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ABSTRACT

The Unmanned Aerial Vehicles (UAV) have been extensively researched due to their under-

lying characteristics that suit them for different applications such as border surveillance,

object recognition, crop spraying and aerial transportation. Despite the enthusiasm from

the general community, practical tasks are restricted since the specialized equipment that

the UAV have to transport in a mission have limited weight. In this sense, a possible

alternative consists of using multiple UAVs in a formation flight to collaboratively transport

a heavy-payload. Then, in this dissertation, the dynamic model from an UAV formation is

obtained using an approach to parameterize the equation of motion in terms of the number

of vehicles, such that different formation configurations can be considered. Moreover, the

presented controller involves a leader-follower strategy with virtual-constraints for the

vehicles to keep each particular formation. The results show that the employed control

strategy is feasible for transporting a heavy-payload despite showing a persistent error

due to the unmodeled dynamic from the suspended payload in the formation controller.

Keywords: UAV. Dynamics. Control. Formation Flight.



RESUMO

Os Véıculos Aéreos não Tripulados (VANT) têm sido amplamente pesquisados devido às

suas caracteŕısticas que permitem seu uso em aplicações como monitoramento de fronteiras,

reconhecimento de objetos, pulverização de defensivos agŕıcolas e transporte aéreo de

cargas. Apesar do entusiasmo da comunidade, as aplicações são restritas no sentido de que

o equipamento especializado para cada missão que o VANT deve transportar tem peso

limitado. Nesse sentido, uma posśıvel alternativa consiste em utilizar múltiplos véıculos

em um voo em formação para colaborativamente transportar uma carga pesada. Assim,

neste trabalho apresenta-se o modelo dinâmico de uma formação de VANTs usando uma

abordagem que permite parameterizar as equações do movimento no número de véıculos, de

modo que diferentes configurações de formações podem ser consideradas. Ainda, apresenta-

se um controlador implementando a estratégia ĺıder-seguidor com v́ınculos virtuais para

definir e manter os seguidores em suas respectivas posições na formação. Os resultados

mostram que a estratégia empregada é viável para o transporte de cargas pesadas, apesar

de apresentar um erro persistente decorrente da dinâmica da carga desconsiderada no

controlador da formação.

Palavras-chave: VANT. Dinâmica. Controle. Voo em Formação.
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Chapter 1

INTRODUCTION

Unmanned Aerial Vehicles (UAV) have attracted attention from both researchers and

the community due to their potential to perform different applications. The advantages

include the lower cost of operation and acquisition, relatively simple training, feasible to

use in dangerous environments, updated regulation from certification agents, besides the

autonomous operation.

In Brazil, UAVs have been extensively employed in the agriculture, with emphasis to

modernize the analysis of crop health using aerial photography (e.g., with the Normalized

Difference Vegetation Index). Then, farmers can act in localized regions and reduce the

use of water and chemicals. The logistic industry can also benefit from UAVs in regions

with higher population density, low infrastructure, or difficult terrain, where UAVs can

surpass obstacles for ground vehicles and allow fast transportation of critical supplies such

as medical products.

The use of UAVs in challenging missions, such as those ones involving heavy payload

transportation increases the UAV complexity due to the increasing maximum take-off

weight (MTOW). Then, their costs increase and, in practice, there is a very limited number

of these aerial vehicles for this type of application. An interesting solution that is also

the main focus of this research consists of using a formation to transport heavy payloads,

where multiple UAVs collaboratively lift a payload heavier than the MTOW from each

single vehicle.

This chapter is divided as follows: Section 1.1 describes the context and technical

challenges that motivates this work. The objectives are outlined in Section 1.2. The

published works are presented in Section 1.3. A description from the discussed topics are

presented in Section 1.4.
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1.1 PROBLEM DESCRIPTION

Formations are solutions that benefits from the collective mainly to perform tasks that

are difficult, time-consuming, and even impossible for single individuals. Occurrences of

formations in nature can be observed from migrating birds and transportation of heavy

weights by ants. Portugal et al. (2014) show that the northern bald ibises, Geronticus

eremita, position themselves in an aerodynamically efficient “V” formation to exploit

the upwash vortices from the birds ahead. This biological behavior inspires research in

commercial aviation to reduce the carbon-footprint by smart scheduling flight routes to

allow aircrafts to fly in formation (DURANGO; LAWSON; SHAHNEH, 2016). Other

species such as the Humpback whales, Megaptera novaeangliae, can swim in formations

to manage their prey to form clusters, then the whales efficiently eat large amounts of

food (HAIN et al., 1981).

Cooperative transportation using UAVs is a strategy under development by research

groups with the perspective to transport heavy-payloads (RASTGOFTAR; ATKINS,

2019). The main idea consists of distributing the payload weight such that the lift force

of each one is in a feasible domain. A cable is used for constraining the payload to each

UAV, and it transfers a pulling force which is used to guide the payload through the

desired path. A typical mission performed by UAVs has common features with manned

vehicles (RAYMER, 1989), indicated in Fig. 1.1 with a sequence of well-defined steps.

� Phase 1 - take-off: consists of the UAVs increasing lift to compensate the weight;

� Phase 2 - cruise: consists of moving the vehicles to the designated mission area.

This motion need to occur in an power efficiently manner to increase the system

endurance;

� Phase 3 - mission: consist of operating the equipment on the desired areas to carry

out a particular task. It can be searching a specific area, following a target, and

hovering at certain spots;

� Phase 4 - returning cruise: the UAVs returns towards the landing area;

� Phase 5 - landing: the UAVs lands.
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1
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Figure 1.1: Illustration of the steps of a typical multi-lift UAV mission.

Aerial transportation with a single vehicle, denoted as single-lift system, with a cable

suspension allow one to transport cargo that do not fit inside its cargo compartment (RAST-

GOFTAR; ATKINS, 2019). However, this transporting configuration also poses additional

challenges due to the introduction of pendulum modes (SHI; WU; CHOU, 2018). By

suspending the payload with two UAVs, i.e., twin-lift, the pendulum motion occurs per-

pendicular to the plane formed by the payload and attachments points (BERRIOS et al.,

2014). In contrast, by using three or more UAVs, i.e., multi-lift formation, the pendulum

motion from the suspended payload is reduced.

Despite the dynamic advantages, remotely piloting an UAV formation poses additional

challenges due to closeness from the vehicles requiring coordination to avoid collisions. The

twin-lift and multi-lift formations show a change from the equilibrium configuration which

requires a change of the attitude from each vehicle to compensate the additional weight

and maintain a separation. This effect increases the complexity of manually piloting a

multi-lift formation (RAZ; ROSEN, 2005). However, UAVs can autonomously perform

multi-lift missions using feedback control.

The autonomous operation from an UAV requires the use of onboard controllers

to manage the mission path and compute the adequate set of control inputs to guide

the vehicle towards the desired trajectory. Modeling the UAV is an essential step to

design a suitable controller. Although modeling the dynamic from a single UAV is widely

presented in the specialized literature, this step increases in complexity for the aerial

transportation mission, mainly due to kinematic constraints that connects the UAV to

the payload. For the single-lift system, the common approach consists of applying a

coordinate transformation to yield a set of independent generalized coordinates that

maps directly to the constraint hypersurface in the original coordinate configuration (SHI;

WU; CHOU, 2018; GUERRERO-SÁNCHEZ et al., 2017). Nonetheless, this approach

introduces singular configurations and there is an important difficulty to scale it for an

arbitrary number of vehicles. An alternative approach consists in obtaining the dynamics

in the original coordinate space using the Euler-Lagrange formulation for constrained

systems (SALETAN; CROMER, 1970).
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Expressing the dynamic from the multi-lift system in the original coordinate space

requires satisfying both the obtained differential equations, modeled from the Euler-

Lagrange formulation for constrained systems (SALETAN; CROMER, 1970), and the

algebraic equations from the imposed constraints, resulting in a set of differential and

algebraic equations (DAE). To solve them for the trajectories in time, the resulting system

of DAE are transformed into a set of ODE through the time-differentiation from the

algebraic constraints (ASCHER et al., 1995), and this process is known in the literature

by index-reduction. This procedure, however, introduces numerical instabilities because

the constraint equations are solved only on acceleration level, such that the error is

accumulated in the velocity and position levels. This phenomenon is widely recognized

in the literature and it is named constraint-drift. This problem is solved by using the

technique proposed by Baumgarte (1972), which is interpreted by Bisgaard, Bendtsen,

and Cour-Harbo (2009) as artificially introducing springs and dampers in parallel with

each one of the rods. Then, the constraints equations are approximately satisfied during

the solution.

Based on the dynamic model describing the multi-lift formation, it is possible to evaluate

different strategies to control the formation. There is an extensive amount of strategies for

controlling multi-agent systems such as the Potential Field Method (PAUL; KROGSTAD;

GRAVDAHL, 2008; ZE-SU; JIE; JIAN, 2012) and Leader-Follower Architecture (YUN

et al., 2010; HE et al., 2018; LIANG; DONG; ZHAO, 2020). However, there is narrow

discussion in the literature regarding the effects of a formation controller for multi-lift

system.

1.2 OBJECTIVE

The main objective of this research is to investigate the dynamic and control of an UAV

formation transporting a heavy-payload.

1.3 PUBLISHED WORKS

The work entitled “Disturbance Observer of an UAV with a Suspended Payload” was

presented in the 26th International Congress of Mechanical Engineering.

The work entitled “Quaternion-Based Attitude Control of a Multirotor UAV ” was

presented in the workshop to celebrate the 25th anniversary from the Graduate Program

of Mechanical Engineering from the School of Engineering of Ilha Solteira (PPGEM).

The following items summarize the contributions from this work:

• A dynamic model is parameterized in the number of vehicles, which allows one to

obtain the EOM from the single-lift, twin-lift, and multi-lift configurations;

• A controller based on the virtual constraints is developed to maintain a formation

during all flight and the implication from the suspended payload on the “V” formation
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geometry during the multi-lift transportation mission.

