fe =
∫

Γ
NT
En

T (tdu + k∇T )dΓ

Kup = −1
2

∫
Ω

(∇TNE))T (∇Np)dΩ

The force term fes contains the source terms. For more details and compressible
flows see Section B.

3.4 Artificial Compression in Transient Problems

For transient problems the artificial compressibility method is easily obtained from
the CBS structure ZIENKIEWICZ, TAYLOR, and NITHIARASU, 2014. Consider the
equation

Un+1
i − Un

i = ∆t
[
− ∂

∂xj
(ujUi)n +

τnij
∂xj

+ (ρgi)n −

− ∆Um
i

∆τ

]
− ∆t∂p

n+θ2

∂xi
+ ∆t2

2 uk
∂

∂xk

[
∂

∂xj
(ujUi) −

−
τnij
∂xj

− ρgi + ∆Um
i

∆τ

]n
+ ∆t2

2 uk
∂

∂xk

(
∂pn+θ2

∂xi

)

where ∆Um
i is the variation of the real time of the variable Ui. This term can be ap-

proximated depending on the required accuracy in the transient problem. A second-order
accuracy can be obtained by

∆Um
i = 3Un

i − 4Um
i + Um−1

i

2 (61)

The superscript m refers to the variation of real time. Incorporating the above
changes into the CBS formulation, the three semi-discrete steps of the CBS scheme can be
written to the Split A as:
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∆U∗i = ∆t
[
− ∂

∂xj
(ujUi) + ∂τij

∂xj
+ ρgi + (62)

+ ∆t
2 uk

∂

∂xk

(
∂

∂xj
(ujUi) −

τij
∂xj

− ρgi

)]n

The correction is obtained by evaluating the pressure increment, thus at the Step
3:

∆U∗∗i = ∆Ui − ∆U∗i = −∆t∂p
n+θ2

∂xi
− (63)

− ∆Um
i

∆τ + ∆t2
2 uk

∂2pn

∂xk∂xi
+ ∆t2

2 uk
∂

∂xk

(
∆Um

i

∆τ

)

Modifying the Equation 10a

∆ρ = 1
β2 ∆p = −∆t∂U

n+θ1
i

∂xi
= −∆t

[
∂Un

i

∂xi
+ θ1

∂∆Ui
∂xi

]
(64)

Substituting ∆Ui by ∆U∗i + ∆U∗∗i and neglecting third-order or higher order terms yields:

1
β2 ∆p = −∆t

[
∂Un

i

∂xi
+ θ1

∂∆U∗i
∂xi

− (65)

− ∆tθ1

(
∂2pn

∂xi∂xi
+ θ2

∂2∆p
∂xi∂xi

)
− θ1

∂

∂x1

(
∆Um

i

∆τ

)]

the β value may be computed using the relation from ZIENKIEWICZ, TAYLOR, and
NITHIARASU, 2014:

β = max (ε, uconv, udiff ) (66)

where ε is a small constant to ensure that the β does not approach to zero under any
situation. uconv and udiff are the convective and diffusive velocitis given by

uconv = |u| = √
uiui (67a)

udiff = ν

∆
(67b)

Thus, the time step limitation for artificial compressibility method may be defined
as

∆t = ∆
|u| + β

(68)

∆ must be a characteristic length of the mesh, such as the diagonal of the smallest element
of the hexagonal mesh.
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Combining Step 1 (Equation 63) and Step 3 (Equation 64),

−
[

∆Um
i

∆τ + ∂

∂xj
(ujUi) + ∂p

∂xi
− (69)

− ∂τij
∂xj

− (ρgi)
]n

+ ∆t
2 uk

∂

∂xk

[
∂

∂xj
(ujUi) −

− ∂τij
∂xj

− ρgi + ∆Um
i

∆τ + ∂p

∂xi

]n
= 0

Replacing Step 1 (Equation 63) in Step 2 (Equation 66), neglecting terms of third
or higher orders, and rearranging (assuming θ1 = 0.5 and θ2 = 0 and permanent pseudo
steady-state regime with ∆p = 0), the Equation 51 becomes:

∂Un
i

∂xi
+ ∆t

2
∂

∂xi

[
∂(ujUi)
∂xj

− ∂τij
∂xj

ρg + (70)

+ ∂p

∂xi
+ ∆Um

i

∂τ

]n
= 0

The method presented can be seen in greater detail in the work NITHIARASU,
BEVAN, and MURALI, 2012.



44

4 PROGRAMMING ASPECT

In the present work, a numerical solution of a high-complexity problem, with tenths
of transport equations and millions of elements, has been developed, demanding much
computational power. Therefore a multicore CPU local homogeneous parallel programming
was employed, with the Python multiprocessing library.

The Element-by-Element (EbE) is an iterative technique whereby a small dense
linear system for each element is solved in a block-parallel scheme, and the residues are
dealt with methods such as the Conjugate Gradient Method (CGM) or Bi-Conjugate
Gradient Method (BiCGM). The EbE technique generates smaller matrices, increasing
processing speed and lowering RAM usage, without the need for clusters or workstations to
solve problems with very refined meshes. For the present work, the EbE technique with the
BiCGM method was employed, using homogeneous programming with multiprocessing.

In oder to exemplify the application of de EbE1 method, the solution of the transient
compressible Navier-Stokes equations was structured as following. Considering the element
system and applying Split B in fully explicity form, the steps 1 and 2 became.

Step 1

Mu︸︷︷︸
LHS

∆Û∗i = ∆t
[
(CuÛ + Kτ û + GT p̂ − f) − ∆t

(
KuÛ + fs + 1

2Pp̂
)]n

︸ ︷︷ ︸
RHS

(71)

Step 2

Mρ︸︷︷︸
LHS

∆ρ̂ = ∆t
[
GÛ + θ1G∆Û∗ − fρ

]n
︸ ︷︷ ︸

RHS

(72)

The EbE is an iterative technique whereby the linear system for each element is
solved, and the residues are dealt with methods such as Conjugate Gradient Method
(CGM) or Biconjugate Gradient Method (BiCGM). Systems of equations, such as 71 and
72, are examples of linear systems to be solved, where LHS2 contains the unknowns and
RHS3 contains known variables of the linear systems.

For the present work the EbE technique with the BiCGM method was employed,
using homogeneous programming with multiprocessing. The EbE technique generates
smaller matrices, increasing processing speed and lowering RAM memory usage.

For further details regarding the complete construction of the CBS method see
Section B.
1 Element-by-Element
2 Left Hand Side
3 Right Hand Side
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Thus, taking into account the general linear system:

M∆φ = F (73)

the following pseudocode demonstrates the parallelism methodology applied in the EbE
technique.

The application process EbE is simple, being composed initially by dividing the
elements for a number of predetermined processes. A residual is defined as the diference
between the RHS and LHS of the linear system. Locally, in each element it is take in
accounting the effects of node connectivity. Finally, an initial error is calculated and it
is started an iterative process to minimize this error until a pre-established tolerance is
reached.

INIT
for u ∈ DoF do #Dof Interation r(u) ← 0
D(u) ← 0

# Multiprocessing on CPU
for p in 0 to process do #Serial loop
for e ∈ Ξ(c) do #EbE iteration

#Ξ(c) → Elements slice for each color
re ← re + Fe − Me∆φe
De ← De + diag(Me)

for u ∈ DoF do #Dof Interation

D(u) ← 1/D(u)

r̄(u) ← r(u)

d(u) ← D(u) · r(u)

d̄(u) ← D(u) · r̄(u)

q(u) ← 0
q̄(u) ← 0

δ ← 0 #Error
for u ∈ DoF do #Dof Interation⌊
δ ← δ + r(u) · d(u) #Global error DoF

while δ > tolerancy do #host loop for p in 0 to processes do⌊
#Slice Elements for Processes...




for e ∈ Ξ(c)do #EbE iteration qe ← qe + Me · de
q̄e ← q̄e + Me · d̄e

α ← 0
for u ∈ DoF do #Dof Interation⌊
α ← α + d̄(u) · q(u)

for u ∈ DoF do #Dof Interation
∆φ(u) ← ∆φ(u) + δ/α · d(u)

r(u) ← r(u) − δ/α · q(u)

r̄(u) ← r̄(u) − δ/α · q̄(u)

#Update iteration
δ̄ ← δ; δ ← 0
for u ∈ DoF do #Dof Interation⌊
δ ← δ + r(u) ·D(u) · r̄(u)

α ← δ/δ̄

for u ∈ DoF do #Dof Interation
d(u) ← D(u) · r(u) + α · d(u)

d̄(u) ← D(u) · r̄(u) + α · d̄(u)

q(u) ← 0
q̄(u) ← 0

After having defined the geometry the next step was to chose a suitable mesh gener-
ator, the BlockMesh toolbox, from OpenFOAM software. For that, information gathering
filter libraries had to be developed concerning the connectivity of the nodes, coordinates
of the points and the boundary elements, collected in files in the MakeToOpenFOAM 4

folder. With the mesh information generated by BlockMesh, it was necessary to restructure
4 https://github.com/ruhanponce/Numerical-Investigation-CBS.git

https://github.com/ruhanponce/Numerical-Investigation-CBS.git


Chapter 4. Programming Aspect 46

the numbering scheme of the assembly matrix, since the toolbox was originally designed
for FVM, as shown in Figure 7, for hexahedral elements. In Figure 8 is shown a four node
tetrahedral element for Gmsh generator mesh.

Figure 7 – Output numbering default in 8-node hexaehdrical isoparametric element produced by
FVM and FEM.

(a) BlockMesh - FVM (b) Gmsh - FEM

Source – Prepared by author adapted from GREENSHIELDS (2017) (7a) and GEYZAINE and REMACLE
(2019) (7b).

Figure 8 – Output numbering default for 4-node tetrahedrical isoparametric element by Gmshr
mesh generation.

Source – Prepared by author adapted from GEYZAINE and REMACLE (2019).

For the relocation procedure, the numbering of any element associated to the
respective interpolations functions must produced a positive Jacobian determinant. Begin-
ning from the first node at the first element all element nodes were tested for the sign of
the Jacobian. In the negative case, the node being tested was exchanged by next one and
so successively until all nodes of the element were subjected to scrutiny. This process was
repeated until ensuring all elements with positive determinants. The whole procedure can
be analysed in the code named meshFV2FE.py5.
5 https://github.com/ruhanponce/Numerical-Investigation-CBS.git

https://github.com/ruhanponce/Numerical-Investigation-CBS.git
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After the renumbering and reconstruction of the assembly matrix, the files in the
folder MakeToOpenFOAM were loaded in parallel into memory with the help of the
Modin-Pandas Python library.

The overall construction of the problem is characterized in Figure 9.

Figure 9 – Global scheme of parallelism methodology for CBS method in flow.

Source – Prepared by the author.
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For the time being this framework is capable of processing only homogeneous meshes,
either totally hexahedral or tetrahedral isoparametric elements, with linear interpolation
functions.

After applying the CBS scheme, the domain was divided into blocks of partially
common nodes of elements such that a number of blocks were attributed to a process to
be run in parallel with all other processes.

Aiming at developing an useful parallelized framework for simulation of any turbu-
lent incompressible and compressible reactive flows, it was necessary to simulate the most
diverse types of flows to validate both the computational and the mathematical aspects.
In the present work, the methodologies were tested in simpler incompressible non-reactive
and reactive flows, which are benchmarks in the literature, in order to proceed with a solid
and consistent solver. The results of these validations will be presented in the next section.



49

5 CONSISTENCY ANALYSIS

In this chapter several classic examples from the literature that have been simulated
to validate the developed CBS-FEM parallel framework, for both incompressible and
compressible reactive and non-reactive flows are described. In all simulations an explicit
Euler scheme was applied for the time discretization, while for the spatial discretization,
the CBS-FEM.

5.1 SpeedUp Test

For the development of a parallelized framework, the main obstacle might be the
overhead incurred by the information sending and receiving between processes, represented
by the mapping of the element blocks into several processes, see Figure 10.

Figure 10 – Mutual nodes in parallel process.

Element

Process 00

Process n

Mutual nodes

Mutual nodes

Process 01

Source – Prepared by author.

Thus, the strategy used is that all element blocks would be evaluated separately
and in parallel and the return of the information would be collected in serial way, such that
the value of each common node would be the arithmetic average. Another point observed
is that slicing the elements of the domain maintaining the symmetry of the problem, in
relationship to the number of processes, a somewhat faster convergence could be observed.

In order to determine the relationship between the number of processes and the
mesh size for one specific problem and a specific workstation several tests were performed,
named speedUp tests. The chosen problem was the reconstruction of the assembly matrix
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and the selected workstation is described in Table 3. The baseline for comparison was the
entire process performed serially.

Table 3 – Machine architecture for computational simulation.

Host X10DAi
CPU Intel Xeon E5-2660 v4 (56) @ 3.200GHz
RAM 128 GB - DDR4@2800

Source – Prepared by author.

The tests were performed measuring the wall clock time for different homogeneous
and uniform structured meshes, modifying only the number of elements, resulting in the
data presented in the Figure 11.

Figure 11 – SpeedUp test for distinting grids.
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(a) Test for mesh 1.08 millions of elements
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(b) Test for mesh 2.56 millions of elements
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(c) Test for mesh 5.00 millions of elements
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(d) Test for mesh 16.87 millions of elements

Source – Prepared by author.

These figures 11b and 11c show that large overhead with 60 processes and more for
2.56 and 5.00 millions of elements whereas for 1.08 million (Figure 11a) ans 16.87 million
(Figure 11d).

These figures 11b and 11c show that large overhead with 60 processes and more for
2.56 and 5.00 millions of elements whereas for 1.08 million (Figure 11a) ans 16.87 million
(Figure 11d). However, by increasing the number of elements, performance improvements
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are achieved, obtaining up to 22 times faster processing speeds. With that, it is constant
for all the analyzed cases, guaranteeing high performance for 50 processes, resulting in
great processing efficiency of the developed code.

An observation regarding the parallelism and python should be made; according to
LANARO (2013) and the present work, the performance of multiprocessing and multi-
threading are different, being the Python multithreading fundamentally used for I/O while
multiprocessing is actually applied for data processing. At this point, as optimized and
parallelized libraries for I/O were used, multithreading was not used in the present work.

It can be seen that with the application of EbE, the non utilization of sparse
matrices reflected in reductions of up to 70 %, in preliminary tests, together with the
necessary RAM reduction

5.2 Lid-driven Cavity Flow

Lid-driven cavity flow is a classic two-dimensional and three-dimensional benchmark
for incompressible flows WONG and BAKER, 2002. Thus, in order to validate the developed
solver, the methodology was applied to analyze an isothermal flow by applying several
structured and uniform meshes of varying dimensions, for the following Reynolds numbers:
100, 400 and 1000. To this, the CBS method was applied, together to concept of artificial
compressibility, see Section B. This strategy was chosen because, according to KIRIS,
HOUSMAN, and KWAK (2006), artificial compressibility is used for direct temporal
resolution methods, not requiring predictor-corrective methods, and thereby minimizing
the computational cost and the stability of direct temporal integration methods. Unlike the
solution of a Poisson equation, which to obtain better stability must be applied together
to implicit integration methods. Thus, when using artificial compressibility, together to
Euler’s temporal integration method, there is no need to use Step 3 of the methodology
presented by ZIENKIEWICZ, TAYLOR, and NITHIARASU (2014) and seen in Section B,
therefore; its application results in a slower convergence process and without significant
improvements in the final results. Thus, from the concept of artificial compressibility,
ε = 0.1 was considered for all simulations performed.

Figure 12, characterizes the initial and boundary conditions presented in the
problem in question. As a boundary condition for pressure, the condition of null normal
gradient was used.

Thus, for incompressible cases, the time step applied for temporal integration was
taking into account

∆t = ∆
|u| + β

(74)

∆ being a characteristic length of the mesh, for which was used the diagonal of the smallest
element of the hexagonal mesh.
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The code developed for isothermal and incompressible flows was named icoFlow
and for quantify the discrepancy in relation to the analysis performed by WONG and
BAKER (2002), for a standard relative error, was adopted the norm L∞

1 considering the
velocity profiles at the middle planes inside the cavity.

The convergence criterion was a relative error of quantities, such as: speeds, temper-
ature and pressure, in the order of 10−4, criterion also used by ZIENKIEWICZ, TAYLOR,
and NITHIARASU (2014).

Figure 12 – Scheme of geometry and boundary conditions apply over cavity.
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Source – Prepared by author.

For the simulation, the chose fluid was air 2, modeled as perfect gas, under standard
conditions of temperature and pressure (T = 298.15 K and p = 101325 Pa). The results
were normalized for comparison with the benchmark WONG and BAKER, 2002, as

ujnormalized = uj − min(uj)
max(uj) − min(uj)

(75)

The first condition analyzed was for Re = 100, for that, it was considered a
uniform structured mesh with a subdivision in each side of 40x40x40, resulting 64000
hexahedral elements which corresponds to a topology with 68921 nodes. Figure 13 shows
the streamlines obtained for the steady state condition, a) in plane view and b) 3D view.
1 Chebyshev metric: allow define topology the function space.
2 3.76 moles of N2 by O2 mol
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Figure 13 – Streamlines behavior for Re 100.

(a) (b)

Source – Prepared by author.

In Figure 13 it is possible to observe the formation of a central recirculation,
observing from the point of view of Figure 13b this recirculation extends continuously
throughout the center of the cavity. Such phenomenon is observed due to the advection
generated in the domain, and for conditions of pure diffusion this phenomenon does not
occur. The velocity profiles in x, y and z in each respective central plane of the domain
are shown in Figure 14, and compared with WONG and BAKER (2002).



Chapter 5. Consistency Analysis 54

Figure 14 – 3D mid-plane centerline distributing for Re 100 for.
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(a) Velocity profile in the x direction
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(b) Velocity profil in the y direction
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(c) Velocity profile in the z direction

Source – Prepared by author.

With Re = 100 and the mesh analyzed, the relative error is of the order 8.70%, for
the velocity in the x direction, Figure 14a. For the others directions WONG and BAKER
(2002)’s work does not address them.

Regarding the real wall clock time of the process, it was noticed that the permanent
regime for the imposed conditions was obtained close to 10 min.

For Re = 400 a structured and uniform mesh of 48x48x48 was generated, obtain-
ing 110592 hexahedral elements resulting in 117649 nodes. The Figure 15 presents the
streamlines obtained in permanent regime.
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Figure 15 – Streamlines behavior for Re 400.

Source – Prepared by author.

The Figures 13 and 15 show the behaviour of the velocity field in domain by the
streamlines, with recirculations appearing in the lower corners. In Figure 15, it is possible
to verify that the principal vortex tends to the central region of the domain when the
reynolds number is increased. The behavior of velocity profiles is seen in Figure 16.
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Figure 16 – 3D mid-plane centerline distributing for Re 400.
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(a) Velocity profile in the x direction
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(b) Velocity profile in the y direction
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(c) Velocity profile in the z direction

Source – Prepared by author.

For the mesh and the conditions analyzed and comparing with WONG and BAKER
(2002), a relative error of 12.01% was obtained. The regime was permanently obtained in
about 17 min in terms of wall clock time.

Finally, the last condition analyzed was for Re = 1000, applying a uniform struc-
tured mesh of 50x50x50, generating 125000 hexahedral elements with 132651 nodes.
According to ZIENKIEWICZ, TAYLOR, and NITHIARASU (2014) for three-dimensional
flows, it is not possible to obtain a permanent solution for Reynolds greater than 1000,
therefore, for this transition condition, the permanent regime was considered when the
relative error of the quantities was in the order of 10−3. Figure 17, the streamlines are
represented.
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Figure 17 – Streamlines behavior for Re 1000.

(a) (b)

Source – Prepared by author.

Unlike the previous conditions, for Re = 1000 the streamlines presented in Fig-
ure 17b no longer present the same symmetry, a fact that proves the chaotic behavior
for this condition that was observed by ZIENKIEWICZ, TAYLOR, and NITHIARASU
(2014).
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Figure 18 – 3D mid-plane centerline distributing for Re 1000.
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(a) Velocity profile in the x direction
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(b) Velocity profile in the y direction
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(c) Velocity profile in the z direction

Source – Prepared by author.

However, comparing with the analysis obtained by WONG and BAKER (2002)
a relative error of 13.20% was obtained for velocity in x direction in the central plane.
The region that achieved the highest discrepancy in relation to the benchmark was the
upper region, corresponding to lid-driven. This region is the most critical, regardless of
the number of Reynolds, there are occurrence of great discontinuities in the extremities of
sliding wall. This phenomenon was also observed by GELFGAT (2019) and HACHEM
et al. (2010) and a way of circumventing this problem is applying a more refined mesh.
Therefore, for this problem it is advisable to use meshes greater than 25000 elements, or
non-uniform meshes, capable of to capture such discontinuities.

For the lid-driven problem, low relative errors were obtained, which validates the
methodology and framework developed for the continuity and momentum equations. A fact
that must be observed is that the pressure behavior is not contemplated in the analyzes
because the pressure drops were of order of 10−6, and their influence during the period
considered was a insignificant phenomenon.
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5.3 Thermal Lid-driven Cavity

To validate the energy conservation equation, the thermal and lid-driven cavity
problem was used for the Reynolds of 100, 400 and 1000, for which the program named
icoThermFlow was developed. In this problem, steady state was assumed when the max
relative error applying the standard L∞ to the velocity and temperature was less than
10−4. As a proper benchmark was not found in any of the analyzed references, the same
problem in Ansys software was simulate to quantify and "validate" the developed code.
The Figure 19 presents the conditions applied to the problem.

