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nonminimal vector coupling and the nondegenerate
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The problem of spin-0 and spin-1 bosons in the background of a general mixing of
minimal and nonminimal vector inversely linear potentials is explored in a unified
way in the context of the Duffin–Kemmer–Petiau theory. It is shown that spin-0 and
spin-1 bosons behave effectively in the same way. An orthogonality criterion is set
up and it is used to determine uniquely the set of solutions as well as to show that
even-parity solutions do not exist. © 2010 American Institute of Physics.
�doi:10.1063/1.3494292�

I. INTRODUCTION

The first-order Duffin–Kemmer–Petiau �DKP� formalism1–4 describes spin-0 and spin-1 par-
ticles and has been used to analyze relativistic interactions of spin-0 and spin-1 hadrons with
nuclei as an alternative to their conventional second-order Klein–Gordon and Proca counterparts.
The DKP formalism enjoys a richness of couplings not capable of being expressed in the Klein–
Gordon and Proca theories.5,6 Although the formalisms are equivalent in the case of minimally
coupled vector interactions,7–9 the DKP formalism opens news horizons as far as it allows other
kinds of couplings which are not possible in the Klein–Gordon and Proca theories. Nonminimal
vector potentials, added by other kinds of Lorentz structures, have already been used successfully
in a phenomenological context for describing the scattering of mesons by nuclei.10–17 Nonminimal
vector coupling with a quadratic potential,18 with a linear potential,19 and mixed space and time
components with a step potential20,21 and a linear potential22 have been explored in the literature.
See also Ref. 22 for a comprehensive list of references on other sorts of couplings and functional
forms for the potential functions. In Ref. 22 it was shown that when the space component of the
coupling is stronger than its time component, the linear potential, a sort of vector DKP oscillator,
can be used as a model for confining bosons.

The problem of a particle subject to an inversely linear potential in one spatial dimension
���x�−1�, known as the one-dimensional hydrogen atom, has received considerable attention in the
literature �for a rather comprehensive list of references, see Ref. 23�. This problem presents some
conundrums regarding the parities of the bound-state solutions. This problem was also analyzed
with the Klein–Gordon equation for a Lorentz vector coupling.24,25 By using the technique of
continuous dimensionality, the problem was approached with the Schrödinger, Klein–Gordon, and
Dirac equations.26 In this last work, it was concluded that the Klein–Gordon equation, with the
interacting potential considered as a time component of a vector, provides unacceptable solutions
while the Dirac equation has no bounded solutions at all. On the other hand, in a more recent
work,23 the authors use connection conditions for the eigenfunctions and their first derivatives
across the singularity of the potential and conclude that only the odd-parity solutions of the
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Schrödinger equation survive. The problem was also sketched for a Lorentz scalar potential in the
Dirac equation in Refs. 27 and 28, for a general mixing of vector and scalar couplings in the Dirac
equation29 and in the Klein–Gordon equation,30 and for a pseudoscalar coupling in the Dirac
equation.31

The main purpose of the present article is to report on the properties of the DKP theory with
time components of minimal and nonminimal vector inversely linear potentials for spin-0 and
spin-1 bosons in a unified way. This sort of mixing, beyond its potential physical applications,
shows to be a powerful tool to obtain a deeper insight about the nature of the DKP equation and
its solutions as far as it explores the differences between minimal and nonminimal couplings. The
problem is mapped into an exactly solvable Sturm–Liouville problem of a Schrödinger-like equa-
tion. The effective potential resulting from the mapping has the form of the Kratzer potential32 and
the closed form solution for the bound-states is uniquely determined by requiring orthonormaliz-
ability. The results imply that even-parity solutions to the one-dimensional DKP hydrogen atom do
not exist.