1.4 OUTLINE

The remaining of this work is divided in chapters. Chapter 2 presents the modeling

procedure from first principles, where the Euler-Lagrange formalism for constrained

systems is applied to describe the dynamics from a multi-lift UAV formation. Chapter 3

presents a literature review on techniques to control UAVs. The developed method to

control a UAV formation is also presented. Chapter 4 presents the results for a single-lift,

twin-lift and the multi-lift UAV formation. Chapter 5 presents the final conclusions from

this work along suggestions for future work.



Chapter 2

MODELING THE UAV FORMATION

This chapter presents the dynamic modeling of the multi-lift UAV formation. The

requirements are introduced, then, the model from the UAV formation is derived and

technical challenges are discussed.

This chapter is divided into sections described by the following chapter content.

Section 2.1 defines the mathematical symbols. Section 2.2 introduces the parameters used

in the modeling development throughout this text. Section 2.3 presents particularities from

the construction of multirotors UAVs and the major differences from other configurations.

Section 2.4 introduces the dynamic modeling of a single multirotor UAV using the Euler-

Lagrange formulation. Additional considerations for system with constraints are presented

in Section 2.5. The modeling of the dynamic from the multi-lift system is presented in

Section 2.7. Section 2.8 presents the procedure to analyze the multi-lift system dynamic

without solving the EOM.

2.1 NOMENCLATURE

For the remaining of this text, scalar variables are defined by a lower-case letter (e.g., a),

vectors by a lower-case bold letter (e.g., a), and matrices by an upper-case bold letter

(e.g.. A). The transpose is denoted by A>. The identity n× n matrix is defined by In×n,

and the n×m zero matrix is defined by 0n×m.

2.2 MODELING PRELIMINARIES

Rigid bodies are representations of objects whose dimensions are relevant for the problem.

The underlying assumption in a rigid body is the distance between any two of its particles

is constant (NETO, 2013). Figure 2.1 illustrates a generic rigid body and an arbitrary

particle p.

Consider an inertial frame of reference denoted by the tuple I : (O, î, ĵ, k̂), where

O denotes an arbitrary origin, and î = {1 0 0}>, ĵ = {0 1 0}> and k̂ = {0 0 1}> the

orthonormal basis that spans the Euclidean space R3. Moreover, there is a body frame
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O î

ĵ
k̂

Ob
îb

k̂b

r
Bρ

p

ĵb

rρ

Figure 2.1: Representation of a generic rigid body, where O is the coordinate system
origin; î, ĵ and k̂ are the basis from the inertial frame of reference and îb, ĵb and k̂b the
basis from the body frame of reference, r and rρ are the position from the center of mass
and the arbitrary particle respectively.

of reference B : (Ob, îb, ĵb, k̂b) with its origin Ob attached to the body center of mass at a

distance r(t) with respect to the inertial frame, and with the same orientation from the

body. Then, the position from any particle p from the rigid body relative to the center of

mass is constant in the body reference frame B, i.e.,

Bρ ≡ constant (2.1)

The position from this arbitrary particle with respect to I can be parameterized by the

sum of the position from the center of mass and its distance relative to the body center of

mass expressed in the inertial frame by means of the rotation matrix R(t),i.e.,

rρ(t) = r(t) +R(t) Bρ. (2.2)

2.2.1 Rotation Matrix

The rotation matrix R(t) is a transformation from the special orthogonal group of transfor-

mations SO (3) :
{
R(t)|R(t) ∈ R3×3,R(t)>R(t) = R(t)R(t)> = I

}
that has the property

to rotate a vector around its origin while preserving the norm and handness (FOSSEN,

1994).

2.2.2 Euler Angles

The rotation matrix can be parameterized using Euler angles η(t) = {φ(t) θ(t) ψ(t)}> (FOS-

SEN, 1994). By defining the rotations of yaw Tψ :
(
î′ ĵ ′ k̂′

)
−→
(
î ĵ k̂

)
, pitch Tθ :(

î′′ ĵ ′′ k̂′′
)
−→
(
î′ ĵ ′ k̂′

)
, and rolling Tφ :

(
îb ĵb k̂b

)
−→
(
î′′ ĵ ′′ k̂′′

)
, the components from

the rotation matrix can be obtained by

R = TψTθTφ. (2.3)

Figure 2.2 illustrates each consecutive rotation of yaw, pitch and roll, which allows one to
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O î

ĵ

ψ

ψ

î′

ĵ ′

k̂//k̂′

(a)

O

î′

ĵ ′//ĵ ′′

k̂′

θ

θ

î′′

k̂′′

(b)

O

φφ

î′′//îb

ĵ ′′

k̂′′ĵb

k̂b

(c)

Figure 2.2: Sequential transformation from the coordinate system through the yaw (a),
pitch (b), and roll (c).

obtain the following equations

î =cψ î
′ − sψĵ ′

ĵ =sψ î
′ + cψĵ

′

k̂ =k̂′

î′ =cθ î
′′ + sψk̂

′′

ĵ ′ =ĵ ′′

k̂′ =− sθ î′′ + cθk̂
′′

î′′ =îb

ĵ ′′ =cφĵb − sφk̂b
k̂′′ =sφĵb + cφk̂b

(2.4)

where c(·) and s(·) denotes cos (·) and sin (·) respectively. The transformation matrices T(·)

are obtained from Eq. (2.4) and given by Eq. (2.5)

Tφ =

1 0 0

0 cφ −sφ
0 sφ cφ

 Tθ =

 cθ 0 sθ

0 1 0

−sθ 0 cθ

 Tψ =

cψ −sψ 0

sψ cψ 0

0 0 1

 (2.5)

R =

cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ

sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ

−sθ cθsφ cθcφ

 . (2.6)

In this case, the transformation R :
(
îb ĵb k̂b

)
−→
(
î ĵ k̂

)
maps a vector from the body

reference frame to the inertial reference frame. The inverse transformation, i.e., that

maps a vector from the inertial reference system to the body reference system is then

R> = T>φ T
>
θ T

>
ψ .

The angular velocity vector from the body Bω = Bω(t) = {ωx(t), ωy(t), ωz(t)}> is given

in terms of the Euler angles, such that (FOSSEN, 1994):

Bω =T>φT>θ


0

0

ψ̇

+ T>φ


0

θ̇

0

+


φ̇

0

0

 (2.7)
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that results in Bω = Wηη̇ , with Wη denoting the transformation from the angular velocity

in the inertial reference frame to the body reference frame (RAFFO; ORTEGA; RUBIO,

2010)

Wη =

1 0 −sθ
0 cφ sφcθ

0 −sφ cφcθ

.
The Euler angles rate are obtained in terms of the body angular velocity through the

inverse transformation defined by (WANG et al., 2016)

η̇ = W−1
η
Bω, (2.8)

such that

W−1
η =

1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

 .
Euler angles are intuitive for understanding the geometric properties from rotations

when considering isolated maneuvers. Nonetheless, once det(Wη) = cθ, the inverse

transformation is singular for θ = ±π/2.

2.3 MULTIROTOR UAV

A distinct feature from multirrotor UAVs is that the propulsion and control is performed

by varying the angular velocity from the rotors composed of an electric motor and a

fixed-pitch propeller. This characteristics allows one to achieve significant cost reduction

in acquisition and maintenance since, in contrast with the helicopter configuration, the

swash-plate mechanism is absent. However, the benefit of controlling the UAV by varying

the rotor velocity is also challenging to scale for transporting heavier payloads, since this

task usually requires bigger propellers which imply to increase the rotational inertia that

slows the rotor dynamics and may render the vehicle uncontrollable (POUNDS; MAHONY,

2009; PORTER; SHIRINZADEH; CHOI, 2015). The thrust force and drag moment from

the ith rotor can be reasonable modeled respectively by the following set of equations if

small size propellers are considered.

Bf i(ωr,i) = −kTω2
r,ik̂b (2.9)

Bmi(ωr,i) = sign(ωr,i)kDω
2
r,ik̂b (2.10)

with ωr,i denotes the angular velocity from the corresponding ith rotor, kT and kD are

respectively linear coefficients of thrust and moment, commonly determined from the

propeller performance data. Note the negative sign in Eq. (2.9) indicates the thrust

pointing to the negative k̂b axis. Moreover, the drag moment direction depends if the rotor

is rotating clockwise (CW) or counterclockwise (CCW). Thus it is necessary to arrange the
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rotors to balance the yaw moment. This is one from the explanations of why multirotors

are commonly built with an even number of rotors (e.g., quadrotors, hexarotors, and

octorotors). In contrast, the yaw moment in a helicopter configuration is balanced using a

tail-rotor.

In the planar multirotor configuration, the force from the ith rotor is applied at
Bri = {lrcξi − lrsξi 0}> in the body coordinate system, where ξi denotes the angle from

the line connecting the UAV center of mass to the propeller rotation axis to the îb axis.

Considering a symmetric arrangement of rotors, this angle is computed for the ith rotor by

ξi =
2π

nr
i+ ξc, (2.11)

where the two distinct + and × configurations can be obtained by setting the offset angle

ξc to 0 or π
nr

, respectively. Then, the net lift and moment exerted on the UAV center of

mass are obtained respectively by

Bf =
nr∑
i=1

Bf i (2.12)

Bm =
nr∑
i=1

Bri × Bf i + Bmi (2.13)

The control input is defined in terms of the angular speed from each rotor and

the control allocation matrix Kr (KOTARSKI et al., 2021), representing a map from

the quadratic angular velocity, denoted by the vector ω2
r =

{
ω2
r,1 ω

2
r,2 . . . ω2

r,nr

}>
, of a

given configuration to the control forces u =
{
uT uîb uĵb uk̂b

}>
, with uT denoting the k̂b

component from the force vector in Eq. (2.12), and uîb , uĵb and uk̂b the moments on the

UAV body axes given by Eq. (2.13) (PILJEK; KOTARSKI; KRZNAR, 2020).

u = Krω
2
r , (2.14)

Equation (2.14) allows generalizing the forces for any configuration of multirotor. Then,

the rotors speed for a particular configuration are obtained through the following equation

ω2
r = K−1r u. (2.15)

Table 2.1 shows the matrix Kr for different multirrotor configurations. The different

multirrotor configurations are named by Q, H, and O, where the letter Q denotes the

quadrirrotor, H denotes the hexarrotor, and O the octorrotor configurations, respectively.