Figure 19 – Representation conditions on thermal-driven cavity.
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Source – Prepared by author.

In the problem presented in Figure 19 the conditions are presented normalized.
However, as in the isothermal lid-driven cavity problem, equations were applied for air in
standard conditions as the initial condition in the cavity, and prescribed temperatures of
423.15 K at the heated wall and 300.15 K at the cold wall were applied for all Reynolds
numbers. The normalization of temperature is shown in Equation 76.

Tnormalized = T − min(T )
max(T ) − min(T ) (76)

In all the analyzed conditions, a structured, homogeneous and uniform mesh of
30x30x30 was applied, resulting in 27000 hexahedrical elements and 29791 nodes. Thus,
for Re = 100, the behavior of temperature distribution in the central plane of the cavity
was analyzed, obtaining the Figure 20.
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Figure 20 – Validation mid-plane temperature for Re 100.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

T

icoThermFlow
Ansys

Source – Prepared by author.

In all the analyzed conditions, a structured, homogeneous and uniform mesh of
30x30x30 was applied, resulting in 27000 hexahedral elements and 29791 nodes. Thus, for
Re = 100, the behavior of temperature distribution in the central plane of the cavity was
obtained, as seen in Figure 20, for which a discrepancy of 2.83% was evaluated.

Figure 21 – Validation mid-plane temperature for Re 400.
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In Figure 21 the relative error was 6.68%, and can be seen that the temperature
stabilization occurred over a distance, considering the central plane, less than that presented
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in Figure 20, characteristic of the increase in Reynolds and consequently forced convection,
generating a greater exchange of heat. The three-dimensional behavior of the temperature
in the cavity is shown in the Figure 22.

Figure 22 – Temperature distributing for Re 400.

(a) Temperature distribution in the
central plane of the cavity.

(b) Isotherms in the central plane of
the cavity.

Source – Prepared by author.

In order to verify the temperature stabilization behavior with the increase in the
Reynolds number, the central temperature distributions for the Reynolds of 100, 400 and
1000 were simulated and compared, obtaining the Figure 23.

Figure 23 – Temperature distribution in the central plane for different Reynolds.
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Figure 23 represents a faithful phenomenon of forced convection, which with the
increase in the number of Reynolds there is a stabilization of temperature over shorter
distances.
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Finally, for Reynolds 100 and 400, the discrepancies regarding the results of Ansys
simulatons were small, which "validates" in some sort the methodology and the program
developed by the author.

5.4 Flow in Channel of Square Cross Section

The analysis of Channel Flow of square cross section aims to verify the behaviour
of an isothermal incompressible flow internally in a duct. For this, the geometric conditions
are presented in Figure 24.

Figure 24 – Geometry of square channel.
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The boundary and initial conditions were the same as those applied by WONG
and BAKER (2002) as explained in Figure 25.

Figure 25 – Boundary conditions for straight channel flow.

Source – WONG and BAKER (2002).

An analytical solution for this flow in a permanent pipeline is presented by WHITE
(1974), it is given by

u = 48
π3
ξu(y, z, h∗)

ϕ
(77a)
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ξu(y, z, h∗) =
N∑

n=1,3,5
(−1)

(n−1)
2

1 −
cosh

(
nπy
2h∗
)

cosh
(
nπ
2

)
 cos(nπz)

n3 (77b)

ϕ = 1 − 192
π5

N∑
n=1,3,5

tanh
(
nπ
2

)
n5 (77c)

where h∗ is the half height of the duct and N is a large integer, for example, N = 300 is
used.

Thus, the simulation has been done for the given boundary conditions presented
in Figure 25, for the Square Channel flow to verify the error in relation to the analytical
model. For this, a structured, homogeneous and non-uniform mesh was used, applying an
arrangement of 30 elements in the main flow direction and 150x30 in the cross section,
resulting in 135000 hexahedral elements and 145111 nodes. For mesh non-uniformity, the
conditions presented in Table 4 were applied in simpleGrading, OpenFOAM toolbox of
mesh manipulation.

Table 4 – Parameters of mesh non-uniformity.

x-direction expansion ratio
% - x direction % - y direction % - z direction

% - x direction 0.200 0.333 8
% - y direction 0.600 0.333 1
% - z direction 0.200 0.334 0.125

z-direction expansion ratio
% - x direction % - y direction % - z direction

% - x direction 0.200 0.333 8
% - y direction 0.600 0.333 1
% - z direction 0.200 0.334 0.125

In the y direction, a uniform distribution of the mesh elements was applied, the
?? shows the non-uniform mesh distribution. Thereby, obtain Figure 26 for condition of
Re = 100.
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Figure 26 – Velocity profile in steady state center plane 3D fully developed channel flow for
Re = 100.
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Source – Prepared by author.

A comparison of the analytical and numerical results, Figure 26, resulted in a
relative error of 0.15%, obtaining almost an exact solution for the analyzed conditions.

5.5 Combustion Chamber

The underlying geometry directly influences the mathematical model, with respect
to the choice of the coordinate system that will be used for the discretization of the
equations.

The central coaxial injector used by MAESTRO et al. (2016) results in an essentially
non-premixed combustion, which contrasts with this work proposal. As an alternative, a
simpler injector was proposed in order to assure premixed combustion. Table 5 displays
the geometrical dimensions of the combustion chamber and the injector.

Table 5 – Characteristic combustion chamber and injector dimensions.

Combustion chamber Injector
Chamber lenght [mm] 290 GCH4/GOx diameter [mm] 5
Chamber width [mm] 12 GCH4/GOx post recess* [mm] 0
Chamber height [mm] 12
Throat height [mm] 4.8
Contraction ratio Acc/Ath [–] 2.5

*Post recess is the distance from the front of the injector to the installation wall.
Source – Prepared by author adapted from MAESTRO et al. (2016).

For better characterization of the geometry Figure 27 is presented.



Chapter 5. Consistency Analysis 65

Figure 27 – Combustion chamber, injector and nozzle geometries.

Source – Prepared by author.

The nominal operating conditions in the present study are similar to those applied
by MAESTRO et al. (2016) and are represented in Table 6.

Table 6 – Nominal conditions operating.

Temperature* Methane 269 [K]
Oxygen 278 [K]

Chamber Pressure 20 [bar]

Mass flow rates Methane 0.0017 [kg/s]
Oxygen 0.0045 [kg/s]

*Gaseous
Source – MAESTRO et al. (2016).

For the boundary conditions, those presented in the work of FERZIGER and
PERIĆ (2002) for compressible flows were employed.

5.5.1 Combustion

Still with the objective of aligning the studies with the work of MAESTRO et al.
(2016), the behavior of premixed combustion with homogeneous charge, for unidimensional
flow along the length of the combustion chamber presented in Figure 27 was analyzed. To
this, the Cantera library was used, considering that such effects occurred with a fixed flame
front at the entrance of the combustion chamber. The analyzed mix was GCH4/GO2, with
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the fuel ratio of 2.6 and the pressurized chamber at 20 bar. The mass flow rate of the
mixture was ṁ = 0.003 kg/s applied under a 5mm nozzle, see Table 6.

In order to verify the thickness of the flame front, as shown by BLINT (1986), the
behavior for an adiabatic combustion flame of GCH4/GO2 was simulated, obtaining the
Figure 28.

Figure 28 – Release temperature for adiabatic flame.
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Source – Prepared by author.

In this way, the code developed to analyze the one-dimensional combustion of
the temperature distribution in front of the chemical reaction was obtained, showing the
behavior presented in Figure 29.

Figure 29 – Release temperature combustion process.
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Source – Prepared by author.

By BLINT (1986) the flame width is

δT = Ta − Tu(
dT

dx

)
max

(78)
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To the conditions analyzed in Figure 28 and Figure 29, and applying the BLINT
(1986) method, it was obtained 0.0051 m for the flame width.

Observing the Figure 28 it is noted that during the adiabatic combustion process,
there is a region of discontinuity that presents an abrupt release of heat, there is a preheat
of the unburned gases due to the diffusion process. The behaviour presented in Figure 29
doesn’t present such discontinuity.

Thus, for the established conditions it was possible to verify the mass fractions of
53 chemical species, during the chemical reaction process of combustion. In Figure 30 the
most expressive combustion products are presented.

Figure 30 – Mass fraction com conditions of flame fixed.
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From Figure 30 it is noticed that the limiting of the chemical reaction was oxygen,
which, after the flame front, is completely consumed. For the fixed flame condition, it
appears that there is the possibility of continuing the combustion process, if the domain is
fed with more oxidizer and makes several flame fronts.

5.5.2 Cold Flow in a Chamber Combustion

To analyze the combustion phenomenon in the geometry employed by MAESTRO
et al. (2016) it is necessary to evaluate the flow behavior of the homogeneous mixture
inside the combustion chamber. This has been done based on the geometry presented in
Figure 27, and the same boundary conditions applied for the analysis of one-dimensional
combustion. For modeling, incompressible, turbulent and isothermal flow was considered.
The turbulence in the flow is due to the discontinuity caused by the injector, which
generates low pressure zones in its surrounding regions. The domain discretization was
made by a homogeneous and non-uniform structured mesh, composed by 50 divisions in
the x-axis, 1200 divisions in the y-axis and 50 divisions in the z-axis, generating 3 millions
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hexahedral elements with 3123801 nodes. For non-uniformity, simpleGrading was used,
with the settings presented in Table 7.

Table 7 – Parameters of mesh non-uniformity for chamber combustion flow with LES.

x-direction expansion ratio
% - x direction % - y direction % - z direction

% - x direction 0.200 0.333 4
% - y direction 0.600 0.333 1
% - z direction 0.200 0.334 0.25

y-direction expansion ratio
% - x direction % - y direction % - z direction

% - x direction 0.200 0.333 4
% - y direction 0.600 0.333 1
% - z direction 0.200 0.334 0.25

z-direction expansion ratio
% - x direction % - y direction % - z direction

% - x direction 0.200 0.333 4
% - y direction 0.600 0.333 1
% - z direction 0.200 0.334 0.25

Source – Prepared by author.

Thus, the domain velocity field was obtained, as a stop criterion was considered
when the flow at the exit of the chamber was completely developed, generating the fully
developed velocity profile observed by WHITE (1974). In the Figure 31 is shown the
magnitude of the velocity field for the region close to the injector.

Figure 31 – Speed field near the injector.

From the velocity field presented by Figure 31, the profiles in the central plane,
with normal vector in x-direction, for the y positions at 0.001, 0.01 and 0.03 meters were
obtained in order to show the recirculations close to the injector.
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Figure 32 – Profiles for distinct y position near injector.

For more details on the velocity field and the transient behavior of the flow in the
combustion chamber see PONCE, 2019.
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6 CONCLUSION

From the present work it can be concluded so far, in several aspects analyzed,
primarily, that there is great difficulty linked to the reproducibility of the analyzed works,
either with regard to the boundary and initial conditions, or even to characterize the
discretization method used, whether deliberate or not, resulting in a point for debate by
the academic community.

About the discretization method, it is not difficult to manipulate the transport
equations to obtain the weak form in preparation to FEM discretization. Associated with
isoparametric elements and the corresponding interpolation functions (or shape functions),
the Jacobian and its determinant are, as the basis transformation matrices, easily obtained,
leading in a natural way to the integration by Gauss rule.

More specifically to the CBS stabilization scheme, the splits proposed by ZIENKIEWICZ,
TAYLOR, and NITHIARASU (2014) are developed in Taylor expansion form disregarding
the derivatives of third and higher orders. However, if the second order terms were not
taken into account, parameters such as shear stress in the context of turbulence modeling
would suffer large interference.

Regarding the mathematical model, in this work a novel analytical model for the
turbulence equations closure was proposed, in order to lower the computational costs,
without loss in the quality of results.

As for the TCI, linked to the turbulence and combustion, the Flamelet/Progress
Variable model was employed, causing the addition of dozens of transport equations,
further strengthening the idea of analytical models for the closure.

In the aspect of applied programming, the first was the optimization of data
processing due to the need for very refined meshes, a fact attributed to LES. To this
end, it is proposed to modularize the problem, so, with some independence between
modules, there is possible generalizations of program use, and a module can be triggered
or not according to the problem to be solved. Another point is that the use of parallel
programming, performed on both CPUs and GPUs, optimizes all available tools in the both
architectures, reducing computational time, and the need for high processing workstations
or even clusters.

Still, regarding the programming, the non utilization of sparse matrices reflected in
reductions of up to 70 %, in preliminary tests, together with the necessary RAM reduction,
along with a performance improvement of up to 22 times compared to the serial program.

In addition to the focus on validation of numerical and computational aspects, the
present work proposes a new mathematical model to address the phenomenon of turbulent
flow and turbulent combustion, although the latter has not yet been validated. However, in
the invested aspects, the framework proves to be consistent and robust to support several
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mesh configurations, obtaining results with low errors.
Regarding the case study, the characterization of the discontinuity generated by

the turbulence in the injector was responsible for the use of a more robust computational
mesh, in order to meet the criteria of the LES model with the modeling of small scales.
However, a difficulty found in the applied numerical method was the Eulerian temporal
integration model, which being of first order is easily unstable, requiring the use of Courant
numbers (CFL) less than 0.1, which increases the computational time to capture the
transient phenomena.
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A – STUDY OF ART’S OVERVIEW

Table 8 – Table of study of art’s overview.

Author Year
Turbulence

Model
TCI1

Combustion
Type

Fuel Mesh
Discretization

Model
BOGER
et al.
(1998)

1998 DNS
Flame Surface

Density
Premixed X

Cartesian
structured mesh

FiniNTMIX-3Dr
(Finite Volume)

DEKENA
and

PETERS
(1999)

1999 LES G-Equation
Partial

premixed
Gasoline X

CFD FIREr code
(Finite Volume)

ANGELBERGER,
VEY-

NANTE,
and EGOL-
FOPOU-
LOS
(2000)

2000 LES Thickened Flame Premixed GC3H8/GAir

Structured/Non-
Structured Mesh

Hybrid

code AVBPr
(Finite Volume)

Continued on next page
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Table of study of art’s overview.

Author Year
Turbulence

Model
TCI2

Combustion
Type

Fuel Mesh
Discretization

Model
LAGENESTE

and
PITSCH
LAGEN-
ESTE and
PITSCH,
2002

2002 LES G-Equation Premixed GCH4/GAir

Cylindrical
Overlapped

Mesh
Volume-Finito

PITSCH
and IHME
(2005)

2005

LES with
Dynamic

Sub-Grid Scale
Models

Unsteady
flamelet/progress
variable model

Non-
Premixed

GCH4/GAir
Structured

cylindrical mesh

Second-order
finite-volume

scheme

MARSHALL
et al.
(2005)

2005 X X X GH2/GAir X

Benchmark quality
wall heat flux data
sets for CFD code

validation
DOMINGO

et al.
(2005)

2005 DNS and LES
Flame Surface

Density with GRI
Premixed GCH4/GAir

Non-Uniform
Mesh

Code PREMIXr
(Finite Volume)

Continued on next page
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Table of study of art’s overview.

Author Year
Turbulence

Model
TCI2

Combustion
Type

Fuel Mesh
Discretization

Model

MARTIN
et al.
(2006)

2006 LES Thickened Flame Premixed GC3H8/GAir

Structured/Non-
Structured Mesh

Hybrid

code AVBPr
(Finite Volume) e
AVSPr (Finite

Elemente)
FLEMMING,
SADIKI,

and
JANICKA
(2007)

2007
LES/Sub-Grid
Scale Models

Flamelet Model
Non-

premixed
GH2 −
N2/GAir

Cartesian
structured mesh

codes FLOWSIr
(LES) e

CLAWPACKr
(CAA3) (Finite

Volume)

NOGENMYR
et al.
(2008)

2008
LES/Sub-Grid
Scale Models

Flamelet Model,
G-Equation and

finite rate
chemistry models

Premixed GCH4/GAir Cartesian grid
4th order central
difference scheme

(Finite Differences)

ZONG,
RIBERT,
and YANG
(2008)

2008
LES/Sub-Grid
Scale Models

Laminar flamelet
model and

Conserved scalar
approach e

Direct-closure
approach

Non-
premixed

GCH4/GAir Structured mesh Volume-Finito

Continued on next page

3 Computational Acoustic Analysis
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Table of study of art’s overview.

Author Year
Turbulence

Model
TCI2

Combustion
Type

Fuel Mesh
Discretization

Model
BUI,

SCHRÖDER,
and

MEINKE
(2008)

2008
LES/Sub-Grid
Scale Models

Steady flamelet
model

Non-
premixed

GH2 −
N2/GAir

Cartesian
structured mesh

Finite Volume

NOGENMYR
et al.
(2008)

2008 LES G-Equation Premixed GCH4/GAir
Cartesian

structured mesh
Finite Volume

PANJWANI
et al.
(2010)

2010 LES
Eddy Dissipation
Concept (EDC)

Non-
Premixed

GH2/GN2 Cylindrical grid Finite Volume

Continued on next page
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Table of study of art’s overview.

Author Year
Turbulence

Model
TCI2

Combustion
Type

Fuel Mesh
Discretization

Model

CECERE
et al.
(2011)

2011 LES
Flamelet

Progress–Variable
Premixed GH2/GN2

Immersed
boundary

method with
non-uniform

cylindrical mesh
TULLIO,

VERZICCO,
and

IACCARINO,
2014, IACCARI,

2003

Finite Differences

Y. LIU
et al.
(2012)

2012 DNS
Two-time
correlation

Premixed V
flame

GC3H8/GAir

Cartesian
structured and
uniform mesh

X

MÜHLBAUER
et al.
(2012)

2012

Random
Particle-Mesh
for Combustion

Noise
(RPM-CN)

Linearized Euler
Equations (LEE)

Non-
Premixed

nitrogen-
diluted
methane-

hydrogen fuel
mixture

Cylindrical
unstructured
hexahedron

mesh

Finite Volume
formulation for

unstructured grids

Continued on next page
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Table of study of art’s overview.

Author Year
Turbulence

Model
TCI2

Combustion
Type

Fuel Mesh
Discretization

Model

THAKUR
et al.
(2012)

2012

Hybrid
U/RANS with
Detached Eddy
Simulation
(DES)

Laminar Flamelet
Model

Non-
Premixed

GH2/GO2 X
Finite Volume
axisymmetric

S. LIU and
TONG
(2013)

2013
LES/Sub-Grid
Scale Models

Filtred Mass
density function

(FMDF)

Partial
premixed

GCH4/GAir X

10th-order central
finite difference

non-
dimensionalized by
the filtered scalar
dissipation rate and
the SGS variance

Continued on next page
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Table of study of art’s overview.

Author Year
Turbulence

Model
TCI2

Combustion
Type

Fuel Mesh
Discretization

Model

OEFELEIN
(2015)

2015
LES/SGS
turbulence

kinetic energy

Laminar Flamelet
Model LADEINDE
and LOU, 2017,
the Transported

Probability Density
Function Model
FERRARO, GE,
and PFITZNER,
2015, and the

Linear Eddy Model
BILGER, 2011

Non-
Premixed

X
Adaptative

Mesh
Theoretical

CAO et al.
(2015)

2015

LES/Dynamic
Smagorinsky-

Lilly
Model

Fluentr4 Premixed GH2/GO2 Structured mesh Finite Volume

Continued on next page

4 No informed the method
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Table of study of art’s overview.

Author Year
Turbulence

Model
TCI2

Combustion
Type

Fuel Mesh
Discretization

Model

FOSTER
and

MILLER
(2015)

2015 LES

Flamelet models,
linear eddy based
models (LEM), and
transported PDF
or filtered density
function (FDF)
based models

Premixed and
non-premixed

X
Unstructured

meshes
Finite Volume

MAESTRO
et al.
(2016)

2016 RANS and LES
Direct integration
of chemistry e

tabulated flamelets
Premixed GCH4/GAir Several Several

SCHLIMPERT
et al.
(2016)

2016
RANS/low-
dissipation

AUSM scheme
G-Equation Premixed GCH4/GAir

Cartesian
non-structured

mesh
Finite Volume

A. N.
LIPAT-
NIKOV
et al.
(2017)

2017

DNS
(Statistically

Planar
Turbulence)

Flame Surface
Density

Partial
premixed

X X X

Continued on next page
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Table of study of art’s overview.

Author Year
Turbulence

Model
TCI2

Combustion
Type

Fuel Mesh
Discretization

Model

POTTURI,
PATTON,
and ED-
WARDS
(2017)

2017

LES/RANS
hybrid with

closure
least-squares

model
NAGHIAN,
LASHKAR-
BOLOK, and
JABBARI,

2017

North Carolina
State University’s
REACTMB with

closure
Least-squares based
model e “laminar

chemistry”

Premixed GC3H8/GAir
Cartesian

Structured Mesh
Finite Volume

ALBAYRAK
and

POLIFKE
(2017)

2017 Laminar G-Equation Premixed X X Theoric model

HUO and
YANG
(2017)

2017
LES/Eddy-
viscosity
model

Flamelet and
flamelet/progress-

variable
approaches

Non-
premixed

GCH4/GAir
Spherical

structured mesh
X

Continued on next page
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Table of study of art’s overview.

