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Resumo

A utilização de métodos numéricos para previsão de fenômenos aerodinâmicos
exerce papel de destaque na indústria, e a geração de malhas é uma etapa extrema-
mente importante para os resultados esperados. Este trabalho busca desenvolver
a geração automática de malhas estruturadas por meio de integração entre a lin-
guagem Python e o software livre OpenFOAM, o qual interpreta, por meio da ferra-
menta blockMesh, um dicionário e assim gera a malha estruturada. A comparação
com dados experimentais se faz necessária a fim de verificar a eficiência computa-
cional e acurácia das malhas estruturadas geradas.

Palavras-chave: CFD, aerodinâmica, malha estruturada, BlockMesh, OpenFOAM,
Python.



Abstract

The use of numerical methods to forecast aerodynamic phenomena has an impor-
tant role in the industry, and the generation of meshes is an extremely important step
for the expected results. This work seeks to develop the automatic generation of struc-
tured meshes through integration between the Python language and the open source
software OpenFOAM, which interprets, through the blockMesh tool, a dictionary, then
generates the structured mesh. The comparison with experimental data was used in
order to verify the computational efficiency and accuracy of the generated structured
meshes.

Keywords: CFD, aerodynamics, structured mesh, BlockMesh, OpenFOAM, Python.
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1 Introduction

This chapter presents a brief part of the knowledge used as inspiration to develop
this study.

1.1 Structured mesh

Engineering has evolved in recent years, trying to reduce the number of experi-
ments in the industry, considering the economic expenses. One of the solutions to
this problem is the numerical simulations, since, with one computational structure, it
is possible to obtain results equivalent to several experiments, thus, reducing costs.
Therefore, several researches and evaluations are regarding numerical simulations,
so they use computational meshes for their applications. The meshing generation
method varies a lot according to the degree of geometric complexity since the more
complex, the greater the difficulty in developing the computational mesh. The litera-
ture reports several generation methods, including structured, unstructured and mixed
meshes. The choice of a method is due to the search for the best cost-benefit of gen-
eration time linked to greater efficiency in the convergence rate and accuracy obtained
in the solution of the problem.

The methods to automatically generate meshes are being studied and developed
by countless researchers. Within the aspect of unstructured meshes Pantaleão et al.
(2003) developed an automatic generator for an unstructured mesh of triangular ele-
ments, in which it was produced by a computer code using the Delaunay algorithm
applied to the Finite Element Method.

Benoit & Péron (2012) researched a method to automatically generate structured
meshes around two-dimensional bodies for CFD simulations, with a method that con-
sists of avoiding low-quality meshes for locally pointed bodies, such as the trailing edge
of an airfoil and is able to automatically perform flow simulation around any geometry
made of polylines.

Also Schmidt et al. (2012) developed a new library for the software OpenFOAM that
can be used for the automated generation of structured meshes, the library provides
tools for the organization of a large number of blocks and is used before to Open-
FOAM’s native block mesher blockMesh.

In the paper of Lu et al. (2018), the authors present a method of automatic gen-
eration of structured meshes in arbitrary aircraft, together with a method of automatic
generation of a boundary layer mesh using multi-block structured from a superficial
mesh, but there was no automatic generation of the far-field. Liu & Hu (2018) studied
the fluid-structure interaction problems based on his previous research on the method
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of refining structured mesh adaptable to incompressible flows.
Zhang & Jia (2018) developed an algorithm for the automatic generation of struc-

tured meshes applicable to two-dimensional domains with complex geometries. In the
work of Yu et al. (2019), the algorithm for automatic mesh generation was further stud-
ied, which was more robust on the defective CAD geometries, three cases were stud-
ied with regards to the validation of the mesh generation approach: a leaking hydrogen
tank, a steam generator and a single car garage.

Faghih-Naini et al. (2020) proposed a method implemented within the code genera-
tion framework of the ExaStencils project using the SymPy Python library, in which the
new formulation uses block-structured triangular meshes automatically generated for a
given number of blocks.