The Q× configuration is widely used in practice since a camera aligned with the body

coordinate system usually has its field of view clear from the rotor arm (RAO et al., 2022).

Other configurations with more rotors, such as the hexacopter (H+) and octocopter (O+),

are mainly used to provide more thrust and fail-safe features.



Table 2.1: Multirrotors configurations and the associated control allocation matrix. Propellers indicated in red and blue represent a CW
and CCW rotation respectively.

representation conf. Kr ref.

îb

ĵb

Q +


kT kT kT kT
0 −lrkT 0 lrkT
lrkT 0 −lrkT 0
−kD kD −kD kD

 (LUO; DU; YU, 2019)

îb

ĵb

Q ×



kT kT kT kT
√

2

2
lrkT −

√
2

2
lrkT −

√
2

2
lrkT

√
2

2
lrkT

√
2

2
lrkT

√
2

2
lrkT −

√
2

2
lrkT −

√
2

2
lrkT

−kD kD −kD kD


(RAO et al., 2022)

îb

ĵb

H+



kT kT kT kT kT kT

0

√
3

2
lrkT

√
3

2
lrkT 0 −

√
3

2
lrkT −

√
3

2
lrkT

lrkT
1

2
lrkT −1

2
lrkT −lrkT −1

2
lrkT

1

2
lrkT

−kD kD −kD kD −kD kD



îb

ĵb

O+



kT kT kT kT kT kT kT kT

0

√
2

2
lrkT lrkT

√
2

2
lrkT 0 −

√
2

2
lrkT −lrkT −

√
2

2
lrkT

−lrkT −
√

2

2
lrkT 0

√
2

2
lrkT lrkT

√
2

2
lrkT 0 −

√
2

2
lrkT

−kD kD −kD kD −kD kD −kD kD





23

2.4 MODEL DERIVATION

The quadrotor is illustrated in Fig. 2.3. Two reference systems are defined according to

Sec. 2.2 and the generalized coordinates that uniquely describes the UAV configuration

is given by the vector q(t) = {r(t) η(t)}>, with r(t) = {x(t) y(t) z(t)}> denoting the

position from the UAV center of mass and η(t) = {φ(t) θ(t) ψ(t)}> describing the attitude

parameterized using Euler angles.

O

î

ĵ

k̂

îb

ĵb

k̂b

f1

m1

f2

m2

f3

m3

f4

m4

ωz

ωy

ωx

Figure 2.3: Quadrotor configuration of a multirotor UAV.

The kinetic energy from the UAV is composed of the translational energy due the

motion of the center of mass, and the kinetic energy due to body angular velocity, such

that T = Tr + Tη. The potential energy due to the gravitational field is computed by

U = Ur. Then, the Lagrangian is given by: L = T −U (GOLDSTEIN, 2002), which allows

one to obtain the equation of motion for each generalized coordinate qi ∈ q through the

Euler-Lagrange equation (LEMOS, 2007), i.e.,

d

dt

(
∂L
∂qi

)
− ∂L
∂qi

= fi, (2.16)

with fi denoting the generalized force vector.

2.4.1 Translational Dynamics

The kinetic energy from the translating rigid body is computed by

Tr =
1

2
ṙ>Mrṙ. (2.17)

Due to the gravitational potential field, the UAV is also subjected to a potential energy

Ur = −mgz. The partial derivative of Eq. (2.17) with respect to the velocity is obtained

by
∂Tr
∂ṙ

= mṙ. Differentiating with respect to the time, the resulting equation is

d

dt

(
∂Tr
∂ṙ

)
= mr̈. (2.18)
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The potential energy depends only on the position vector. Nonetheless, its partial derivative

is computed by
∂Ur
∂r

= −mgk̂. (2.19)

Then, the equations for the translational dynamics in matrix form are given by

Mrr̈ + fg = BruT + dr (2.20)

with Mr = mI3×3 representing the translation inertia, fg = −mgk̂ is the gravitational

force, and dr = {dx dy dz}> is the disturbance forces vector acting on the UAV. The

components of matrix Br are the projections from the thrust acting on the UAV k̂b axis

to the inertial reference frame, such that

Br =

cφsθcψ + sφsψ

cφsθsψ − sφcψ
cφcθ

 .
Note that for the multirotor there is only one control term to affect the three translational

coordinates. This render the multirotor UAV as an underactuated vehicle (BRANDÃO;

FILHO; CARELLI, 2013).

2.4.2 Attitude Dynamics

The kinetic energy due to the rotational motion is computed by

Tη =
1

2
Bω>J Bω. (2.21)

Substituting Eq. (2.8) in the expression above, the kinetic energy is written in terms of

the Euler angles

Tη =
1

2
η̇>W>

η JWηη̇. (2.22)

The EOM from the attitude dynamic is decoupled from the translational dynamic, such

that
∂Tη
∂η̇

=
∂

∂η̇

(
1

2
η̇>W>

η JWηη̇

)
= W>

η JWηη̇ = Mηη̇ (2.23)

and the symmetric and positive definite inertia matrix Mη = W>
η JWη is obtained, such

that

Mη =

 Ixx 0 −Ixxsθ
0 Iyyc

2
φ + Izzs

2
φ sφcφcθ(Iyy − Izz)

−Ixxsθ sφcφcθ(Iyy − Izz) Ixxs
2
θ + c2θ(Iyys

2
φ + Izzc

2
φ)

 . (2.24)

Differentiating Eq. (2.23) with respect to the time using the chain rule, the following

equation is obtained
d

dt

(
∂Tη
∂η̇

)
= Ṁηη̇ +Mηη̈. (2.25)
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The second term of the Euler-Lagrange equation corresponds to the partial derivative from

the kinetic energy with respect to the coordinates. Then,

∂Tη
∂η

=
∂

∂η

(
1

2
η̇>W>

η JWηη̇

)
=

1

2
η̇>

∂Mη

∂η
η̇ (2.26)

By grouping the angular velocity dependent terms, the Coriolis matrix is obtained as the

following (BRANDÃO; FILHO; CARELLI, 2013)

Cη = Ṁη −
1

2
η̇>

∂Mη

∂η
. (2.27)

The first term on the right-hand side of Eq. (2.27) corresponds to the derivative of a matrix

with respect to a scalar, which consists of differentiating every component of Mη with

respect to time. The second term consists of differentiating a matrix with respect to a

vector, which is a tensor. The result is a 3× 3 matrix Cη with its elements cij given by

c11 = 0

c12 = sφcφ(Iyy − Izz)θ̇ + s2φcθ(Iyy − Izz)ψ̇ − Ixxψ̇cθ
c13 = sφcφc

2
θ(Izz − Iyy)ψ̇ + c2φcθ(Izz − Iyy)θ̇ − Ixxcθθ̇

c21 = Izzψ̇cθ + (Iyy − Ixx)(−θ̇sθcφ + ψ̇cθc
2
φ − ψ̇cθs2φ), c22 = −(Iyy − Ixx)sφcφφ̇

c22 = (Izz − Iyy)sφcφφ̇
c23 = ψ̇sθcθ(−Izz + Iyys

2
φ + Ixxc

2
φ)

c31 = −(Ixxθ̇cθ − (Iyy − Ixx)(ψ̇c2θsφcφ))

c32 = Izzψ̇sθcθ − (Iyy − Ixx)(θ̇sθcφsφ + φ̇cθs
2
φ)− (Iyy + Ixx)(ψ̇sθcθc

2
φ − φ̇cθc2φ)

c33 = Izz θ̇sθcθ − (Iyy + Ixx)(θ̇sθcθs
2
φ) + (Iyy − Ixx)φ̇c2θsφcφ.

Substituting the inertia and the Coriolis matrices, the model for the UAV attitude

dynamic is given by

Mηη̈ +Cηη̇ = uη + dη. (2.28)

with uη = {uφ uθ uψ} representing the moments with respect to the inertial frame of

reference, and dη = {dφ dθ dψ}> the disturbance moments vector action on the UAV.

2.4.3 Dynamic Model

Considering the equations from the translational dynamics ( Sec. 2.4.1), and rotational

dynamics (Sec. 2.4.2), the dynamic model from the UAV is presented by the following

system of ODEs

Mq̈ +Cq̇ + fg = Bu+ d, (2.29)

where the term d =
{
d>r d

>
η

}>
represents the disturbances forces acting on the model.

Moreover, the model matrices for the full UAV dynamic are defined by the following
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equations

M =

[
mI3×3 03×3

03×3 Mη

]
C =

[
03×3 03×3

03×3 Cη

]
B =

[
Br 03×3

03×1 W>
η

]
(2.30)

Note that the rotational dynamic is independent of the translational coordinates,

however, the translational dynamic depends on the attitude, such as the control forces in

these direction are projections from the thrust force.

Equation (2.29) allows one to compute the UAV trajectory depending on the com-

manded input history u(t) over time. It is also used to design the controller that stabilizes

the system in a required position.

2.5 EULER-LAGRANGE EQUATIONS FOR CONSTRAINED SYSTEMS

The typical problem of dynamics consists of finding the trajectory that a system takes from

an instant t1 to an instant t2. For a system with independent coordinates, the solution is

obtained by solving the Euler-Lagrange equations (Sec. 2.4), which minimizes the action

computed through S =
∫ t2
t1
L(q, q̇)dt. This process is illustrated in Fig. 2.4, where the

trajectory that satisfies the Euler-Lagrange equations is represented by a solid line and

other trajectories are indicated by dashed lines.

t

î
ĵ

t1

t2

Figure 2.4: Generic trajectories connecting the configurations at the instants t1 and t2.
The system takes the trajectory that satisfies the Euler-Lagrange equation indicated by
the solid line.