Author Year
Turbulence

Model
TCI2

Combustion
Type

Fuel Mesh
Discretization

Model
A. N.
LIPAT-
NIKOV
et al.
(2017)

2017
DNS of

statistically
planar

Unburned Mixture
Fingers (UMFs)

Premixed X
Grid uniform
rectangular

X

NGUYEN,
POPOV,

and SIRIG-
NANO
(2017)

2017

Hybrid
RANS/LES
model called

Detached Eddy
Simulation
(DES)

Axisymmetric
and

Multispecies

Flamelet
Progress-Variable

approach

Liquid-
Propellant

GH2/GAir X

finite-difference
variation of the
classic Jameson-
Schmidt-Turkel
(JST) scheme

Source – Prepared by the author.



91

B – GENERICAL MATHEMATICAL MODEL

In this topic, the object of study include: fluid flow, heat and mass transfers
in subjetc of transport phenomena. The fluid flow it is analyzed in fluid mechanics by
considering the continuity, linear and angular momentum equations. Transfer of energy, due
to temperature gradient, involves heat transfer. In a combustion process, some substancies
desapear or are transformed in other substancies. Mas transfer in this process involves
conservation of chemical species. A good reference on transport phenomena is BIRD,
STEWART, and LIGHTFOOT, 2002.

In this way, the equations for complete analysis, involving the three areas of
knowledge, will be presented, from the problem previously proposed in the objectives of
the study.

Governing Equations

Constitutive relationships of fluids

The natural independent variable is its velocity field vector u, which can be
represented in indicial notation according to Equation 79 ZIENKIEWICZ, TAYLOR, and
NITHIARASU, 2014.

ui, i = 1, 2, 3 or u = [u1, u2, u3]T (79)

where the subscripts 1,2,3 represent the orthonormal axes of the analyzed coordinate
system.

The deformation rate, S, is the main cause of the Cauchy tensions, σij, defined in
a similar way in solid mechanics, Equation 80

Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
− 1

3
∂uk
∂xk

δij (80)

The presentation of Equation 80 is given in tensor index form, however, later for
the development of variational forms it is more convenient to write in matrix form for
future finite element analysis.

S = [S11 S22 S33 2S12 2S23 2S31]T (81a)

such that 2Sij, i 6= j is an engineering shear strain rate represented as

2Sij = γ̇ij for i 6= j (81b)
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Analogously, the stress tensor, σij, is expressed in matrix form as

σ = [σ11 σ22 σ33 σ12 σ23 σ33]T (82)

The relationship between deviator, or the shear strain tensor, τij, and the strain
rate have, for Newtonian fluids, a linear relationship characterized in Equation 83 shown
by ARIS (1989).

τ = τij ≡ σij −
1
3δijσkk = 2µ

(
Sij −

1
3δijSkk

)
(83)

where τij is the deviatoric part of the stress tensor and δij is the Kronecker delta,

δij =

1, if i = j

0, if i 6= j

and where the repeated subscripts represent the following sum

σkk ≡ σ11 + σ22 + σ33 e Skk ≡ S11 + S22 + S33 (84)

The relation between the variation of the average tension and the rate of volumetric
deformation defines the average thermodynamic pressure

p = −1
3σkk = −κSkk + p0 (85)

where κ is the volumetric viscosity coefficient and p0 is the initial hydrostatic pressure
which is independent of the rate of deformation.

Thus, it has been shown that the ratio of the stresses acting on a fluid is

σij = τij − δijp = 2µ
(
Sij −

1
3δijSkk

)
+ κδijSkk − δijp0 (86a)

or
σij = 2µSij + δij

(
κ − 2

3µ
)
Skk − δijp0 (86b)

Considering the effects of the very small volumetric viscosity, due to the characteristic of
the flow analyzed in the present work, can be neglected

κSkk ≡ 0 (87)

where, according to CHIKITKIN et al. (2015) κ can be calculated by

κ = π

25 µ Z (88)
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Z is a general parameter, obtained by

Z = Z∞

1 +

π
3
2

2

(T ∗
T

)1
2

+
(

2 + π2

4

)(
T ∗

T

)
+ π

3
2
(
T ∗

T

)3
2

where Z∞ and T ∗ are values dependent on the chemical species NAGNIBEDA and
KUSTOVA, 2009.

In this way it is possible that the relation of the tensions becomes

σij = 2µ
(
Sij −

1
3δijSkk

)
− δijp ≡ τ − δijp (89a)

From above relationship the deviatoric part of the stress tensor is

τ = τij = 2µ
(
Sij −

1
3δijSkk

)
= µ

[(
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3δij
∂uk
∂xk

]
(89b)

if the flow is incompressible Skk = 0.

Mass Conservation

The mass flow balance, ρui, entering and leaving an infinitesimal control volume,
Figure 33, is equal to the rate of change of the specific mass inside the control volume.
The resulting balance equation is:

∂ρ

∂t
+ ∂

∂xi
(ρui) ≡

∂ρ

∂t
+ ∇T · (ρu) = 0 (90)

Figure 33 – Main directions and infinitesimal control volume.

Source – ZIENKIEWICZ, TAYLOR, and NITHIARASU ZIENKIEWICZ, TAYLOR, and NITHIARASU,
2014.

where ∇T = [∂/∂x1, ∂/∂x2, ∂/∂x3] is the nabla operator.



B. Generical Mathematical Model 94

Momentum Conservation

The balance of the linear momentum of the fluid in the direction j, through the
control volume of Figure 33, is in dynamic equilibrium with respect to the surface and
field (body) forces ZIENKIEWICZ, TAYLOR, and NITHIARASU, 2014. Thereby,

∂(ρuj)
∂t

+ ∂

∂xi
[(ρuj)ui] −

∂

∂xi
(σij) − ρgj = 0, j = 1, 2, 3 (91)

Da Equation 89a,

∂(ρuj)
∂t

+ ∂

∂xi
[(ρuj)ui] −

∂τij
∂xi

+ ∂p

∂xj
− ρgj = 0, j = 1, 2, 3 (92)

From the angular momentum, for a nonpolar flow, results the criterion of symmetry
between the components of the stress tensors, i.e.;

σij = σji ou τij = τji

Energy Conservation

In order to analyze energy conservation, one must first introduce the concept of
internal energy per unit mass, e, it depends directly on the state of the fluid, ie, the
pressure p and the temperature T BEJAN, 2006.

e = e(T, p) (93)

The total energy per unit mass (E) will be

E = e + 1
2uiui (94)

Note that Equation 94 includes the contributions of internal and kinetic energies
per unit mass.

The enthalpy per unit mass is defined as

h = e + p

ρ
(95)

and the enthalpy of stagnation is given by

H∗ = h + 1
2uiui = E + p

ρ
(96)

Energy is transferred by the fluid to the control volume through conduction,
advection and radiation, and the radiation usually occurs only at the boundaries. To
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exemplify, the heat flow by conduction, qi given by the Fourier’s law, for an isotropic
material the heat flux is BERGMAN et al., 2011.

qi = −kcond
∂T

∂xi
(97)

where kcond is the thermal conductivity of the material.
Introducing the terms heat sources such as heat flow per unit volume qH due to

chemical reactions and also including dissipation energy due to internal stresses, i.e., using
Equation 89a;

∂

∂xi
(σijuj) = ∂

∂xi
(τijuj) −

∂

∂xj
(puj) (98)

the energy balance on the control volume of Figure 33 becomes

∂(ρE)
∂t

+ ∂

∂xi
(ρuiE) − ∂

∂xi

(
kcond

∂T

∂xi

)
+ ∂

∂xi
(pui) −

∂

∂xi
(τijuj) − ρgiui − qH = 0

(99a)
Applying the Equation 96, Eq. (85a) can be rewriten

∂(ρE)
∂t

+ ∂

∂xi
(ρuiH∗) −

∂

∂xi

(
kcond

∂T

∂xi

)
− ∂

∂xi
(τijuj) − ρgiui − qH = 0 (99b)

Incompressible Flow

From the thermodynamics of the simple compressible systems it is shown that the
intensive thermodynamic state is defined by only two independent intensive properties, so
that:

ρ = ρ(T, p) (100)

A complete analysis of the major thermodynamic state equations for blends is
given in the Appendix G.

Thus, assuming that a flow is incompressible when ρ is constant and uniform in
both space and time.

The assumptions of incompressible fluid can be extended to cases of fluids exhibiting
very small compressibility in which there are practically no significant variations in density
as a consequence of the elastic deformation obtained with the change in pressure. Thereby,

dρ)s = ρ

K
dp)s (101a)

where K is the bulk modulus, by definition,

dρ)s = 1
c2dp)s (101b)
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or

∂ρ

∂t

)
s

= 1
c2
∂p

∂t

)
s

(101c)

where c =
√
K/ρ is the velocity of sound in the fluid ZIENKIEWICZ, TAYLOR, and

NITHIARASU, 2014.
The transport equations for mass and momentum can be rewritten

1
c2
∂p

∂t
+ ρ

∂ui
∂xi

= 0 (102a)

∂uj
∂t

+ ∂

∂xi
(ujui) + 1

ρ

∂p

∂xj
− 1

ρ

∂τij
∂xi

− gj = 0 (102b)

For incompressible flows, the deviatoric stress tensor is CHUNG, 2002:

τij = µ

(
∂ui
∂xj

+ ∂uj
∂xi

)

Compressible Flow

The governing equations for compressible flows can be expressed in a general
conservative manner ZIENKIEWICZ, TAYLOR, and NITHIARASU, 2014.

∂Φ
∂t

+ ∂Fi
∂xi

+ ∂Gi

∂xi
+ Q = 0 (103)

The Equation 103 is known as the Navier-Stokes equations for compressible flows.
From equations 90, 92, 99b, Φ, Fi, Gi and Q are defined as:

Φ =



ρ

ρu1

ρu2

ρu3

ρE


; (104a)

Fi =



ρui

ρu1ui + pδ1i

ρu2ui + pδ2i

ρu3ui + pδ3i

ρHui


; (104b)
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Gi =



0
−τ1i

−τ2i

−τ3i

−(τijuj) − k
∂T

∂xi


; (104c)

and

Q =



0
−ρf1

−ρf2

−ρf3

−ρfiui − qH


(104d)

where

τij = µ

[(
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3δij
∂uk
∂xk

]

The Euler equation is a particular case of the Navier-Stokes equation, assuming
that the viscosity of the fluid is zero and that there are no heat exchanges. Thus, τij = 0
and qi = 0. Applying these conditions to Equation 103 becomes

∂Φ
∂t

+ ∂Fi
∂xi

+ Q = 0 (105)

The Finite Element Method Applied to Transport Phenomena

Traditionally applied in structures or in Solid Mechanics, the FEM can also be used
with great reliability to analyze the flow of fluids, whether they are viscous or non-viscous,
incompressible or compressible CHUNG, 2002. In the case of flows, it is more convenient to
use the weak formulation, for spatial discretization of the system of differential equations
that model the system. Due to the advective term the equations are not self-adjoint,
making necessary the use of some stabilization procedure so that the equation system
has stable solutions in both transient and stationary regimes. Because of this, it can be
shown that the approach using the conventional Galerkin method does not yield to good
results, as ZIENKIEWICZ, TAYLOR, and NITHIARASU (2014). Thus, certain stabilizing
methods such as Taylor-Galerkin Method (TGM), Generalized Galerkin Method (GGM),
Galerkin Characteristic Method (GCM) and finally the CBS (Characteristic-Based Split)
scheme must be applied for stability of solutions.
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Weak Formulation

The weak formulation of a partial differential equation is an equivalent way of
rewriting it, multiplying by an arbitrary test function, integrating into the problem domain
and equating to zero. The mathematical consequences are then analyzed. Consider the
general equation of transport:

∂φ

∂t
+ u · ∇φ︸ ︷︷ ︸

Advective term

− ∇ · (kφ∇φ)︸ ︷︷ ︸
Diffusive term

= Sφ in Ω (106)

The following initial condition, natural and essential boundary conditions for
solution of the Equation 106 are prescribed:

φ(~x, 0) = φ0(~x) (107a)

φ = φ1 on Γ1

kφ
∂φ

∂n
= φ2 on Γ2

 Γ1 ∪ Γ2 = Γ︸ ︷︷ ︸
Arbitrary boundaries of the problem

(107b)

The formulation represented by the equations 106 and 107 is the strong form.
Now multiplying Equation 106 by a weight function Wi and integrating over the Ω

domain

∫
Ω
Wi

∂φ

∂t
dΩ +

∫
Ω
Wiu · ∇φ dΩ −

∫
Ω
Wi∇ · (kφ∇φ) dΩ︸ ︷︷ ︸

A

=
∫

Ω
WiSφ dΩ (108)

The term A presented in Equation 108, by vector identity, is expressed as:

∇ · (Wikφ∇φ) = ∇Wi · kφ∇φ + Wi∇ · (kφ∇φ) (109)

Substituting Equation 109 into Equation 108 results in

∫
Ω
Wi

∂φ

∂t
dΩ +

∫
Ω
Wiu·∇φ dΩ +

∫
Ω
∇Wi ·kφ∇φdΩ −

∫
Ω
∇ · (Wikφ∇φ) dΩ︸ ︷︷ ︸

B

=
∫

Ω
WiSφ dΩ

(110)
Applying the Gaussian Theorem to the term B and introducing the natural boundary

conditions, second line of Equation 107, the resulting equation is:

∫
Ω∇ · (Wikφ∇φ) dΩ =

∮
Γ ~n ·Wikφ∇φ dΓ

=
∮

Γ Wikφ~n · ∇φ dΓ

=
∫

Γ1
Wikφ

∂φ

∂n
dΓ +

∫
Γ2
Wikφ

∂φ

∂n
dΓ

(111)
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In contours in which the φ variable is specified, that is, in the contour Γ1 of the
domain, Wi must be null. Thus, the weak formulation of Equation 106 is given by

∫
Ω
Wi

∂φ

∂t
dΩ +

∫
Ω
Wiu · ∇φ dΩ +

∫
Ω
∇Wi · kφ∇φdΩ =

∫
Ω
WiSφ dΩ +

∫
Γ2
Wikφ

∂φ

∂n
dΓ

(112)
The Equation 112 is called weak formulation, since the derivatives of higher orders

cease to exist in the ZIENKIEWICZ, TAYLOR, and NITHIARASU, 2014 integration
process. The derivatives were re-distributed between the φ and Wi functions. The integral
in the Γ2 outline of Equation 112 arises naturally when the weak formulation of the
equation is obtained. Therefore, the corresponding boundary conditions presented in
autoref subeq: natural_conditions is called the natural contour condition CHUNG, 2002.
Finally, by applying the natural boundary conditions, Equation 107b, in Equation 112 we
have∫

Ω
Wi

∂φ

∂t
dΩ +

∫
Ω
Wiu·∇φ dΩ +

∫
Ω
∇Wi ·kφ∇φdΩ =

∫
Ω
WiSφ dΩ +

∫
Γ2
Wiφ2 dΓ (113)

Generalized Galerkin method

Constructing a double residual projection of the system of Navier-Stokes equations
in terms of the Jacobians, together with the application of the temporal and spatial test
functions ZIENKIEWICZ, TAYLOR, and NITHIARASU, 2014.

(W (ξ), (Θα, R)) =
∫
ξ
W (ξ)

∫
Ω

Θα

(
∂Φ
∂t

+ ai
∂Φ
∂xi

+ bi
∂Φ
∂xi

+ cij
∂2Φ
∂xi∂xj

− Q

)
dΩdξ = 0

(114)
without the Jacobians

(W (ξ), (Θα, R)) =
∫
ξ
W (ξ)

∫
Ω

Θα

(
∂Φ
∂t

+ ∂Fi
∂xi

+ ∂Gi

∂xi
− Q

)
dΩdξ = 0 (115)

To simplify the equations 114 and 115, the temporal test function, W (ξ) will be
assumed equal to δ(ξ − 1

2) or W (ξ) = 1.
The finite element equation of GGM is[

Aαβδrs + ∆t
2 (Bαβrs + Kαβrs)

]
∆Φn+1

βs = Hn
αr + Nn

αr (116)

where
Aαβ =

∫
Ω

ΘαΘβdΩ

Bαβrs = −
∫

Ω
(airs + birs)Θα,iΘβdΩ
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Kαβrs =
∫

Ω
cijrsΘα,iΘβ,jdΩ

Hn
αr = ∆t

∫
Ω

ΘαΘβQβrdΩ

Nn
αr = ∆t

∫
Γ

Θ∗α(F n
ir + Gn

ir)nidΓ

Similarly for Equation 115, you get

Aαβδrs∆Φn+1
βs = dfrac∆t2

[
Eαβi(F n

βir + n
βir)

]
+ ∆t(Hn

αr + n
αr) (117)

where
Eαβi =

∫
Ω

Θα,iΘβdΩ

Equation 117 is resolved in two steps in the explicit way.
Step 1

Aαβδrs∆Φn+1/2
βs = ∆t

2
[
Eαβi(F n

βir + Gn
βir)

]
+ 2(Hn

αr + Nn
αr) (118)

Step 2

Aαβδrs∆Φn+1
βs = ∆t

2
[
Eαβi(F n+1/2

βir + G
n+1/2
βir )

]
+ 2(Hn+1/2

αr + Nn
αr) (119)

The nodal values, F n+1/2
βir , G

n+1/2
βir e Hn+1/2

αr of step 1, are estimated or determined by
boundary conditions, and F n+1

βir , G
n+1
βir e Hn+1

αr in step 2 are calculated for Φn+1/2
βs CHUNG,

2002.

Taylor-Galerkin Method

The TGM method is a special case of the generalized Galerkin method (GGM).
This is also applied to solve the system of Navier-Stokes equations. In order to deal
with the system of Navier-Stokes equations, Equation 103, it is convenient to work with
conservation variables transformed from the convection and diffusion flows DONEA, 1984.

∂Fi
∂t

= ai
∂Φ
∂t

(120a)

∂Gi

∂t
= bi

∂Φ
∂t

+ cij
∂

∂t

(
∂Φ
∂xj

)
(120b)

In Equation 120 it is assumed that both the advective term and the diffusive term
are functions of the conservation flow variable, Φ. In addition, the diffusive flow term is a
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function of the diffusion gradient of the conservation flow variable. By this we define ai
as convective Jacobian, bi as diffusive Jacobian, and cij as the Jacobian of the diffusion
gradient. These data are

ai = ∂Fi
∂Φ , bi = ∂Gi

∂Φ , cij = ∂Gi

∂Φ,j

(121)

being Φ,j = ∂Φ
∂xj

the diffusion gradient.
Considering the expansion in Taylor Series of Φn+1, where the +1 notation represents

an analysis in the later time space, in the form,

Φn+1 = Φn + ∆t∂Φn

∂t
+ ∆t2

2
∂2Φn+1

∂t2
+ O(∆t3) (122)

where the second derivative is in the implicit form (n + 1). Replacing Equation 103 in
Equation 122 one gets

∆Φn+1 = ∆t
(
−∂Fi
∂xi
− ∂Gi

∂xi
+ Q

)n
+ ∆t2

2
∂

∂t

(
−∂Fi
∂xi
− ∂Gi

∂xi
+ Q

)n+1

+ O(∆t3)

(123)
From the definition of the Jacobians of convection, diffusion and diffusion gradient,

the temporal rate variations of the convection and diffusion variables are;

∂F n
i

∂t
=

(
ai
∂Φ
∂t

)n
=

[
ai

(
−∂Fi
∂xi
− ∂Gi

∂xi
+ Q

)]n
(124a)

∂F n+1
i

∂t
= ai

(
−
∂F n+1

j

∂xi
−
∂Gn+1

j

∂xi
+ Qn+1

)

∂F n+1
i

∂t
= ai

[
−aj

∂

∂xj

(
Φn+1 − Φn

)
−

∂F n
j

∂xj
−

∂Gn+1
j

∂xj
+ Qn+1

]
(124b)

∂Gn+1
i

∂t
=

(
bi
∂Φ
∂t

)n+1

+
[
cij

∂

∂t

(
∂Φ
∂xj

)]n+1

(125a)

or
∂Gn+1

i

∂t
=

(
bi −

∂cij
∂xj

)
∆Φn+1

∆t + ∂

∂xj

(
cij

∆Φ
∆t

)n+1

(125b)

Substituting the equations 124 and 125 into Equation 123:
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(126)

∆Φn+1 = ∆t
(
−∂Fi
∂xi

− ∂Gi

∂xi
+ Q

)n

+ ∆t2
2

{
∂

∂xi

[
−ai

(
−aj

∂∆Φn+1

∂xj
−

∂F n
j

∂xj
−

∂Gn+1
j

∂xj
+ Qn+1

)

−
(
ei + ∂cij

∂xj

)
∆Φn+1

∆t

]
+ ∂Qn+1

∂t

}

with
ei = bi −

∂cij
∂xj

Neglecting the temporal and spatial derivatives of Q for flow problems, the above
expression will be

{
1 + ∆t

2
∂ei
∂xi

(
aiaj −

cij
∆t

)
∂

∂xj

}
∆Φn+1 = ∆t

(
−∂Fi
∂xi

− ∂Gi

∂xi
+ Q

)n
+ ∆t2

2
∂

∂xi

(
ai
∂Fj
∂xj

)n
(127)

In this equation, the second derivatives of Gi are neglected and all Jacobians are
considered constants within each time interval, being, however, updated at each subsequent
time interval. These approximations are direct implications of the method.

