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ABSTRACT 
Background: Uterine leiomyomas (UL) are the most common benign tumors affecting 

between 25-30% of women in reproductive age. Although little is known about its etiology, 

these tumors represent a major problem in public health being the main indication for 

hysterectomy. About 40-50% have nonrandom cytogenetic abnormalities, thus half of these 

tumors may have submicroscopic alterations, including copy number alterations (CNAs). 

Global gene expression studies have shown genes that act in proliferation and cell cycle 

process, retinoic acid, TGF-beta and IGF-1 signaling in response to estrogen and 

progesterone. However, few genes mapped at CNVs regions were directly associated with the 

UL development. In this study, we have used an integrative genomic and transcriptomic 

profiling to elucidate mechanisms and candidate genes associated with ULs. 

Methodology/Principal Findings: CGH array and gene expression microarrays were applied 

in 51 ULs obtained from 34 patients. JISTIC was used to classify genes mapped at gains and 

losses genomic regions. Differentially expressed genes were identified by SAM statistical 

test. The integrative analysis, using CONEXIC algorithm, revealed 75 modulators. In silico

functional analysis (Ingenuity Pathways Analysis) of top 30 modulators (P value <0.01 and 

highest scores) revealed that most of them were associated with cell cycle and cell 

proliferation. CALCRL, COL3A1, FGFR1, HSPB7, GPR4, IGFBP5, RHOH, and TNS1 genes 

were significantly associated with canonical pathways as drug targets. In addition, COL3A1, 

FGFR1 and IGFBP5 genes could be potential therapeutic targets. 

Conclusions/Significance: The findings of this study allowed to describe new CNAs regions, 

and also confirmed the involvement of others CNVs already described in ULs. The strategy of 

integrative genomic and transcriptomic data analysis revealed potential molecular markers 

that could be used on treatment of ULs, a common and poorly understood disease. 
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INTRODUCTION 

Uterine Leiomyomas (ULs) are the most common benign tumors of reproductive age 

affecting 25-30% of women [1]. The ULs are smooth muscle tumors, often multiple tumors 

are found in the same uterus [2]. Although they are extremely common and represent an 

important public health problem, the biology of these tumors still remains unexplained. The 

majority of tumors are asymptomatic which only one fourth of individuals have clinical 

symptoms such as pelvic pain, abnormal bleeding, infertility and pregnancy complications 

[3]. Estrogen and progesterone are the most critical regulators of fibroid growth [4, 5]. In 

addition, growth factors [6], deregulation of microRNAs (miRNAs) [7], shortening of 

telomeres [8], excessive production of disorganized extracellular matrix [6, 9], genomic 

regions with loss of heterozygosity [10] and recurrent chromosomal aberrations [for review 

11] have also been suggested to contribute to the growth of fibroids. 

Around 50% of ULs harbor chromosomal rearrangements involving a small number of 

nonrandom chromosomal regions [for review 12]. Gene expression profile studies revealed 

mainly genes involved with cell proliferation, cell cycle, differentiation and extracellular 

matrix production [for review 13]. However, few studies have associated copy number 

alterations (CNAs) with deregulated gene expression in ULs [14, 15, 16]; these studies having 

used indirect correlation analysis. 

Identifying genes as drivers (modulators) of tumorigenesis is a crucial challenge. DNA 

copy number alteration is the one of several events that can regulate gene expression [17]. 

Recently, studies using integrative analysis of genomic and transcriptomic data of cancer have 

revealed genes mapped at CNAs regions with an aberrant gene expression [18, 19]. These 

events could be underlying mechanisms of disease evolution and reveal new potential 

candidates for therapeutic intervention [20]. 
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Thus, these findings prompt us to investigate the genomic and transcriptomic profiling 

in ULs using CONEXIC, an algorithm recently described [17]. In addition, functional 

analysis of networks and canonical pathways of modulators was applied to uncover molecular 

pathways involving in ULs pathogenesis that can be useful to select molecular markers and 

define target therapies. 

MATERIAL AND METHODS 

Tissue sample collection. Fifty-one fresh ULs samples were collected from 34 patients 

and stored at -80°C. These samples were collected from patients that undergone to 

hysterectomy procedure at the Department of Gynecology and Obstetrics, School of 

Medicine, Sao Paulo State University, São Paulo, Brazil, between October 1995 and February 

2004. All the patients were advised of the procedures and thus provided informed consent. 

This study was approved by the Institutional Ethics Committee 146/2007-CEP. 

Clinical and histopathological parameters. Nine patients (n=9) had one UL tumor. 

Twenty-five patients had multiple tumors: 13 of them had one sample evaluated (n=13), 

seven had two samples evaluated (n=14) and five had three samples evaluated (n=15). All 

women were premenopausal, showing regular menstrual cycles prior to diagnosis of UL, and 

they no received exogenous hormones or hormone suppression therapy at least three months 

before surgery. At surgery, 13 patients were in proliferative menstrual cycle phase and 21 in 

secretory period [21]. The medical records from patients were examined in 2011 to retrieve 

clinical and pathological data (Table S1). The age ranged from 35 to 51 years with mean age 

45 years. All of the tumors were histopathologically diagnosed as usual ULs. 

Array CGH. Genomic DNA from 51 ULs were prepared by standard sodium dodecyl 

sulfate/proteinase K digestion followed by phenol and chloroform extraction and ethanol 

precipitation and were stored at -20°C. The samples were treated with RNaseA 20μg/ml 
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(Sigma-Aldrich, St. Louis, MO). High-quality genomic DNA (500ng) from each sample were 

hybridized on Agilent Human 4x44K CGH Microarrays (Agilent Technologies, Santa Clara, 

CA) using a standard direct method as described in the Agilent Oligonucleotide Array-Based 

CGH for Genomic DNA Analysis Enzymatic Labeling for Blood, Cells or Tissues 

(www.chem.agilent.com) using a male commercial genomic DNA (Promega, USA) as 

reference. After slides scanning (Agilent scanner at 5 μm resolution), the array data was 

extracted using the default CGH settings of the Feature Extraction v.10.1.1.1 (Agilent 

Technologies, Santa Clara, CA). 

Identification of significant CNAs by using JISTIC. Copy number analysis was 

performed using segmented genomic dataset (DNAcopy, 

http://www.bioconductor.org/packages/2.3/bioc/html/DNAcopy.html) and JISTIC algorithm 

[22]. JISTIC gives GDEL and GAMP scores for each altered region (loss and gains, 

respectively), multiplied by the increase average in the ratio in log2 amplified sample. Scoring 

(G score) is based on the amplitude mean (a) of the aberration type (GDEL or GAMP) and 

frequency (f) on the data set. The meaning of each score is determined by comparison with 

similar results obtained after permutation within each sample. All regions with a q-value 

below a threshold (0.25) are deemed significant. For large aberrations, the sub-region with a 

minimal q-value is identified as a peak driver region. 