Beaufort et al. (2020) used a robust pipeline to handle triangulations, based on
the computation of a one-to-one parametrization for automatically selected patches of
input triangles, which made each patch easier to re-meshing and was implemented in
the open source mesh generator Gmsh.

And Lu et al. (2020) implemented, from his previous work, an interactive structured
mesh generation software called NNW-GridStar, with accelerated techniques, which
consist of automatic boundary-layer mesh generation, rapid block assembly, multi-block
stretching, and O-type block stretching.

We realize the importance demonstrated by different authors in the mesh gener-
ation for various problems encountered. This work developed structured meshes au-
tomatically generated on 2D supporting surfaces, including far-field. The efficiency of
solution convergence and the degree of accuracy produced by the structured meshes
are evaluated, comparing the results obtained from calculations with non-structured
meshes and experimental data from the literature.

It is noteworthy that the dictionary used to generate the structured meshes are
automatically written by an integration with the Python programming language, in which
the starting point is a generic 2D aerodynamic profile.

1.2 Goal

Develop a method to automatically generate structured meshes, including the far-
field and y+ calculation, with the outline of 2D lifting surfaces, included asymmetric
airfoils, using free software, the Python language and OpenFOAM, leading to a high
cost-benefit.
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2 Methodology

This chapter presents the description of the method and procedure used in the
development of this study.

2.1 Integration between software

The methodology of the project consists in the integration between the selected
simulation software and the programming language, in this case the OpenFOAM soft-
ware and the Python language were chosen, since in addition to being open source,
there is a tool for generating structured meshes within the software.

The method utilized is simplified in the diagram shown in Figure 1, in which the gray
blocks correspond to the code reported here.

Figure 1: Diagram of the method used to generate the mesh.

Source: Author

Given the points of desired airfoil, using the Python programming language, the
code calculates far field, and generates the parameters necessary to construct a mesh,
so the file is automatically generated. In this way, the blockMesh tool of OpenFOAM
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v7 from OpenFOAM Foundation (2020) was used, in which it interprets the dictionary
generated by the Python language, and thus relates the data of points, faces, cells and
mesh divisions in a new dictionary.

2.2 OpenFOAM - blockMesh

The blockMesh tool generates a structured mesh, that is explained in Moukalled
et al. (2015). In this kind of mesh, every cell in the interior of the domain is connected
to the same number of neighboring cells, which can be identified using the indices,
like i,j,k, normally used in the x,y,z coordinates, and that it can be directly accessed by
incrementing or decrementing the respective indices.

Figure 2: Example concerning the topology of a structured mesh.

Source: Moukalled et al. (2015)

The generation of structured mesh by the blockMesh tool is through a dictionary
named ”blockMeshDict”, located in the folder ”system” of the case under analysis in
OpenFOAM. Basically, as explained in OpenFoam (2020), it decompose the domain
geometry into several three-dimensional hexahedron blocks. The vertices allow the
generation of lines, arcs and splines, in addition to specifying the number of cells in
each direction of the block, whole set being characterized as a mesh.

2.2.1 blockMeshDict File

The file ”blockMeshDict”, specified in González et al. (2009), is a dictionary with key-
words as: ”scale”, ”vertices”, ”edges”, ”block”, ”patches” e ”mergePatchPairs”.

The keyword ”scale” specify the scale factor applied in the coordinates of vertices
specified in the mesh. The values in the dictionary are initially in units of the global
system.

11



Figure 3: Example of block.