In FEM the variables are approximated by the interpolation functions in the form:

Φ = WαΦα, Fi = WαFαi, Gi = WαGαi, Q = WαQα

Thus, by applying the approximate functions in Equation 127:

(Aαβδrs + Bαβrs)∆Φn+1
βs = Hn

αr + Nn+1
αr + N

n
αr (128)

where
Aαβ =

∫
Ω
WαWβdΩ

Bαβrs = ∆t
2

∫
Ω
eirsWαWβ,idΩ + ∆t2

2

∫
Ω

(
airqajqs −

cijrs
∆t

)
Wα,iWβ,jdΩ

Hαr = ∆t
∫

Ω

[
Wα,iWβ(F n

βir + Gn
βir) + WαWβQ

n
βr −

∆t
2 airsWα,iWβ,jF

n
βjs

]
dΩ

Nn+1
αr = ∆t2

2

∫
Γ

(
airqajqs −

cijrs
∆t

)
Wα∆Φn+1

s,j nidΓ

N
n

αr = −
∫

Γ

[
∆tWα(F n

ir + Gn
ir) −

∆t2
2 airsWαF

n
js,i

]
nidΓ

where the indexes α and β denote the local loop nodes, r and s represent the number of
the equation listed in Equation 103, i and j indicate the spatial coordinates CHUNG, 2002.
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Instead of evaluating the implicit second-order derivatives, one can maintain the
explicit form of the Taylor series. In this way, Equation 122 is rewritten:

Φn+1 = Φn + ∆t∂Φn

∂t
+ ∆t2

2
∂2Φn

∂t2
+ O(∆t3) (129)

where
∂Φ
∂t

= −∂Fi
∂xi

− ∂Gi

∂xi
+ Q = −ai

∂Φ
∂xi

− ∂Gi

∂xi
+ Q (130a)

∂2Φ
∂t2

= − ∂

∂t

(
ai
∂Φ
∂xi

+ ∂Gi

∂xi
− Q

)
(130b)

or
∂2Φ
∂t2

= ∂

∂xj

(
aiaj

∂Φ
∂xi

)
+ ∂

∂xi

(
ai
∂Gj

∂xj

)
− ∂

∂xi
(aiQ) + ∂Q

∂t
(131)

Substituting the Equations 130 and 131 into Equation 129 it is obtained

∆Φn+1 = ∆t
{
−∂Fi
∂xi

− ∂Gi

∂xi
+ Q+ ∆t

2

[
∂

∂xj

(
aiaj

∂Φ
∂xi

)
+ ∂2(aiGj)

∂xi∂xj
− ∂

∂xi
(aiQ) + ∂Q

∂t

]}n
(132)

or

(133)
∆Φn+1 = ∆t

(
−∂Fi
∂xi

− ∂Gi

∂xi
+ Q

)n
+ ∆t2

2

{
∂

∂xi

(
aiaj

∂∆Φn+1

∂xj
+ ai

∂F n
j

∂xj

)

+ ∂2(aiGj)n+1

∂xi∂xj
+ ∂

∂xi
(aiQ)n+1 + ∂Qn+1

∂t

}
Rearranging the above equation[
1 − ∆t2

2
∂

∂xi

(
aiaj −

cij
∆t

)
∂

∂xj

]
∆Φn+1 = ∆t

(
−∂Fi
∂xi

− ∂Gi

∂xi
+ Q

)n
+ ∆t2

2

(
ai
∂Fj
∂xj

)n
(134)

Following the same procedure of neglecting the second derivatives of Gi and further
assuming constant Q in space and time, the approximating functions are applyed and one
obtains:

(Aαβδrs + Bαβrs)∆Φn+1
βs = Hn

αr + Nn+1
αr + N

n
αr

where
Aαβ =

∫
Ω
WαWβdΩ

Bαβrs = ∆t2
2

∫
Ω

(
airqajqs −

cijrs
∆t

)
Wα,iWβ,jdΩ

Hn
αr = ∆t

∫
Ω

[
Wα,iWβ

(
F n
βir + Gn

βir

)
− WαWβQ

n
βr −

∆t2
2 airsWα,iWβ,jF

n
βjs

]
dΩ
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Nn+1
αr = ∆t

2

∫
Γ

(
airqajqs −

cijrs
∆t

)
Wα∆Φn+1

s,j nidΓ

N
n
αr = −

∫
Γ

[
∆tWα(F n

ir + Gn
ir) −

∆t2
2 airsWαF

n
js,j

]
nidΓ

Taylor-Galerkin Method with the Split Operator

If the source term Q presents very different temporal scales when compared with
the time scales of the convection of the fluid, as it happens in chemical reactions, it becomes
more advantageous the application of the split of the system of Navier-Stokes equations
in two parts, such that the flow can be treated explicitly, whereas the term source in the
implicit form ROIG, 2007. In this way, Equation 103 can be rewritten,

∂Φ
∂t

+ ∂Fi
∂xi

+ ∂Gi

∂xi
= 0 (135a)

∂Φ
∂t

= Q (135b)

Applying the split operator to Equation 135 and writing the Taylor-Galerkin
method in two steps.

Step 1

∆Φn+1/2 = Φn+1/2 − Φn = ∆t
2

(
∂Fi
∂xi

+ ∂Gi

∂xi

)n
, AαδrsΦn+1/2

βs = Y n
αr (136a)

Step 2

∆Φn+1 = −∆t
(
∂Fi
∂xi

+ ∂Gi

∂xi

)n+1/2

, AαβδrsΦn+1
βs = Y n+1/2

αr (136b)

The Equation 135b is evaluated at an intermediate increment m+1 and m between
n and n+ 1.

∂Φm+1

∂t
= Qm+1 (137)

being
∂Φm+1

∂t
= Φm+1 − Φm

∆t = ∆Φm+1

∆t + ∆Φm

∆t (138a)

Qm+1 = Qm + ∂Q

∂Φ∆Φm+1 (138b)

with
∆Φm+1 = Φm+1 − Φm, ∆Φm = Φm − Φn
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Substituting Equation 138 into Equation 137, Step 3
(
I − ∆t∂Q

∂Φ

)
∆Φm+1 = − ∆Φm + ∆tQm (139)

Using the analogous method for the application of finite elements, through the
weak formulation of Galerkin, we have

(Aαβδrs − ∆t Bαβrs)∆Φm+1
βs = −Aαβδrs∆Φm

βs + ∆tAαβδrsQm
rs (140)

as
Aαβ =

∫
Ω
WαWβdΩ

Bαβrs =
∫

Ω
frsWαWβdΩ

frs = ∂Q(r)

∂Φ(s)

Characteristic Galerkin method

The characteristic Galerkin method (CGM) is based on the concept of trajectory
or characteristic XIKUI and WENHUA, 1999 with

xni = xn+1
i − ∆tuni (141)

Differentiating in relation to time

uni = un+1
i − ∆tunj

∂uni
∂xj

(142)

Combining the Equations 127 and 128:

xn+1
i − xni = ∆tuni −

∆t2
2 unj

∂uni
∂xj

(143)

The objective of the CGM is to write the governing equations through the fluid
characteristic for the Navier-Stokes equation system in a similar way to that presented in
Equation 143. In this way,

∆Φn+1 = ∆tRn − ∆t2
2 anj

∂Rn

∂xj
(144)

where Rn is the residue defined as

Rn = −
(
∂F n

i

∂xi
+ ∂Gn

i

∂xi
− Qn

)

According to this method, the momentum equation without the pressure is solved
initially, followed by the continuity equation, which takes into account the pressure.
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Momentum (initial)

∆ρuni = ∆tRn
i −

∆t2
2 uk

∂R̂n

i

∂xk
(145)

with
Rn
i = − ∂

∂xj
(ρuiuj − τij) + ρgi

R̂n

i = Rn
i −

∂pn

∂xi

Continuity

∆ρ = −∆t ∂
∂xi

(ρuni + θ1∆ρun̄i ) + θ1∆t2∂
2pn+θ2

∂xi∂xi
(146)

where 0 6 θ1, θ2 6 1
Momentum (atualized)

∆ρuni = ∆ρuni − ∆t∂p
n+θ2

∂xi
(147)

Energy

∆ρEn = ∆tRn − ∆t2
2 uk

∂Rn

∂xk
(148)

where
Rn = − ∂

∂xi

[
(ρE + p)ui − k

∂T

∂xi
− τijuj

]

To exploit the physical effects produced by CGM, Equation 145 is replaced in
Equation 147 XIKUI and WENHUA, 1999, then, it is obtained

∂

∂t
(ρui) + ∂

∂xj
(ρuiuj) + ∂p

∂xi
− ∂τij

∂xj
− ρfi = Si(m) (149)

where
Si(m) = ∆t

2
∂

∂xk

{
uk

[
∂

∂xj
(ρuiuj) + ∂p

∂xi
− ∂τij

∂xj
− ρfi

]}
(150)

Similarly, the continuity equation (Equation 146) and the energy equation (Equa-
tion 148) are rewritten as

∂ρ

∂t
+ ∂

∂xj
(ρui) = S(c) (151)

being

S(c) = ∆t
2

[
∂2

∂xjxi
(ρuiuj − τij) + ∂2p

∂xixi
− ∂

∂xi
(ρfi)

]
(152)

adopting θ1 = 1/2 and θ2 = 0 in Equation 146
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In this way, the energy equation is in the form,

∂ρE

∂t
+ ∂

∂xj

[
(ρE + p)ui − k

∂T

∂xi
− τijuj

]
= S(e) (153)

where
S(e) = ∆t

2 uj
∂

∂xj

[
∂

∂xi
(ρEui + pui − k

∂T

∂xi
− τikuk)

]
(154)

The terms S(m), S(c) and S(e) in the momentum, continuity and energy squares,
respectively, arise as numerical diffusion.

Characteristic-Based Split (CBS)

Methods featuring stabilizers for the matter of the convective term in compressible
and incompressible flows need to have sufficient stability to suppress oscillations due to
the standard Galerkin discretization of this term. Several stabilization schemes have been
introduced in recent years. Among these, CGM and TGM are developed using temporal
scaling as a basis. The use of CGM has been demonstrated by several authors for simple
convection-diffusion problems, and recently these methods have been employed to deal
with the complete equation of fluid dynamics.

Although several versions of CGM are possible, they are all based on a Taylor
series expansion and are attractive because of their ease of implementation and versatility.
Its equivalence to other standard stabilization schemes can also be demonstrated for
convection-diffusion problems if the time step is suitably scaled using an appropriate rate
scale and a length scale.

Since its introduction in 1995, as a variant of CGM, the CBS method has been
widely employed in problems of fluid dynamics and solids.

The CBS scheme is a variant of the CGM and it was originally introduced for
a solution in the fully explicit form. Later, it was extended to the semi-implicit form
and can be applied for both compressible and incompressible flows. From the outset, it
has been realized that the explicit solution to the fully incompressible fluid dynamics
equations using the CBS scheme is possible, provided an artificial compressibility method
is employed. The solution of transient problems with CBS was achieved using a two-step
time-staging approach. Recently, the method was extended to solve problems of viscoelastic
flow NITHIARASU, CODINA, and ZIENKIEWICZ, 2006.

Temporal Discretization

Let be the momentum equation Equation 92, rewritten as

∂Ui
∂t

= − ∂

∂xj
(ujUi) + ∂τij

∂xj
− ∂p

∂xi
+ ρgi (155)
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where Ui represents the mass flow given by

Ui = ρui

To apply the split to the equation and introduce the approximations there are two
alternatives: Split A and Split B. Assuming in each split a time increment of ∆t = tn+1 − tn,

Un+1
i = Ui + ∆U∗i + ∆U∗∗i (156)

For the interval tn 6 t 6 tn+1, the time derivative in Eq. 141 can also be discretized
in time as follows:

∂Ui
∂t

= Un+1
i − Un

i

∆t = ∆U∗i
∆t + ∆U∗∗i

∆t (157)

Thus, from the CGM method we have

(158)
Un+1
i − Un

i = ∆t
[
− ∂

∂xj
(ujUn

i ) +
τnij
∂xj

+ (ρgi)n
]
− ∆t∂p

n+θ2

∂xi

+ ∆t2
2 uk

∂

∂xk

[
∂

∂xj
(ujUi) −

τnij
∂xj
− ρgi

]n
+ ∆t2

2 uk
∂

∂xk

(
∂pn+θ2

∂xi

)

Being

∂pn+θ2

∂xi
= (1 − θ2)∂p

n

∂xi
+ θ2

∂pn+1

∂xi
(159a)

or
∂pn+θ2

∂xi
= ∂pn

∂xi
+ θ2

∂∆p
∂xi

(159b)

where
∆p = pn+1 − pn (159c)

Using the auxiliary variables ∆U∗i and U∗∗i , Equation 158 is divided into two parts.
In the first part the pressure gradient is removed, while in the second, the pressure gradient
corresponding to the beginning of the step, i.e., ∂pn

∂xi
, is returned. In this way, Split A is

recommended for steady-state problems. For transient problems, it is recommended to
apply the Split B by adding a pressure stabilizer or the Split A with double time scaling,
which presents slightly better results ZIENKIEWICZ, TAYLOR, and NITHIARASU, 2014.

Split A
Introducing the auxiliary variable ∆U∗i and neglecting the third order terms

∆U∗i = ∆t
[
− ∂

∂xj
(ujUi) + ∂τij

∂xj
+ ∂(ρgi)

∂xi
+ ∆t

2 uk
∂

∂xk

(
∂

∂xj
(ujUi) − ρgi

)]n
(160)
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Thus, the above equation is solved by an explicit time step, making the solution
possible. The correction given below is intended to evaluate the pressure increase.

∆U∗∗i = −∆t∂p
n+θ2

∂xi
+ ∆t2

2 uk
∂2pn

∂xk∂xi
(161)

From the time discretization of the Equation 90 it’s obtained:

∆ρ = −∆t∂U
n+θ1
i

∂xi
= −∆t

[
∂Un

i

∂xi
+ θ1

∂∆Ui
∂xi

]
(162)

Applying the auxiliary variable ∆U∗i in the above equation,

∆ρ = −∆t
[
∂Un

i

∂xi
+ θ1

∂∆U∗i
∂xi

− ∆tθ1

(
∂2pn

∂xi∂xj
+ θ2

∂2∆p
∂xi∂xi

)]
(163)

Now, therefore, one can apply the Galerkin method in the above equation. In this
way, the governing equations can be solved after the spatial discretization in the following
order NITHIARASU, CODINA, and ZIENKIEWICZ, 2006:

• Equation 160 to get at step 1: ∆U∗i

• Equation 163 to get at step 2: ∆ρ

• Equation 161 to get at step 3: ∆U∗∗i to establish the values of Ui and p for the energy
and gas law at tn+1.

After obtaining∆Ui and ρ, the energy equation is treated independently and the
value of (ρE)n+1 is obtained by the CGM method, given by:

∂ρE

∂t
= − ∂

∂xi
(uiρE) + ∂

∂xi

(
k
∂T

∂xi

)
− ∂

∂xi
(uip) + ∂

∂xi
(τijuj) + ρgiui (164)

Split B
In this split, the auxiliary variable ∆U∗i is also entered, keeping the known values

of ∂pn/∂xi, i.e.,

∆U∗i = ∆t
[
− ∂

∂xj
(ujUi) + ∂τij

∂xj
− ∂p

∂xi
+ ρgi + ∆t

2 uk
∂

∂xk

(
∂

∂xj
(ujUi) + ∂p

∂xi
− ρgi

)]n
(165)

By including the pressure term, this equation gives a better approximation for U∗i .
Now the correction is given by:

∆U∗∗i = −θ2∆t∂∆p
∂xi

(166)

Therefore, for θ2 = 0, no correction (∆U∗∗i ) will be required. The density variation
becomes

∆ρ = −∆t
[
∂Un

i

∂xi
+ θ1

∂∆U∗i
∂xi

− ∆tθ1θ2
∂2∆p
∂x2

i

]
(167)

The solution steps are the same as for Split A.
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Space Discretization

Using spatial approximations by finite element definition ZIENKIEWICZ, TAYLOR,
and NITHIARASU, 2014:

Ui = NuÛi ∆Ui = Nu∆Ûi ∆U∗i = Nu∆Û∗i ∆U∗∗i = Nu∆Û∗∗i

ui = Nuûi p = Npp̂ ρ = Nρρ̂

where the elemental vectors of unknowns and interpolation functions are:

Ûi =
[
Û1
i Û

2
i ... Ûa

i ... Ûm
i

]T
N =

[
N1 N2 ... Na ... Nm

]
and a is the identification number of the node, which varies between 1 and m.

Split A
From the weak formulation of the Galerkin method, we have:∫

Ω
Na
u∆U∗i dΩ = −∆t

[∫
Ω
Na
u

∂

∂xj
(ujUi)dΩ +

∫
Ω

∂Na
u

∂xj
τijdΩ

−
∫

Ω
Na
u(ρgi)dΩ

]n
+ ∆t2

2

[∫
Ω

∂

∂xk
(ukNa

u)
(
− ∂

∂xj
(ujUi)

+ ρgi

)
dΩ
]n

+ ∆t
[∫

Γ
Na
uτijnjdΓ

]n
(168)

where the viscous stress tensor is given by

τij = 2µ
(
Sij −

1
3δijSkk

)
with the deformation rate given by

Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)

and the volumetric deformation given by

Skk = ∂uk
∂xk

. (169)

The six independent components of the deformation rate can be written in matrix
form as:

S = [S11 S22 S33 2S12 2S23 2S31]T (170)

Defining the matrix
m = [1 1 1 0 0 0]T (171)
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thus, the rate of volumetric deformation is

Sv = Sii = S11 + S22 + S33 = mTS (172)

The rate of shear strain, then, can be rewritten as:

Sd = S − 1
3mSv =

(
I − 1

3mm
T
)

S = IdS (173)

where
Id =

(
I − 1

3mm
T
)

(174)

Thus

Id = 1
3



2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3


(175)

Similarly, the stress tensor, in matrix form, is:

σ = [σ11 σ22 σ33 σ12 σ23 σ31]T (176)

where, for example,

σ11 = τ11 − p

σ12 = τ12

with similar definition for other components.
Once the stress tensor is proportional to the deformation rate, it can be written in

the following:
σd = Idσ = µI0Sd = µ

(
I − 1

3mm
T
)

S (177)

where I0 is the following diagonal matrix

I0 =



2
2

2
1

1
1


(178)

By introducing the concept of the derivation matrix of the velocities and rates of
deformation it is shown that the tensor strain can be defined as:

S = S∗u (179)
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where
u = [u1 u2 u3]T

and S* is the derivative operator:

S∗ =



∂

∂x1
0 0

0 ∂

∂x2
0

0 0 ∂

∂x3
∂

∂x2

∂

∂x1
0

0 ∂

∂x3

∂

∂x2
∂

∂x3
0 ∂

∂x1



(180)

Defining a matrix B as the S* operator applied to the interpolation functions
results:

B = S∗Nu (181)

Following, the three steps of solution are described. The solution to ∆U∗i is:
Step 1

∆Ũ∗ = −M−1
u ∆t

[(
CuŨ + Kτ ũ − f

)
− ∆t

(
KuŨ + fs

)]n
(182)

Values with notation ˜ represent the nodal values. The mass matrix, convective
matrix, diffusive matrix and load vector appearing in Eq. (168) are, respectively, defined
as:

Mu =
∫

Ω
NT
u NudΩ (183a)

Cu =
∫

Ω
NT
u (∇(uNu))dΩ (183b)

Kτ =
∫

Ω
BTµ

(
I0 −

2
3mm

T
)
BdΩ (183c)

f =
∫

Ω
NT
u ρgdΩ +

∫
Γ
NT
u t

ddΓ (183d)

where g is [g1 g2 g3]T e td is the traction corresponding to the shear stress tensor.
In the Equation 182 Ku and fs are the additional terms originated from the CBS

scheme (Taylor serie expansion) and these terms act as stabilizers of the solution. They
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are defined as:
Ku = −1

2

∫
Ω

[
∇T (uNu)

]T [
∇T (uNu)

]
dΩ (184)

and
fs = −1

2

∫
Ω

[
∇T (uNu)

]T
ρgdΩ (185)

The discretization of the weak formulation of the pressure-density Equation 149 is:

(186)

∫
Ω
Na
p∆ρdΩ = −∆t

∫
Ω
Na
p

∂

∂xi

(
Un
i + θ1∆U∗i − θ1∆t

∂pn+θ2

∂xi

)
dΩ

= ∆t
∫

Ω

∂Na
p

∂xi

[
U∗i + θ1

(
∆U∗i − ∆t∂p

n+θ2

∂xi

)]
dΩ

− ∆t
∫

Γ
Na
p

[
Un
i + θ1

(
∆U∗i − ∆t∂p

n+θ2

∂xi

)]
nidΓ

In addition, one must directly discriminate ρ only in problems of compressible
gas flows. However, if p is retained as the main variable, then, for spatial discretization
Equation 186 it is obtianed at Step 2 of the calculation process:

Step 2(
Mp + ∆t2θ1θ2H

)
∆p̃ = ∆t

[
GŨn + θ1G∆Ũ∗ − ∆tθ1Hp̃n − fp

]
(187)

The Equation 187 is solved for ∆p̃.
The new matrices are:

H =
∫

Ω
(∇Np)T∇NpdΩ (188a)

Mp =
∫

Ω
NT
p

( 1
c2

)n
NpdΩ (188b)

G =
∫

Ω
(∇Np)TNudΩ (188c)

fp = ∆t
∫

Γ
NT
p n

T
[
Ũn + θ1

(
∆Ũ∗ − ∆t∇pn+θ2

)]
dΓ (188d)

Applying the weak formulation of the Equation 161:

(189)

∫
Ω
Na
u∆U∗∗i dΩ =

∫
Ω
Na
u∇UidΩ −

∫
Ω
Na
u∇U∗i dΩ

= −∆t
∫

Ω
Na
u

(
∂pn

∂xi
+ θ2

∂∆p
∂xi

)
dΩ − ∆t2

2

∫
Ω

∂

∂xj
(ujNa

u)∂p
n

∂xi
dΩ

Thus, after the calculations of ∆U∗i and ∆p described in steps 1 and 2, respectively,
to determine the correction of the mass flow vector, ∆U∗∗i , Step 3 applies.
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Step 3

∆U∗∗ = ∆Ũ − ∆Ũ∗ = −M−1
u ∆t

[
GT (p̃n + θ2∆p̃ + ∆t

2 P p̃n
]

(190)

in which
P =

∫
Ω

(∆(uNu))T ∇NpdΩ (191)

At the end of this step, the values of Ũn+1 and p̃n+1 are determined. The calculation
of energy (ρE)n+1 is also required, for compresible flow problems, to obtain density from
a thermdynamic state equation involving temperature and pressure. If the density is
the variable in Eq. 172, then the pressure can be obtained from a thermodynamic state
equation.