Transcriptional profiling. Total RNA was extracted from frozen tissues using the 

RNeasy Mini Kit (QIAGEN, Hilden, Germany) according to the manufacturer's instructions. 

Microarray experiments were performed using Two-Color Human GE 4x44K Microarrays. 

Isolated RNA (500-1000ng) was converted to cDNA with reverse transcriptase and an 

oligo(dT) primer bearing a T7 promotor followed by in vitro transcription with T7 RNA 

polymerase to create amplified antisense RNA. RNA reference [23] was amplified as above. 

Microarray image analysis was done using Feature Extraction v.10.1.1.1 (Agilent 
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Technologies, Santa Clara, CA). Statistical analysis was performed using background-

corrected mean signal intensities from each dye channel. Microarray data were normalized 

using intensity-dependent global normalization (LOWESS) using Feature Extraction 

v.10.1.1.1 software (Agilent Technologies, Santa Clara, CA). 

Significant genes based on expression analysis. The raw data from array scans were 

normalized by median-centering genes for each array, and log2 transformed. Additionally, 

genes with 30 or more ‘absent’ scores were filtered out. A total of 16354 sequences were 

analyzed. In order to identify significant genes, the Significance Analysis of Microarrays 

(SAM) method was applied [24]. The False Discovery Ratio (FDR) <0.05 was used to 

determine the significance threshold for genes and to limit the likelihood of type I error taking 

into account the fact that thousands of genes are simultaneously being tested [25, 26]. To 

select significant genes, it was used threshold values of log2ratio  1.0 and  – 1.0 fold-

change to classify up- or down-regulated genes, respectively. Hierarchical clustering analysis 

was performed using Complete Linkage Hierarchical algorithm with Pearson correlation 

(TMeV v.4.5). 

Integrative Analysis. CONEXIC (COpy Number and EXpression In Cancer) was used 

to integrate genomic and transcriptomic data, which is an algorithm that matched CNAs and 

gene expression data from tumor samples to identify gene drivers and the processes that they 

influence [17]. Higher score values (top 30 modulators) indicate a greater possibility of the 

gene have some adaptive advantage on the tumor phenotype. 

miRNA target prediction. The mechanisms of inverse association (genomic gains/up-

regulations or genomic losses/down-regulations) identified among modulators could be 

explained by miRNA regulation. The miRNA target prediction analysis was done using the in 

silico tools TargetScan (http://www.targetscan.org/) and PicTar (http://pictar.mdc-

berlin.de/cgi-bin/PicTar_vertebrate.cgi). 
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Gene Set Enrichment Analysis. Gene Set Enrichment Analysis (GSEA) [28] was 

performed for all selected modulators which sharing common biological function, 

chromosomal location, or regulation (modules). 

Functional Analysis. Ingenuity Pathways Analysis (IPA) 8.0 (Ingenuity® Systems, 

http://www.ingenuity.com) was used in the set of modulators. Networks were generated based 

on Ingenuity Pathways Knowledge Database. Fischer’s exact test was applied to identify the 

significant functions, networks and pathways represented within the respective gene sets. As 

result, it is displayed a score –log(P-value) representing the probability of finding genes in 

networks and pathways relative to other genes, assembled them into specific 

network/pathways based on random chance. 

RESULTS 

DNA copy number alterations analysis. According JISTIC analysis, the overall pattern 

of CNAs displayed heterogeneity among all cases showing 142 chromosomal regions 

involved in gains (1032 genes) and 18 in losses (160 genes) totalizing 1192 genes identified. 

The most frequent genomic imbalances were gains on chromosomes 16 and 19, and losses on 

chromosomes 4 and 16 (Table S2). 

Gene expression analysis. Unsupervised hierarchical clustering analysis was unable to 

identify subgroups of tumors, according to the gene expression profile and clinical features 

(data not shown). Gene expression analysis revealed 3325 significant genes; 1138 were up-

regulated and 2187 down-regulated. About 40% (39.7%) of up-regulated and 38% of down-

regulated genes were associated with cellular processes. Significant genes were preferentially 

associated with cell cycle (http://www.funnet.info/) (Figure S1). 

Integrative analysis. The integrative analysis by CONEXIC using 1192 up-regulated 

genes and 3325 down-regulated genes with significant G scores, ranked 75 modulators 
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mapped at 1p36.13, 1q41, 2q32.1, 2q32.2, 2q35, 4p14, 5q31.2, 5q35.3, 7q22.1, 8p12, 8q24.3, 

10p15.3, 10q21.3, 11p15.5, 11q13.2, 12p11.21, 12p13.31, 14q13.2, 16p11.2, 16q24.3, 

17q21.31, 19q13.32, 19q13.33, 20p11.2 and 20p13 (Table 1). The modulators had scores 

ranged from the 0 (TBC1D20 - TBC1 domain family, member 20) to 21227.32 (KIF20A - 

kinesin family member 20A). 

miRNA target prediction - Among the 75 modulators, 26 showed positive association 

(genomic gains/up-regulated) and three negative association (genomic losses/down-

regulated). An inverse correlation was found involving 45 genes and one ORF sequence 

(C8orf51); 30 of them could be explained by miRNA regulation (Table 1) (Table S3). The 

miRNA target prediction analysis was unable to predict the inverse correlation found in 15 

genes. 

Modulators characterization. Unsupervised hierarchical clustering analysis was done 

in order to verify association between genomic and transcriptomic data of 75 modulators 

considering the number of tumors evaluated, menstrual cycle phase and diagnosis of multiple 

or solitary tumors. Both genomic and transcriptomic profile were not statistically associated 

with the clustering of samples according to these clinical data (Figure 1A). In addition, the 

distribution of the 75 modulators along the chromosomes revealed that 44 of them (58.66%) 

were mapped in regions not usually described as breakpoints targets (1p36.13, 1q41, 2q32.1, 

2q32.2, 2q35, 4p14, 5q31.2, 7q22.1, 11q13.2, 12p13.31, 14q13.2, 16q22.1, 17q21.31, 

19q13.32, 19q13.33), and 23 and 5 genes (30.67% and 6.67%, respectively) were mapped in 

telomeric or pericentromeric regions, which are frequently targets of chromosomal instability 

(Table 1) (Figure 1B). 

Gene Set Enrichment Analysis. The results revealed that 32 out of 75 genes were 

enriched between 26 modules (Table S4). Among these modules, CORO1A, FGFR1, DDX21

and DBN1 genes were the most frequently identified whereas DBN1 and FGFR1 showed 
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positive association. Values of enrichment for the 26 modules were significantly associated 

with the 32 genes. Module 8 had the highest number of genes in overlapping (9 genes) 

including CORO1A, MCM7, SLC1A5, DDX21, NUPR1, DBN1, EIF4EBP1, VIL1, and CHKA

(P <10-3) (Table 2). 