Source: OpenFoam (2020)

The vertices block are listed with the keyword ”vertices”, like the following example:

vertices( ( 0 0 0 ) // vertices 0
( 1 0 0.1) // vertices 1

( 1.1 1 0.1) // vertices 2
( 0 1 0.1) // vertices 3

(-0.1 -0.1 1 ) // vertices 4
( 1.3 0 1.2) // vertices 5

( 1.4 1.1 1.3) // vertices 6
( 0 1 1.1) // vertices 7 );

The edges are connected between two vertices, using lines as the standard, how-
ever it can be specified like curves using a list with the keyword ”edges”. Different
types of curves can be specified, like:”arc”, ”simpleSpline”, ”polyLine”, ”polySpline”,
being the first representative of an arc, needing just one point of interpolation. The
subsequent ones need a list of points, since they represent a ”spline” curve, a set of
lines and a set of ”spline” respectively. An example:

edges( arc 1 5 (1.0 2.0 3.0)
spline 0 1((0.001 0.002 0.003)

(0.001 0.002 0.000)
(0.001 0.002 0.000)

(0.001 0.002 0.000) ) );

Blocks are defines by a list using the keyword ”blocks”, which is composed by a list
of vertices, describe above, in a vector form, also it contains the quantity of cells and a
list with expansion proportion in each direction (x,y,z). The order os vertices must be
made in a way that it follows two parallel circles, as demonstrated in Figure 3, the order
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of quantity of cells is following x, y, z respectively. The expansion proportion follows
the same principle of cells quantity, and is this aspect that allows a refinement in the
required areas without adding more cells.

blocks( hex (0 1 2 3 4 5 6 7) // number of the vertices
(10 10 10) // number of the cell in each direction

simpleGrading (1 2 3)
or

edgeGrading (1 1 1 1 2 2 2 2 3 3 3 3) // proportion of cell expansion );

Mesh division if presented with a list by the keyword ”boundary”, where the regions
(”patches”) are listed with their names specified by the author, being characterized by
an intern dictionary that has ”type” and ”faces”, the first one represents the conditions
applied in the region or a particular geometry condition, the second determine faces
where the conditions will be applied. Example:

boundary( inlet { // name of patch
type patch; // type of patch

faces( (0 4 7 3)); // block that belongs in the patch } );

2.2.2 Using the blockMesh

With the file ”blockMeshDict” ready and the software OpenFOAM, we execute the com-
mand ”blockMesh -Name-of-case-”, generating the complementary files of the mesh.
Other files of needs to be written and placed in their respective folders so the simulation
can be done.

2.3 Python program

The Python language was selected for the packages used for scientific computing,
such as numpy, matplotlib and panda, used in this work.

Using the structure of a blockMesh file, explained above, the program was devel-
oped to write the file after all calculation was done, as demonstrated in the Figure 4,
the code are presented in the Appendix.

13



Figure 4: Diagram of the algorithm developed.

Source: Author

First, using panda, acquisition of the points from the airfoil file, the cord and y+ de-
sired, also the simulation parameters, such as temperature, Mach number and Reynolds
number.

With all the initial aspects acquired, it is calculated the far-field, the vertices and
edges locations in the mesh, using numpy functions.

The final step is to locate the vertices according to the blockMesh file, separating
correctly the blocks and boundaries, an example of how the blocks are distributed
presented Figure 5.

14



Figure 5: Demonstration on how the blocks are automatically placed in the mesh gen-
erated.

Source: Author

Figure 6: Demonstration on how the blocks are automatically placed around the airfoil.

Source: Author

The distribution of blocks demonstrated on Figure 6, so near the airfoil the mesh
can be more refined, while reducing the elements in the external area of the mesh.

After all preparation is done, the program write the file, and it is ready to be used in
OpenFOAM.

2.4 GCI Analysis

The Grid Convergence Index (GCI) method described in Celik et al. 2008 is a rec-
ommended bibliografy that has been evaluated over several hundred CFD cases. It
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contains five steps, explained below:
Step 1. Define a representative cell, mesh, or grid size h. For two-dimensions

calculations:

h =

[
1

N
sumN

i=1(δAi)

] 1
2

(1)

Step 2. Select three significantly different sets of grids. It is desirable that the
grid refinement factor r = hcoarse/hfine be greater than 1.3. From the results, select a
property from the simulation and three correspondent values to the different meshes,
ϕ1, ϕ2 and ϕ3.