Thus, Equation 99b written in the weak form and applying the approximation of
the CGM method is:∫

Ω
Nk
E∆(ρE)n+1dΩ = ∆t

[
−
∫

Ω
Nk
E

∂

∂xi
(ui(ρE + p))dΩ −

∫
Ω

∂Nk
E

∂xi

(
τijuj + k

∂T

∂xi

)
dΩ
]n

+ ∆t2
2

{∫
Ω

∂

∂xj
(ujNk

E)
[
∂

∂xi
(−ui(ρE + p))

]
dΩ
}
n

+ ∆t
[∫

Γ
Nk
E

(
τijuj + k

∂T

∂xi

)
nidΓ

]n
(192)

Using the approximate functions

ρE = NEẼ and T = NT T̃ (193)

results the Step 4:

∆Ẽ = −M−1
E ∆t

[
CEẼ + Cpp̃ + KT T̃ + KτEũ + fe − ∆t(KuEẼ + Kupp̃ + fes)

]n
(194)

where Ẽ are the nodal values of ρE and the matrices and vectors are similar to those
shown above.

ME =
∫

Ω
NT
ENEdΩ

CE =
∫

Ω
NT
E∇T (uNE)dΩ

Cp =
∫

Ω
NT
E∇T (uNp)dΩ

KT =
∫

Ω
(∇NE)Tk∇NTdΩ
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KτE =
∫

Ω
BTµuαv(I0 −

2
3mm

T )BdΩ

KuE = −1
2

∫
Ω

(∇T (uNE))T (∇NE)dΩ

fe =
∫

Γ
NT
En

T (tdu + k∇T )dΓ

Kup = −1
2

∫
Ω

(∇TNE))T (∇Np)dΩ

The force term fes contains the source terms.
It is interesting to note that the process of Step 4 may be extended to include any

other transport equation describing quantities such as turbulence parameters, chemical
concentrations, etc.

For isothermal incompressible flows, the first three steps of the CBS scheme are
sufficient. However, for compressible flows, all four steps are necessary and the pressure
must be related to density and temperature (energy) by means of a gas law ZIENKIEWICZ,
TAYLOR, and NITHIARASU, 2014.

Split B
By applying the Split B, the discretization and solving procedures are very similar

those from the Split A. So, applying a discretization procedure identical to the previous
one, we have the following solution steps:

Step 1

∆Ũ∗i = −M (−1)
u

[
(CuŨ + Kτ ũ + GT p̃ − f) − ∆t

(
KuŨ + fs + ∆t

2 P p̃

)]n
(195)

The difference, in relation to Split A, are the additional terms due to the pressure
terms included in the Split B.

Step 2

(Mp + ∆t2θ1θ2H)∆p̃ = ∆t
[
GŨn + θ1G∆Ũ∗ − fp

]n
(196)

and
Step 3

∆Ũ∗∗ = −M−1
u ∆t

[
θ2G

T∆p̃
]

(197)

Step 4 does not change, it is the same as in Split A.
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Diagonalization of the Mass Matrix (Lumping)

In steps 1 to 3 of the CBS scheme, the solution requires the inversion of the mass
matrices Mu and Mp if a direct method is to be employed. These steps are called explicit
or generalized and are used to be approximated in the diagonalized form (lumped). Thus,
the matrix Mu is rewritten in the lumped form ML as:

ML
ab = δab

∫
Ω
NadΩ (198)

This procedure is applied to transient problems, in which errors occur mainly with
mass conservation, thus requiring additional iteration to obtain consistent results.

Interpolation functions

Isoparametric Hexahedrical 8 Nodes Definition

Using isoparametric hexahedrical eight node elements, the geomtry and the un-
knowns are interpolated by the same interpolation or shape functions. In matrix form, this
interpolation can be written as:



x

y

z

ux

uy

uz


=



x0 x1 x2 x3 x4 x5 x6 x7

y0 y1 y2 y3 y4 y5 y6 y7

z0 z1 z2 z3 z4 z5 z6 z7

ux0 ux1 ux2 ux3 ux4 ux5 ux6 ux7

uy0 uy1 uy2 uy3 uy4 uy5 uy6 uy7

uz0 uz1 uz2 uz3 uz4 uz5 uz6 uz7





N e
0

N e
1

N e
2

N e
3

N e
4

N e
5

N e
6

N e
7



(199)

The shape functions in the abstract space of coordinates, ξ, η and ζ; or reference
element are:

N e
0 = 1

8(1 − ξ)(1 − η)(1 − ζ) N e
4 = 1

8(1 − ξ)(1 − η)(1 + ζ)
N e

1 = 1
8(1 + ξ)(1 − η)(1 − ζ) N e

5 = 1
8(1 + ξ)(1 − η)(1 + ζ)

N e
2 = 1

8(1 + ξ)(1 + η)(1 − ζ) N e
6 = 1

8(1 + ξ)(1 + η)(1 + ζ)
N e

3 = 1
8(1 − ξ)(1 + η)(1 − ζ) N e

7 = 1
8(1 − ξ)(1 + η)(1 + ζ)

(200)
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C – TRANSPORT EQUATION AND REYNOLDS
DECOMPOSITION

Helmholtz Vorticity Transport Equation

The phenomenon of vorticity presents great importance on the turbulence GATSKI
and BONNET, 2009. Thus, a transport equation to vorticity, defined as ω = ∇× u, can
be obtained by POWERS, 2016. Consider the momentum equation:

∂u
∂t

+ (uT · ∇)u = f − 1
ρ
∇p + 1

ρ
(∇T · ~~τ)T (201)

applying the following vector identities:

(uT · ∇)u = ∇
(

uT · u
2

)
+ ω × u

∇× (a × b) = (bT · ∇)a − (aT · ∇)b + a(∇T · b) − b(∇T · a)

∇× (∇φ) = 0

∇T · (∇× u) = ∇T · ω = 0

and applying the curl operator on both sides of the Equation 201 results:

∇×
[
∂u
∂t

+ ∇
(

uT · u
2

)
+ ω × u

]
= ∇×

[
f − 1

ρ
∇p + 1

ρ
(∇T · ~~τ)T

]
(202)

Rearranging,

∂

∂t
(∇×u) + ∇×

(
∇
(

uT · u
2

))
+ ∇×ω×u = ∇ ×f − ∇×

(
1
ρ

∆p
)

+ ∇×
(

1
ρ

(∇T · ~~τ)T
)

(203)
From the conservation of mass and the definition of vorticity, multiplying both

sides by density (ρ), we finally have the transport equation to vorticity:

ρ
d

dt

(
ω

ρ

)
= (ωT · ∇)u︸ ︷︷ ︸

A

+ ∇× f︸ ︷︷ ︸
B

+ 1
ρ2∇ρ×∇p︸ ︷︷ ︸

C

+ ∇×
(

1
ρ

(∇T · ~~τ)T
)

︸ ︷︷ ︸
D

(204)

The above equation represents the evolution of vorticity with respect to density
relative to four physical effects NITHIARASU, BEVAN, and MURALI, 2012:
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• A: bending and elongation of vortex tubes;

• B: Nonconservative body forces;

• C: Non-barotropic effect, also known as baroclinic;

• D: Viscous effects.

Mean Flow Equations

Several kinds of averaging are used to define means in turbulent flows. Due to
the random characteristc of turbulence, statistical mean should be the natural way of
averaging, once the resulting mean is no more a random variable. However, other average
approaches such as time average, ensemble average or spatial average are frequently used.
In these three last averages, the means are still random variables. Average will be any
variable denoted by � and fluctuation, by �′.

Thus, the statistical mean, where P (φ) is the probability density function of φ, is
of the form CEBECI, 2003

φ =
∫ +∞

−∞
φP (φ)dφ (205)

The time average, usually applied for turbulences characterized by being stationary,
in which no variation occurs over time, is obtained by

FT (x) = lim
∆t→∞

1
∆t

∫ t+∆t

t
f(x, t)dt (206)

The spatial mean, normally applied to homogeneous turbulence, flow in which the
mean is uniform in all directions, is defined by

FV (t) = lim
V→∞

1
V

∫ ∫ ∫
f(x, t)dV (207)

The ensemble mean, applied for N experiments,

FE(x, t) = lim
N→∞

1
N

N∑
n=1

fn(x, t) (208)

The filtering process can be defined as a general operation given by SAGAUT,
2006:

φ(x, t) = ℘ ∗ φ =
∫
℘(x − x′, t − t′)φ(x′, t′)dx′dt′ (209)

where ℘ is the filter applied in the equation.
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Reynolds decomposition

For the formulation of the RANS method, any stantaneous variable can be decom-
posoed as a sum of the mean plus a fluctuation around the mean; a process known as
Reynolds NITHIARASU, BEVAN, and MURALI, 2012 decomposition, in the form:

φ(~x, t) = φ(~x, t) + φ′(~x, t) (210)

In this way, the velocity field is given by

ui(~x, t) = ui(~x, t) + u′i(~x, t) (211)

Applying the time averaging the velocity field is:

ui(~x, t) = ui(~x) + u′i(~x, t) (212)

on what
ui = lim

∆t→∞

1
∆t

∫ t+∆t

t
u(~x, t)dt

From the definition of average one can observe

ui = ui e u′i = 0

Applying the concept of mean in time implies that

∂ui
∂t

= 0

As a result, the system is in a steady state, that is, it presents low variations during
the mean flow time. Thus, to analyze the transient process the Reynolds average was
defined as:

ui(~x, t) = lim
∆t→∞

1
∆t

∫ t+∆t

t
ui(~x, t)dt; T1 ≤ ∆t ≤ T2 (213)

Where times T1 and T2 are illustrated in Figure 34.



C. Transport Equation and Reynolds Decomposition 120

Figure 34 – Characteristic times of turbulent flows.

Source – SILVA SILVA, 2017.

Other ways of considering the transient problem is by applying the concept of set
mean and statistics, so the dependence over time is maintained.

From the concept of filter, we have that the filter function is given by SAGAUT,
2006:

(214)
℘(~x − ~x′, t − t′) ≡ ℘T (~x − ~x′, t − t′)

= G(~x ~x′)GT (t − t′;T )

= δ(~x − ~x′)H(t − t′)H(T − t + t′)
T

Thus, another way of expressing the mean through the filter function is:

φT (~x, t;T ) = ℘T ∗ φ = 1
T

∫ t

t−T
φ(~x, t′)dt′ (215)

being the average,

φ(~x) = lim
T→∞

φT (~x;T ) = lim
T→∞

1
T

∫ T

0
φ(~x, t)dt (216)

Finally, the Reynolds average has as another form of representation,

φ(x) =
(

lim
T→∞

℘T

)
∗ φ (217)

Since limT→∞ ℘T (t) = 0 can not be interpreted as a convolution filter.
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D – TURBULENT COMPRESSIBLE FLOW

As presented by PYATNITSKY (2009), turbulence plays a fundamental role in
nature, as in the Earth’s atmosphere or in the Sun. Even the air that flows from our
lungs is turbulent. Turbulence determines the climate through its influence on large-scale
atmospheric and oceanic flows.

"The mathematical description of the turbulence is complex, because of the very
difficulty inherent in describing three-dimensional and chaotic processes..." DAVIDSON,
2004. As presented by DAVIDSON (2004), the high complexity of the phenomenon requires
modeling by methodologies that are closer to the phenomenon itself such as DNS1, LES2

RANS3. These methods differ in their approximations and accuracy, among which DNS is
the one that most closely approximates the real effects, followed by LES, which does not
require as much computational power as DNS, but provides excellent results.

Still limited by computational capacity, the most commonly used methods are
RANS and LES, or even one of the hybrid or composite methodologies. With these, the
equations describing the mean or filtered motions in any of these formulations are invariant
in shape, that is, they contain terms in any coordinate referential representing transport,
production, redistribution, and diffusion. They are not invariant, since in non-inertial
structures or under Euclidean transformations additional terms appear in the general
tensor forms of the equations. Also, depending on the filtering process, they differ in
relation to the flow field motions being described.

The Helmholtz vorticity transport equation, the basic principle for turbulence,
together with the concept of Reynolds decomposition are presented in more detail in
Appendix C.

LES methodology

The equations of the Large Eddy Simulation methodology are obtained by means
of spatial filters applied to Navier-Stokes equations. The LES methodology assumes the
interaction between large and small vortex scales.

Spatial Filter and Favré Mean

The separation between the large and small scales is obtained by applying the
spatial filter in the governing equations. According to GÉN (2009), a filtered variable φ
1 Direct Numerical Simulation
2 Large Eddy Simulations
3 Reynolds-averaged Navier-Stokes equations
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can be obtained by applyingo a spatial filter as:

φ =
∫

Ω
φ(~x′, t)℘(~x, ~x′)d3~x′ (218)

In the current implementation, the filter used is a kernel top-hat filter. Practically,
℘ is the product of three one-dimensional filters:

℘(~x − ~x′) =
3∏
i=1

qi(xi − x′i) (219)

where q′is is the top-order dimensional filters given by:

qi(xi − x′is) =


1

∆i

, |xi − x′i| <
∆i

2
0, outros

(220)

∆i is the width of the one-dimensional local filter in the i direction. The overall filter
size, ∆ is obtained from the other sizes in the main directions being ∆ = (∆1∆2∆3)1/3.
The dimensions of the one-dimensional filters are based on the spacing of the local mesh,
and ∆ is a measure of the local mesh.

For compressible flows, the most used filter is based on the mass-weighted variable
or density-weighted variable, it is known as Favré filter. Applying this filter to compressible
flows significantly reduces the number of unclosed terms that need to be modeled. The
filtered Favré variable, denoted by �̃, is defined as:

φ̃ = ρφ

ρ
(221)

Filtered Navier-Stokes Equation

The application of the spatial filter reduces to a function of ~x − ~x′, relative to the
position in space, and switches the temporal and spatial derivatives, not losing information
GÉN, 2009.

→Conservation of Mass
The instantaneous mass conservation is:

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0 (222)

Applying the concept of average:

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0 (223)

Applying the Favre filter the equation is reduced to

∂ρ

∂t
+ ∂(ρũi)

∂xi
= 0 (224)
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→Conservation of Movement Quantity
Applying the mean concepts and the Favre filter, the momentum equation is given

by:

∂(ρũi)
∂t

+ ∂

∂xj
[ρũiuj + p∗δij − τij] = 0 (225)

if
p∗ = ρR̃T̃ + ρRuT

sgs (226)

The Eq. 211 can be rewritten as:

∂(ρũi)
∂t

+ ∂

∂xj

[
ρũiũj + p∗δij + τ sgsij − τij

]
= 0 (227)

The convective term of the above equation is modeled to be solved by introducing
the subgrid stress, τ sgsij ,

τ sgsij = ρ(ũiuj − ũiũj) (228)

τ sgsij can be related to the correlation of the velocity fluctuations ui and uj on the small
scales of the (local mesh) filter dimensions.

→Energy Conservation
The energy conservation equation applying the definition of mean flow and filter is

given by

∂(ρẼ)
∂t

+ ∂

∂xj

[
ρũjẼ + ũjp∗ + qj − ũiτji + Hsgs

j + σsgsj

]
= 0 (229)

where the subgrid terms originated from the filter process are:

Hsgs
j = ρ

(
Ẽuj − Ẽũj

)
+ (ujp∗ − p∗ũj) (230)

σsgsj = − (uiτij − ũiτij) (231)

→Conservation of Chemical Species
Filtering the conservation equation of species one has

∂(ρỸk)
∂t

+ ∂

∂xi

[
ρ
(
Ỹkui + ỸkVi,k

)]
= 0 (232)

rearranging in a convenient manner:

∂(ρỸk)
∂t

+ ∂

∂xi

[
ρ
(
Ỹkũi + ỸkṼi,k

)
+ Y sgs

i,k + θsgsi,k

]
= 0 (233)
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the subgrid terms are:
Y sgs
i,k = ρ

(
ũiYk − ũiỸk

)
(234a)

θsgsi,k = ρ
(
Ṽi,kYk − Ṽi,kỸk

)
(234b)

The subgrid temperature in Eq. 212 is given by

T sgs =
∑ ỸkT − ỸkT̃

MWk

(235)

Closure Model for the LES Equations

Given the initial conditions and integration time known, the variables ρ, ũi Ẽ and
Ỹk are known, so the equation of continuity is closed, that is, all variables are completely
known. However, the other governing equations have a closure problem, both in terms of
subgrid and in terms of the filtered terms, so they require modeling. Thus, from the total
energy we have:

Ẽ = ẽ + 1
2 ũkuk

= ẽ + 1
2 ũkũk + 1

2(ũkuk − ũkũk)
= ẽ + 1

2 ũkũk + ksgs
(236)

where ksgs represents the subgrid portion of the kinetic energy. Relying only on
internal energy,

ẽ =
Ns∑
k=1

Ỹke
0
f,k +

Ns∑
k=1

Ỹk

∫ T̃

T0
CV,k(T )dT +

Ns∑
k=1

Esgs
k (237)

Applying the Favré filter on the stress tensor of the momentum equation and
analogously for the Navier-Stokes equation:

τij = 2µ(T̃ )
(
S̃ij −

1
3 S̃kkδij

)
(238)

The heat flux, qi, and the rate of diffusion of species, Vi,k are given by:

qj = −κ(T̃ ) ∂T̃
∂xj

+ ρ
∑

Ỹkhk(T̃ )Ṽi,k + qsgsj (239)

Ṽi,k = −Dk

Ỹk

∂Ỹk
∂xi

(240)

The terms subgrid are not closed, which requires modeling. These terms are:

τ sgsij = ρ(ũiuj − ũiũj) (241a)
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Hsgs
i = ρ

(
Ẽui − Ẽũi

)
+ (uip − ũip) (241b)

σsgsi = (ujτij − ũjτij) (241c)

Y sgs
i,k = ρ

(
ũiYk − ũjτij

)
(241d)

θsgsi,k = ρ
(
Ṽi,kYk − Ṽi,kỸk

)
(241e)

qsgsi,k = ρ
(
hkỸkVi,k − h̃kỸkṼi,k

)
(241f)

T sgs =
Ns∑
k=1

(
ỸkT − ỸkT̃

)
MWk

(241g)

Esgs
k = Ykẽk(T ) − Ỹkek(T̃ ) (241h)

To close the equations, it is employed the concept of turbulent viscosity, νt, which
is evaluated using the characteristic scale length obtained by the mesh length (∆) and
the characteristic velocity based on the subgrid kinetic energy (ksgs). Thus, the turbulent
viscosity, GÉN, 2009, is calculated by

νt = cν∆
√
ksgs (242)

Thus, the subgrid stress tensor is modeled as

τ sgsij = −2ρνt
(
S̃ij −

1
3 S̃kkδij

)
+ 2

3k
sgsδij (243)

The terms of the energy equation, Hsgs
i and σsgsi are modeled together. Thus,

Hsgs
i + σsgsi = − (ρνt + µ) ∂k

sgs

∂xi
− ρνtcp

Prt

∂T̃

∂xi
+ ũjτ

sgs
ij (244)

The subgrid mass fraction of the diffusion of species is modeled in the form:

Y sgs
i,k = −ρνt

Sct

∂Ỹk
∂xi

(245)

An equation to the subgrid kinetic energy can be obtained. The closure model of
the type using subgrid kinetic energy ksgs is given by:
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(246)

∂

∂t
(ρksgs) + ∂

∂xi

(
ρũiksgs

)
= ∂

∂xi

[
(ρνt + µ) ∂k

sgs

∂xi
+ ρνtR̃

Prt

∂T̃

∂xi

]
−

1

+ αpdM
sgs2

t

(
ρε̃ksgs

Dksgs

)2
(τ sgsij

∂ũj
∂xi

+ ρcε
(ksgs)3/2

∆

)

where by the Kolmogorov cascade energy concept, the kinetic energy of dissipation
correlates with the turbulent characteristic velocity scale and the characteristic length of
the scale (local mesh size) given by GÉN (2009):