Selection of central modulators. The top 30 modulators were selected based on higher 

CONEXIC scores (Table 1). Positive association was found involving 12 genes (TNS1, 

HSPB7, DBN1, CALCRL, COL3A1, IGFBP5, MFAP5, NUPR1, GPR4, DIP2C, CTDSP1, and 

FGFR1), while negative association was detected for RHOH and CENPF. Genes with 

positive association were mapped at 1p36.13, 2q32.1, 2q32.2, 2q35, 5q35.3, 8p12, 10p15.3, 

12p13.31, 16p11.2, and 19q13.32 while genes showing negative association were located at 

1q41 and 4p14 genomic regions (Figure 1C). Moreover, the GSEA values for these genes 

revealed that DBN1 and FGFR1 were in all eight modules of cancer genes, while DIP2C and 

MFAP5 genes had only one associated module. The TNS1, HSPB7, IGFBP5, GPR4 and 

CTDSP1 were not observed in any module (Table 2). 

Functional analysis of modulators. The top 30 modulators were subjected to 

functional in silico analysis using the Ingenuity Pathway Analysis (IPA). The networks 

generated from the input yields networks based on the known functions and interconnectivity 

of the affected genes. The modulators were present at eight gene interactions networks with 

scores values ranging from 2 to 38 (Table S5). Selected gene networks analysis showed 

CALCRL, CENPF, COL3A1, FGFR, IGFBP5, GPR4, NUPR1, RHOH, and TNS1 genes with 

the remaining pathway molecules incorporated by IPA on Network 1, associated with cellular 

movement, skeletal and muscular system development and function, cell morphology (Figure 

2A). Similarly, Network 2 (HSPB7, DBN1 - developmental disorder, neurological disease, 

DNA replication, recombination, and repair) (Figure 2B) showed gene interactions between 

selected genes and IPA database. In addition, cancer, reproductive system disease, and 
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genetic disorder showed the higher number of associated molecules (P < 10-4). Cell cycle, 

cellular assembly and organization, as well as cellular growth and proliferation were the 

major functions associated with dataset (P < 10-3) (Figure 3B). 

Sixty-one canonical pathways were found to be significantly associated with 

modulators, even though only 37 pathways were associated with the selected genes (Figure 

3A). Eight out of 14 genes were associated with different canonical pathways including the 

intrinsic prothrombin activation pathway (COL3A1), FGF signaling (FGFR1), ERK/MAPK 

signaling (HSPB7), VDR/RXR activation (IGFBP5), mTOR signaling (RHOH), FAK 

signaling (TNS1), and G-Protein coupled receptor signaling (CALCRL, GPR4) (Figure 4A). 

The canonical pathway hepatic fibrosis/hepatic stellate cell activation revealed the 

involvement of COL3A1, FGFR1, and IGFBP5 genes (P < 0.01), showing similarity to 

biological pathways already described in ULs (Figure 3C). 

DISCUSSION

Based on in silico approaches integrating genomic and transcriptomic profiles, the 

present study has revealed candidate genes and molecular pathways associated with ULs 

pathogenesis. 

Array CGH and gene expression microarray data of 51 ULs samples from 34 patients 

revealed 1192 genomic imbalances and 3325 up- or down-regulated transcripts, respectively. 

The integrative analysis using CONEXIC [17] identified 75 modulators that explain the 3325 

differentially expressed genes. The modulators were distributed on 25 chromosomal regions, 

seven of them were previously described by HR-CGH or array CGH studies in ULs, 

including 1p36.13, 4p14, 7q22.1, 11p15.5, 14q13.2, 19q13.32 and 19q13.33 [30, 31, 15, 11, 

32]. Furthermore, it was also verified new genomic imbalances involved in ULs mapped on 

1q41, 2q32.1, 2q32.2, 2q35, 5q31.2, 5q35.3, 8p12, 8q24.3, 10p15.3, 10q21.3, 11q13.2, 
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12p11.21, 12p13.31, 16p11.2, 16q24.3, 17q21.31, 20p11.2 and 20p13. The 75 modulators 

play an important role in ULs pathogenesis regardless of tumor multiplicity and menstrual 

cycle phase. 

The integrative analysis allowed the identification of 75 modulators based on gene 

expression data and then generates the association of these findings with genomic imbalances. 

Forty-five out of 75 modulators have shown an inverse association between genomic 

alterations (gains or losses) and gene expression pattern (up- or down-regulation). Several 

mechanisms, besides CNAs, are associated with gene expression regulation. Epigenetic 

mechanisms and miRNAs, for example, can regulate transcriptional events. Gene expression 

regulation by miRNAs has been a major focus in studies of tumors, including ULs [33, 34]. In 

the present study, 30 out of 45 genes that showed an inverse association between 

genomic/transcriptomic data could be explained by miRNA regulation. The additional 15 

genes could be regulated by other mechanisms. In addition, 44 out of 75 modulators are 

mapped on chromosomal regions that generally are not frequent targets of breakpoints. 

Therefore, this study suggests that deregulated expression genes in ULs frequently are 

associated with genomic alterations and regulation by miRNAs. Altogether, CNAs and 

miRNA could explain the main mechanisms of regulation of gene expression of ULs samples. 

Based on Akavia et al. [17], it was selected 30 modulators showing the highest scores 

values with 14 of them showing positive association (CALCRL, COL3A1, CTDSP1, DBN1, 

DIP2C, FGFR1, GPR4, HSPB7, IGFBP5, MFAP5, NUPR1, and TNS1) or negative 

association (CENPF and RHOH). The TNS1, HSPB7, IGFBP5, GPR4 and CTDSP1 

modulators were not detected in modules, indicating that they could be classified into a new 

class of genes specifically associated with ULs. These selected modulators genes could be 

putative candidates to uterine leiomyomas development and are discussed below. 
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The modulators were mainly associated with cancer involving cell cycle (P < 10-4) and 

cellular growth and proliferation functions (P < 10-3). Damage of cell cycle has been 

described in the pathogenesis of several tumors [35, 36], including ULs [37, 38, 39]. In 

addition, cellular proliferation stimulated by growth factors and/or steroid hormones is one of 

the mechanisms accountable for volume increase observed in ULs tumors [5]. 

Menorrhagia, characterized by excessive uterine bleeding, is one of the most 

frequently symptoms associated with ULs and may have implications for fertility and 

contraception. The canonical pathway intrinsic mechanism for prothrombin activation begins 

with trauma to the blood vessel or exposure of blood to collagen in a traumatized vessel wall. 