II. VECTOR COUPLINGS IN THE DKP EQUATION

The DKP equation for a free boson is given by4 �with units in which �=c=1�

�i���� − m�� = 0, �1�

where the matrices �� satisfy the algebra ������+������=g����+g���� and the metric tensor
is g��=diag�1,−1,−1,−1�. That algebra generates a set of 126 independent matrices whose irre-
ducible representations are a trivial representation, a five-dimensional representation describing
the spin-0 particles and a ten-dimensional representation associated to spin-1 particles. The
second-order Klein–Gordon and Proca equations are obtained when one selects the spin-0 and

spin-1 sectors of the DKP theory. A well-known conserved four-current is given by J�= �̄��� /2,

where the adjoint spinor �̄ is given by �̄=�†�0 with �0=2�0�0−1. The time component of this
current is not positive definite but it may be interpreted as a charge density. Then the normalization
condition �d	J0= 
1 can be expressed as

	 d	�̄�0� = 
 2, �2�

where the plus �minus� sign must be used for a positive �negative� charge.
With the introduction of vector interactions, the DKP equation can be written as

�i���� − m − ��A�
�1� − i�P,���A�

�2��� = 0, �3�

where P is a projection operator �P2= P and P†= P� in such a way that �̄�P ,���� behaves like a

vector under a Lorentz transformation as does �̄���. Once again ��J�=0.22 Notice that the vector
potential A�

�1� is minimally coupled but not A�
�2�. If the terms in the potentials A�

�1� and A�
�2� are

time-independent, one can write ��r� , t�=��r��exp�−iEt�, where E is the energy of the boson, in
such a way that the time-independent DKP equation becomes

��0�E − A0
�1�� + i�i��i + iAi

�1�� − �m + i�P,���A�
�2���� = 0. �4�

In this case, J�= �̄��� /2 does not depend on time, so that the spinor � describes a stationary
state. Note that the time-independent DKP equation is invariant under a simultaneous shift of E
and A0

�1�, such as in the Schrödinger equation, but the invariance does not maintain regarding E
and A0

�2�. It can be shown �see Ref. 22� that any two stationary states with distinct energies and
subject to the boundary conditions
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	 d	�i��̄��i���� = 0 �5�

are orthogonal in the sense that �d	�̄��0���=0 for E��E��. In addition, in view of �2� the spinors
�� and ��� are said to be orthonormal if

	 d	�̄��0��� = 
 2
E�E��
. �6�

The charge-conjugation operation changes the sign of the minimal interaction potential, i.e.,
changes the sign of A�

�1�. This can be accomplished by the transformation �→�c=C�=CK�,
where K denotes the complex conjugation and C is a unitary matrix, such that C��=−��C. The
matrix that satisfies this relation is C=exp�i
C��0�1. The phase factor exp�i
C� is equal to 
1,
thus E→−E. Note also that J�→−J�, as should be expected for a charge current. Meanwhile, C
anticommutes with �P ,��� and the charge-conjugation operation entails no change on A�

�2�. The
invariance of the nonminimal vector potential under charge-conjugation means that it does not
couple to the charge of the boson. In other words, A�

�2� does not distinguish particles from anti-
particles. Hence, whether one considers spin-0 or spin-1 bosons, this sort of interaction cannot
exhibit Klein’s paradox.

For the case of spin 0, we use the representation for the �� matrices given by33

�0 = 
 � 0̄

0̄T 0
�, �i = 
 0̃ �i

− �i
T 0

�, i = 1,2,3, �7�

where

� = 
0 1

1 0
�, �1 = 
− 1 0 0

0 0 0
� ,

�2 = 
0 − 1 0

0 0 0
�, �3 = 
0 0 − 1

0 0 0
� , �8�

0̄, 0̃, and 0 are 2�3, 2�2, and 3�3 zero matrices, respectively, while the superscript T desig-
nates matrix transposition. Here the projection operator can be written as5 P= �����−1� /3
=diag�1,0 ,0 ,0 ,0�. In this case P picks out the first component of the DKP spinor. The five-
component spinor can be written as �T= ��1 , . . . ,�5� in such a way that the time-independent DKP
equation for a boson constrained to move along the x-axis decomposes into


 d2

dx2 + k2��1 = 0,

�2 =
1

m
�E − A0

�1� + iA0
�2���1,

�3 =
i

m

d�1

dx
, �4 = �5 = 0, �9�

where

k2 = �E − A0
�1��2 − m2 + �A0

�2��2. �10�

Meanwhile,
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J0 =
E − A0

�1�

m
��1�2, J1 =

1

m
Im
�1

�d�1

dx
� . �11�

It is worthwhile to note that J0 becomes negative in regions of space where E�A0
�1� �a circum-

stance associated to Klein’s paradox� and that A�
�2� does not intervene explicitly in the current.

