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We investigate the radiation emitted from a scalar source in circular orbit around a Reissner-Nordström

black hole. Particle and energy emission rates are analytically calculated in the low- and high-frequency

regimes and shown to be in full agreement with a numerical calculation. A brief comment connecting the

present work with a recent discussion on the cosmic censorship conjecture is included at the end.
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I. INTRODUCTION

The mounting evidences favoring the existence of black
holes and the perception that they are usually surrounded
by accretion disks has raised much interest in the study of
the radiation emitted from their vicinities. In this context
Misner and collaborators [1,2] initiated the so-called gravi-
tational synchrotron radiation program in the 1970’s,
where classical radiation emitted from charges in motion
around black holes was analyzed. This was followed up by
a number of related investigations in different situations of
interest up to these days using classical and quantum
approaches (see, e.g., Ref. [3] and references therein).

In this paper we analyze the scalar radiation of Klein-
Gordon particles emitted from sources in geodesic orbit
around Reissner-Nordström black holes. We work in the
context of standard QFTCS (see Refs. [4,5] for compre-
hensive accounts). As far as the emitted particles have
small angular momentum and energy in comparison to
the black hole mass, no significant backreaction effects
are expected and, thus, the background spacetime can be
regarded as fixed. Because of the difficulty to express the
solution of some differential equations, which we deal with
in terms of known special functions, our computations are
performed (i) numerically but without further approxima-
tions and (ii) analytically but restricted to the low- and
high-frequency regimes. The paper is organized as follows:
In Sec. II, we present the general formulas for the emission
rate and radiated power of scalar particles from the mono-
pole source in circular orbit around the Reissner-
Nordström black hole. In Sec. III, we present analytic
results in the low- and high-energy regimes. In Sec. IV,
the analytic results obtained in the previous section are
plotted against a full numerical calculation and shown to
agree. We also compute the amount of the emitted radia-
tion, which reaches asymptotic observers rather than being

absorbed by the hole and the angular distribution of the
emitted radiation with respect to the orbit plane. In Sec. V,
we establish a connection between the particles generated
by the present mechanism and the ones considered in
Refs. [6,7], where the validity of the cosmic censorship
conjecture was discussed. Section VI is dedicated to our
final remarks. We assume natural units c ¼ G ¼ @ ¼ 1
unless stated otherwise.

II. EMISSION RATES AND RADIATED POWERS

The line element of a Reissner-Nordström black hole
with massM and electric charge jQj � M can be written as
[8]

ds2 ¼ fðrÞdt2 � fðrÞ�1dr2 � r2ðd�2 þ sin2�d’2Þ;
(2.1)

where

fðrÞ � ð1� rþ=rÞð1� r�=rÞ (2.2)

and r� � M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p
. Outside the outer event hori-

zon, i.e., for r > rþ, we have a global timelike isometry
generated by the Killing field @t.
Now we introduce a free massless scalar field � ¼

�ðx�Þ satisfying h� ¼ 0. The corresponding field opera-

tor can be expanded in terms of creation a�y!lm and annihi-

lation a�!lm operators as

�̂ðx�Þ ¼ X!
�¼ 

X1
l¼0

Xl
m¼�l

Z 1
0

d!½u�!lmðx�Þa�!lm þ H:c:�;

(2.3)

where the normal modes are written as

u�!lm ¼
ffiffiffiffi
!

�

r
c �

!lðrÞ
r

Ylmð�; ’Þe�i!t (2.4)

and are assumed to be orthonormalized according to the
Klein-Gordon inner product [4]. Here, ! � 0 and l � 0,
m 2 ½�l; l� are frequency and angular momentum quan-
tum numbers, respectively, and � ¼ ð!Þ labels ingoing
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(outgoing) modes. Ylmð�; ’Þ are the usual spherical har-
monics. c !lðrÞ and c!!lðrÞ are associated with purely

incoming modes from the past null infinity J� and out-
going from the past white-hole horizon H�, respectively.
c �

!l satisfies�
�fðrÞ d

dr

�
fðrÞ d

dr

�
þ VeffðrÞ

�
c �

!lðrÞ ¼ !2c �
!lðrÞ;