ε21 = ϕ2 − ϕ1 and ε32 = ϕ3 − ϕ2 (2)

Step 3. Let h1 < h2 < h3 and r21 = h2/h1, r32 = h3/h2, and calculate the apparent
order p of the method using the expression:

p =
1

ln(r21)

∣∣∣∣ln ∣∣∣∣ε32ε21

∣∣∣∣+ q(p)

∣∣∣∣ (3)

q(p) = ln

(
rp21 − s

rp32 − s

)
(4)

h = 1.sgn(
ε32
ε21

) (5)

Step 4. Calculate the extrapolated values from:

ϕ21
ext =

rp21ϕ1 − ϕ2

rp21 − 1
and ϕ32

ext =
rp32ϕ2 − ϕ3

rp32 − 1
(6)

Step 5. Calculate and report the following error estimates, along with the apparent
order p:

Approximate relative error:

e21a =

∣∣∣∣ϕ1 − ϕ2

ϕ1

∣∣∣∣ (7)

e23a =

∣∣∣∣ϕ2 − ϕ3

ϕ2

∣∣∣∣ (8)

Extrapolated relative error:

e21ext =

∣∣∣∣ϕ21
ext − ϕ1

ϕ21
ext

∣∣∣∣ (9)

e32ext =

∣∣∣∣ϕ32
ext − ϕ2

ϕ32
ext

∣∣∣∣ (10)

16



Grid convergence index:

GCI21 =
1.25e21a
rp21 − 1

(11)

GCI32 =
1.25e32a
rp32 − 1

(12)
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3 Experimental data

This chapter presents the description of experimental data used as parameters in
the simulation to validate the mesh.

3.1 Analyzed test cases

To verify the quality of the meshes generated by the Python code, we used different
flow conditions.

The first test case verified was a symmetric airfoil, NACA 0012, found in Rumsey
(2019) and consists of an incompressible, turbulent, and steady flow over the airfoil.
Table 1 presents more details about the flow conditions for the test case.

Figure 7: NACA 0012.

Source: Author

The second test case defined in the study was for the symmetric airfoil NACA 0021,
Wolfe & Ochs (1997) presents more details about the test case. This test case also
consists of an incompressible, turbulent, and steady flow.

Figure 8: NACA 0021.

Source: Author

The third test case defined in the study was for an asymmetric airfoil, NACA 23012,
Pan & Loth (2003) presents more details about the test case, except for the temperature
used in their case, so, for this work, were used 25°C for the simulation. This test case
also consists of an incompressible, turbulent, and steady flow.

Figure 9: NACA 23012.

Source: Author
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Table 1 presents more information about the flow conditions for the test cases.

Table 1: Airfoil validation cases information.
Test case NACA 0012 NACA 0021 NACA 23012
Reference Rumsey (2019) Wolfe & Ochs (1997) Pan & Loth (2003)

Prandtl Number 0,72 0,72 -
Temperature [K] 299,85 299,85 -
Mach Number 0,15 0,20 0,12

Chord [m] 1 1 1
Reynolds Number 6·106 1,5·106 10,5·106
Angle of Attack [◦] 0 0 0

Source: Author

Since all the analyzed test cases use air as fluid, it was considered as an ideal gas.
With this adoption, to evaluate the dynamic viscosity was used Sutherland’s Law.

As all the flows analyzed are turbulent, to solve the closure problem, was adopted
the Spalart and Allmaras turbulence model.
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4 Results e Discussion

4.1 Analysis of NACA 0012 airfoil

The results of the mesh generation and simulation of a NACA 0012 are disposed below.

4.1.1 Mesh

Using the points of a NACA 0012 and the method explained in the methodology, the
far field has a size 20 times bigger than the airfoil chord. The mesh disposed in the
Figures 10 and 11 was generated for an y+ value of 60, with approximately 2 millions
hexahedral elements, since OpenFOAM operates with a three-dimensional mesh, even
for two-dimensional cases, where the third dimension only has 1 element. Other two
mesh with different values of y+ were generated for GCI analysis.