Prothrombin overactivation could be associated with excessive bleeding observed in affected 

patients [40]. In the present study, the gene associated with this pathway was COL3A1, which 

showed positive association. The up-regulation of this gene has been previously associated 

with increase of collagen deposition in ULs [41]. The in silico functional analysis revealed 

that COL3A1 molecule was associated with response to collagenase Clostridium histolyticum, 

an treatment recently approved for progressive Dupuytren contractures disease (DD) [42]. DD 

is a fibroproliferative disorder of unknown etiology that often results in shortening and 

thickening of the palmar fascia, leading to permanent and irreversible flexion contracture of 

the digits [43]. Therefore, COL3A1 is as candidate gene for further studies aiming to evaluate 

its correlation with menorrhagia and fibroid formation in UL patients. 

Fibroblast growth factor receptor (FGFR), showing positive association in the present 

study, belongs to the family of receptor tyrosine kinases (RTKs). Activated RTKs play an 

important role in the enhanced proliferation described in ULs [for review 44]. In addition, up-

regulation of FGF1 was associated with menorrhagia in patients with ULs [45]. FGFR1 has 

been reported as a potential therapeutic target in breast cancers [46]. The in silico functional 

analysis showed an association with FGF1 molecule and pazopanib, a tyrosine kinase 
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inhibitor recently approved to renal cell carcinoma (RCC) treatment [47]. Pazopanib acts in 

RCC through its antiangiogenic properties via inhibition of the intracellular tyrosine kinases. 

Thus, FGFR1 amplification translated by up-regulation is a target of studies with drugs that 

inhibit cellular growth in ULs menorrhagia-associated. 

The ERK (extracellular-regulated kinase)/MAPK (mitogen activated protein kinase) 

signaling is a key pathway that transduces cellular information on meiosis/mitosis, growth, 

differentiation and carcinogenesis. The HSPB7 encodes one heat shock 27kDa protein family, 

member 7 that has been associated with cardiomyopathy and belongs to ERK/MAPK 

signaling [48]. To the best of our knowledge, this is the first report showing the involvement 

of HSPB7 in ULs. 

Vitamin D3-bound VDR-RXR, along with other co-activator proteins, mediates the 

transcriptional regulation of a number of genes, including IGFBP5. This gene encodes 

insulin-like growth factor binding protein 5 that stimulates gene targets transcription leading 

to cell proliferation. Up-regulation of IGFBP5 has been associated with cervical 

intraepithelial neoplasia and breast cancer [49, 50]. Therefore, increased activity of IGFBP5

could be associated with estrogen-dependent tumors, as well as ULs. 

A principal pathway that signals through mTOR is the PI3K/AKT that is involved in 

cell survival and proliferation. Crabtree et al. [39] reported the mammalian target of 

rapamycin (mTOR) pathway as one of the most highly up-regulated pathways in both human 

and rat ULs. The RHOH, associated with mTOR signaling, encodes a small G-like protein. 

Down-regulation of RHOH was associated with acute myeloid leukemia [51]). The present 

findings suggest that RHOH genomic losses and transcript down-regulation could be 

associated with deregulation of cell cycle and mTOR signaling pathway in ULs. 

FAK signaling regulates a number of key cellular processes including growth factor-

induced mitogenic signals, cell survival, cell proliferation and migration, cell locomotion and 



14 

regulation of cell cycle. Chegini and Kornberg [52] demonstrated that GnRHa therapy 

resulted in a noticeable decrease in FAK in ULs cells. These data suggested that ULs 

regression induced by GnRHa is mediated in part through a mechanism involving growth 

factors and adhesion molecules. The TNS1 gene associated on FAK signaling acts in 

extracellular matrix production. Therefore, the current study showing that up-regulation of 

TNS1 associated with genomic amplifications gives an additional support for treatment with 

GnRH analogs in ULs. 

Heterotrimeric G proteins are the key players in transmembrane signaling by coupling 

a multitude of receptors to enzymes, channel proteins and other effector molecules. The 

CALCRL gene encodes the receptor-like calcitonin that forms complexes with protein-G. The 

CALCRL mediates the effects of adrenomedullin (AM), which is an angiogenic factor 

induced by hypoxia. Despite its benign nature, ULs have aberrant angiogenesis, essential step 

for the growth and proliferation [for review 4]. Nikitenko et al. [53] reported an increased 

activity of CALCRL in the vascular endothelium of ULs suggesting that CALCRL could be a 

potential therapeutic target for angiogenesis inhibitors in ULs. In agreement with the findings, 

CALCRL gains and up-regulation could explain the angiogenesis phenotype detected in ULs. 

The hepatic fibrosis/hepatic stellate cell activation pathways revealed an association of 

COL3A1, FGFR1, and IGFBP5. Hepatic fibrosis is a chronic liver disease associated with the 

extracellular matrix accumulation, very similar to pathological conditions of ULs. The 

inhibitor of tyrosine kinase activity of FGFR1 (NP603) recently described, inhibits the 

proliferation of myofibroblasts associated with liver fibrosis in rats [54]. In ULs, the increased 

tyrosine kinase activity of FGFR1 in association with IGFBP5 in response to FGF1, IGF-1 or 

TGF-beta might trigger cell proliferation, while increased activity of COL3A1, in response to 

ET-1 could lead to extracellular matrix accumulation and collagen deposition. Additional 
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studies using in vivo models are needed to assess the rate of response to drugs that inhibit cell 

growth and proliferation in ULs. 

In conclusion, the integrative analysis of genomic and transcriptomic data provided a 

comprehensive and biologically meaningful insight into tumorigenesis of ULs revealing 

genomic amplifications translated by up-regulation of modulators. To our knowledge, this is 

the first study using a large series of ULs evaluated by integrative genomic and transcriptomic 

analysis. The findings indicate genes that could be targets for development of specific 

therapies related to extracellular matrix and cell proliferation related to Uterine Leiomyomas. 
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tumoral phenotype. 

Figure 1. Characterization of modulators A. Hierarchical clustering of samples according to 
menstrual cycle phase (proliferative and secretory), number of samples evaluated (2 or 3 samples or 1 
sample) and diagnosis of multiple or solitary tumors (TMeV v.4.5). B. Chromosomal mapping of 75 
modulators which most of them (~60%) were mapped at interchromosomal regions and telomeric 
regions (30%). Around 6% were mapped in regions close to telomeres. C. Selection of genes with 
positive (red) and negative (blue) association among top 30 gene modulators, totalizing 14 genes as 
potential drivers [29]. 

A B Array CGH Expression array 

C 
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Figure 2. Networks generated from top 30 modulators and IPA database A. Network 1 
showing interactions among 9/30 modulators. Genes were located on network periphery 
interconnected with Akt, ERK, PI3K, NFkB, and VEGF central complex. B. Network 2 with 
DBN1 and HSPB7 gene interactions with FLNA, MAP3K3, and HNF4A central molecules 
(IPA). Genes in the network with positive (red) and negative (green) association. 