Mechanical systems can be subject to restrictions on their motion, which consists to

kinematic restraints imposed on them, such as the rod connecting a pendulum to its pivot

joint (LEMOS, 2007). Considering the illustrative pendulum from Fig. 2.5, the mass

attached to the rod is constrained to the perimeter of a circle with radius equal to the

length l, which is equivalent to state that the mass position (xp yp) is constrained by the

equation Θ = x2p + y2p − l2 = 0.

A convenient approach used to model the constrained system consists of reparame-

terizing the coordinates to obtain a new set of independent coordinates, such that the
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O
î

ĵ
l

(xp yp)

constraint perimeter

Figure 2.5: Representation of the pendulum.

constraint equations are identically satisfied in terms of the new coordinates. In the case

of the illustrated pendulum, this strategy is alternatively achieved by parameterizing the

pendulum mass using polar coordinates. Table 2.3 shows the constraint equations in terms

of the Cartesian and polar coordinates. The first row indicates the constraint equation in

the position level, whereas second and third rows represent the constraint equations in the

velocity and acceleration levels, respectively. By using Cartesian coordinates, the solution

consists to find the values of xp and yp such that the left-hand side of those equations are

satisfied. On the other hand, using polar coordinates by defining xp = lcθ and yp = lsθ,

the constraint equations are satisfied for any value of θ.

Table 2.3: Comparative of the kinematic constraints from the pendulum geometry using
Cartesian and polar coordinates.

Cartesian coordinates polar coordinates

Θ x2p + y2p − l2 = 0
(lsθ)

2 + (lcθ)
2 − l2 = 0

l2 (s2θ + c2θ)− l2 = 0
0 = 0

Θ̇ 2 (xpẋp + ypẏp) = 0

2
[
(lsθ) lθ̇cθ − (lcθ) lθ̇sθ

]
= 0

2
[
l2θ̇sθcθ − l2θ̇sθcθ

]
= 0

0 = 0

Θ̈ 2
(
ẋ2p + ẏ2p + xpẍp + ypÿp

)
= 0

2
[
l2θ̇2c2θ + l2θ̇2s2θ + l2θ̈cθsθ − l2θ̇2s2θ

]
= 0

2
(
l2θ̇2 − l2θ̇2

)
= 0

0 = 0

Although this illustrative system is described above, the change of coordinates to

obtain an independent set of equation usually is not a trivial task. For these cases, the

Lagrangian is modified to include the holonomic constraints, such that the associated

Euler-Lagrange equations for such system are given by (SALETAN; CROMER, 1970;

NETO, 2013)
d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

+
∂Θ

∂qi

>
Λ = fi (2.31)

with Λ = {λ1 λ2 . . . λm} denotes the m Lagrange multipliers associated to each constraint

equations Θ = {Θ1 Θ2 . . . Θm}>. The result is a system of both differential and algebraic
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equations (DAE) given by

Mq̈ +
∂Θ

∂q

>
Λ =f

Θ =0

(2.32)

The first row from Eq (2.31) corresponds to the n second order differential equations

to solve for the n + m variables q and Λ. The second row consists of the remaining m

algebraic equations to be solved simultaneously, which introduces additional challenges to

find an accurate solution (BRAUN; GOLDFARB, 2009).

2.6 SINGLE-LIFT DYNAMIC

The EOM from the single-lift system using the reparameterized coordinates is obtained in

Silva, Bueno, and Santos (2021) and reproduced herein. Figure 2.6 illustrates the single-lift

model, where the payload position is parameterized with spherical coordinates using the

rod length l, and angles α and β.

O î

ĵ

k̂

rp

îb

ĵb

k̂b

O′

î1, î2

k̂1

ĵ2

k̂2r

Figure 2.6: Single-lift configuration with an UAV transporting a suspended payload.

The position in terms of the reparameterized coordinates q̃ = {x y z φ θ ψ α β}> is

computed through Eq. (2.33).

rp (q̃) =


x+ lcαsβ

y − lsα
z + lcαcβ

 (2.33)

The equation of motion for from the single-lift system with reparameterized coordinates is

given by the following equation

M̃ ¨̃q + C̃ ˙̃q + f̃g = B̃uu (2.34)
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such that

M̃ =

(m+mp) I3×3 03×3 M̃r

03×3 Mη 03×2

M̃>
r 02×3 M̃p

 C̃ =

03×3 03×3 C̃r

03×3 Cη 03×3

02×3 02×3 C̃p

 (2.35)

M̃r =

−mplsαsβ mplcαcβ

−mplcα 0

−mplsαcβ −mplcαsβ

 (2.36)

C̃r =


mpl(−cαsβα̇− sαcββ̇) mpl(−sαcβα̇− cαsββ̇)

mplsαα̇ 0

mpl
(
−cαcβα̇ + sαsββ̇

)
mpl

(
sαsβα̇− cαcββ̇

)
 (2.37)

M̃p =

[
mpl

2 0

0 mpl
2c2α

]
C̃p =

[
0 mpl

2sαcαβ̇

−mpl
2sαcαβ̇ −mpl

2sαcαα̇

]
(2.38)

f̃g =



02×1

− (m+mp) g

03×1

mpglsαcβ

mpglcαsβ


(2.39)

B̃u =

[
B

02×4

]
(2.40)

Note that in the single-lift with inelastic suspension model, the suspended payload

exert no influence on the UAV rotational dynamic. On the other hand, rigidly coupling

the payload to the UAV body increases the rotational inertia. A disadvantage is the

introduction of a pendulum mode in the system dynamic which is discussed in Section 2.8.

2.7 MULTI-LIFT FORMATION DYNAMIC

Figure 2.7 shows the multi-lift formation in which the ith UAV is denoted by Vi, with

i = 1, . . . , n. The system consists of an arbitrary number n ≥ 1 of UAVs transporting a

single suspended payload of mass mp. Attached to each UAV center of mass there is an

inelastic suspension cable (i.e., a no mass rigid rod) of length li connecting the payload to

each ith center of mass.
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ĵ

k̂
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rp

dp,x
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îb,i

ĵb,i

k̂b,i
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l1

îb,1

ĵb,1

k̂b,1

V1

l2

îb,2

ĵb,2

k̂b,2

V2

Figure 2.7: Multi-lift UAV formation with three illustrative UAVs transporting the
suspended payload. Note the first, second and ith UAVs illustrated.

The inertial reference frame I is located at the origin O and it is defined by the

orthonormal basis {î ĵ k̂}. A body reference frame Bi with orthonormal basis {îb,i ĵb,i îk,i}
attached to each ith UAV center of mass Oi and rotating solidarity to the vehicle is defined.

The coordinates that unique define the multi-lift configuration is denoted by,

qf (t) =
{
q1(t)

> q2(t)
> . . . qn(t)> qp(t)

>}> (2.41)

where the vector qi(t) =
{
ri(t)

> ηi(t)
>}> corresponds to the position and attitude from

the ith UAV. Moreover, qp(t) = rp(t) = {xp yp zp}> denotes the position of the payload

with respect to the inertial frame.

Due to the rigid rods assumption, the multi-lift formation coordinates are constrained

to satisfy the constant length equation, which is defined for each ith rod by the equation

gi(qf ) = (xp − xi)2 + (yp − yi)2 + (zp − zi)2 − l2i = 0. The constraint equation from the n

rods are combined such that Eq. (2.42) represents the set of holonomic constraints from

the multi-lift formation.

gf = {g1 g2 . . . gn}> = 0 (2.42)

The dynamics of the multi-lift formation is obtained by using the Euler-Lagrange

equations and the holonomic constraints handled using Lagrange multipliers (GOLDSTEIN,

2002). This approach allows one to generalize the equation of motion for an arbitrary

number of UAVs. The Lagrangian from the multi-lift formation system is composed of the
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kinetic and potential energies from the UAVs and payload.

Tf =
1

2
mpq̇

>
p q̇p +

1

2

n∑
i=1

mṙ>i ṙi + ω>i Jiωi, (2.43)

Uf = −mpgzp −
n∑
i=1

mgzi. (2.44)

Additionally, there are n Lagrange multipliers denoted by Λf = {λ1 λ2 . . . λn} from the

holonomic constraints that are added such that the Euler-Lagrange equations yield the

correct equation of motion for the multi-lift system (SALETAN; CROMER, 1970). Then,

the Lagrangian from the multi-lift system is given by

Lf = Tf − Uf + g>f Λf , (2.45)

Applying the Euler-Lagrange equation for each coordinate, and considering Eq. (2.42),

the equation of motion from the multi-lift formation is given by the following system of

second order differential and algebraic equations

Mf q̈f +Cf q̇f + fg +G>f Λf =Bfuf + df

gf =0
(2.46)

where Mf is the formation inertia, Cf is the Coriolis matrix, fg is the gravitational force

vector. The matrix Gf =
∂gi
∂qf

is the Jacobian from the constraint equations and the term

G>f Λf corresponds to the constraint forces. Bf is the formation input matrix and uf is

the input vector for all UAVs. In addition, df represents the disturbance force vector

acting on the system. The matrices from Eq. (2.46) are computed as

Mf = diag (M1 M2 . . . Mn Mp) (2.47)

Cf = diag (C1 C2 . . . Cn 03×3) (2.48)

Bf = diag (B1 B2 . . . Bn) (2.49)

fg =
{
f>g,1 f

>
g,2 . . . f>g,n f

>
g,p

}>
, (2.50)

uf =
{
u>1 u

>
2 . . . u>n

}>
(2.51)

df =
{
d>1 d

>
2 . . . d>n d

>
p

}>
(2.52)

The formation gravitational forces from the ith UAV and the payload are computed

by fg,i = −migk̂ and fg,p = −mpgk̂, respectively. Table 2.4 summarizes the dimensions

of these involved matrices.
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Table 2.4: Dimensions of the matrices and vectors for the multi-lift equation of motion.

matrix dimension

Mf 6n+ 3× 6n+ 3
Cf 6n+ 3× 6n+ 3
Gf n× 6n+ 3
Bf 6n+ 3× 4n
fg 6n+ 3
uf 4n
df 6n+ 3

2.7.1 Aerodynamic Drag Model

The disturbance force vector acting on the payload is included in the model from Eq. (2.46)

through dp = {dp,x dp,y dp,z}>. The drag force due to for the wind resistance on the

payload is given by (ANDERSON, 1991)

dp = −cpdṙp|ṙp|, (2.53)

where cpd is the coefficient of drag, whose value is given in terms of the Reynolds number and

the shape from the payload. The Reynolds number is an adimensional parameters which

expresses the ratio between inertial and viscous forces, and it is given by (ANDERSON,

1991, p.32)

Re =
ρ∞v∞lref

µ∞
, (2.54)

where ρ∞ is the specific mass from the fluid, v∞ is the freestream velocity, µ the dynamic

viscosity from the fluid, and lref a reference dimension, typically the chord for wings or

the diameter in the case of a sphere.