With spinors satisfying �5�, i.e.,

�
d�1�
�

dx
�1�� − �1�

�
d�1��

�

dx
��

x=xinf

x=xsup

= 0, �12�

where �xinf ,xsup� is the range of x, orthonormalization formula �6� becomes

	
−�

+�

dx

E� + E��

2
− A0

�1�

m
�1�

� �1�� = 
 
E�E��
�13�

regardless A�
�2�. Equation �13� is in agreement with the orthonormalization formula for the Klein-

Gordon theory in the presence of a minimally coupled potential.34 This is not surprising because,
after all, both DKP equation and Klein–Gordon equation are equivalent under minimal coupling.

For the case of spin 1, the �� matrices are35

�0 =

0 0̄ 0̄ 0̄

0̄T 0 I 0

0̄T I 0 0

0̄T 0 0 0
�, �i =


0 0̄ ei 0̄

0̄T 0 0 − isi

− ei
T 0 0 0

0̄T − isi 0 0
� , �14�

where si are the 3�3 spin-1 matrices �si� jk=−i�ijk, ei are the 1�3 matrices �ei�1j =
ij, and 0̄
= �0 0 0�, while I and 0 designate the 3�3 unit and zero matrices, respectively. In this repre-
sentation P=����−2=diag�1,1 ,1 ,1 ,0 ,0 ,0 ,0 ,0 ,0�, i.e., P projects out the four upper compo-
nents of the DKP spinor. With the spinor written as �T= ��1 , . . . ,�10�, and partitioned as

�I
�+� = 
�3

�4
�, �I

�−� = �5,

�II
�+� = 
�6

�7
�, �II

�−� = �2,

�III
�+� = 
 �10

− �9
�, �III

�−� = �1, �15�

the one-dimensional time-independent DKP equation can be expressed as


 d2

dx2 + k2��I
��� = 0,

�II
��� =

1

m
�E − A0

�1� + i�A0
�2���I

���,
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�III
��� =

i

m

d�I
���

dx
, �8 = 0, �16�

where k is again given by �10�, and � is equal to + or �. Now the components of the four-current
are

J0 =
E − A0

�1�

m
�
�

��I
����2, J1 =

1

m
Im�

�

�I
���†d�I

���

dx
, �17�

and orthonormalization formula �6� takes the form

	
−�

+�

dx

E� + E��

2
− A0

�1�

m �
�

�I�
���†�I��

��� = 
 
E�E��
. �18�

Just as for scalar bosons, J0�0 for E�A0
�1� and A�

�2� does not appear in the current. Similarly, A�
�2�

do not manifest explicitly in the orthonormalization formula. The prescribed orthonormalization
expression is well-founded provided

��
�


d�I�
���†

dx
�I��

��� − �I�
���†

d�I��
���

dx
��

x=xinf

x=xsup

= 0. �19�

Comparison between the two sets of formulas for the spin-0 and spin-1 sectors of the DKP
theory evidences that vector bosons and scalar bosons behave in a similar way.

III. THE INVERSELY LINEAR POTENTIAL

Now we are in a position to use the DKP equation with specific forms for vector interactions.
Let us focus our attention on time components of minimal and nonminimal vector potentials in the
inversely linear form, viz.,

A0
�1� = −

g1

�x�
, A0

�2� = −
g2

�x�
, �20�

where the coupling constants and g1 and g2 are real parameters. In this case the first equations of
�9� and �16� transmute into

−
1

2m

d2�

dx2 + Veff� = Eeff� , �21�

where � is equal to �1 for the scalar sector, and to �I
��� for the vector sector, with

Veff = −
q

�x�
+

�

x2 , Eeff =
E2 − m2

2m
�22�

and

q =
E

m
g1, � = −

g1
2 + g2

2

2m
. �23�

Therefore, one has to search for bounded solutions in an effective Kratzer-like potential for g1

�0 or in an inversely quadratic potential for the case of a pure nonminimal vector potential �g1