A 

B 

Legend 
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Figure 3. Canonical pathways associated with top 30 modulators A. Sixty-one canonical pathways were associated with modulators. In red, top pathways 
associated with 8/14 selected genes, which have been described as drug targets. B. Diseases and biological functions statistically associated with top 30 
modulators such as cancer and cell cycle, respectively. C. Pathway showing cell proliferation and extracellular matrix deposition process with high similarity 
observed in ULs. Genes COL3A1, FGFR1, and IGFBP5 were selected as potential molecular markers to ULs treatment.

Diseases and Disorders P value Molecules 
Cancer 1.88E-04 - 4.87E-02 15 
Reproductive System Disease 3.67E-04 - 4.87E-02 8 
Genetic Disorder 6.68E-04 - 4.16E-02 9 
Metabolic Disease 6.68E-04 - 1.53E-02 3 
Connective Tissue Disorders 1.93E-03 - 3.61E-02 1 
Molecular and Cellular Functions   
Cell Cycle 1.28E-04 - 4.72E-02 7 
Amino Acid Metabolism 1.93E-03 - 1.93E-03 1 
Cellular Assembly and Organization 1.93E-03 - 4.35E-02 7 
Cellular Growth and Proliferation 1.93E-03 - 4.53E-02 10 
Molecular Transport 1.93E-03 - 3.61E-02 2 

A 

B 
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Table 1. Seventy-five modulators obtained from integrative analysis. 

JISTIC 
q-value 

CONEXIC 
score 

Array  
CGH 

Expression  
array Region Position Hg18 (Start-End) Gene symbol 

<0.01 9832.22 + + 1p36.13* 16,213,110-16,217,872 HSPB7 
<0.01 2280.2 - - 1q41* 212,843,155-212,904,537 CENPF 
<0.01 3214.2 + + 2q32.1* 187,916,094-188,021,266 CALCRL 
<0.01 3211.1 + + 2q32.2* 189,547,344-189,585,717 COL3A1 
<0.01 2576.68 + + 2q35* 217,245,073-217,268,517 IGFBP5 
<0.01 15242.9 + +  218,372,757-218,517,041 TNS1 
<0.01 1774 + +  218,972,722-218,978,908 CTDSP1 
<0.01 3222 + -  218,996,724-219,022,487 VIL1 
<0.01 8213.98 + -  219,141,922-219,167,243 RQCD1 
<0.01 3009.88 - - 4p14* 39,874,922-39,922,676 RHOH 
<10-9 21227.32 ¥+ - 5q31.2* 137,543,248-137,551,261 KIF20A 
<0.01 2487.12 ¥+ -  137,648,858-137,695,415 CDC25C 
<0.01 2290.81 ¥+ - 5q35.3 176,663,441-176,666,556 PRELID1 
<0.01 2001.89 ¥+ -  176,761,745-176,769,183 F12 
<0.01 3678.31 + +  176,816,220-176,833,300 DBN1 
<0.01 3222.8 ¥+ - 7q22.1* 98,874,499-98,892,932 CPSF4 
<0.01 4222.7 ¥+ -  98,893,720-98,901,744 ATP5J2 
<0.01 1908.18 ¥+ -  98,994,384-99,012,013 ZNF655 
<0.01 1232.98 + -  99,402,286-99,411,623 AZGP1 
<0.01 442.98 ¥+ -  99,528,340-99,537,363 MCM7 
0.05 1132.32 + -  99,613,474-99,649,946 STAG3 

<0.01 1883.3 ¥+ - 8q24.3 144,520,168-144,522,180 C8orf51 
<0.01 998.3 + -  144,757,532-144,762,887 PYCRL 
<0.01 774.1 + -  145,221,948-145,224,416 CYC1 
<0.01 523.2 + +  145,619,808-145,624,735 VPS28 
<0.01 1124.2 + -  145,624,971-145,640,620 TONSL 
<0.01 523.65 + -  145,707,479-145,714,008 RECQL4 
<0.01 235.65 ¥+ -  145,714,199-145,721,365 LRRC14 
<0.01 998.4 + + 8p12 37,773,932-37,820,650 GPR124 
<0.01 1534.34 ¥+ -  38,007,177-38,037,040 EIF4EBP1 
<0.01 1552.55 + +  38,387,813-38,445,509 FGFR1 
<0.01 1523.52 ¥+ - 10p15.3 1,075,964-1,085,061 IDI1 
<0.01 1774.98 + +  311,432-725,606 DIP2C 
<0.01 1883.3 ¥+ - 10q21.3 69,539,196-69,641,779 MYPN 
0.01 998.3 ¥+ -  70,385,898-70,414,285 DDX21 

<0.01 774.1 ¥+ -  70,650,065-70,697,321 HKDC1 
<0.01 523.2 + + 11p15.5 303,991-305,272 IFITM1 
<0.01 1124.2 + -  384,217-394,908 PKP3 
0.02 523.65 ¥+ -  522,242-525,550 HRAS 

<0.01 235.65 + -  551,450-554,018 RASSF7 
<0.01 998.4 + -  737,432-755,024 TALDO1 
<0.01 1534.34 ¥+ -  780,475-786,221 SLC25A22 
<0.01 1552.55 ¥+ - 11q13.2* 67,576,902-67,645,434 CHKA 
<0.01 1523.52 - - 12p11.21 32,151,452-32,422,408 BICD1 
<0.01 1774.98 ¥+ - 12p13.31* 8,646,029-8,656,706 AICDA 
<0.01 2001.32 + +  8,689,807-8,706,700 MFAP5 
<0.01 1232 ¥+ - 14q13.2* 34,291,688-34,414,604 BAZ1A 
<0.01 1822.11 + + 16p11.2 28,456,163-28,457,996 NUPR1 
<0.01 909.81 ¥+ -  28,850,761-28,858,164 CD19 
<0.01 987.05 + +  29,730,910-29,734,703 PRRT2 
<0.01 1034.55 + +  29,739,288-29,766,842 MVP 
<0.01 1993.31 + -  30,023,632-30,032,379 GDPD3 
<0.01 1738.2 + -  30,102,427-30,107,898 CORO1A 
<0.01 783.5 + +  30,488,524-30,491,229 ZNF688 
<0.01 984.2 + + 16q22.1* 65,775,770-65,781,608 EXOC3L1 
0.05 578.87 + -  65,790,529-65,795,428 ELMO3 
0.01 1378.55 + + 16q24.3 88,301,042-88,314,895 C16orf7 

<0.01 566.98 ¥+ -  88,331,460-88,410,566 FANCA 
<0.01 665.35 ¥+ -  88,517,246-88,530,006 TUBB3 
<0.01 533.8 ¥+ - 17q21.31* 38,449,840-38,530,994 BRCA1 
<0.01 968.66 + +  38256727-38263666 AOC3 
<0.01 1372.76 + + 19q13.32* 50,702,528-50,722,080 VASP 
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<0.01 1799.91 + +  50,784,865-50,787,557 GPR4 
0.01 879.54 + -  50,882,558-50,887,282 SNRPD2 