2.7.2 Gust Model

The 1-cosine gust model presented in Eq. 2.55 is a discrete gust for evaluating the impact

of atmospheric turbulence on the system dynamics. It is parameterized by the gust

gradient distance H, a reference gust velocity Uref and the parameter r representing the

position with respect to the gust. The gust acts either vertically or laterally and it is

consist of a pulse gradually increasing from 0 to Uref at the center of the gust. Figure 2.8

illustrates the normalized gust profile acting vertically in a position (xgo ygo) on the grid.

The model is incorporated to the equation of motion by defining 1-cosine gust in specific

positions on the environment. Considering a gust centered at (xgo ygo) and a distance

r =
√

(x− xgo)2 + (y − ygo)2 from the gust origin, then the following equation model the

gust velocity

U

Uref
=


1

2

[
1 + cos

(πr
H

)]
for r ≤ H

0 for r > H
(2.55)
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y0
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î

ĵ

Figure 2.8: Representation from the normalized 1-cosine gust equation at (x0 y0).

2.7.3 Index Reduction

The DAE system requires an especial strategy to be solved (BRAUN; GOLDFARB, 2009).

The algebraic constraint imposes a restriction on the configuration manifold and violate

this constraint implies changing the length of the suspension cables. A typical strategy

consists of differentiating the algebraic equations to change the problem from solving

a system of DAE to solve a set of ODEs, which is known in the literature as an index

reduction. However, the resulting system is mildly numerically unstable and an accurate

solution requires the use of a constraint stabilization technique (BAUMGARTE, 1972).

Differentiating the constraint equation twice in respect to the time t result in the

constraint equations on the acceleration level (ASCHER et al., 1995), i.e.,

dgf (qf )

dt
=
dgf
dqf

dqf
dt

= Gf q̇f = 0, (2.56)

d2gf (qf )

dt2
= Gf q̈f + Ġf q̇f = 0. (2.57)

Then, considering ff = Bfuf + df − fg − Cf q̇f , the resulting model is the following

system of differential equations[
Mf G>f
Gf 0

]{
q̈f

Λf

}
=

{
ff

−Ġf q̇f

}
, (2.58)

2.7.4 Constraint Stabilization

Equation (2.58) usually is numerically unstable. This numerical issue occurs since the

problem of solving the algebraic equations is transformed in an equivalent equation

in terms of acceleration g̈f = 0. However, numerical approaches commonly produce

residuals that are integrated and accumulated on the velocity and position levels, resulting

in the problem know as constraint drift (MASARATI, 2011), which is violation from

the constraints equation on position and velocity levels, i.e., Eq. (2.42) and Eq. (2.56)

respectively.
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Baumgarte (1972) suggests the addition of the numerically stabilizing terms −2αf ġf

and −β2
fgf to Eq. (2.57) to modify the constraint hypersurface to an attractor. Bisgaard,

Bendtsen, and Cour-Harbo (2009) interpret this modification as an artificial introduction

of spring and dampers in parallel with the rigid rods. This method is illustrated by

Figure 2.9, where the non-stabilized solution diverges from the exact solution over time,

whereas the stabilized case, the solution remains close to accurate value. However, note

qi

time

exact

α = β = 0

α, β 6= 0

Figure 2.9: Illustration from the constraint drift and the stabilization method.

that both new terms are equal to zero. Then, the model from the multi-lift including the

stabilizing terms assumes the following form[
Mf G>f
Gf 0

]{
q̈f

Λf

}
=

{
ff

−Ġf q̇f − 2αf ġf − β2
fgf

}
. (2.59)

Then, the Lagrange multiplier with the numerically stabilizing terms can be written by

Λf = −
(
GfM

−1
f G

>
f

)−1 (−Ġf q̇f − 2αf ġf − β2
fgf −GfM

−1
f ff

)
, (2.60)

The matrix GfM
−1
f G

>
f is invertible since rank(Gf) = n, ∀ qf |gf = 0, and this

property is demonstrated by the following Theorem.

Theorem 1. the constraint Jacobian Gf has rank n for all qf such that gf (qf ) = 0.

Proof. The rows from Gf are linearly indepedent if, and only if, the trivial solution

α1 = α2 = · · · = αn = 0 is the unique solution to this following equation

α1
dg1
dqf

+ α2
dg2
dqf

+ · · ·+ αn
dgn
dqf

= 0. (2.61)

The equation from the ith rod depends only on the coordinates from the ith UAV and

payload, i.e., gi ≡ gi(qi qp), such that the partial differentiation with respect to the

coordinates from the other UAVs is zero, i.e.,

∂gi
∂qj

= 0, ∀ i 6= j. (2.62)

This implies that the ith row
∂gi
∂qi

from Gf can not be expressed as a linear combination

of
gj
∂qi

, i 6= j. Then, the trivial solution is the only possible solution for Eq. (2.61). An
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additional condition is that the rows from Gf do not correspond to be the null-vector, i.e.,
dgi
dqf
6= 0, i = 1 2 . . . n. Consider, by contradiction that

dgi(qf )

dqf
= 0, (2.63)

then, if Eq. (2.63) is satisfied, the dot product is such that

dgi(qf )

dqf

dgi(qf )

dqf

>

= 0. (2.64)

Writing
dgi(qf )

dqf
=

[
∂gi
∂q1

∂gi
∂q2

. . .
∂gi
∂qn

∂gi
∂qp

]
, (2.65)

and from the holonomic constraint written in terms of the corresponding UAV and payload

coordinates, i.e., gi(qf ) ≡ gi(qi, qp), the non-null terms are:

∂gi(qi, qp)

∂qi
=
[
−2(xp − xi) −2(yp − yi) −2(zp − zi) 0 0 0

]
(2.66)

and
∂gi(qi, qp)

∂qp
=
[
2(xp − xi) 2(yp − yi) 2(zp − zi)

]
. (2.67)

which allows one to rewrite Eq. (2.64) by

dgi(qf )

dqf

dgi(qf )

dqf

>

= 4 (xp − xi)2 + 4 (yp − yi)2 + 4 (zp − zi)2 . (2.68)

Substituting the holonomic constraint from the ith rod result in:

dgi(qf )

dqf

dgi(qf )

dqf

>

= 4l2i , (2.69)

which is zero only if li = 0. However, li 6= 0, and then, the rows Gf(qf) are non null for

all qf that satisfies gf (qf ) = 0, which demonstrates that the matrix Gf is invertible quod

erat demonstrandum.

Substituting the stabilized Lagrange multiplier from Eq.(2.60) in the first row of Eq. (2.58),

and defining the variable vf = q̇f leads to a system of first order differential equations:

q̇f = vf

v̇f = M−1
f

(
ff +G>f

(
GfM

−1
f G

>
f

)−1(− Ġf q̇f −GfM
−1
f ff − 2αf ġf − β2

fgf
)) (2.70)

which represents the EOM for the multi-lift formation. Integrating Eq. (2.70) using a

numerical method, such as the Runge-Kutta method, the trajectories of the multi-lift

formation system can be obtained over time.
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2.7.5 Algorithm

Algorithm 1 summarizes the procedure for obtaining the trajectories from the multi-lift

system. The algorithm consists of defining the number n of UAVs in the formation and

their initial configuration, such that: the UAVs are on the constraint manifold. Then, the

state from the formation at instant (t+ ∆t) is obtained by integrating Eq. (2.70) using

the Runge-Kutta algorithm. The process is repeated until t achieves tmax.

Algorithm 1 Compute the trajectories from the multi-lift system

1: n← Z+.
2: define the acceptable error in position εgf and velocity εġf levels.
3: define the simulation and stabilization parameters tmax, ∆t, αf , and βf .
4: define the initial system configuration qf (0) satisfying gf (qf ) = 0 and their derivatives

according to Eq. (2.42), Eq. (2.56), Eq. (2.57).
5: main loop:
6: for t ≤ tmax do
7: qf (t+ ∆t)← integrate Eq. (2.70) (qf (t),uf (t), n)
8: uf (t+ ∆t)← update the control signal.
9: t← t+ ∆t.

10: check if the constraints are satisfied for all t.
11: if |gf (t)| < εgf and |ġf (t)| < εġf then
12: accept result and plot trajectories.
13: else
14: redefine the simulation and stabilization parameters.
15: goto main loop.

2.7.6 Null Space Formulation

The null-space from Gf , i.e., ker (Gf ) is one subspace that maps any vector from it to the

null vector. If one select a matrix Nf whose columns forms the basis from the null-space

of Gf , then the following equation holds

GfNf = 0 (2.71)

where Nf is a 6n+ 3× 5n+ 3 matrix that spans the null-space from Gf . Applying the

null-space in the EOM from the multi-lift dynamics (Eq.(2.46)), the result is the projection

such that the constraint forces are zero, as represented by the following system of equations

N>f Mf q̈f = N>f ff (2.72)

2.8 FORMATION MODAL ANALYSIS

The geometric coupling of the multi-lift formation implies to a dynamics for which an

equivalent modal analysis can be performed. This analysis can be carried out for the
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single-lift configuration, since the coordinates are reparameterized analytically and the

EOM linearized. However, considering the multi-lift system from Eq. (2.46), there are

n constraints, such that only (5n+ 3) from those (6n+ 3) coordinates are independent

from each other. This increases the complexity since a choice of reparameterization is not

trivial.