=0�. Inasmuch as the origin is a singular point of �21�, one could expect the existence of singular
solutions for �. In all the circumstances the effective potential presents a singularity at the origin
given by −1 /x2. It is worthwhile to note at this point that the singularity −1 /x2 will never expose
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the particle to collapse to the center36 on the condition that � is greater than the critical value,

�c = −
1

8m
. �24�

In the following, this necessary condition for the existence of bound-state solutions will be ob-
tained in an alternative way. Note that the effective potential could bind the particle only if Eeff

�0, corresponding to energies in the range �E��m.
The Schrödinger equation with the Kratzer-like potential is an exactly solvable problem and

its solution, for an attractive inversely linear term plus a repulsive inverse-square term in the
potential, can be found on textbooks.36–38 Since we need solutions involving either a repulsive or
an attractive term in the inversely linear potential plus an attractive inversely quadratic potential,
the calculation including this generalization is presented. Since Veff is invariant under reflection
through the origin �x→−x�, eigenfunctions with well-defined parities can be built. Thus, one can
concentrate attention on the positive half-line and impose boundary conditions on � at x=0 and
x=�. Normalizability requires ����=0 and the boundary condition at the origin will come into
the existence by demanding orthogonality. As x→0, when the term 1 /x2 dominates, the solution
behaves as xs, where s is a solution of the algebraic equation,

s�s − 1� − 2m� = 0, �25�

viz.,

s =
1

2
�1 
 �1 + 8m�� . �26�

Due to the twofold possibility of signs for s, it seems the solution of our problem cannot be
uniquely determined. However, the sine qua non condition for orthogonality as dictated by �12�
and �19� can be recast into a form similar to that one of the nonrelativistic case,23,39

lim
x→0


��
�
d���

dx
−

d��
�

dx
���� = 0, �27�

and there results that the allowed values for s are restricted to Re�s��1 /2. Therefore, ���c and
the minus sign in �26� must be ruled out. That is to say that s is a real quantity in the open interval
with 1 /2�s�1, or equivalently 0�g1

2+g2
2�1 /4. Under those conditions, the singular possibility

for � is kept away and ���2 / �x� behaves better than x−1 at the origin so that the square-integrability
of �, even if g1=0, is ensured. This tells us that the behavior of � at very small x implies into the
homogeneous Dirichlet condition ��0�=0. We shall now distinguish the cases g1=0 and g1�0.

A. g1=0

Defining

z = 2�− 2mEeffx , �28�

where the quantity under the radical sign is either positive or negative, one obtains a special case
of Whittakers differential equation,40

�� + 
−
1

4
−

2m�

z2 �� = 0. �29�

The prime denotes differentiation with respect to z. The normalizable asymptotic form of the
solution as z→� is e−z/2 with z�0. Notice that this asymptotic behavior rules out the possibility
Eeff�0, as has been pointed out already based on qualitative arguments. The exact solution can
now be written as
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� = zsw�z�e−z/2, �30�

where w is a regular solution of the confluent hypergeometric equation �Kummer’s equation�,40

zw� + �b − z�w� − aw = 0, �31�

with the definitions

a = s, b = 2s . �32�

The general solution of �31� is expressed in terms of the confluent hypergeometric functions
�Kummer’s functions� 1F1�a ,b ,z� �or M�a ,b ,z�� and 2F0�a ,1+a−b ,−1 /z� �or U�a ,b ,z��,

w = A 1F1�a,b,z� + Bz−a
2F0
a,1 + a − b,−

1

z
�, b � − ñ , �33�

where ñ is a non-negative integer. Due to the singularity of the second term at z=0, only choosing
B=0 gives a behavior at the origin which can lead to square-integrable solutions. Furthermore, the
requirement of finiteness for � at z=� implies that the remaining confluent hypergeometric
function �1F1�a ,b ,z�� should be a polynomial. This is because 1F1�a ,b ,z� goes as ez as z goes to
infinity unless the series breaks off. This demands that a=−n, where n is also a non-negative
integer. This requirement combined with �32� implies that the existence of bound-state solutions
for pure inversely quadratic potentials is out of question.