<0.01 876.1 + +  50,964,816-50,977,655 DMPK 
<0.01 866.98 + +  51,134,631-51,168,497 NOVA2 
<0.01 655.5 + +  51,605,929-51,608,681 CCDC8 
<0.01 675.01 ¥+ -  51,796,352-51,805,879 CALM3 
<0.01 989.32 + +  51,842,709-51,856,235 DACT3 
<0.01 377.3 ¥+ -  51,969,980-51,983,653 SLC1A5 
<0.01 656.33 ¥+ -  52,033,263-52,046,043 AP2S1 
<0.01 886.44 ¥+ - 19q13.33* 55,614,028-55,624,060 SPIB 
<0.01 1252.32 ¥- + 20p11.2 23,007,993-23,014,977 CD93 
0.17 0 ¥+ - 20p13 309,308-326,203 TRIB3 
0.23 0 ¥+ -  364,124-391,187 TBC1D20 

In bold, top 30 modulators based on CONEXIC scores; Hg18: Human genome version 18 (Mar 2006 
NCBI36); ¥miRNA target prediction; Positive (+) and negative (-) signs indicate gene status in relation to 
genomic gains and losses and up- or down-regulated gene expression, respectively. *Regions not usually 
involved in chromosomal breakpoints. 
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Tabel 2. Genes identified on modules of cancer genes obtained from gene set enrichment 
analysis – GSEA. 

Gene Set 
Name 

Genes in 
Gene Set 

(K) 
Genes in Overlap (k) k/K P

value 

533 42 CENPF, CORO1A, AOC3 0.0714 <10-3

8 406 CORO1A, MCM7, SLC1A5, DDX21, NUPR1, DBN1, EIF4EBP1, VIL1, 

CHKA 

0.0222 <10-3

509 14 AP2S1, IDI1 0.1429 <10-3

315 15 CENPF, TUBB3 0.1333 <10-3

5 423 CORO1A, AOC3, DDX21, NUPR1, FGFR1, CALCRL, COL3A1, MVP 0.0189 <10-2

292 133 IFITM1, SPIB, CD19, STAG3 0.0301 <10-2

3 375 MCM7, SLC1A5, DDX21, DBN1, EIF4EBP1, FGFR1, CALCRL 0.0187 <10-2

118 395 CENPF, CORO1A, DDX21, DBN1, EIF4EBP1, FGFR1, RECQL4 0.0177 <10-2

86 43 HRAS, RHOH 0.0465 <10-2

137 531 CORO1A, NUPR1, DBN1, EIF4EBP1, FGFR1, HRAS, NOVA2, BICD1 0.0151 <10-2

12 351 DDX21, NUPR1, DBN1, FGFR1, COL3A1, DIP2C 0.0171 <10-2

9 114 EIF4EBP1, VIL1, HRAS 0.0263 <10-2

430 52 CORO1A, FANCA 0.0385 <10-2

1 361 AOC3, DDX21, NUPR1, DBN1, FGFR1, COL3A1 0.0166 <10-2

105 194 CHKA, IDI1, FGFR1, COL3A1 0.0206 <10-2

57 54 MCM7, CDC25C 0.0370 <10-2

345 122 IFITM1, SPIB, CD19 0.0246 <10-2

254 58 NUPR1, IFITM1 0.0345 <10-2

337 60 CENPF, DDX21 0.0333 <10-2

53 391 CENPF, CORO1A, DDX21, DBN1, EIF4EBP1, RECQL4 0.0153 <10-2

129 217 DBN1, FGFR1, HRAS, NOVA2 0.0184 <10-2

119 138 SPIB, CD19, STAG3 0.0217 <10-2

122 138 AOC3, COL3A1, MFAP5 0.0217 <10-2

308 67 CORO1A, CDC25C 0.0299 <10-2

438 67 CENPF, CORO1A 0.0299 <10-2

32 232 SNRPD2, EIF4EBP1, TUBB3, RHOH 0.0172 <10-1

GSEA - http://www.broadinstitute.org/gsea/index.jsp; K=overlapping modulators associated with 
modules; k=differentially expressed genes associated with modulators; k/K=ratio between genes on modules. 



Figure S1. Biological functions of 3325 significant genes identified by gene expression 
microarrays. Differentially expressed transcripts (log2ratio) were classified based on fold-
change  -1.0 (down-regulated) and  1.0 (up-regulated). Among up-regulated genes (red), 
44.9% had biological functions associated with cellular process. Approximately 40% (39,7%) 
of down-regulated genes (green) showed the same functional category. (FUNNET - 
http://www.funnet.info/). 



Table S1. Clinical parameters and histopathological data from patients with Uterine Leiomyomas. 