(2.5)

where

VeffðrÞ ¼
�
1� 2M

r
þQ2

r2

��
2M

r3
� 2Q2

r4
þ lðlþ 1Þ

r2

�
(2.6)

is the effective scattering potential (see, e.g., Ref. [9] for
more detail). A plot of the scattering potential can be found
in Fig. 1. The larger the l the larger the Veff because of the
centrifugal barrier. By performing the coordinate trans-
formation

x � yþ ðyþÞ
2 lnjy� yþj � ðy�Þ2 lnjy� y�j

yþ � y�
; (2.7)

where y � r=2M and y� � r�=2M, Eq. (2.5) can be cast
in the form

ð�d2=dx2 þ 4M2Veff½rðxÞ�Þc �
!lðxÞ ¼ 4M2!2c �

!lðxÞ:
(2.8)

Accordingly, the creation and annihilation operators satisfy
the simple commutation relations

½a�!lm; a
�0y
!0l0m0 � ¼ ���0�ll0�mm0�ð!�!0Þ; (2.9)

where the state j0i, defined by a�!lmj0i ¼ 0 for every �, !,

l, and m, is denominated Boulware vacuum. Close (x < 0,
jxj � 1) to and far away (x� 1) from the horizon we
have

c !lðxÞ �
1

2!

�
T  

!le
�2iM!x ðx < 0; jxj � 1Þ

2ð�iÞlþ1M!xhð1Þl ð2M!xÞ	 þ 2ilþ1R 
!lM!xhð1Þl ð2M!xÞ ðx� 1Þ (2.10)

and

c!!lðxÞ�
1

2!

�
e2iM!xþR!

!le
�2iM!x ðx<0; jxj� 1Þ

2ilþ1T !
!lM!xhð1Þl ð2M!xÞ ðx� 1Þ :

(2.11)

Here, jR�
!lj2 and jT �

!lj2 are the reflection and transmis-
sion coefficients, respectively, satisfying the usual proba-
bility conservation equation: jR�

!lj2 þ jT �
!lj2 ¼ 1 and

hð1Þl ð2M!xÞ is the spherical Hankel function. Note that
hð1Þl ðxÞ � ð�iÞlþ1 expðixÞ=x for jxj � 1.

Now, let us consider a monopole

jðx�Þ ¼ qffiffiffiffiffiffiffi�gp
u0

�ðr� RSÞ�ð�� �=2Þ�ð’��tÞ (2.12)

describing a scalar source in uniform circular motion at the
equatorial plane of the Reissner-Nordström black hole, i.e.,
� ¼ �=2, with r ¼ RS and angular velocity � �
d�=dt ¼ const> 0 as defined by asymptotic static ob-
servers. Here, g � detðg��Þ and

u�ð�; RSÞ ¼ ðfðRSÞ � R2
S�

2Þ�1=2ð1; 0; 0;�Þ (2.13)

is the four velocity of the source. By assuming that the
source is free of interactions other than the gravitational

one, we obtain that

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

S �Q2=R4
S

q
; (2.14)

where

RS > rph ¼ ð3Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 � 8Q2

q
Þ=2: (2.15)

Here, rph is the radius of the null circular geodesic and

defines the innermost limit to timelike geodesic circular
orbits. We note, moreover, that we have normalized the
source jðx�Þ in Eq. (2.12) by requiring that

R
d�jðx�Þ ¼

q ¼ const, where d� is the proper three-volume element
orthogonal to u�.
Next, let us minimally couple the source to the field

through the interaction action

Ŝ I ¼
Z

d4x
ffiffiffiffiffiffiffi�gp

j�̂: (2.16)

From this we can interpret q in Eq. (2.12) as a coupling
constant between source and field. Then the emission
amplitude at the tree level of one scalar particle with
quantum numbers ð�;!; l; mÞ into the Boulware vacuum
is given by
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FIG. 1 (color online). The effective scattering potential for
jQj=M ¼ 0, 0.5 and 0.9 is plotted for l ¼ 10 as a function of
r=rþ. The larger the jQj=M the smaller the Veffðr=rþÞ.
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A em
�!lm ¼ h�!lmjiŜIj0i ¼ i

Z
d4x

ffiffiffiffiffiffiffi�gp
jðx�Þu�	!lm:

(2.17)

Note that for sources in constant circular motion the am-
plitude Aem

�!lm is proportional to �ð!�!0Þ, where we

have defined !0 � m�. Hence, the frequency of the emit-
ted particles is constrained by the relation ! ¼ !0. In
particular, since �> 0, no waves with m � 0 are emitted.
The emission rate ��!0l and corresponding emitted power