B. g1Å0

As for g1�0, it is convenient to define the dimensionless quantity �,

� = q�−
m

2Eeff
, �34�

and using �21�–�23�, with z defined in �28�, one obtains the complete form for Whittaker’s
equation,40

�� + 
−
1

4
+

�

z
−

2m�

z2 �� = 0. �35�

Because ��0, the normalizable asymptotic form of the solution as z→� is again given by e−z/2

and Eeff�0, i.e., �E��m. The solution for all z can be again expressed as in �30�, but now w is the
regular solution of Kummer’s equation with

a = s − �, b = 2s . �36�

Then w is expressed as 1F1�a ,b ,z� and in order to furnish normalizable �, the confluent hyper-
geometric function must be a polynomial. This demands that a=−n, where n is a non-negative
integer in such a way that 1F1�a ,b ,z� is proportional to the associated Laguerre polynomial
Ln

�b−1��z�, a polynomial of degree n. This requirement, combined with �36�, also implies into
quantized energies,

E = ��g1�m�1 + � g1

n +
1

2
+�1

4
− �g1

2 + g2
2��

2

�
−1/2

, n = 0,1,2, . . . , �37�

where �, the sign function, is there because Eg1�0 due to the fact that �=n+s�0 �q�0�.
On the half-line, � is given by
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��z� = Nzse−z/2Ln
�2s−1��z�, n = 0,1,2, . . . , �38�

where N is a constant related to the normalization. Eigenfunctions on the whole line with well-
defined parities can be built. Those eigenfunctions can be constructed by taking symmetric and
antisymmetric linear combinations of �. These new eigenfunctions possess the same eigenenergy,
then, in principle, there is a twofold degeneracy. Nevertheless, the matter is a little more compli-
cated because the effective potential presents a singularity. Since � vanishes at the origin, the
symmetric combination of � presents a discontinuous first derivative at the origin. In fact, � is not
differentiable at the origin �recall that near the origin, � behaves like xs with 1 /2�s�1�. In the
specific case under consideration, the effect of the singularity of the potential on ��=d� /dx can
be evaluated by integrating �21� from −
 to +
 and taking the limit 
→0. The connection
condition among ���+
� and ���−
� can be summarized as

���+ 
� − ���− 
� = 2m	
−


+


dxVeff� . �39�

Substitution of �38� into �39� allows us to conclude that only the odd-parity combination furnishes
a consistent result. This happens because the right-hand side of �39� vanishes for an odd eigen-
function, as it should do. For an even eigenfunction, though, the right-hand side of �39� should
equal −2���−
� for arbitrary g1 and g2, but it does not. Therefore, we are forced to conclude that
the � must be an odd-parity function. As an unavoidable conclusion, the bound-state solutions are
nondegenerate.

IV. CONCLUSIONS

We succeed in searching for exact DKP bounded solutions for massive particles by consider-
ing a mixing of minimal and nonminimal vector inversely linear potentials for spin-0 and spin-1
bosons in a unified way. The solution of the DKP-Coulomb problem was uniquely determined by
requiring orthonormalizability. As a bonus, the appropriate boundary conditions on � were pro-
claimed. A pure nonminimal coupling does not hold bound-states. For g1�0, there is an infinite
set of bound-state solutions either for particles �in the range 0�E�m� or for antiparticles �in the
range −m�E�0�. The spectrum does not distinguish the sign of g2, but E goes to −E as g1→
−g1 as it has already been anticipated by the charge-conjugate transformation arguments in Sec. II.
No matter the signs of the potentials or how strong they are, the particle and antiparticle levels
neither meet nor dive into the continuum. Thus, there is no room for the production of particle-
antiparticle pairs. This all means that Klein’s paradox never manifests. The regime of weak
coupling �0�g1�1 /2 and �g2��1 /2� runs in the nonrelativistic limit, viz., E−m�−mg1

2 / �2�n
+1�2�. This nonrelativistic limit, where only the g1-dependence survives, corresponds to the en-
ergy levels for particles in a nonrelativistic one-dimensional Coulomb potential.23 Invariably, the
spectrum is nondegenerate and the eigenfunction behaves as an odd-parity function.
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