ID Samples* Age No

tumors 
Menstrual 
cycle phase Race Menarche 

age BMI Age at 1a

pregnancy 
No

pregnancy 
Familial  

history of cancer 
Personal  

history of cancer 

1 
300T_A  

300T_B 
36 M secretory W 13 26,2 ND 3 no no 

2 

301T_A  

301T_B  

301T_C 

49 M proliferative B 11 36,1 15 7 father prostate ca no 

3 303T 47 M secretory W 13 29,3 23 1 father ca? no 

4 304T 44 M proliferative W 13 26,6 ND 10 grandmother bowel ca no 

5 
307T_A  

307T_B 
48 M proliferative W 12 34,9 26 4 no no 

6 

317T_A  

317T_B  

317T_C 

38 M secretory B 12 24,8 20 5 no no 

7 614T 44 S proliferative W 12 29,9 17 10 no no 

8 615T 43 M proliferative W ND 22,9 0 0 no no 

9 625T 47 M secretory W 12 24,5 24 3 
aunt breast ca / aunt 

stomach ca 
no 

10 
629T_A  

629T_B 
49 M secretory W 15 21,2 26 3 sister UL no 

11 
630T_A 

630T_B 
47 M proliferative W 13 26,3 18 2 no no 

12 

631T_A 

631T_B 

631T_C 

43 M proliferative B 9 24,1 ND 0 no no 



13 634T 44 S secretory W 15 23,6 23 3 ND ND 

14 
642T_A 

642T_B 
46 M secretory W 9 29,9 21 1 mother uterine ca no 

15 644T 39 S proliferative W 12 24,3 ND 2 no no 

16 670T 38 S secretory W 15 26,6 18 3 no no 

17 681T 46 M proliferative W 15 21,5 21 4 aunt uterine ca endometrial polyp 

18 
683T_A 

683T_B 
49 M secretory W 13 28,7 23 3 sister UL no 

19 684T 49 S secretory W 13 25,6 ND 6 no no 

20 708T 45 S secretory W 13 33,9 22 3 aint breast ca no 

21 719T 50 S secretory W 13 24,2 0 0 father died metastatic ca no 

22 

722T_A  

722T_B  

722T_C 

50 M secretory W 11 34,9 ND 4 mother renal ca no 

23 

729T_A  

729T_B  

729T_C 

46 M secretory W 12 24,3 25 1 no no 

24 759T 51 M secretory W 15 21,2 ND 3 no no 

25 761T 45 S secretory W 13 18,7 ND 3 mother bowel ca no 

26 
844T_A 

844T_B 
50 M proliferative W 12 36,8 ND 4 no UL 

27 853T 35 M secretory W 11 26,8 21 2 no no 

28 855T 37 S secretory W 13 24,9 23 2 uncle stomach ca no 

29 857T 41 M secretory W 13 23,7 20 3 three sisters UL no 

30 901T 51 M proliferative W 9 34,1 ND 3 no no 

31 947T 47 M proliferative W ND 27,6 ND ND no no 



32 954T 45 M secretory W 12 33,7 18 3 no no 

33 1002T 46 M secretory W 13 27,5 18 2 no no 

34 1005T 40 M proliferative B 12 34,2 ND 2 mother colon ca no 

*Number of samples evaluated by case; No=number; 1a=first; ND=undefined; M=multiples; S=solitary; B=black; W=white; BMI=body index mass; ca=cancer; ?= doubt in response. 



Table S2. Recurrent copy number alterations identified by JISTIC among 51 Uterine 
Leiomyomas samples. 

Chromosome Position Size (bp) Cytoband Event 

1 16210136-16404475 194339 p36.13 Gain 

1 193404142-194937836 1533694 q31.3 Loss 

1 212893807-214486070 1592263 q41 Loss 

2 187336585-189552794 2216209 q32.1 - q32.2 Gain 

2 217253192-219351693 2098501 q35 Gain 

4 39121392-40671431 1550039 p14 Loss 

4 63649592-66171072 2521480 q13.1 Loss 

4 132475881-135650424 3174543 q28.3 Loss 

5 32031565-32459137 427572 p13.3 Gain 

5 134274907-135585827 1310920 q31.1 - q31.2 Loss 

5 137509066-137894706 385640 q31.2 Gain 

5 176628647-176902434 273787 q35.3 Gain 

7 98882914-102068500 3185586 q22.1 Gain 

7 124268700-124352498 83798 q31.33 Loss 

7 150157293-150323899 166606 q36.1 Gain 

8 37606006-38685823 1079817 p12 - p11.23 Gain 

8 105119923-108955123 3835200 q22.3 - q23.1 Gain 

8 143934407-144604977 670570 q24.3 Gain 

8 144723137-146027963 1304826 q24.3 Gain 

9 33871385-34349039 477654 p13.3 Gain 

9 34380035-34602962 222927 p13.3 Gain 

9 42014069-42702421 688352 p12 - p11.2 Gain 

9 137569888-138038551 468663 q34.3 Loss 

9 138467512-138845556 378044 q34.3 Gain 

10 0-1167989 1167989 p15.3 Gain 

10 69249439-70694950 1445511 q21.3 Gain 

11 209012-838551 629539 p15.5 Gain 

11 66956644-67906757 950113 q13.1 - q13.2 Gain 

11 82287494-82844323 556829 q14.1 Gain 

12 7620638-8938808 1318170 p13.31 Gain 

12 31233552-32196110 962558 p11.21 Loss 

12 109668284-109732691 64407 q24.11 Gain 

13 79882431-84123782 4241351 q31.1 Loss 

14 34245057-34584738 339681 q13.2 Gain 

14 104210820-104323543 112723 q32.33 Gain 

16 154832-649034 494202 p13.3 Gain 

16 14674167-15423013 748846 p13.12 - p13.11 Loss 



16 28184420-30915100 2730680 p11.2 Gain 

16 34059589-34739434 679845 p11.2 - p11.1 Loss 

16 65732841-65799873 67032 q22.1 Gain 

16 65977069-66551504 574435 q22.1 Gain 

16 74665577-75131336 465759 q23.1 Loss 

16 88147752-88526617 378865 q24.3 Gain 

17 10029176-12411350 2382174 p13.1 - p12 Gain 

17 36917868-36931811 13943 q21.2 Gain 

17 38117300-39051741 934441 q21.31 Gain 

17 76857866-77619424 761558 q25.3 Gain 

18 61548752-64944845 3396093 q22.1 - q22.2 Loss 

19 1173033-1426319 253286 p13.3 Gain 

19 11723538-12106305 382767 p13.2 Loss 

19 50340704-52381739 2041035 q13.32 Gain 

19 53504306-54293549 789243 q13.32 - q13.33 Gain 

19 54838449-55064096 225647 q13.33 Gain 

19 55617858-55704434 86576 q13.33 Gain 

20 0-512804 512804 p13 Gain 

20 22971225-23206367 235142 p11.21 Loss 

20 37240929-38699013 1458084 q12 Loss 

21 10013263-10117957 104694 p11.1 Loss 

21 10013263-10117957 104694 p11.1 Gain 

22 49041686-49401541 359855 q13.33 Gain 

bp=base pairs. 



Table S3. miRNA target prediction analysis to genes identified on integrative analysis that 
showed an inverse association between genomic and transcriptomic data. 