W�!0l of particles with quantum numbers ð�;!0; lÞ (l � 1)

are given by

��!0l ¼
Z þ1
0

d!jAem
�!lmj2=T

¼ 2q2!0ðfðRSÞ � R2
S�

2Þjc �
!0l
ðRSÞ=RSj2


 jYlmð�=2; 0Þj2 (2.18)

and

W�!0l ¼
Z þ1
0

d!!jAem
�!lmj2=T

¼ 2q2!2
0ðfðRSÞ � R2

S�
2Þjc �

!0l
ðRSÞ=RSj2


 jYlmð�=2; 0Þj2; (2.19)

respectively, where T ¼ 2��ð0Þ is the total time as mea-
sured by asymptotic observers [10]. Note also that
Ylmð�=2; 0Þ ¼ 0 if lþm is odd and

jYlmð�=2; 0Þj2 ¼ 2lþ 1

4�

ðlþm� 1Þ!!ðl�m� 1Þ!!
ðlþmÞ!!ðl�mÞ!!

(2.20)

if lþm is even [11]. We have defined n!! � nðn�
2Þ � � � 1 if n is odd, n!! � nðn� 2Þ � � � 2 if n is even, and
ð�1Þ!! � 1. Moreover, note that if we had chosen the
Unruh or Hartle-Hawking vacua rather than the Boulware
one, then Eqs. (2.18) and (2.19) would be associated with
the net emitted radiation since the absorption and stimu-
lated emission rates (which are induced by the presence of
thermal fluxes) are the same.

The total emission rate �total and radiated power W total

are obtained by summing on the quantum numbers �, l, m
in Eqs. (2.18) and (2.19), accordingly. The total particle
and energy rates which escape to infinity are

�obs ¼X1
l¼1

Xl
m¼1
ðjT !

!0l
j2�!!0l þ jR 

!0l
j2� !0lÞ (2.21)

and

Wobs ¼X1
l¼1

Xl
m¼1
ðjT !

!0l
j2W!!0l þ jR 

!0l
j2W !0lÞ; (2.22)

respectively. Here, we note that T  
!0l
¼ T !

!0l
. This guar-

antees that jR 
!0l
j ¼ jR!

!0l
j. Note, however, thatR 

!0l
and

R!
!0l

will in general differ by a phase (in contrast to T  
!0l

and T !
!0l

).

The power angular distribution per unit of solid angle,
�s, at fixed frequency !0 is well estimated by [2]

dW!0lð�;�Þ
d�s

¼ X!
�¼ 

W�!0ljYllð�;�Þj2 (2.23)

for !0 ¼ m� (m ¼ l) and

jYllð�;�Þj2 ¼ ð2lþ 1Þ½ð2l� 1Þ!!�2
4�ð2lÞ! sin2l�:

III. LOW- AND HIGH-ENERGY SOLUTIONS

Now, in order to calculate the physical observables given
by Eqs. (2.18), (2.19), (2.21), and (2.22), we must work out
the functions c �

!lðrÞ. We exhibit approximate low- and

high-frequency solutions, which are going to be used in
the next section in conjunction with a full numerical cal-
culation designed to cover the whole frequency range.

A. Low-energy solutions

The low-frequency solution for c �
!lðrÞ has been already

worked out in Ref. [9] and can be cast (up to an arbitrary
phase) in the form

c!!lðrÞ ¼
�4iMyþyQl½zðyÞ�

yþ � y�
(3.1)

and

c !lðrÞ ¼
22lþ1ð�iÞlþ1ðl!Þ3Mlþ1ðyþ � y�Þl!lyPl½zðyÞ�

ð2lþ 1Þ!ð2lÞ! ;

(3.2)

where

zðyÞ � 2y� 1

yþ � y�
: (3.3)

One can also obtain

T !
!l ¼

22lþ2ð�iÞlþ1yþðyþ � y�Þlðl!Þ3ðM!Þlþ1
ð2lþ 1Þ!ð2lÞ! (3.4)

in the low-frequency regime. We recall that T  
!l ¼ T !

!l.
Equation (3.4) was used in Ref. [6] to calculate the proba-
bility jT !

!lj2 of a wave to tunnel into the black hole
assuming a fixed Reissner-Nordström effective scattering
potential. The larger the black hole mass and charge in
comparison with the wave energy and angular momentum
the better the static potential approximation. Here, we
consider large enough black holes in order to neglect
spacetime backreaction effects.
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B. High-energy solutions

A good approximation of c �
!lðrÞ for high energies can

be obtained by using the WKB approximation (see, e.g.,
Ref. [12]). To do so, it is worth noting that Eq. (2.8)
resembles the one-dimensional Schrödinger equation. By
considering the effective energy !2 lower than the peak of