Yang (1992) noted that a linear system under linear and time-invariant constraints is

stiffer than the unconstrained system. For the nonlinear constraints, such as Eq. (2.57),

a stable and linear system remains stable for small vibrations around a equilibrium

condition. In addition, the constraints introduce additional excitation sources and modify

the disturbances forces, such that their effects on the system dynamics must be evaluated.

Berrios et al. (2014) present such analysis for the twin-lift system and find unstable

formation modes.

Sohoni and Whitesell (1986) linearizes the EOM around an operating point and assumes

a linear and time-invariant map from the independent and dependent coordinates. Then,

they eliminate both the dependent coordinates and Lagrange multipliers to analyze the

modal properties. Liang and Lance (1987) use the Gram-Schmidt algorithm to generate

an orthonormal basis using the constraint Jacobian such that both the null-space and

its time-derivative are efficiently obtained. They obtain the EOM using the velocity

transformation in terms of the independent coordinates which allows one to compute the

trajectories without using a constraint stabilization method González et al. (2017). The

main disadvantage from using independent coordinates is the extra-step required to solve

the non-linear algebraic equations to find the dependent coordinates at each time-step,

which is prone to numerical convergence issues.

2.8.1 Single-Lift Modal

The linearized EOM for the single-lift system with independent coordinates is obtained

in Silva, Bueno, and Santos (2021). The modal properties from the single-lift system are

obtained from the eigenvalues of matrix A defined by

A =

[
08×8 I8×8

Ap 08×8

]
where

Ap =



0 0 0 0 −g(m+mp)

m
0 0 gmp

m

0 0 0 g(m+mp)

m
0 0 −gmp

m
0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 g(m+mp)

ml
0 0 −g(m+mp)

ml
0

0 0 0 0 g(m+mp)

ml
0 0 −g(m+mp)

ml


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Two of the eigenvalues from A are identical purely imaginary pairs λ1 = λ2 = ±2.13j and

they correspond to the pendulum modes from the single-lift system with a period of 2.94 s.

The coordinate vector qe = {x y z 0 0 ψ x y z + l}> is a configuration in equilibrium as

illustrated in Fig. 2.10.

O
î

ĵ

k̂

îb

ĵb

k̂b

Figure 2.10: Schematic representation of the equilibrium configuration for the single-lift.

2.8.2 Twin-Lift Modal

The formation modal analysis for the twin-lift configuration is realized by identifying a

subset of dependent coordinates from the formation coordinates, i.e., qf , such that the

constraint Jacobian with respect to these dependent coordinates has full rank. For the

twin-lift system, the altitude from the leader and follower vehicles are choosen as dependent

coordinates. The multi-lift equilibrium configuration is the solution from Eq. 2.46 with

q̇f = 0

fg +G>f Λf =Bfuf

gf =0
(2.73)

For the twin-lift system, the equilibrium presented in Figure 2.11 is a solution.

O î

ĵ

k̂

Figure 2.11: Schematic representation of the equilibrium configuration for the twin-lift.

The dynamic equations from the twin-lift system are linearized with respect to the

equilibrium and the modal properties obtained. Figure 2.12 shows the eigenvalues from
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the linearized twin-lift configuration.
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Figure 2.12: Eigenvalues from the twin-lift configuration.



Chapter 3

CONTROL OF UAV FORMATIONS

The use of electronic controllers is fundamental for multirotors UAVs due to their unstable

dynamics, nonlinearities, and underactuated system configuration, which render this type

of vehicle challenging for piloting without computer assistance (EMRAN; NAJJARAN,

2018).

A common requirement from electronic controllers is a reference model from the plant to

be controlled, which contains the information in the form of mathematical equations or

nonparametric functions to predict the future states depending on the applied control.

An assumption usually employed in literature is that the model is time-invariant and

the differences in relation to its real dynamic are regarded as disturbances, which are

classified into two categories: a) internal disturbances from unmodeled dynamics (e.g.,

simplifications of aerodynamics (SANZ et al., 2016), time delays in control (FRIDMAN;

SEURET; RICHARD, 2004), and model uncertainties (LU; REN; PARAMESWARAN,

2020)); b) external disturbances due to different other sources, such as due to wind

gusts (GUO et al., 2020).

In addition to the disturbances that a single UAV is subjected to, in aerial transportation

mission using a multi-lift UAV formation, the coupled payload introduces additional forces

on the system, since the UAV needs to provide extra thrust to balance the constraint force,

which may saturate the UAV actuators.

This chapter presents a discussion from control of UAVs, with reference to the control

literature in Section 3.1. Section 3.2 introduces the developed strategy to control a multi-lift

UAV formation.

3.1 RELATED WORK

The PID controller is maybe the first controller that one encounters while researching for

control of UAVs. This occurs due to its extensive use both in the hobbyist and scientific

communities due to its ease of implementation, low computational requirements, and simple

understanding from the controller parameters. To design a PID controller, the multirotor

UAV dynamic is linearized in a hover condition, then one typically choose the PID gains
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such that the closed-loop error dynamic from the linearized model is asymptotically stable.

Sliding Mode Control is also a strategy present in diverse literature to control UAVs. One

of its features is their excellent capability of rejecting disturbances by rapidly switching the

actuator to stabilize the system. However, the switching also introduces high frequency

vibrations on the UAV which is denominated as “chattering”.

Artificial Intelligence (AI) is also in research to overcome the limitation from classical

controllers, that include the dependence of models and online adapting to a changing

environment. Waslander et al. (2005) model the UAV dynamic using input and output

data with a non-parametric model. Then, they optimize the controller gains by adding a

Gaussian noise to it in each iteration. Hwangbo et al. (2017) uses a neural network as the

controller whose gains are updated through reinforcement learning.

Due to the underactuated characteristics of multirotor UAV, the control is designed in

a cascade fashion, where an inner-loop is responsible of stabilizing the actuated degrees of

freedom, and an outer-loop responsible of finding adequate set-points to allow the vehicle

track the underactuated degrees of freedom. Raffo, Ortega, and Rubio (2011) and Brandão,

Filho, and Carelli (2013) uses the partial-feedback linearization to design an inner-loop

controller (SPONG, 1994).

3.1.1 Propulsion Saturation

Multirrotor UAVs commonly uses multiple BLDC (brushless DC) eletric motors for both

propulsion and control. The strategy is to keep the mechanical simplicity and reduce

overall costs. The motor uses an electronic controller, such as an ESC (Electronic Speed

Controller), to switch the DC voltage from the batteries, resulting in a changing magnetic

field that the permanent magnets follows. Then, the motor speed can be controlled by

conditioning the signal sent to the ESC.

3.2 FORMATION CONTROL

Formation control consists of coordinating the motion from each UAV to achieve a

common goal. In the multi-lift transportation mission, the proximity from each vehicle also

introduces a collision hazard that requires implementation to detect and avoid capability.

There are different ways to achieve this goal, which requires that an UAV acknowledge the

position from its peers by: a) using the onboard cameras to estimate the obstacle path,

then plan a route to avoid a collision (PEDRO et al., 2021); b) creating a communication

network to share the information from the inertial navigation system; c) using a dedicated

sensor such as ultrasonic or lidar (TAHIR et al., 2019).

The individuals position are known over time, and they are used to develop a formation

controller based on leader-follower strategy.The formation control consists of considering

two types of UAVs: i) the leader, which is responsible of communicating with ground
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control station and tracking the desired mission path, and ii) the followers, which are

responsible to establish the formation geometry. The leader UAV has its control structure

unaltered such that the stability and robustness properties are preserved. The followers

UAVs have their outer-loop modified to use the leader position and determine their attitude

set-points based on their current position within the formation.

The desired formation geometry is defined using virtual constraints. If a distance d

from the ith to the jth UAVs is desired, the corresponding constraint equation is simply

the Euclidian distance given by

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 − d2 = 0. (3.1)

If a linear separation in the î direction of dx units is desired, then the equation is

(xi − xj)− dx = 0. (3.2)

Similarly, for the ĵ and k̂ directions, the constraint equations are given by the following

equations

(yi − yj)− dy = 0, (3.3)

(zi − zj)− dz = 0. (3.4)

Table 3.1 presents different formation configurations and their corresponding virtual

constraints. The first row presents the linear separation among the vehicles such that they

keep the distance in both the î and ĵ axes. In the second row of the table, the UAVs are

separated from each other by the Euclidian distance. The “V” and the circular formation

geometries are obtained by combining the constraint equations such that every vehicle

is constrained in the formation. The “V” formation is parameterized through the vertex

angle 2γ and the distance d between UAVs.

The formation control consists of keeping each UAV in its position, such that the

virtual constraint equations are satisfied. If the virtual constraints exist, then a constraint

force is considered to keep each UAV on its desired position according to the formation.

Since there is no such force, it is artificially introduced by the followers, by projecting

the thrust such that its components provide the computed virtual constraint forces. The

virtual constraint equations are grouped in the following virtual constraints vector

gvc = gvc(rf ) = 0, (3.5)

which is written in terms of the formation configuration, described by the formation

position vector rf = {r1 r2 . . . rn}>. This equation is linear in terms of the coordinates

in “V” formations, and nonlinear for the circular formation.

Figure 3.1 illustrates the formation controller. The formation dynamics is used in the

integrator block, which computes the future configuration based on the previous control.

This future state is validated to check if the constraints are approximately satisfied within
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a tolerance, if not, the solution is interrupted for adjusting the constraint stabilization

parameters. Then, the information is processed and the state from the leader is updated.

The leader is updated with the mission trajectory, then, it can compute its control for

tracking the desired trajectory. The formation controller receives the leader state, then,

the followers can compute their control through the virtual constraints. The control from

the leader and the followers are validated through the saturation block. The saturation is

applied if a control that result in angular velocity outside the operational range from the

multirotors, . The saturated formation control is informed to the integration block and

the process is repeated.

Integration

Formation
Dynamic

gf ≈ 0 Processing

Invalid
Simulation

Leader

Formation
Controller

Mission
Follower 2

...