Dksgs = ρcε(ksgs)3/2

∆
(247)

By analyzing the energy of the flow in the spectrum of the frequency, we have that
the distribution of the spectrum of energy is given by:

E∗(κ) = αε
2
3κ−

5
3 exp−3

2α(κη)
4
3 (248)

being κ the Fourier modes, see POPE (1988), η the Kolmogorov lenght scales and (α ≈ 1.5)
the Kolmogorov constant, where the minimum Fourier mode for these conditions is found
by the cutoff wavenumber, defined by

κc ≡ π/∆ (249)

Based on the Fourier space, an approximation to ksgs is given by

ksgs =
∫ ∞
κc

αε
2
3κ−

5
3dκ =

(3α
2

)3/2 ε2/3

κ2/3 (250)

where the total dissipation rate is obtained by:

ε =
(3α

2

)3/2
(ksgs)3/2κc = 0.931 (ksgs)3/2

∆
. (251)

Applying the subgrid model,

εsgs = ε exp

−3
2α(κcη)

4
3

 (252)

and considering that the term in the exponential is much less than 1, one can approximate
the subgrid dissipation for

εsgs ≈ ε = 0.931 (ksgs)3/2

∆ (253)

The coefficients cν in Eq. 228 is defined as:

cν = −
MijL′ij

2MijMij

(254)
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where
L′ij = Lij −

1
3Lkkδij (255)

and Leonard’s tensor, Lij, is calculated as:

Lij = ρ̃

ρ ˜̃uiũj
ρ̃

− ρ̃ũi
ρ̃

ρ̃ũj
ρ̃

 (256)

the notation �̃ indicates that a explicit filter was applied.
The operatorMij is defined as:

Mij = ktest∆̃
(
ρ̃S̃ij −

1
3 ρ̃S̃kkδij

)
(257)

where

ktest = 1
2
Lkk
ρ̃

= 1
2

ρ ˜̃uiũj
ρ̃

− ρ̃ũi
ρ̃

ρ̃ũj
ρ̃

 (258)

The dissipation coefficient cε is given by

cε = ∆̃

ρ(ktest)
3
2

µeff
ρ̃

ρ̃∑̃
ij

∂̃ũj
∂xi

−
˜̃∑
ij

ρ
∂̃ũj
∂xi

 − 2
3

ρ ˜
ksgs

∂ũk
∂xk

− ρk̃sgs
∂ ˜̃uk
∂xk

 (259)

where the effective viscosity, µeff , is:

µeff = µ + µt

The turbulent Prandtl number is obtained from
1
Prt

= − dini
didi

(260)

where ni is the correlation between velocity and temperature,

ni = ρ̃ũiT̃

ρ̃
− ρ̃ũi

ρ̃

ρ̃T̃

ρ̃
(261)

and

di = cν
√
ktest∆̃
ρ̃

˜
ρ
∂T̃

∂xi
(262)

Finally, the closing coefficient αpd is defined by:

αpd =

˜
p
∂ũi
∂xi

− p̃

ρ̃

˜
ρ
∂ũi
∂xi

M test2
t

(
ρ̃Sktest

Dktest

)2

(pktest − Dktest)
(263)
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Assuming that ktest has the same formulation as ksgs, we have:

Dktest = ρ̃cε(ktest)
3
2

∆̃
(264)

Therefore, the LES equations become closed by determining the six closing coeffi-
cients (cν , cε, σk, P rt, Sct, αpd).
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E – REACTIVE FLOWS - COMBUSTION

For reactive flows of the combustion type, the governing equations are presented.
Before, some concepts on premixed combustion are described.

Premixed Combustion

Combustion of premixed air-fuel is becoming more common in practical energy
conversion devices because of the greater emphasis on reducing unwanted emissions. A high
degree of premix provides effective control of flame stoichiometry. This provides significant
benefits by ensuring that the combustion reaction occurs under conditions favorable to the
ideal thermochemical process. As an example, it is possible to use the premix to specify
poor fuel-air mixtures that avoid the emission of significant amounts of unburned fuel, CO
or particles by virtue of chemistry, and which minimize the formation of NOx by thermal
effect, when limiting the temperature after burning. The use of pre-mixed combustion
chambers also helps to reduce emissions of CO2, contributing to greater energy efficiency
BILGER, 1976.

The premixed combustion has been used in automotive internal combustion engines
of spark ignition type, for many years. Often the amount of the air-fuel mixture is controlled
by the injection system to ensure that combustion occurs under stoichiometric conditions,
resulting in minimal post-combustion waste generation.

The technological issues still pending in the premixed combustion reside in the
guarantee of flame stability. The premixed burners must be carefully designed to avoid
phenomena such as blow-off and flashback, while premixed flames are notoriously prone to
instabilities and acoustically convection coupled BILGER, 1976. Small variations of the
air-fuel mixture result in significant effects on the flame dynamics and the distribution of
heat, resulting in acoustic phenomena such as instabilities and resonances. In practice, it
is seldom possible to ensure that the complete mixing between the fuel and the air before
combustion occurs, resulting in partially premixed flames. In some circumstances, these are
considered more stable than a flame under ideal premix conditions (under stoichiometric
conditions).

Turbulent Premixed Combustion

In both RANS or LES methodologies, it is necessary to close the governing equations,
either by applying calculations or filters. After the adoption of a closure model for the
momentum equation, only the closure of the thermochemical transport equations remains.
In premixed turbulent combustion, it is common practice to define a reaction progress
variable ζ which varies from zero in the case of fresh reagents to the unit in the fully
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burned products. In simple case, ζ is treated as a staggered mass fraction of one or more
product species YP OPPENHEIM, 2008:

ζ = YP
YP∞

(265)

where YP∞ is the value of YP in complete or equilibrium combustion of the products. The
staggered mass fraction of the products can also be rewritten in two other ways, in terms
of the mass fraction of fuel, YF , or temperature:

ζ = YF − YF0

YF∞ − YF0
(266a)

ζ = T − T0

T∞ − T0
(266b)

where YF0 is the remaining fraction of fuel mass and YF∞ is the value of YF when total
combustion of fuels occurs. With respect to temperature, T0 and T∞ are the limiting
temperatures of the reactants and products, respectively.

Thus, the equation of transport to chemical species in terms of the reaction progress
variable is given by:

∂(ρζ)
∂t

+ ∂

∂xk
(ρukζ) = ∂

∂xk

(
ρDζ

∂ζ

∂xk

)
+ (ρΛi) (267)

Applying the RANS methodology, the transport equation of chemical species is
expressed using the progress variable and applying the Favré average:

∂

∂t
(ρ̄ζ̄) + ∂

∂xk
(ρ̄ūkζ̄) = ρΛi + ∂

∂xk

( ¯
ρDζ

∂ζ

∂xk

)
− ∂

∂xk
(ρ̄u”kζ”) (268)

For the LES methodology, the transport equation of the equation for ζ is given by:

∂

∂t
(ρ̄ζ̄) + ∂

∂xk
(ρ̄ūkζ̄) = ρΛi + ∂

∂xk

(
ρDζ

∂ζ

∂xk

)
− ∂

∂xk
(ρukζ − ρũkζ̃) (269)

The molecular transport term is usually retained in LES, since the Reynolds number
on the mesh scale is not large enough to neglect it in relation to the turbulent transport
term. The simplest closure model for this term is based on the assumption that the mass
diffusivity ρDζ is not correlated with the reaction progress variable:

ρDζ
∂ζ

∂xk
= ρ̄D̄ζ

∂ζ̃

∂xk
(270)
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Flamelets Flame Model - G-Equation

The flamelets hypothesis describes a premixed combustion regime which is often
found in practical combustion devices. Within this hypothesis, there is a flame thickness (Si)
which is small when compared to the smaller dynamic scale of turbulence η, Kolmogorov
scale RODI and FUEYO, 2002, as well as the characteristic burning time is small compared
to the characteristic flow time. As a result, the structure of the flame remains unchanged
and the flame may be considered a thin front which propagates at a speed dictated by the
properties of the blend which are wrinkled and convected by the flow. A model equation
describing the propagation of a thin flame by means of convective transport and normal
burning (self-propagation by the Huygens principle) was introduced, called the equation
of the field G KERSTEIN, ASHURST, and WILLIAMS, 1998.

The point of analysis is the function of describing the behavior of the flame front
(level-set), G, described by

G(~x, t) = G0 (271)

where G0 represents the exact location of the flame front. In this way, the characteristic
behavior of a turbulent flame front is illustrated in Figure 35.

Figure 35 – Two-dimensional scheme of the function description G as a function of position.

Source – WARNATZ, MAAS, and DIBBLE, 2006

Thus, the function, already employing the Favré filter (represented by the �̃), that
describes the model is presented as:

∂G̃
∂t

+ (~̃u · ∇)G̃ = ST
∣∣∣∇G̃∣∣∣ (272)
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where G is the variable that defines the location of the flame and ST is the turbulent
velocity of flame. The value of G is in the interval [0,1] and in the context of the flame
front model, G displays a step function, separating the burned region (G < G0) of the
unburned region (G > G0) The progress variable shows unit value in the unburned region
and zero in the burned region of flame propagation that is identified for a fixed value of
0 < G0 < 1.

The closure of the term ST is based on the subgrid turbulent velocity scale, ũ′, and
the subgrid lamellar scale SL given by:

ST
SL

= 1 + α

(
ũ′

ST

)n
(273)

The constants, α and n, can be specified dynamically a priori as shown in IM,
LUND, and FERZIGER (1997).

The subgrid velocity scale, ũ′, can be estimated as:

ũ′ = ∆
∣∣∣˜̇ε∣∣∣ = ∆

√
2˜̇εij ˜̇εij (274)

The G-equation model is based on the flame-forward tracking technique, where
the forward displacement of the flame is evaluated in terms of the displacement velocities
ST . As the flame velocity is explicitly included, this leads to an estimate of the volume of
flared gases produced along with the release of heat. However, the flame velocity does not
present satisfactory results.

Flame Surface Density Model

As another alternative to the turbulence/chemical interaction modeling, the flamelet
hypothesis can be used to relate turbulent burning rate to the flame area or surface
density. Studies have led to an exact transport equation for the FSD1 developed by
DAVIDSON (2004), considering the application of the LES methodology, which is based
on considerations to a propagation surface. The complete study of the application of the
FSD model for premixed combustion was developed by HAWKES (2000).

The model of the progress variable and the transport equations applying the FSD
method is given by

∂

∂t
(ρ̄ζ̃) + ∂

∂xi
(ρ̄ũiζ̃) = ∂

∂xi

(
ρ̄νt
Sct

∂ζ̃

∂xi

)
+ ρrSLρ̄

∑̃
(275)

and

∂

∂t
(ρ̄
∑̃

) + ∂

∂xi

(
ρ̄
∑̃
ũi

)
= − ∂

∂xi
ρ̄
∑̃ [ ¯(ui)s − ũi

]
+ S∑̃+ Pres + Cres + Csfs (276)

1 Flame Surface Density
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where
S∑̃ = (Sres + Shr + Ssfs)ρ̄

∑̃
(277)

The various modeled terms of the transport equation for ∑̃ are defined as:

• Turbulent surface flotation speed

¯(ui)s − ũi = −(ζ∗ − ζ̃)τSLNi −
1

(ρ∑̃)
νt
Sct

∂(ρ̄∑̃)
∂xi

(278)

• Deformation source term solved

Sres = (δij − nij)
∂ũi
∂xj

(279)

• Source term of deformation due to heat release

Shr = −(ζ∗ − ζ̃)τSL
∂Ni

∂xi
(280)

• Subgrid source term of deformation

Ssfs = Γk
k̃

∆ (281)

• Resolved Term of Propagation

Pres = ∂

∂xi

[
SL(1 + τζ∗)Niρ̄

∑̃]
(282)

• Termination of curvature solved

Cres = SL(1 + τζ∗)∂Ni

∂xi
ρ̄
∑̃

(283)

• Subgrid curl term

Csfs = −αβSL

(
ρ̄
∑̃)2

1 − ζ∗
(284)

where β ≥ 1 to satisfy the model show in HAWKES and CANT (2000).
Therefore, the final model of the transport equation by the FSD method is given

by

(285)

∂

∂t

(
ρ̄
∑̃)

+ ∂

∂xi

(
ρ̄
∑̃
ũi

)
= ∂

∂xi

(
ρ̄νt
Sct

∂
∑̃
∂xi

)
+ (δij − nij)

∂ũi
∂xj

ρ̄
∑̃

− SL(1 + τ ζ̃)Ni
∂

∂xi

(
ρ̄
∑̃)

− sLτNiρ̄
∑̃ ∂c̃

∂xi

+ Γk

√
k̃

∆ ρ̄
∑̃
− αβSL

(
ρ̄
∑̃)2

1 − ζ̃
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Flamelet/Progress-Variable Method

The philosophy underlying chemical models is that the most effective description of
turbulent combustion will be able to map details of reaction processes with multicomponent
diffusion aiming at a minimal set of tracking scalars. Based on the fact that some models
aim at incomplete mixing fractions because the fraction of the mixture contains no intrinsic
information on chemical reactions and can not explain chemical variations in directions
orthogonal to its gradient. At least one additional scalar is required, and since the mixing
fraction is responsible for the transport of conserved scalars, additional scaling scans should
not be maintained to be independent of the mixing fraction. A non-conserved tracking
scalar is best characterized as a progress variable of the reaction PIERCE, 2001.

In premixed turbulent flames, thickening and blistering of the flame front due
to interaction with the subgrid turbulence (subgrid), the effect of creating fluctuations
that must be taken into account in the closure models of subgrid. For this it is necessary
to obtain a pre-unidimensional laminar flame database, a presumed probability density
function that is used to explain the effect of the SGS fluctuations on the chemistry and to
construct the database to verify the behavior of the remainder of the spiral. To take into
account the fine reaction zones that interact with the turbulence within the subgrade grid,
the presumed PDF (Probability Density Function) shape must depend on the local flame
surface (FSD) density, which measures the area available per unit volume. In premixed
combustion, the flame surface density of any surface iso − ζ∗ is commonly estimated
through the conditional filtered gradient of the progress variable. Finally, this FSD-PDF
depends on the filtered progress variable, ζ, its variation, ζv, and the size of the local filter.
A form for closure of the FSD-PDF method is presented by DOMINGO et al. (2005), where
it is used an FPI profile of a laminar premixed flame to solve the turbulent field . Within
the suggested chemical model, PDF taking into account the fluctuations of subgrids of
the enthalpy must also be considered. Thus, since the laminar flame database is computed
and coupled to the turbulent field by means of the probability density function. Thus the
progress variable is obtained by CECERE et al., 2011,

G̃i(~x, t) =
∫ 1

0

∫ 1

0
G̃FPI
i (ζ∗, h)P̃ (ζ∗; ~x, t)P̃ (h; ~x, t)dζ∗dh (286)

Since G̃ is the characterization function of the filtered progress variable. Neglecting
the enthalpy fluctuations, the PDF’s enthalpy is estimated as:

P̃ = δ(h − h̃) (287)

Thereby,

G̃i(~x, t) =
∫ 1

0

∫ 1

0
G̃FPI
i (ζ∗, h)P̃ (ζ∗; ~x, t)δ(h − h̃)dζ∗dh (288)

Due to the application of the non-normalized progress variable it is necessary to
add two more equations to the governing equations to solve the transport equation. The
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progress variable is used to characterize the amount of fuel that is consumed, or the degree
of reaction progress, or even to evaluate any amount relevant to the analysis CECERE
et al., 2011.

The two equations for the non-normalized progress variable are:

∂(ρ̄G̃ζ)
∂t

+ ∂

∂xj

(
ρ̄ũjG̃ζ

)
= ∂

∂xk

(
ρ̄αGζ

∂G̃ζ

∂xk

)
+ ρ̄ω̃Gζ + ∂fζk

∂xk
(289)

and

∂(ρ̄G̃2
ζ)

∂t
+ ∂

∂xj

(
ρ̄ũjG̃2

ζ

)
= ∂

∂xk

(
ρ̄αGζG̃2

ζ

)
+

∂fζ2
k

∂xk
− 2ρ̄X̃Gζ + 2ρ̄ω̃GζGζ (290)

In this way, the behavior of the effects of flame fluctuations can be obtained. αYζ is
the diffusive progress variable,fζk = −ρ̄ũkGζ + ρ̄ũkG̃ζ in terms of the subgrid, with the
source terms of the chemical model being filtered and presented in the variables ωGζ and
ω̃GζGζ and the dissipation rate scaling of the progress variable ρ̄X̃Gζ is modeled as:

fζk = ρ̄αtGζ
∂G̃ζ

∂xk
(291)

where αtGζ is turbulent diffusivity:

αtGζ = CGζ∆
2|ε̇|ε̇ (292)

The constant CGζ is dinamically calculed for channel flow. It is to be obtained
using a caracteristic dimension (considered the width). (GERMANO et al., 1991) suggest
the following approach for obtaining this constant:

εsgs = mij ε̇ (293)

where mij is the anisotropic parts of the subgrid stress tensor τ sgsij ,

mij = −2CGζ∆
2|ε̇|ε̇. (294)

In this work, the obtaintion of this constant is no longer dynamically calculated as suggested
by GERMANO et al. (1991) and a isotropic flow model for the subgrids is proposed in the
present work

Combinig the equations 253 and 293

CGζ(x, t) = −0.4655 ksgs
3
2

∆̄3|ε̇|ε̇2
(295)

the term fζ2k is:

fζ2k = ρ̄αtG2
ζ

∂G̃2
ζ

∂xk
(296)
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the scalar dissipation rate of the progress variable,ρ̄X̃Gζ , is modelled as:

ρ̄X̃Gζ = ρ̄D|∇G̃ζ |2 + s̄XGζ (297)

By VEYNANTE and VERVISCH (2002) if a linear relaxationof the fluctuations
generated by micromixing is postulated, then, it results:

s̄XGζ = ρ̄G̃ζv

τt
(298)

where τt ≈ ∆2
Sct/νt is the turbulent time scale and according to DOMINGO et al. (2005),

the turbulent Schmitd number assumed to be 0.7.
A more detailed closure of the chemical model and the estimation of transport

properties is presented in CECERE et al. (2011), VERVISCH et al. (1995) and POPE
(1988).
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F – MATHEMATICAL DETAILING

The system of instantaneous transport equations is that one in Equations 10 and
rewriten here for convenience. That system of PDE is:

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0

∂(ρui)
∂t

+ ∂

∂xj
[ρuiuj + pδij − τij] − ρgi = 0

∂(ρYk)
∂t

+ ∂

∂xi
[(ρui + ρV c

i )Yk + ρVk,iYk] = ω̇k

∂ (ρE)
∂t

+ ∂

∂xj
[ρujE + ujpδij − uiτij + qj] = ω̇T

Applying some average in Equation 10a:

∂ρ

∂t
+ ∂ (ρui)

∂xi
= 0

applying Favre filter:
∂ρ̄

∂t
+ ∂

∂xi

[
ρ (ũi + u′i)

]
= 0

∂ρ̄

∂t
+ ∂

∂xi

[
ρũi + ρu′i

]
= 0

∂ρ̄

∂t
+ ∂

∂xj
(ρ̄ũi) = 0 (299)

Applying some average in Equation 10b:

∂ (ρui)
∂t

+ ∂

∂xj

[
ρuiuj + pδij − τij

]
− ρgi = 0

∂ (ρui)
∂t

+ ∂

∂xj
[ρuiuj + p̄δij − τ ij] − ρgi = 0

From Favre filter definition:
∂

∂t

[
ρ (ũi + u′i)

]
+ ∂

∂xj

[
ρ (ũi + u′i)

(
ũj + u′j

)
+ p̄δij − τ ij

]
− ρ̄g̃i = 0

∂

∂t

ρũi + �
��

0
ρu′i

 = ∂

∂xj

[
ρũiũj + ρũiu′j + ρu′iũj + ρu′iu

′
j + p̄δij − τ ij

]
− ρ̄g̃i = 0

∂

∂t
(ρ̄ũi) + ∂

∂xj

[
ρ
ρui
ρ̄

ρuj
ρ̄

+ ρ
ρui
ρ̄
u′j + ρu′i

ρuj
ρ̄

+ ρu′iu
′
j + p̄δij − τ ij

]
− ρ̄g̃i = 0
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∂

∂t
(ρ̄ũi) + ∂

∂xj

ρ̄ρui
ρ̄

ρuj
ρ̄

+
�
���

0
ρu′j

ρui
ρ̄

+ �
��

0
ρu′i

ρuj
ρ̄

+ ρu′iu
′
j + p̄δij − τ ij

 − ρ̄g̃i = 0

∂

∂t
(ρ̄ũi) + ∂

∂xj

[
ρ̄ũiũj + ρu′iu

′
j + p̄δij − τ ij

]
− ρ̄g̃i = 0

where u′i = (ui − ũi)