VeffðxÞ, one has two distinct situations. The first one is
characterized by VeffðxÞ<!2, which is valid in the inter-
vals ð�1; x�Þ and ðxþ;þ1Þ, where x� (x� < xþ) stands
for the classical turning points, which satisfy Veffðx�Þ ¼
!2. Then, in the region where k�1!l dðlnk!lÞ=dx� 1 is

satisfied, we write down

c !lðxÞ �
A !ffiffiffiffiffiffiffi
k!l

p
�
T  

!le
�ið�!l��=4Þ ðx < 0; jxj � 1Þ

e�ið	!lþ�=4Þ þR 
!le

ið	!lþ�=4Þ ðx� 1Þ (3.5)

and

c!!lðxÞ �
A!!ffiffiffiffiffiffiffi
k!l

p
�
R!

!le
�ið�!l��=4Þ þ eið�!l��=4Þ ðx < 0; jxj � 1Þ

T !
!le

ið	!lþ�=4Þ ðx� 1Þ ; (3.6)

where we have defined

�!lðxÞ �
Z x

x�
k!lðx0Þdx0

and

	!lðxÞ �
Z x

xþ
k!lðx0Þdx0

with k!lðxÞ � 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � VeffðxÞ

p
. Here, the normalization

constants A�
! are determined by an asymptotic fitting be-

tween Eqs. (2.10), (2.11), (3.5), and (3.6), respectively. As a
result, we obtain jA ! j ¼ jA!! j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=2!

p
.

Now, we must analyze the case VeffðxÞ>!2, which
occurs in the interval ðx�; xþÞ. In this region, c �

!lðrÞ can
be cast in the form

c !lðxÞ � �i
A !ffiffiffiffiffiffiffiffi

!l
p e��!l (3.7)

and

c!!lðxÞ � �i
A!!ffiffiffiffiffiffiffiffi

!l
p eð�!lþ�!lÞ (3.8)

assuming 
�1!l dðln
!lÞ=dx� 1, where we have defined

�!lðxÞ �
Z xþ

x

!lðx0Þdx0

and

�!l � �
Z xþ

x�

!lðxÞdx

with 
!lðxÞ � 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VeffðxÞ �!2

p
. The quantity �!l is the

well-known barrier factor and is associated with the trans-
mission coefficient by

jT �
!lj2 � e2�!l : (3.9)

As a consequence, jR�
!lj2 � 1� e2�!l .

C. Numerical calculation

Now, in order to plot particle and energy emission rates
in the whole frequency range, a numerical calculation

procedure is in order. Briefly speaking the numerical
method consists of solving Eq. (2.8) for the left- and
right-moving radial functions c !0l

ðrÞ and c!!0l
ðrÞ with

asymptotic boundary conditions compatible with Eqs.
(2.10) and (2.11), respectively. We refer to Ref. [13] for
more detail.

IV. RESULTS

In Figs. 2 and 3 we show the particle emission rates for
l ¼ m ¼ 5, and � ¼ and! , respectively. We also dis-
play a zoom for M�� 1. We can see the good approxi-
mation provided by our low-energy formulas, which are
applicable when the source is in circular orbits far away
from the horizon. In the same token, the results obtained
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FIG. 2 (color online). The numerical result for � !0l with l ¼
m ¼ 5 is shown assuming a black hole with jQj=M ¼ 0:5. The
internal box is a zoom of the �M� 1 region and shows the
excellent agreement obtained with our low-energy formulas. The
numerical and low-energy results are superimposed and cannot
be distinguished with the present resolution. We also plot in this
region the result obtained with the WKB method to make it clear
that it captures the qualitative behavior in the low-energy region
as well. Finally, we emphasize the very nice quantitative ap-
proximation provided by the WKB method in the RS � rph
region (�M � 0:2).
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using the WKB approximation reproduce very well the
curves for RS � rph, i.e., when the source is close to the

innermost timelike geodesic circular orbit. This is the
region where most emitted particles are high-energy
ones. This is also convenient to notice that the WKB
approximation reproduces most qualitative aspects of the
exact numerical calculation. The WKB approximation is
specially good for large angular momentum quantum num-
bers l, as expected. This is very handy when dealing with

large l solutions, since the WKB method requires com-
paratively modest computational resources in contrast to
the full numerical procedure. In Figs. 4 and 5, we analyze
in more detail the low- and high-energy particle emission
regions by using the proper formulas, namely, Eq. (2.18)
with Eqs. (3.1), (3.2), (3.7), and (3.8), respectively. We note
that � !0l is typically larger than �!!0l except for RS �
rph and that the larger the l the smaller the ��!0l. (For a