Follower n

Saturation

uf (t+ ∆t)

q̇f = f(qf )

qf (t + ∆t)

q1(t + ∆t)

No

q1(t + ∆t)

u1(t + ∆t)

u2(t + ∆t)

un(t + ∆t)

q1,d(t + ∆t)

Figure 3.1: Diagram illustrating the process for the obtaining the formation trajectories.



44

Table 3.1: Different formation geometries and their corresponding virtual constraint
equations.

representation geometry virtual constraints

dy

dx

V1

V2

linear separation
x1 − x2 − dx
y1 − y2 − dy
z1 − z2 − dz

V1

V2
d

Euclidian distance (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 − d

V1

V2

V3

2γ

d

“V”

x1 − x2 − dcγ
y1 − y2 − dsγ

z1 − z2
x1 − x3 − dcγ
y1 − y3 + dsγ

z1 − z3

+

V2

V3

V1

d

circular

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 − d
(x1 − x3)2 + (y1 − y3)2 + (z1 − z3)2 − d
(x2 − x3)2 + (y2 − y3)2 + (z2 − z3)2 − d

3.2.1 “V” formation

The geometry of the desired “V” formation is obtained by setting the coefficients v1i

using the geometry parameters of the vertex angle 2γ and the desired distance d between

each two UAVs on the “V”, such as illustrated in Fig. 3.2. The “V-formation” geometry

is obtained by considering a linear separation of v1j units from Vi to V1, such that the

following system of equations is obtained

gvc = Jvcrf + vc (3.6)

where gvc = {g1i . . . g1n}>, i = 2, 3, . . . n, denotes virtual constraint equations relating

the desired position from each ith follower to the leader. Vector vc =
{
v>12 . . . v>1n

}>
,

i = 2, 3, . . . n, introduces the desired distance from the follower to the leader, which for
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the “V” formation it is parameterized by v1i = i
2
{−dcγ − dsγ 0}> for an even number of

vehicles, and v1i = i−1
2
{−dcγ dsγ 0}> otherwise.

î

ĵ

V1

V2

V3

V4

V5

2γ

d

Figure 3.2: Schematic representation of the “V” formation with a vertex angle 2γ and
the relative distance d for every two consecutive UAVs represented by Vi, i = 1, . . . , 5.

Jvc =


I3×3 −I3×3 03×3 . . . 03×3

I3×3 03×3 −I3×3 . . . 03×3
...

...
...

. . .
...

I3×3 03×3 0 . . . −I3×3

 . (3.7)

Differentiating twice Eq. (3.6) with respect to the time, the equation obtained is

Jvcr̈f = 0. The terms 2αc (Jvcṙf ) and β2
c (Jvcrf + vc), such that αc > 0 and βc > 0, are

added to stabilize the controller (TARRAF; ASADA, 2002).

Jvcr̈f + 2αc (Jvcṙf ) + β2
c (Jvcrf + vc) = 0 (3.8)

The translational dynamics from the UAV formation is given by

Mf,rr̈f + ff,r + J>vcΛc = uf,r, (3.9)

where Mf,r = diag(m1I3×3 m2I3×3 . . .mnI3×3) and ff,r =
{
f>1,r f

>
2,r . . . f

>
n,r

}>
with

fi,r = −migk̂, and uf,r = {u1,r . . . un,r}> with ui,r = Br,iuT,i denoting the lift from the

ith UAV projected in the x, y and z directions. The formation acceleration is substituted

in Eq. (3.8) resulting the following equations

JvcM
−1
f,r

(
uf,r − ff,r − J>c Λc

)
+ 2αc (Jvcṙf ) + β2

c (Jvcrf + vc) = 0 (3.10)

−
(
JvcM

−1
f,rJ

>
vc

)
Λc = −JvcM−1

c (uf,r − ff,r)− 2αcJvcṙf − β2
c (Jvcrf − cc) (3.11)

Λc =
(
JvcM

−1
f,rJ

>
vc

)−1 (
JvcM

−1
c (uf,r − ff,r) + 2αcJvcṙf + β2

c (Jvcrf − cc)
)
. (3.12)

The term uvf = −J>vcΛc =
{
u>1,vf u

>
2,vf

. . . u>n,vf

}>
from translational dynamics acts

as the virtual forces and they are artificially introduced by the followers to keep the UAVs
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on the formation constraint hypersurface defined by Eq.(3.6). The virtual force developed

by the ith UAV is written in terms of its components in the x, y and z directions, such that

ui,vf =
{
ui,x,vf ui,y,vf ui,z,vf

}>
. Due to the underactuated configuration from multirotors

UAVs, these computed virtual forces are obtained by considering the following attitude

set-points:

φd,i = sin−1
(
ui,x,vf sψ,i − ui,y,vf cψ,i

uT,i

)
, θd,i = sin−1

(
ui,x,vf cψ,i + ui,y,vf sψ,i

uT,icφd,i

)
. (3.13)

These attitude set-points in addition to the leader altitude zd,i = z1 are then transmitted

to the inner-loop controller.



Chapter 4

RESULTS AND DISCUSSION

This chapter presents the results to discuss the introduced approach. Section 4.1 presents

a time-domain analysis from the trajectories of the single-lift system using the method of

independent coordinates and the method of Lagrange multipliers for constrained systems.

Section 4.2 presents the parameters employed to fully define the mission environment.

Section 4.3 presents numerical data from the twin-lift configuration. Section 4.4 presents

the trajectories from the multi-lift system, and Section 4.5 introduces a comparative study.

4.1 SINGLE-LIFT

The proposed methodology employed for solving the system of constrained differential

equations is evaluated in the time-domain by integrating the equation of motion, by

comparing the trajectories obtained using the methods of independent coordinates and

Lagrange multipliers. The simulations start with identical initial conditions and a constant

thrust is imposed to statically balance the combined UAV and payload weight. This specific

control input is motivated to avoid compromising the trajectories due to the closed-loop

control. Then, any difference in the results is attributed to the solving methodology.

Table 4.1 presents the physical parameters which define the single-lift system. The

trajectories from the single-lift with reparameterized coordinates (see Eq. 2.34) is obtained

by integrating the EOM using the 5th order Runge-Kutta algorithm and it is a reference

solution used for comparison. The trajectory from the single-lift system using the Lagrange

multiplier method is obtained by setting n = 1 and the resulting EOM is solved through

the Algorithm 1.

Table 4.1: Single-lift system parameters.

parameter description value unit
m UAV mass 2.5 kg
mp payload mass 0.4 kg
J inertia tensor diag (0.957 0.486 0.355) kg.m2

l suspension length 2.5 m
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Figure 4.1 shows the UAV trajectories and a snapshot from the configuration at t = 0 s.

The payload is initially placed at α|t=0 = 15◦ and β|t=0 = 25◦ and these initial conditions

correspond to rp|t=0 = {1.02 − 0.65 2.19}> m. The oscillation exhibits a period equal to

2.94 s, corresponding to the eigenvalue obtained from the formation modal analysis.
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Figure 4.1: Trajectories from the single-lift system.

Figure 4.2 presents the constraint equation from the single-lift system in position level,

i.e., g = (x− xp)2+(y − yp)2+(z − zp)2− l2 for different values of stabilization parameters.

The solution starts from a configuration consistent with the imposed constraints (BRAUN;

GOLDFARB, 2009). The constraint rapidly increases when computing the non-stabilized

case, which is represented by the curve g(q)|αf=0, and then, the resulting trajectory

becomes inaccurate. Including the constraint stabilization, represented by the curves

g(q)|αf=20 and g(q)|αf=100, the constraint equation is satisfied within εgf < 10−1.

The UAV and payload positions obtained by integrating the dynamic model using the

Euler-Lagrange formulation for constrained system are approximately equal to the positions

obtained by using reparameterized coordinates. As noted by Neto and Ambrósio (2003),

the constraint stabilization method simply keeps the constraint violations under control,

such that the error shown in Fig. 4.2 is integrated resulting in the increasing differences

over time from the trajectories shown in Fig. 4.3. However, the UAV and payload system

is designed to operate under a closed-loop controller, and then, the observed differences

related to these different approaches to model the dynamics are insignificant.
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Figure 4.2: Constraint equation from the single-lift system for different stabilization
parameters.
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Figure 4.3: Position error from the UAV and payload for αf = 100.
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4.2 MISSION DEFINITION

The transportation mission considered herein consists of assigning a desired path for the

leader UAV, whereas the followers collaboratively lift the suspended payload and maintain

the relative distances through virtual constraints. The mission trajectory assigned to the

leader is composed by four different parts: i) ascending with a climb rate of −0.3 m.s−1 for

10 seconds, ii) cruise in the î direction with velocity 0.5 m.s−1 for 15 seconds, iii) cruise in

the ĵ direction with velocity 0.5 m.s−1 by 15 seconds, and iv) cruise in the −î direction

with velocity 0.5 m.s−1 until t = 100 s, until the formation achieves the final flight time,

i.e., tmax = 120 s.

The atmospheric disturbance is a lateral gust acting on the payload in the +ĵ direction.

This gust effect is positioned at xgo,1 = −4 m, ygo,1 = 6 m, with a gradient of 2 m and

reference velocity equal to 3 m.s−1. A gust load with similar characteristics action in the

+î direction is defined at xgo,2 = −12 m and ygo,2 = 6 m.

The system parameters are further presented in Tab. 4.2, and the UAVs for both

the following investigations are assumed to be identical. The maximum thrust due to

the rotor parameter is 32.28 N, which limit the maximum payload to mp = 0.79 kg.

However, this upper limit is not practical because the attitude control needs to balance

the rotors speed to rotate the UAV by reducing the lift and the UAV altitude control

can fail. Then, a payload with weight exceeding such limit is defined, and the formation

controller parameters αvc and βvc are arbitrary chosen.