∂

∂t
(ρ̄ũi) + ∂

∂xj

[
ρ̄ũiũj + ρ (ui − ũi) (uj − ũi) + p̄δij − τ ij

]
− ρ̄g̃i = 0

∂

∂t
(ρ̄ũi) + ∂

∂xj

[
ρ̄ũiũj + ρuiuj − ρuiũj − ρũiuj + ρũiũj + p̄δij − τ ij

]
− ρ̄g̃i = 0

∂

∂t
(ρ̄ũi) + ∂

∂xj

[
ρ̄ũiũj + ρuiuj − ρuiũj − ρujũi + ρũiũj + p̄δij − τ ij

]
− ρ̄g̃i = 0

where ρui = ρ̄ũi

∂

∂t
(ρ̄ũi) + ∂

∂xj

ρ̄ũiũj + ρuiuj − ρ̄ũiũj︸ ︷︷ ︸
τsgsij

−��
�ρ̄ũiũj + ��

�ρ̄ũiũj + p̄δij − τ ij

 − ρ̄g̃i = 0

Thus,

∂

∂t
(ρ̄ũi) + ∂

∂xj

[
ρ̄ũiũj + τ sgsij + p̄δij − τ ij

]
− ρ̄g̃i = 0 (300)

where,

τij = 2µ(T̃ )
(
S̃ij −

1
3 S̃kkδij

)
From the Boussinesq’s hypothesis for turbulent viscosity, HINZE, 1975, for Newtonian
fluids, the subgrid stress tensor is:

τ sgsij = −2ρνt
(
S̃ij −

1
3 S̃kkδij

)
+ 2

3 ρ̄k
sgsδij

According to Smagorinsky, the turbulent viscosity, νt, is model as SCHIESTEL,
2008

νt = Cν∆
2|S| (301)

Thus, the conditions of high Reynolds number, isotropic flow and considering that
∆/η >> 1, where the cutoff wavenumber - κc - is defined by κc = π/∆ POPE, 2000,
result in κcη << 1. In this way, since the exponential of the spectral distribution of the
flow can be ignored,

E∗(κ) = αε
2
3κ−

5
3 (302)
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The turbulent viscosity can be obtained by applying the closure by spectral theory
of KRAICHNAN (1976) applied to isotropic flows:

νt = 0.441α
3
2

√
E∗(κc)
κc

(303)

where α is Kolmogorov constant (α ≈ 1.5).
The subgrid dissipation rate can be approximated by εsgs ≈ ε = 0.931 (ksgs)3/2

∆
GÉN, 2009. Therefore, from equations 301 and 303, the subgrid kinetic energy becomes

κsgs = 22.5523|S|2C2
ν∆2 (304)

For pressure term,
p̄ = ρRT

p̄ = ρ̄
(
R̃ + R′

) (
T̃ + T ′

)
p̄ = ρ̄R̃T̃ + ρ̄R̃T ′ + ρ̄R′T̃ + ρ̄R′T ′

p̄ = ρ̄R̃T̃ + ρ̄R̃
(
T − T̃

)
+ ρ̄

(
R− R̃

)
T̃ + ρ̄R′T ′

p̄ = ρ̄R̃T̃ + ��
�ρTR̃ − ���ρ̄R̃T̃ + ��

�ρRT̃ − ���ρ̄R̃T̃ + ρ̄R′T ′

p̄ = ρ̄R̃T̃ + ρ̄R′T ′ = ρ̄R̃T̃ + ρ̄
(
R − R̃

) (
T − T̃

)
p̄ = ρ̄R̃T̃ + ρRT − ρRT̃ − ρTR̃ + ρR̃T̃

p̄ = ρ̄R̃T̃ + ρRT − ρ̄R̃T̃︸ ︷︷ ︸
ρ̄RuT sgs

−���ρ̄R̃T̃ + ��
�ρ̄R̃T̃

Thus, the mean pressure term is obtained by:

p̄ = ρ̄R̃T̃ + ρ̄RuT
sgs (305)

where

T sgs =
Ns∑
k=1

(
ỸkT − ỸkT̃

)
Wk

Applying some average in Equation 10c:

∂
(
ρYk

)
∂t

+ ∂

∂xi

[
ρ (ui + V c

i )Yk + ρVk,iYk
]

= ω̇k

From the Favre filter definition
∂

∂t

[
ρ
(
Ỹk + Y ′k

)]
+ ∂

∂xi

{
ρ
[
(ũi + u′i) +

(
Ṽ c
i + V c′

i

)] (
Ỹk + Y ′k

)
+

+ ρ
(
Ṽk,iYk + Vk,iY ′k

)}
= ω̇k
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∂

∂t

[
ρỸk + �

��>
0

ρY ′k

]
+ ∂

∂xi

{
ρũiỸk + ρũiY ′k + ρu′iỸk + ρu′iY

′
k + ρṼ c

i Ỹk +

+ ρṼ c
i Y
′
k + ρV c

i Ỹk + ρV c′
i Y

′
k + ρṼk,iYk + ���

��:0
ρVk,iY ′k

}
= ω̇k

∂
(
ρ̄Ỹk

)
∂t

+ ∂

∂xi

ρ̄ũiỸk + ��
��*

0
ρY ′kũi + ��

��*
0

ρu′iỸk + ρui′Y ′k + ρ̄Ṽ c
i Ỹk +

+��
��*

0
ρY ′kṼ

c
i + ��

��*
0

ρV c′
i Ỹk + ρV c′

i Y
′
k + ρ̄Ṽk,iYk

 = ω̇k

∂
(
ρ̄Ỹk

)
∂t

+ ∂

∂xi

{
ρ̄ũiỸk + ρ̄Ṽ c

i Ỹk + ρ̄Ṽk,iYk + ρu′iY
′
k + ρV c′

i Y
′
k

}
= ω̇k

where f ′ = f − f̃

∂
(
ρ̄Ỹk

)
∂t

+ ∂

∂xi

{
ρ̄ũiỸk + ρ̄Ṽ c

i Ỹk + ρ̄Ṽk,iYk + ρ (ui − ũi)
(
Yk − Ỹk

)
+

+ ρ
(
V c
i − Ṽ c

i

) (
Yk − Ỹk

)}
= ω̇k

∂
(
ρ̄Ỹk

)
∂t

+ ∂

∂xi

{
ρ̄
(
ũi + Ṽ c

i

)
Ỹk + ρ̄Ṽk,iYk + ρuiYk − ρuiỸk − ρũiYk +

+ ρũiỸk + ρV c
i Yk − ρV c

i Ỹk − ρṼ c
i Yk + ρṼ c

i Ỹk

}
= ω̇k

∂
(
ρ̄Ỹk

)
∂t

+ ∂

∂xi

{
ρ̄
(
ũi + Ṽ c

i

)
Ỹk + ρ̄Ṽk,iYk + ρuiYk − ρ̄ũiỸk − ��

��
ρ̄ũiỸk +

+��
��

ρ̄ũiỸk + ρV c
i Yk − ρ̄Ṽ c

i Ỹk − ��
��ρ̄Ṽ c

i Ỹk + ��
��ρ̄Ṽ c

i Ỹk
}

= ω̇k

∂
(
ρ̄Ỹk

)
∂t

+ ∂

∂xi

ρ̄
(
ũi + Ṽ c

i

)
Ỹk + ρ̄Ṽk,iYk + ρ̄

[(
uiYk − ũiỸk

)
+
(
V c
i Yk − Ṽ c

i Ỹk
)]

︸ ︷︷ ︸
Y sgs
k,i

 = ω̇k

Thus,

∂
(
ρ̄Ỹk

)
∂t

+ ∂

∂xi

[
ρ̄
(
ũi + Ṽ c

i

)
Ỹk + ρ̄Ṽk,iYk + Y sgs

k,i

]
= ω̇k (306)

where the terms that need modeling are:

Y sgs
k,i = − ρ̄νt

Sckt

∂Ỹk
∂xi

−
N∑
k=1

ρ̄νt
Sckt

∂Ỹk
∂xi

Ṽk,iYk = −
˜
ρDk

∂Yk
∂xi

≈ −ρ̄Dk
∂Ỹk
∂xi
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Finally, by applying some average in the Equation 10d:

∂
(
ρE
)

∂t
+ ∂

∂xj

[
ρujE + ujpδij − uiτij + q̄j

]
= ω̇T

The Favre decomposition yields:

∂

∂t

[
ρ
(
Ẽ + E ′

)]
+ ∂

∂xj

[
ρ
(
ũj + u′j

) (
Ẽ + E ′

)
+
(
ũj + u′j

)
pδij −

−
(
ũj + u′j

)
τij + q̄j

]
= ω̇T

∂

∂t

ρẼ + �
��>

0
ρE ′

 + ∂

∂xj

[
ρũjẼ + ��

��*
0

ρũjE ′ + ��
��*

0
ρu′jE

′ + ρu′jE
′ + ũjpδij + u′jpδij −

− ũiτij − u′iτij + q̄j
]

= ω̇T

∂
(
ρ̄Ẽ
)

∂t
+ ∂

∂xj

[
ρ̄ũjẼ + ρu′jE

′ + ũj p̄δij + u′j p̄δij − ũiτij − u′iτij + q̄j
]

= ω̇T

∂
(
ρ̄Ẽ
)

∂t
+ ∂

∂xj

[
ρ̄ũjẼ + ũj p̄δij − ũiτij + ρ (uj − ũj)

(
E − Ẽ

)
+ (uj − ũj) pδij −

− (ui − ũi) τij + q̄j
]

= ω̇T

∂
(
ρ̄Ẽ
)

∂t
+ ∂

∂xj

[
ρ̄ũjẼ + ũj p̄δij − ũiτij + ρujE − ρujẼ − ��

�ρũjE +
�
�
�

ρũjẼ +

+ (ujp − ũj p̄) δij − (uiτij − ũiτij) + q̄j] = ω̇T

∂
(
ρ̄Ẽ
)

∂t
+ ∂

∂xj

ρ̄ũjẼ + ũj p̄δij − ũiτij +
(
ρujE − ρ̄ũjẼ

)
+ (ujp − ũj p̄) δij︸ ︷︷ ︸

Hsgs
i

−

− (uiτij − ũiτij)︸ ︷︷ ︸
σsgsi

+ q̄j

 = ω̇T

Thus,

∂
(
ρ̄Ẽ
)

∂t
+ ∂

∂xj

[
ρ̄ũjẼ + ũj p̄δij − ũiτij + Hsgs

i + σsgsi + q̄j
]

= ω̇T (307)

where the several extra terms from the filtering process are:

Ẽ = ẽ + 1
2 ũkuk

= ẽ + 1
2 ũkũk + 1

2(ũkuk − ũkũk)
= ẽ + 1

2 ũkũk + ksgs
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ẽ =
Ns∑
k=1

Ỹk∆h0
f,k +

Ns∑
k=1

Ỹk

∫ T̃

T0
cV,k(T )dT +

Ns∑
k=1

Esgs
k

Hsgs
i + σsgsi = − (ρνt + µ) ∂k

sgs

∂xi
− ρνtcp

Prt

∂T̃

∂xi
+ ũjτ

sgs
ij

q̄j = −k ∂T
∂xi

+
∑
k

ρhkVk,iYk + RT
∑
k

DT,k

T

∂T

∂xi
+ qRj

q̄j = −k̄ ∂T̃
∂xi

+ ρ̄
∑
k

hkVk,iYk + R̄
∂T̃

∂xi

∑
k

DT,k + qRj

Decomposing the terms in the heat flux:

q̄j = −k̄ ∂T̃
∂xi

+ ρ̄
∑
k

(
h̃k + h′k

)(
Ṽk,iYk + Vk,iY ′k

)
+ R̄

∂T̃

∂xi

∑
k

DT,k + qRj

q̄j = −k̄ ∂T̃
∂xi

+ ρ̄
∑
k

[
h̃kṼk,iYk + ��

���h̃kVk,iY ′k +
��

�
��

h′kṼk,iYk + h′kVk,iY
′
k

]
+ R̄

∂T̃

∂xi

∑
k

DT,k + qRj

q̄j = −k̄ ∂T̃
∂xi

+ ρ̄
∑
k

h̃kṼk,iYk + R̄
∂T̃

∂xi

∑
k

DT,k + qRj + ρ̄
∑
k

(
hkVk,iYk − h̃kṼk,iYk

)
︸ ︷︷ ︸

qsgs

Therefore, the total turbulent heat flux is

q̄j = −k̄ ∂T̃
∂xi

+ ρ̄
∑
k

h̃kṼk,iYk + R̄
∂T̃

∂xi

∑
k

DT,k + qRj + qsgs

where
qsgs = −

∑
k

hk
ρ̄Dk

Sct

∂2Ỹk
∂x2

i

CBS Applied to Momentum

Considering that the problem presented takes into account the effects of shock
waves that occurred during the processes, in this section, modeling of these effects and
obtaining of transport equations applying the CBS scheme ZIENKIEWICZ, TAYLOR,
and NITHIARASU, 2014. So, from Equation 300

∂

∂t
(ρ̄ũi) + ∂

∂xj

[
ρ̄ũiũj + τ sgsij + p̄δij − τ ij

]
− ρ̄g̃i = 0

being Ũ = ρ̄ũi, the temporal decomposition is defined by

Ũi
n+1 = Ũi

n + ∆Ũi
∗ + ∆Ũi

∗∗ (308)
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For pure diffusion problems, whose equations are of the self-adjunct type, the
approximation of Galerkin is considered to be the best solution method. In the case of
the transport equations of the present work, the advection terms remove the self-adjunct
character of the differential equations. The advective terms can be initially eliminated
from the equations, by rewriting them along the characteristic. However, this introduces a
complication by having to work with a mobile coordinate system. In the case of the equation
of motion, the operator split is proposed in the form for Equation 300 ZIENKIEWICZ,
TAYLOR, and NITHIARASU, 2014:

∂Ũi
∂t

= Ũi
n+1
− Ũi

n

∆t = ∆Ũi
∗

∆t + ∆Ũi
∗∗

∆t = (309)

= ψ

{
∂

∂xj

[
−ρ̄ũiũj − τ sgsij − p̄δij + τ ij

]
+ ρ̄g̃i

}n+1

+

(1 − ψ)
{
∂

∂xj

[
−ρ̄ũiũj − τ sgsij − p̄δij + τ ij

]
+ ρ̄g̃i

}n
Considering ψ = 0.5 the Equation 309 can be rewritten as:

∂Ũi
∂t

= Ũi
n+1
− Ũi

n

∆t = ∆Ũi
∗

∆t + ∆Ũi
∗∗

∆t = (310)

=
{
∂

∂xj

[
−ρ̄ũiũj − τ sgsij − p̄δij + τ ij

]
+ ρ̄g̃i

}n+1/2

When the CBS scheme is applied, a variable at position x→ δ and time n can be
related to the variable at position x and time n, by a series expansion of Taylor, in the
form:

φnx−δ ≈ φn − δ
∂φn

∂x
+ δ2

2
∂2φn

∂x2 + O(∆t3)

where δ is the distance traveled by a particle in the i-direction

δ = ∆tui

To capture the shock wave NITHIARASU, ZIENKIEWICZ, et al. (1998) define

∂Φn+1
s

∂t
= φn+1

s − φn+1

∆t = ∂

∂xi

[
µa

(
∂φ

∂xi

)]
. (311)

Note that the effects of the shock are given at n + 1. The artificial diffusion
coefficient, µa, for shock capture can be estimated as:

µa = Ce∆̄3 |u|+ c

pa

∣∣∣∣∣ ∂2p

∂xi∂xi

∣∣∣∣∣
e

(312)

where pa is the average pressure in the element, c is the sound speed and Ce is a dimen-
sionless coeficient.
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Knowing that the term for characterizing the shock is Us,i, we have

Un+1
s,i = Un+1

i + ∆t ∂

∂xi

[
µa

(
∂Ui
∂xi

)]
︸ ︷︷ ︸

A

(313)

applying the product derivative rule in A

∂

∂xj

[
µa

(
∂Ui
∂xj

)]
=

�
�
��7

0
∂µa
∂xj

∂Ui
∂xj︸ ︷︷ ︸

Termo de O>3

+ µa
∂2Ui
∂x2

j

and returning to Equation 313

Un+1
s,i = Un+1

i + ∆tµa
∂2Ui
∂x2

j

(314)

Applying the Favré filter, Equation 11, in Equation 314

Ũn+1
s,i = Ũn+1

i + ∆tµa
∂2Ũi
∂x2

j

(315)

where
µa = Ce∆

3 |u|+ c

pa

∣∣∣∣∣ ∂2p̄

∂xi∂xi

∣∣∣∣∣
e

(316)

Therefore, Equation 300 can be rewritten taking taking into account the effects of
the shock.

∂Ũi
∂t

+ ∂

∂xj

[
ũiŨj + τ sgsij + p̄δij − τ ij

]
− ρ̄g̃i = 0

applying the Equation 310 approach, and knowing that of the Taylor-Galerkin method, we
have that the term of smoothed, ψ, is only applied to the first derivative of Taylor series.
Thereby,

∂Ũi
∂t

= ∆Ũi
∗ + ∆Ũi

∗∗

∆t =
{
∂

∂xj

[
−ũiŨj − τ sgsij − p̄δij + τ ij

]
+ ρ̄g̃i

}
−

− ∆t(1 − ψ)uk
∂

∂xk

{
∂

∂xj

[
−ũiŨj − τ sgsij − p̄δij + τ ij

]
+ ρ̄g̃i

}

of the equations 308 and 315, we obtain that the influence of the shock on the flow and
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modifying the pressure

∆Ũi
∗ + ∆Ũi

∗∗

∆t =
{
∂

∂xj

[
−ũiŨj − τ sgsij + τ ij

]
+ ρ̄g̃i

}n
− ∂p̄(n+θ2)

∂xi
δij −

− ∆t
2 uk

∂

∂xk


∂

∂xj

−ũiŨj − ���>0
τ sgsij + �

�>
0

τ ij︸ ︷︷ ︸
Termos O>3

 + ρ̄g̃i


n

+ (317)

+ ∆t
2 uj

∂2p̄(n+θ2)

∂xj∂xi
δij + µa

∂2Ũn
i

∂x2
j

being
∂p̄n + θ2

∂xi
= ∂p̄n

∂xi
+ θ2

∂∆p̄
∂xi

(318)

where
∆p̄ = p̄n+1 − p̄n

Applying Split B ZIENKIEWICZ, TAYLOR, and NITHIARASU, 2014 on Equa-
tion 317, it is defined that

∆Ũi
∗ = ∆t

[
− ∂

∂xj

(
ũiŨj

)
− ∂p̄

∂xj
δij + ∂τ ij

∂xj
+ ρ̄g̃i −

∂τ sgsij

∂xj

]n
+ (319)

+ ∆t2
2 uk

∂

∂xk

[
∂

∂xj

(
ũiŨj

)
+ ∂p̄

∂xj
− ρ̄g̃i

]n
+ ∆tµa

∂2Ũn
i

∂x2
j

and
∆Ũi

∗∗ = −θ2∆t
(
∂∆p̄
∂xi

− ∆t
2 uj

∂2∆p̄
∂xj∂xi

)
(320)

rearranging the Equation 319

∆Ũi
∗ = ∆t

[
− ∂

∂xj

(
ũiŨj

)
− ∂p̄

∂xj
δij + ∂τ ij

∂xj
+ ρ̄g̃i

]n
+ ∆t2

2 uk
∂

∂xk

[
∂

∂xj

(
ũiŨj

)
+

+ ∂p̄

∂xj
− ρ̄g̃i

]n
− ∆t

(
∂τ sgsij

∂xj

)n
︸ ︷︷ ︸
Turbulence influence

+ ∆tµa
∂2Ũn

i

∂x2
j︸ ︷︷ ︸

shock influence

(321)

Multiplying the equations 321 and 320 for a weight function (Nu) and integrating
into the domain (Ω) results:∫

Ω
Nu∆Ũi

∗
dΩ = ∆t

[
−
∫

Ω
Nu

∂

∂xj

(
ũiŨj

)
dΩ −

∫
Ω
Nu

∂p̄

∂xj
dΩ δij +

+
∫

Ω
Nu

∂τ ij
∂xj︸ ︷︷ ︸
I

dΩ +
∫

Ω
Nu(ρ̄g̃i) dΩ


n

+ ∆t2
2

∫
Ω

(Nuuk)
∂

∂xk

[
∂

∂xj

(
ũiŨj

)
+ ∂p̄

∂xj
− ρ̄g̃i

]n
︸ ︷︷ ︸

II

dΩ −

− ∆t
∫

Ω
Nu

(
∂τ sgsij

∂xj

)n
︸ ︷︷ ︸

III

dΩ + ∆t
∫

Ω
Nu µa

∂2Ũn
i

∂x2
j︸ ︷︷ ︸

IV

dΩ
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and

∫
Ω
Nu∆Ũi

∗∗
dΩ = −θ2∆t


∫

Ω
Nu

∂∆p̄
∂xi

dΩ − ∆t
2

∫
Ω

(Nuuj)
∂2∆p̄
∂xj∂xi︸ ︷︷ ︸
V

dΩ


Applying the product derivative rule, the terms highlighted by I, II, III, IV and V

can be rewritten as
Nu

∂τ ij
∂xl

= ∂

∂xj
(Nuτ ij) −

∂Nu

∂xj
τ ij

(Nuuk)
∂

∂xk

[
∂

∂xj

(
ũiŨj

)
+ ∂p̄

∂xj
− ρ̄g̃i

]
= ∂

∂xk

{
(Nuuk)