Figure 10: Demonstration of the mesh generated.

Source: Author
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Figure 11: Demonstration of the mesh around the leading edge.

Source: Author

4.1.2 Numerical Results

Figure 12 presents the results evaluated for velocity fields obtained for NACA 0012:

Figure 12: Magnitude of Velocity [m/s] data from the flow field around the NACA 0012.

Source: Author

Figure 13 presents results for pressure fields obtained:

21



Figure 13: Pressure [Pa] data from the flow field around the NACA 0012.

Source: Author

From Figures 12 and 13 can be noticed that since it is a symmetrical airfoil at
0°angle of attack, shows that the flow stream is symmetric and the velocity of the
upper and lower surface of the airfoil are equal. The flow moves smoothly around the
airfoil and is attached around the surface. And since there is no difference between the
pressure on top and bottom surfaces, no lift force is generated as expected from the
literature.

For the comparison with the literature, Jespersen et al. (2016) from NASA exercise
a simulation with NACA 0012, exactly same case that was explained above.

Figure 14 presents the comparison between the experimental data provided by
Jespersen et al. (2016) and the numerical data evaluated with the analysis for the
Pressure Coefficient(Cp) over the airfoil.
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Figure 14: Comparison of the Cp evaluated with the numerical analysis with the ex-
perimental data provided by Jespersen et al. (2016) for NACA 0012 airfoil.

Source: Author

As can be seen in Figure 14 the numerical data almost fit with the experimental
data, just differing slightly in the trailing edge of the airfoil.

So, following the methodology proposed by Celik et al. (2008), the Grid Conver-
gence Index (GCI) was verified for the NACA 0012 test case generated meshes with
Cp as the chosen parameter. Table 2 presents the results evaluated in the GCI analysis.
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Table 2: GCI analysis for NACA 0012 test case.
Number of Elements in mesh 1 7821000
Number of elements in mesh 2 1955000
Number of elements in mesh 3 782000

Refinement factor r21 1, 5875

Refinement factor r32 1, 3572

Approximate relative error ea21 4, 26%

Approximate relative error ea32 16, 5%

Extrapolated relative error eex21 0, 69%

Extrapolated relative error eex32 5, 81%

Convergence index GCI21 0, 86%

Convergence index GCI32 7, 72%

Source: Author

By comparing the results presented in Table 2, and considering the methodology
proposed by Celik et al. (2008), can be verified that the medium grid must be used in
the analysis, due to GCI21 being less than 1% and approximate relative error less than
5%.

Comparing the curves presented in Figure 14 was verified that the mesh with y+ =

15 and y+ = 60 presented better results, almost fitting with the experimental data during
all the range o x/c, just diverging in trailing edge.

The worst results are found in the y+ = 150 mesh where the data diverges in trailing
edge and next to the maximum Cp peak.

4.2 Analysis of NACA 0021 airfoil

Following the proposed methodology was studied the NACA 0021 airfoil, the results of
the mesh generation, and evaluated in numerical simulation of the case are presented
below.

4.2.1 Mesh

Using the points of a NACA 0021 and the method explained in the methodology, the
far field has a size 20 times bigger than the airfoil chord. The mesh disposed in the
Figures 15 and 16 was generated for an y+ value of 60 , with approximately 2 millions
hexahedral elements, since OpenFOAM operates with a three-dimensional mesh, even
for two-dimensional cases, where the third dimension only has 1 element. Other two
mesh with different values of y+ were generated for GCI analysis.
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Figure 15: Demonstration of the mesh generated.

Source: Author

Figure 16: Demonstration of the mesh around the leading edge.

Source: Author

4.2.2 Numerical Results

Figure 17 presents the results evaluated for velocity fields obtained for NACA 0021 :
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Figure 17: Magnitude of Velocity [m/s] data from the flow field around the NACA 0021.