Table 4.2: Aerial transportation mission parameters.

parameter description value unit
m UAV mass 2.5 kg
J inertia tensor diag (0.957 0.486 0.355) kg.m2

lr arm length 0.2 m
kT thrust coefficient 1.83 · 10−6 N.s2/rad2

kD moment coefficient 1.85 · 10−7 N.m.s2/rad2

ωr,min minimum rotor speed 0 rad/s
ωr,max maximum rotor speed 2100 rad/s
mp payload mass 0.8 kg
l suspension length 10.26 m
cpd payload drag coefficient 0.12 -
αvc formation derivative gain 2.1 -
βvc formation proportional gain 1.3 -

4.3 TWIN-LIFT

The dynamic model for describing the twin-lift system is obtained by setting n = 2 in

Algorithm 1, and it consists of a formation with two identical UAVs coordinated by using
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the leader-follower strategy. The formation is parameterized with a fixed separation of

dx = 3.46 m, dy = −2.00 m and dz = 0.00 m between the leader and follower aerial vehicles

(see Sec. 3.2).

Figure 4.4 presents the resulting constraints in position level (see Eq. 2.42) from the

leader and follower, denoted by the curves g1 and g2, respectively. The constraints are

satisfied within an error of 2 · 10−2 m2, which is considered as an acceptable result for

practical applications. During the hover phase, the constraints asymptotically converges

to zero due to the stabilization method, such as previously noted by Baumgarte (1972).
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Figure 4.4: Constraints over time from the twin-lift system.

Figure 4.5 shows the top-view from the trajectories. The payload is set to an initial

angle with respect to the oscillation plane formed by the UAVs and the vertical direction.

This condition introduces an initial pendulum motion that is gradually suppressed due to

the included drag force (see Eq. 2.53). According to these results, this oscillatory motion

is further excited when the UAVs changes directions and when the payload moves through

regions with gusts.
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Figure 4.5: Top-view from the twin-lift simulation.

Figure 4.6 shows the roll and pitch angles from the UAVs. Note that the UAVs keeps its

non-zero attitude. This behavior is required to balance the forces to constraint the payload,

which are at an angle with respect to the vertical direction resulting in forces in the î and ĵ

directions. These constraint forces are not included in the control design architecture, and

they are considered as disturbances instead. They pull the UAVs towards each other, and

this behavior increases the errors from the virtual constraints for the follower controller,

and from the leader outer-loop. Then, a compensating control is considered (see Eq. 3.13),

which results in that observed non-zero attitude.
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Figure 4.6: Attitude from the UAVs considering the twin-lift configuration.

Figure 4.7 shows the virtual constraint from the twin-lift formation control. The UAVs

start at the desired formation, and during the climb phase the follower UAV exhibits a

time delay to keep at the same altitude as the leader vehicle, such as indicated by the

curve gvc|k̂. This behavior occurs since the reference for this parameter is updated in

the outer-loop instead of the inner-loop, such as verified to the leader UAV. The follower
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UAV accurately keeps the leader altitude for the remaining of the mission, even with

the additional weight from the payload, and such performance is achieved due to the

inner-loop controller robustness. In addition, regarding to the virtual constraints, i.e., gvc|̂i
and gvc|ĵ , the payload pulls the UAVs close to each other, as shown by the difference from

the follower UAV with respect to its position in the formation.
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Figure 4.7: Virtual constraints from the twin-lift formation control.

Figure 4.8 shows the thrust forces for both UAVs. During the climb phase, since the

follower vehicle is flying at a lower altitude than the leader, the required thrust from the

leader is 6.14% higher than that force required from the follower. The required thrust

force is approximately distributed equally for the remaining of the mission.
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Figure 4.8: Thrust force required from the UAVs in the twin-lift configuration.
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4.4 MULTI-LIFT

The multi-lift system configuration is evaluated by considering n = 3, i.e., three UAVs.

Two of them are defined as followers and their outer-loop controllers are replaced by a single

controller designed according to Sec. 3.2. The desired formation geometry for this case is the

“V” formation, and the geometric parameters are d = 4 m and γ = 30◦. Figure 4.10 shows

the corresponding constraint equation. Similarly to the twin-lift simulation, the constraint

stabilization parameters reduces the constraint error over time until they stabilize at zero.
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Figure 4.10: Constraints from the multi-lift system.

Figure 4.11 presents the virtual constraints from the multi-lift system. There are 6
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virtual constraints to define the “V” formation, such that 3 of them constrain the position

of the first follower to the leader, and the other ones constrain the position of the second

follower to the leader. Note that, there is a persistent error in this multi-lift configuration,

but its value decreases in comparison with the twin-lift system. This behavior occurs

because the payload weight is also distributed to the additional UAV.
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Figure 4.11: Virtual constraints from the multi-lift formation control.

Figure 4.12 presents the thrust forces computed for this multi-lift configuration. Their

magnitudes change more substantially when the formation changes the phase of flight.
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Figure 4.12: Thrust forces from the UAVs in the multi-lift configuration.

Figure 4.13 illustrates the top-view of the trajectories. The payload weight changes the

formation geometry, resulting in the UAVs flying closer to each other. Figure 4.14 presents
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the multi-lift system trajectories of the UAVs simultaneously lifting the heavy payload.
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Figure 4.13: Trajectories (Top-view) for the multi-lift configuration.
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Figure 4.14: Trajectories from the multi-lift system.

4.5 RESULTS

The multi-lift system in general can reduce the payload oscillations. Figure 4.15 presents

the payload position computed when considering the twin-lift configuration (xp|TL), and

multi-lift system (xp|ML). Note that the twin-lift system exhibits a decaying oscillation

over time, due to the effect of the drag force. On the oher hand, no significant oscillation

is observed when considering multi-lift systems. In addition, note that the gust load
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generates higher oscillations when considering the first gust, which shows that payload

dynamic depends on formation geometry.
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Figure 4.15: Comparison between the payload position when considering the twin-lift
and multi-lift configurations.

Figure 4.16 shows a comparison of the virtual constraint error in the twin-lift and

multi-lift configurations. Additional vehicle in the multi-lift configuration results in the

decrease of the disturbance force exerted to each one from the vehicles. The effect is that

the virtual constraint error is decreased in comparison with the twin-lift configuration.
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Figure 4.16: Comparison between the virtual constraints when considering the twin-lift
and multi-lift configurations.

Figure 4.17 shows the comparison from the rotor speed from the leader vehicle for the

twin-lift configuration (ωr,1|TL), and for the multi-lift configuration (ωr,1|ML). Note that

the rotor speed for both configurations is below the saturation region, as indicated by the

gray region. The multi-lift configuration allows one to reduce 2.37% from the rotor speed,

for the illustrated time-instant. The immediate advantage is a reduction from the required

power, as the rotor speed directly correlates with the energy consumption, thus increasing

the multi-lift flight time.
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FINAL REMARKS

The current technology readness level of UAVs allows one to use multirotor aerial vehicles

for applications in which the cost and complexity of conventional aviation are prohibitive.

However, due to the characteristics from the multirotor configuration, the applications are

limited to those ones involving small weight and short-range flights. Formation flight can

address the first limitation by collaboratively transporting heavy-payloads, i.e., distributing

the additional weight on multiple vehicles, such that the force exerted by each one is

within its operational range.

Formation flight also provides means for including redundancy, since a failure of an

individual UAV occurs, the failed vehicle can decouple from the formation, and the mission

can be continued. However, the design of such features require a robust computational

environment to evaluate the controller performance and stability before experimental tests

with prototypes. This type of tool allows one to collect data and analyze the controller in

different scenarios.

This present work introduces a methodology to investigate the dynamics of a multi-

lift UAV formation, by using the Euler-Lagrange formalism combined with Lagrange

multipliers for dealing with the geometric constraints. The result contribute to future

works involving designing controllers by providing a complete modeling for evaluating the

system dynamics for a formation with an arbitrary number of UAVs. A leader-follower

formation controller is investigated using virtual constraints to guide the UAVs in a

formation through the desired trajectory.

5.1 CONCLUSIONS

The strategy of using multi-lift systems offers advantages in comparison with the use of a

single high-lift vehicle such as a lower acquisition and operational costs of a smaller UAV.

The use of multiple vehicles is also more convenient to define a redundant configuration

to increase the mission robustness, in relation to failure events for an instance, because

the failed UAV can decouple from the formation and the mission can continue with the

remaining UAVs. In addition, the use of three or more vehicles can reduce the pendulum
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dynamics commonly verified in both single and twin-lift configurations. This reduction is

benefit since the periodic disturbance introduced by the pendulum motion may adverse

affect the system performance. The payload pendulum motion verified in both single-lift

and twin-lift configurations is introduced when the UAVs change their directions or due to

the wind gusts effects.

The obtained dynamic model for the multi-lift configuration is written in terms of an

arbitrary number of vehicles which allows one to investigate formations with any particular

aerial transportation configuration, such as the single-lift, twin-lift, and multi-lift. The

model is obtained by transforming a system of DAE into a system of ODE and involving

an index-reduction with a constraint stabilization procedure. The approach introduces an

extra-step of analyzing and tuning the stabilization parameters to obtain the constraints

satisfied within a specified tolerance.

The twin-lift and multi-lift configurations require a non-zero attitude from each UAV

to stabilize the system, due to the additional weight from the suspended payload. This

condition usually is very difficult to be achieved by a human remotely controlled formation.

However, the results herein show that a multi-lift configuration using a formation controller

using virtual constraints can be successfully employed to transport heavy-payloads. It

is assumed that each follower vehicle knows its relative distance from the leader, and

then, the followers can move to their designed position in the “V” formation geometry by

artificially introducing virtual constraint forces.

The formation controller reference model consists of disconnected UAVs moving without

the suspended payload. This design consideration in a multi-lift mission considers the

payload as a disturbance source. The result show that the payload pulls the UAVs close

to each other. This approximation also increases the formation virtual constraints errors,

and then a compensating control force is included to limit the pulling effect.

5.2 SUGGESTIONS FOR FUTURE WORK

The following suggestions are proposed for future works in this field.

� extend the modeling for rigid-body payloads and cable-suspension attachment off

the UAVs center of mass;

� design of a payload-based controller to reduce pendulum oscillations and keep the

formation geometry;

� design a controller to account for the propulsion-saturation and reorganize the

formation to improve the payload-weight distribution;

� implement formation fault-tolerant controllers to increase mission robustness.
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