[
∂

∂xj

(
ũiŨj

)
+ ∂p̄

∂xj
− ρ̄g̃i

]}
−

− ∂(Nuuk)
∂xk

[
∂

∂xj

(
ũiŨj

)
+ ∂p̄

∂xj
− ρ̄g̃i

]

Nu

∂τ sgsij

∂xl
= ∂

∂xj

(
Nuτ

sgs
ij

)
− ∂Nu

∂xj
τ sgsij

Nu µa
∂2Ũn

i

∂x2
j

= µa
∂

∂xj

[
Nu

∂Ui
∂xj

]
− µa

∂Nu

∂xj

∂Ui
∂xj

(Nuuj)
∂2∆p̄
∂xj∂xi

= ∂

∂xj

[
(Nuuj)

∂∆p̄
∂xi

]
− ∂(Nuuj)

∂xj

∂∆p̄
∂xi

Applying the Gauss Divergence theorem, we have

∆t
[
−
∫

Ω
Nu

∂

∂xj

(
ũiŨj

)
dΩ −

∫
Ω
Nu

∂p̄

∂xj
dΩ δij −

−
∫

Ω

∂Nu

∂xj
τ ij dΩ +

∫
Ω
Nu(ρ̄g̃i) dΩ

]n
− ∆t2

2

∫
Ω

∂(Nuuk)
∂xk

[
∂

∂xj

(
ũiŨj

)
+ ∂p̄

∂xj
− ρ̄g̃i

]n
+

+ ∆t
∫

Ω

∂Nu

∂xj

[
τ sgsij

]n
dΩ − ∆t

∫
Ω

∂Nu

∂xj
µa
∂Ũn

i

∂xj
dΩ + ∆t

∫
Γ
Nunjτ ijdΓ

and ∫
Ω
Nu∆Ũi

∗∗
dΩ = −θ2∆t

[∫
Ω
Nu

∂∆p̄
∂xi

dΩ + ∆t
2

∫
Ω

∂(Nuuj)
∂xj

∂∆p̄
∂xi

dΩ
]

Applying Galerkin’s spatial approach and taking into account account the same
nomenclatures presented by ZIENKIEWICZ, TAYLOR, and NITHIARASU (2014), we
have

Mu ∆ ˜̂
U∗i = −∆t

[
Cu

˜̂
Ui + Kτ

˜̂ui + GT ˜̂p − f − ∆t
2

(
Ku

˜̂
Ui + P˜̂p + fs

)]n
+

+ ∆t
(
Kτsgs

˜̂ui + Vk

)
− ∆tCe∆

3 |û| + ĉ

p̂a
|∇2p|eKs

˜̂
Ui (322)
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νt = Cν∆
2|S|; where the modulus of the strain rate is calculated by

|S| = [2SijSij]1 /2 =
[
2
(
B˜̂ui)T (B˜̂ui)]1/2

(323)

Arrays in Equation 322 are defined as

Mu =
∫

Ω
NT
u Nu dΩ (324a)

Cu =
∫

Ω
NT
u∇ (uNu) dΩ (324b)

Kτ =
∫

Ω
Bµ

(
I0 −

2
3mmT

)
B dΩ (324c)

G =
∫

Ω
(∇Np)TNudΩ (324d)

f =
∫

Ω
NT
u ρgdΩ +

∫
Γ
Nut̄dΓ (324e)

t̄ = (τ ij − p̄δij)nj (324f)

Ku = −
∫

Ω

[
∇T (uNu)

]T [
∇T (uNu)

]
dΩ (324g)

P = −
∫

Ω
[∇ (uNu)]T ∇NpdΩ (324h)

fs =
∫

Ω

[
∇T (uNu)

]T
ρgdΩ (324i)

Kτsgs = −2ρ̄Cν∆
2|S|

∫
Ω

BT
[
I0 −

2
3mmT

]
B dΩ (324j)

Vk = 15.03487C2
ν∆2

∫
Ω
NT
u |S|2 dΩ (324k)

Ks =
∫

Ω
[∇Nu]T∇Nu dΩ (324l)

Thus,

Mu∆
˜̂
U∗∗i = −∆tθ2

[
GT∆˜̂p − ∆t

2 P∆˜̂p] (325)
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CBS Continuity

From the Equation 299

∂ρ̄

∂t
+ ∂Ũi

∂xj
= 0

Applying the temporal split and ignoring the terms above order 3

∆ρ̄ = −∆t
∂Ũi
∂xi

+ θ1
∂∆Ũi

∗

∂xi
− θ1θ2

∂2∆p̃
∂x2

i


Multiplying by the weight function and integrating into the domain

∫
Ω
Nρ∆ρ̄ dΩ = −∆t


∫

Ω
Nρ

∂Ũi
∂xi︸ ︷︷ ︸
I

dΩ + θ1

∫
Ω
Nρ

∂∆Ũi
∗

∂xi︸ ︷︷ ︸
II

dΩ− θ1θ2

∫
Ω
Nρ

∂2∆p̃
∂x2

i︸ ︷︷ ︸
III

dΩ


applying the product derivative rule and knowing that I is similar to II,

Nρ
∂Ũi
∂xi

= ∂

∂xi

(
NρŨi

)
− ∂Nρ

∂xi
Ũi

and
Nρ

∂2∆p̄
∂x2

i

= ∂

∂xi

(
Nρ

∂∆p̄
∂xi

)
− ∂Nρ

∂xi

∂∆p̄
∂xi

Applying Gauss’s Divergence Theorem
∫

Ω
Nρ∆ρ̄ dΩ = ∆t

[∫
Ω

∂Nρ

∂xi
Ũi dΩ + θ1

∫
Ω

∂Nρ

∂xi
∆Ũi

∗
dΩ− θ1θ2

∫
Ω

∂Nρ

∂xi

∂∆p̃
∂xi

dΩ
]
−

− ∆t
∫

Γ
Nρni

[
Ũi + θ1∆Ũi

∗
− θ1θ2

∂∆p̃
∂xi

]
dΓ

being Nρ = Np and applying the Galerkin approximation the discretized equation is
obtained

Mρ∆ρ̄ = ∆t
[
G˜̂
Ui + θ1G∆ ˜̂

U∗i − θ1θ2H∆˜̂p] − fρ (326)

where the matrices that have not yet been defined are

Mρ =
∫

Ω
NT
ρ Nρ dΩ (327a)

H =
∫

Ω
(∇Nρ)T ∇Nρ dΩ (327b)

fρ = ∆t
∫

Γ
NρnT

[˜̂
Ui + θ1∆ ˜̂

U∗i − θ1θ2∇(∆p̄)
]
dΓ (327c)



F. Mathematical Detailing 149

CBS for Transporting Conservation of Species

From the Equation 306

∂
(
ρ̄Ỹk

)
∂t

+ ∂

∂xi

[
ρ̄
(
ũi + Ṽ c

i

)
Ỹk + ρ̄Ṽk,iYk + Y sgs

k,i

]
= ω̇k

applying the temporal split

∆
(
ρ̄Ỹk

)
∆t = −(1 − ψ)

{
∂

∂xi

[
ρ̄
(
ũi + Ṽ c

i

)
Ỹk + ρ̄Ṽk,iYk + Y sgs

k,i

]
− ω̇k

}n
(328)

expanding on Taylor series and following the feature with the smoothed effects, ψ = 0.5,
applying only to the term of first derivative of the series, we have

∆
(
ρ̄Ỹk

)
∆t = −

{
∂

∂xi

[
ρ̄
(
ũi + Ṽ c

i

)
Ỹk + ρ̄Ṽk,iYk + Y sgs

k,i

]
− ω̇k

}n
+ (329)

+ ∆t
2 uj

∂

∂uj

{
∂

∂xi

[
ρ̄
(
ũi + Ṽ c

i

)
Ỹk + ρ̄Ṽk,iYk + Y sgs

k,i

]
− ω̇k

}n
Multiplying by the weight function and integrating into the domain∫

Ω
NY ∆

(
ρ̄Ỹk

)
dΩ = −∆t

∫
Ω
NY

∂

∂xi

[
ρ̄
(
ũi + Ṽ c

i

)
Ỹk + ρ̄Ṽk,iYk + Y sgs

k,i

]n
dΩ +

+ ∆t
∫

Ω
NY (ω̇k)n dΩ + ∆t2

2

∫
Ω

(NY uj)
∂

∂uj

{
∂

∂xi

[
ρ̄
(
ũi + Ṽ c

i

)
Ỹk +

+ ρ̄Ṽk,iYk + Y sgs
k,i

]
− ω̇k

}n
dΩ

of a product’s derivative rule

NY
∂

∂xi

[
ρ̄Ṽk,iYk + Y sgs

k,i

]
= ∂

∂xi

{
NY

[
ρ̄Ṽk,iYk + Y sgs

k,i

]}
−

− ∂NY

∂xi

[
ρ̄Ṽk,iYk + Y sgs

k,i

]

(NY uj)
∂

∂uj

{
∂

∂xi

[
ρ̄
(
ũi + Ṽ c

i

)
Ỹk + ρ̄Ṽk,iYk + Y sgs

k,i

]
− ω̇k

}
=

∂

∂uj

{
(NY uj)

∂

∂xi

[
ρ̄
(
ũi + Ṽ c

i

)
Ỹk + ρ̄Ṽk,iYk + Y sgs

k,i

]
− ω̇k

}
−

− ∂ (NY uj)
∂uj

{
∂

∂xi

[
ρ̄
(
ũi + Ṽ c

i

)
Ỹk + ρ̄Ṽk,iYk + Y sgs

k,i

]
− ω̇k

}

So, applying Gauss’s divergence theorem∫
Ω
NY ∆

(
ρ̄Ỹk

)
dΩ = −∆t

∫
Ω
NY

∂

∂xi

[(
ũi + Ṽ c

i

)
ρ̄Ỹk

]
dΩ + ∆t

∫
Ω

∂NY

∂xi

[
ρ̄Ṽk,iYk + Y sgs

k,i

]
dΩ +

+ ∆t
∫

Ω
NY (ω̇k) dΩ − ∆t2

2

∫
Ω

∂NY

∂uj

{
∂

∂xi

[
ρ̄
(
ũi + Ṽ c

i

)
Ỹk + ρ̄Ṽk,iYk + Y sgs

k,i

]
− ω̇k

}
−

− ∆t
∫

Γ

{
NY

[
ρ̄Ṽk,iYk + Y sgs

k,i

]
− ∆t

2 (NY uj)
[
∂

∂xi

[
ρ̄
(
ũi + Ṽ c

i

)
Ỹk + ρ̄Ṽk,iYk + Y sgs

k,i

]]}
njdΓ
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of the Galerkin approach

MY

(
ρ̄
˜̂
Y k

)
= ∆t

[
−Cu,y

(
ρ̄
˜̂
Y k

)
+ Kk,i

(
ρ̄
˜̂
Y k

)
+ KYsgs

(
ρ̄
˜̂
Y k

)
+ fω

]
(330)

MY =
∫

Ω
NT
Y NY dΩ (331a)

Cu,y =
∫

Ω
NT
Y∇ ·

[(
ũi + Ṽ c

i

)
NY

]
dΩ (331b)

Kk,i = −
∫

Ω
ρ̄D̄kN

T
Y∇NY dΩ (331c)

KYsgs = −
∫

Ω

νt
Sckt

NT
Y∇NY dΩ −

∫
Ω
NT
Y

N∑
k=1

νt
Sckt
∇NY dΩ (331d)

fω =
∫

Ω
NT
Y ω̇k dΩ −

∫
Γ

{
NY

[
ρ̄Ṽk,iYk + Y sgs

k,i

]
− (331e)

− ∆t
2 (NY uj)

[
∂

∂xi

[
ρ̄
(
ũi + Ṽ c

i

)
Ỹk + ρ̄Ṽk,iYk + Y sgs

k,i

]]}
njdΓ
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G – THERMODYNAMIC STATE EQUATIONS

State equation models are employed for the prediction of the thermodynamic
properties of pure fluids and their mixtures MICHELSEN and MOLLERUP, 2007.

Perfect Gas Model

The behavior of the perfect (or ideal) gases is described by Clapeyron’s Law,
Equation 332. These types of gases are characterized by the low interaction between the
particles, due to the size of the particles becomes less significant compared to the empty
space between them.

p∀ = mRgasT or Pυ = RgasT (332a)

where Rgas is the specific constant of each gas. In the molar form the expression remains.

p∀ = nR̄T or P ῡ = R̄T (332b)

where R̄ is the universal gas constant, its value being 8.31451 kJ/kmol K in SI units.

Van der Waals model

The simplest state cubic equation is van der Waals (Equation 333), which, although
it does not faithfully represent the behavior of real gases, is based on solid theories,
reproduces qualitative physical behaviors and is the point of the other cubic equations.

p = RgasT

v̄ − b
− a

v̄2 or
(
p + a

v̄2

)
(v̄ − b) = RgasT (333)

Taking into account that the isotherm passing at the critical point has an inflection
at that point: (

∂p

∂∀

)
T

= 0 and
(
∂2p

∂∀2

)
T

= 0 (334)

from which the critical constants a and b of Equation 333 are obtained:

a = 3pc
(v̄c)2 = 27(RgasT

c)2

64pc e b = v̄c

3 = RgasT
c

8pc (335)

Rewriting the van der Waals equation for the reduced properties one has

pr = 8Tr
(3vr − 1) −

3
vr

(336)

where vr is the reduced volume obtained by the relation vr = v
vc
, at reduced pressure (pr)

given by pr = p
pc

and Tr is the reduced temperature where Tr = T
Tc
.
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In terms of the compressibility factor (z), Equation 333 becomes

z = v̄

v̄ − b
− a

RgasT v̄
(337)

Generalized Cubic State Equations

Other van der Waals-based state equations have been developed, including Redlich-
Kwong (RK), Redlich-Kwong-Soave (RKS) and Peng-Robinson (PR). In order to improve
the numerical accuracy of the results obtained for the state of the real gases, PR. These
are very important tools in engineering modeling as they have been developed to deal
particularly with the chemical equilibrium of phases of complex multicomponent mixtures
ASSAEL, TRUSLER, and TSOLAKIS, 1998.

In Table 9 it is shown four models of cubic equations.

Table 9 – Cubic equations of state.

van der Waals (vdW), 1873 p = RgasT

v̄ − b
− a

v̄2

Redlich-Kwong (RK), 1949 p = RgasT

v̄ − b
− a

v̄(v̄ + b)
√
T

Soave-Redlich-Kwong (RKS), 1972 p = RgasT

v̄ − b
− aα(T )
v̄(v̄ + b)

Peng-Robinson (PR), 1976 p = RgasT

v̄ − b
− aα(T )
v̄(v̄ + b) + b(v̄ − b)

Source – ASSAEL, TRUSLER, and TSOLAKIS ASSAEL, TRUSLER, and TSOLAKIS, 1998.

Redlich-Kwong equation for mixing

The Redlich-Kwong (RK) state equation in addition to the form presented in the
Table 9 for a single pure substance, can also, as well as van der Waals, be applied to blends,
expressed then in its complete form by the equations 338 and 339 ASSAEL, TRUSLER,
and TSOLAKIS, 1998.

p = RT

v̄ − b
− a

v̄(v̄ + b)
√
T

(338)

or
z3 − z2 +

(
A − B2 − B

)
z − AB = 0 (339a)
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where
A =

n∑
i=1

n∑
j=1

xixj(1 − δij)
√
AiAj (339b)

B =
n∑
i=1

xiBi (339c)

a =
n∑
i=1

n∑
j=1

xixj (1 − δij)
√
aiaj (339d)

b =
n∑
i=1

xibi (339e)

and
Ai = 0.42748 pri

T 2.5
ri

Bi = 0.08664pri
Tri

ai = 0.42748
R2

gas(T ci )2.5

pci
bi = 0.08664RgasT

c
i

pci

Redlich-Kwong-Soave State Equation

The Redlich-Kwong-Soave (RKS) state equation, also known as Soave, is a modifi-
cation of the RK equation, with the introduction of a temperature dependent function,
aα(T ).

Along with the Peng-Robinson equation, both are the most widely used equations
in the world. Due to pressure adjustments and the introduction of the Pitzer ω̆ acentric
factor, these equations can be employed in the analysis of light hydrocarbons and non-polar
molecules. In contrast, they should not be applied in systems with hydrogen bonds or
other forms of molecular association. In general with the complete Lee-Kesler model we
obtain better results than with the RKS and PR equations, but these require only a tenth
of the processing time and this is important for high complexity ASSAEL, TRUSLER,
and TSOLAKIS, 1998.

The acentric factor for a pure substance i was defined by Pitzer in 1955 as

ω̆i = −1− log10(psatri
(Tri = 0, 7)) (340)

The equations 341 and 342 represent the two forms of the Soave equation MICHELSEN
and MOLLERUP, 2007.

p = RgasT

v̄ − b
− aα(T )
v̄(v̄ + b) (341)
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or
z3 − (1 − B)z2 +

(
A − B2 − B

)
z − AB = 0 (342a)

where
A =

n∑
i=1

n∑
j=1

xixj(1 − δij)
√
AiAj (342b)

B =
n∑
i=1

xiBi (342c)

aα =
n∑
i=1

n∑
j=1

xixj(1 − δij)
√

(aiαi)(aj)αj (342d)

b =
n∑
i=1

xibi (342e)

and
Ai = 0.42747αi

pri
T 2.5
ri

Bi = 0.08664pri
Tri

ai = 0.42747
R2

gas(T ci )2

pci
bi = 0.08664RgasT

c
i

pci

αi =
[
1 + ni

(
1 −

√
Tri

)]2
ni = 0.48508 + 1.55171ω̆i − 0.15613ω̆2

i

Peng-Robinson Equation of State

The Peng-Robinson state equation (PR) is structurally similar to RKS, as this
requires only the critical constants and the acentric factors for its application to mixtures.
The equations 343 and 344 present the two forms of the PR equation.

p = RgasT

v̄ − b
− aα(T )
v̄(v̄ + b) + b(v̄ − b) (343)

or

z3 − (1 − B)z2 +
(
A − 3B2 − 2B

)
z −

(
AB − B2 − B3

)
= 0 (344a)

where
A =

n∑
i=1

n∑
j=1

xixj(1 − δij)
√
AiAj (344b)

B =
n∑
i=1

xiBi (344c)



G. Thermodynamic State Equations 155

aα =
n∑
i=1

n∑
j=1

xixj(1 − δij)
√

(aiαi)(aj)αj (344d)

b =
n∑
i=1

xibi (344e)

and
Ai = 0.45724αi

pr,i
T 2.5
r,i

Bi = 0.07780pr,i
Tr,i

ai = 0.45724
R2

gas(T ci )2

pci
bi = 0.07780RgasT

c
i

pci

αi =
[
1 + ni

(
1 −

√
Tri

)]2
ni = 0.37464 + 1.54226ω̆i − 0.26992ω̆2

i

Lee-Kesler’s Equation of State

In terms of the semiempirical non-cubic equations, there are the Benedict-Web-
Rubin (BWR) and the derivated model, Lee-Kesler (LK ), for which details will be discussed.
With twelve empirical constants (Table 10), the LK model is associated to the principle of
the corresponding states in the linear form in ω̆:

z = z(0)(Tr, pr) + ω̆z(1)(Tr, pr) (345)

where z(0)(Tr, pr) is the compressibility factor for the pure substances in which ω̆ = 0, the
simple substances, whereas z(1) is the correction, which depends only on Tr, pr, to obtain
the compressibility factor z for a pure substance whose acentric factor is ω̆.

By knowing experimentally zref(Tr, pr) for the chosen reference substance and
z(0)(Tr, pr) for the simple substances, the constants of Table 10 are determined. Then,
z(Tr, pr) can be obtained as follows:

z = zref + ( ω̆

˘ωref
− 1)(zref − z(0)) (346)

In any case, be z(0) or zref , the compressibility factor, according to LK, will be
given by:

z =
(
prv
′
r

Tr

)
= 1 + B

v′r
+ C

v′2r
+ D

v′5r
+ c4

T 3
r v
′2
r

(
β + γ

v′2r

)
exp

(
− γ

v′2r

)
(347)

where
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v′r = zTr
pr

B = b1 −
b2

Tr
− b3

T 2
r

− b4

T 3
r

C = c1 −
c2

Tr
+ c3

T 3
r

D = d1 + d2

Tr

Table 10 – Constants of the Lee-Kesler model.

Constants Simple Substance
b1 0.118193
b2 0.265728
b3 0.154790
b4 0.030323
c1 0.0236744
c2 0.0186984
c3 0.0
c4 0.042724
d1 x 104 0.155488
d2 x 104 0.623689
β 0.65392
γ 0.060167

Source – ASSAEL, TRUSLER, and TSOLAKIS ASSAEL, TRUSLER, and TSOLAKIS, 1998.

For the mixtures, according to the model LK :

v̄c =
∑
j

∑
k

xjxkv̄cjk (348)

(v̄cTc) =
∑
j

∑
k

xjxkv̄cjkTcjk (349)

v̄cjk = 1
8
(
v̄

1/3
cj + v̄

1/3
ck

)3
Tcjk = (TcjTck)1/2 (350)

ω̆ =
∑
j

xjω̆j (351)

zc = 0.2905 − 0.085ω̆ (352)
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pc = zcR̄
Tc
v̄c

(353)
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