fixed l the larger the m the larger the contribution provided
that lþm is even.) Moreover, the presence of charge in the
black hole tends to damp ��!0l. In Figs. 6 and 7, we

analyze in more detail the radiated power in the regions,
where the source is far away from the horizon and close to
the innermost timelike geodesic orbit by using Eq. (2.19)
with Eqs. (3.1), (3.2), (3.7), and (3.8), respectively. Far
away from the hole the leading contribution to the power
comes from the mode with l ¼ m ¼ 1, while for RS � rph
this will depend on the source angular velocity �. In
Figs. 8 and 9, we plot the particle emission rate and
corresponding power, which reach asymptotic observers
for jQj=M ¼ 0:5, respectively. It is worth noting that for
RS � rph about half of the emitted particles are absorbed

by the hole. The WKB and the low-energy approximations
are in nice agreement with the numerical results. In Fig. 10,
we plot the total power emitted as a function of the angular
momentum quantum number l for fixed �: W total

� �P
l
m¼1 W�!0l. Note that large l’s are excited for RS � rph.

Besides, both modes � ¼ and ! contribute approxi-
mately the same (in agreement with the analysis above).
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results for �M� 1 and (ii) the WKB method for RS � rph
(�M � 0:2).
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frequency regime in contrast to what we see in the high-frequency one.
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Finally, in Figs. 11 and 12 we examine the power angular
distribution per unit of solid angle (2.23) with respect to the
orbital plane when the source is far away and close to the
most internal circular geodesic, respectively. We see that
most radiated power is beamed into a narrow angle interval
around the orbital plane when RS � rph, which is a typical

feature of the synchrotron radiation.

V. CONNECTION WITH THE COSMIC
CENSORSHIP CONJECTURE

Recently, [6,7] it was investigated whether or not a
scalar particle with small energy but large enough angular
momentum could tunnel through the gravitational scatter-
ing potential of a nearly extreme macroscopic Reissner-
Nordström black hole jQj=M & 1, whereby it would ac-
quire enough angular momentum to overspin, Q2 þ
ðJ=MÞ2 >M2, and therefore challenge the cosmic censor-
ship conjecture [14] (see also Refs. [15–17] for compre-
hensive accounts and references therein). The correct
angular momentum and energy range that these scalar
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particles must have depend on the black hole parameters.
Because black holes with mass M, charge Q, and angular
momentum J satisfy M2 � Q2 þ J2=M2, the larger the
mass M is the larger the angular momentum quantum
number l of the ingoing particle must be. Accordingly,
the particle energy range must be chosen in such a way
that the inequality above is violated when the particle
tunnels into the hole. A scalar particle with l ¼ 413 and
frequency in the range !0 & 4
 10�5 absorbed by a
charged black hole withM ¼ 100 and jQj ¼ M� ewould
be in principle enough to overspin it [6]. In order to
determine in what circular orbits our scalar source should
lie in order to produce such low-energy particles we must

recall that !0 ¼ m�. By choosing m ¼ l in order to max-
imize the emission rate, we obtain that the angular velocity
of the source should satisfy� & 1=ð107MÞ. Obviously, by
choosing some other m, a different � range would be
obtained accordingly. In Fig. 13, we plot the emission
rate � !0l of ingoing particles produced by such a source

in the above � range. Whatever is the final verdict for this
mechanism given by some complete quantum gravity cal-
culation, this is remarkable that there is no a priori com-
pelling reason to preclude the formation of naked
singularities in the quantum realm. It is largely believed
that quantum gravity should be able to unveil the physical
structure of these ‘‘entities’’ making them nonsingular [18]
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and recovering the spacetime predictability. The general-
ized second law of thermodynamics could still be pre-
served if the initial entropy of the black hole were
carried away by the degrees of freedom of some final
debris assuming that naked singularities are unstable.

VI. FINAL REMARKS

We have considered the scalar radiation emitted from a
monopole in circular geodesic orbits around a charged
black hole. Emission rates and radiated powers were cal-
culated using exact numerical and approximate analytical
calculations, and shown to be in excellent agreement with
each other in the proper regions. The net radiation which
reaches asymptotic observers was also investigated and
shown to decrease up to 50% when the source is close to
the innermost geodesic circular orbit. The radiation angu-
lar distribution with respect to the orbit plane was also
calculated and shown to be much sharper when the source
is in relativistic motion. Eventually, a brief discussion
about how the present particle production mechanism can
be used to generate the ingoing modes considered in
Refs. [6,7] was presented. The fermionic modes considered
in Refs. [19,20] can be produced in a similar way.
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