Gene  
symbol TargetScan PicTar 

AICDA hsa-miR-155 hsa-miR-155 

AP2S1 - hsa-miR-34b, hsa-miR-34c, hsa-miR-34a 

ATP5J2 - - 

AZGP1 - - 

BAZ1A hsa-miR-137 - 

BRCA1 hsa-miR-218 hsa-miR-197, hsa-miR-143, hsa-miR-205, hsa-miR-132, hsa-

miR-370, hsa-miR-30a-3p, hsa-miR-140, hsa-miR-185, hsa-

miR-154 

C8orf51 ND ND 

CALM3 hsa-miR-22 hsa-miR-122a, hsa-miR-22, hsa-miR-27b, hsa-miR-27a, hsa-

miR-196b, hsa-miR-196a,  hsa-miR-29c, hsa-miR-29b, hsa-

miR-29a, hsa-miR-320, 

CD19 - - 

CDC25C hsa-miR-767-3p - 

CD93 hsa-miR-216a - 

CHKA hsa-miR-30e, hsa-miR-30a, hsa-

miR-30d, hsa-miR-30b, hsa-miR-

30c 

- 

CORO1A - - 

CPSF4 hsa-miR-214 hsa-miR-214, hsa-miR-23a, hsa-miR-23b, hsa-let-7c, hsa-let-

7g, hsa-let-7b, hsa-let-7f, hsa-let-7i, hsa-let-7a, hsa-miR-98, 

hsa-let-7e, hsa-let-7d 

CYC1 - - 

DDX21 hsa-miR-607 - 

EIF4EBP1 hsa-miR-125b, hsa-miR-125a-5p hsa-miR-125b, hsa-miR-125a 

ELMO3 - - 

F12 hsa-miR-330-3p - 

FANCA - hsa-miR-26a, hsa-miR-26b 

GDPD3 - - 

HKDC1 hsa-miR-876-5p, hsa-miR-1243 - 

HRAS hsa-miR-892a - 

IDI1 hsa-miR-570 - 

KIF20A hsa-miR-153 hsa-miR-369, hsa-miR-374 

LRRC14 - hsa-miR-370, hsa-miR-28, hsa-miR-122a 

MCM7 hsa-miR-519b-3p, hsa-miR-519a, 

hsa-miR-519c-3p, hsa-miR-548p 

- 



MYPN hsa-miR-214 - 

NFKBIL2 - - 

PKP3 - - 

PRELID1 hsa-miR-22 - 

PYCRL - - 

RASSF7 - - 

RECQL4 - - 

RQCD1 ND ND 

SLC1A5 hsa-miR-125a-5p, hsa-miR-125b hsa-miR-122a, hsa-miR-137 

SLC25A22 hsa-miR-613, hsa-miR-1, hsa-miR-

206 

hsa-miR-296, hsa-miR-1, hsa-miR-206, hsa-miR-337 

SNRPD2 - - 

SPIB hsa-miR-1299, hsa-miR-520a-5p, 

hsa-miR-525-5p 

hsa-miR-146, hsa-miR-218, hsa-miR-328 

STAG3 - - 

TALDO1 - - 

TBC1D20 hsa-miR-150 - 

TRIB3 hsa-miR-24 - 

TUBB3 hsa-miR-429, hsa-miR-200c, hsa-

miR-200b 

- 

VIL1 - - 

ZNF655 hsa-miR-181c, hsa-miR-181a, hsa-

miR-181b, hsa-miR-181d 

- 

TargetScan (http://www.targetscan.org/); PicTar (http://pictar.mdc-berlin.de/cgi-bin/PicTar_vertebrate.cgi); 
ND=genes not identified on databases; (-) no miRNA prediction. 



Tabel S4. Genes identified in gene set enrichment analysis. 

Gene  
symbol 

N° of enrichment 
modules Array CGH Expression array Region 

CORO1A 8 + - 16p11.2 

FGFR1 8 + + 8p12 

DDX21 8 + - 10q21.3 

DBN1 8 + + 5q35.3 

CENPF 7 - - 1q41 

EIF4EBP1 7 + - 8p12 

NUPR1 6 + + 16p11.2 

COL3A1 5 + + 2q32.2 

AOC3 4 + + 17q21.31 

HRAS 4 + - 11p15.5 

MCM7 3 + - 7q22.1 

IFITM1 3 + + 11p15.5 

SPIB 3 + - 19q13.33 

CD19 3 + - 16p11.2 

SLC1A5 2 + - 19q13.32 

VIL1 2 + - 2q35 

CHKA 2 + - 11q13.2 

IDI1 2 + - 10p15.3 

TUBB3 2 + - 16q24.3 

CALCRL 2 + + 2q32.1 

STAG3 2 + - 7q22.1 

RECQL4 2 + - 8q24.3 

RHOH 2 - - 4p14 

NOVA2 2 + + 19q13.32 

CDC25C 2 + - 5q31.2 

AP2S1 1 + - 19q13.32 

SNRPD2 1 + - 19q13.32 

MVP 1 + + 16p11.2 

MFAP5 1 + + 12p13.31 

BICD1 1 - - 12p11.21 

DIP2C 1 + + 10p15.3 

FANCA 1 + - 16q24.3 

In bold, genes that showed positive or negative association. Positive (+) and 
negative (-) signs indicate gene status in relation to genomic gains and losses and 
up- or down-regulated gene expression, respectively. 



Table S5. Ingenuity Pathways Analysis (IPA) networks from top 30 modulators. 

Network Molecules in Network Score Focus 
Molecules Top Functions 

1 

↓↓↓↓AICDA, Akt, ↑↑↑↑CALCRL, CDC14A, ↓↓↓↓CDC25C, ↓↓↓↓CENPF, ↓↓↓↓CHKA, ↑↑↑↑COL3A1, ↓↓↓↓CORO1A, 
EDNRA, ↓↓↓↓EIF4EBP1, ERK1/2, ↓↓↓↓F12, F Actin, ↑↑↑↑FGFR1, ↑↑↑↑GPR4, GRB7, Histone h3, Igf, 
↑↑↑↑IGFBP5, LOX, MSK1/2, NFkB (complex), ↑↑↑↑NUPR1, PI3K (complex), PLK3, PNO1, PPM1B, 
PTGER3, RAMP3, ↓↓↓↓RHOH, SMOC2, ↑↑↑↑TNS1, Vegf, ↓↓↓↓VIL1

38 16 
Cellular Movement, Skeletal and 
Muscular System Development and 
Function, Cell Morphology 

     

2 

Actin, ACTR3, ATP5A1, ATP5F1, ↓↓↓↓ATP5J2, C12orf11, CDC14A, ↑↑↑↑DBN1, EIF4G1, FBP1, 
FLNA, HNF4A, HNRNPH1, ↑↑↑↑HSPB7, ↓↓↓↓KIF20A, KPNB1, MAP2K6, MAP3K3, MAPK9, MYB, 
PNO1, PPP1CA, PRPF4, RIPK3, RPLP1, ↓↓↓↓RQCD1, RUVBL2, SPHK1, SUPT5H, TCF12, 
TRAF6, TRIM37, WNK1, YWHAB, ↓↓↓↓ZNF655

12 6 

Developmental Disorder, 
Neurological Disease, DNA 
Replication, Recombination, and 
Repair 

   

3 ↑↑↑↑DIP2C, PCBD1 3 1 Genetic Disorder, Metabolic 
Disease, Organ Development 

   

4 ↓↓↓↓PRELID1, STAT6 3 1 
Cell-mediated Immune Response, 
Cellular Development, Cellular 
Function and Maintenance 

     

5 Cpsf, ↓↓↓↓CPSF4, FIP1L1, MARK3 2 1 
RNA Post-Transcriptional 
Modification, Cancer, Infection 
Mechanism 

     

6 DLL1, JAG1, JAG2, ↑↑↑↑MFAP5, NOTCH1 2 1 
Nervous System Development and 
Function, Tissue Morphology, Gene 
Expression 

     

7 CDCA3, ↑↑↑↑CTDSP1, mir-124, POLR2A, SMAD1, SNAI1 2 1 
Embryonic Development, Tissue 
Development, Cellular Growth and 
Proliferation 

     

8 ACTN2, ACTN3, ANKRD1, ANKRD23, ↓↓↓↓MYPN, NEB, NEBL, PPP1CA, TTN 2 1 
Cell Morphology, Cellular 
Assembly and Organization, 
Cellular Function and Maintenance 

In bold, molecules on focus from dataset; arrows above indicate genes with positive association; arrows below indicate genes with negative association. 
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