Source: Author

Figure 18 presents results for pressure fields obtained:

Figure 18: Pressure [Pa] data from the flow field around the NACA 0021.

Source: Author
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From Figures 17 and 18 can be noticed that since it is a symmetrical airfoil at
0°angle of attack, shows that the flow stream is symmetric and the velocity of the
upper and lower surface of the airfoil are equal. The flow moves smoothly around the
airfoil and is attached around the surface. And since there is no difference between the
pressure on top and bottom surfaces, no lift force is generated as expected from the
literature.

Figure 19 presents the Cp comparison between the experimental data provided by
Wolfe & Ochs (1997) and the numerical data evaluated with the analysis over the airfoil
NACA 0021.

Figure 19: Comparison of the Cp evaluated with the numerical analysis with the ex-
perimental data provided by Wolfe & Ochs (1997) for NACA 0021 airfoil.

Source: Author

As can be seen in Figure 19, the numerical data evaluated in the analysis keeps the
same behavior of the experimental data presented by Wolfe & Ochs (1997). However,
the numerical results diverge slightly from the values found by the experiments.

Another issue found in the NACA 0021 case was the representation of flow over the
leading edge. In this region, the numerical data presented a significant difference from
the experimental values of Cp.
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Differing from the NACA 0012 test case, where was found a problem in the rep-
resentation of the flow over the trailing edge, the numerical analysis was capable of
representing the flow over the trailing edge adequately for the NACA 0021 case, fitting
experimental and numerical data in this region.

Following the procedure of Celik et al. (2008), was verified the GCI for the NACA
0021 test case generated meshes with Cp as the chosen parameter, the results evalu-
ated are presented in Table 3.

Table 3: GCI analysis for NACA 0021 test case.
Number of Elements in mesh 1 3886000
Number of elements in mesh 2 1943000
Number of elements in mesh 3 777000

Refinement factor r21 1, 2599

Refinement factor r32 1, 3573

Approximate relative error ea21 0, 78%

Approximate relative error ea32 4, 04%

Extrapolated relative error eex21 0, 362%

Extrapolated relative error eex32 1, 13%

Convergence index GCI21 0, 45%

Convergence index GCI32 1, 43%

Source: Author

Comparing the results presented in Table 3 was verified that the coarse grid can be
used in NACA 0021 case analysis due to GCI21 is less than 1% and GCI32 being less
than 2% and approximate relative error below 5%.

Comparing the curves in Figure 19 was verified that the meshes with y+ = 15 and
y+ = 60 almost fit with the experimental data, only y+ = 150 mesh presented little
difference, diverging from the other meshes next to the Cp peak.

4.3 Analysis of NACA 23012 airfoil

Following the proposed methodology was studied the NACA 23012 airfoil, the results of
the mesh generation, and evaluated in numerical simulation of the case are presented
below.

4.3.1 Mesh

Using the points of a NACA 23012 and the method explained in the methodology, the
far field has a size 20 times bigger than the airfoil chord. The mesh disposed in the
Figures 20 and 21 was generated for an y+ value of 80 , with approximately 2 millions
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hexahedral elements, since OpenFOAM operates with a three-dimensional mesh, even
for two-dimensional cases, where the third dimension only has 1 element. Other two
meshes with different values of y+ were generated for GCI analysis.

Figure 20: Demonstration of the mesh generated.

Source: Author

Figure 21: Demonstration of the mesh around the leading edge.

Source: Author

4.3.2 Numerical Results

Figure 22 presents the results evaluated for velocity fields obtained for NACA 23012 :
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Figure 22: Magnitude of Velocity [m/s] data from the flow field around the NACA 23012.

Source: Author

Figure 23 presents results for pressure fields obtained:

Figure 23: Pressure [Pa] data from the flow field around the NACA 23012.

Source: Author
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From Figures 22 and 23 present a asymmetrical airfoil at 0°angle of attack, shows
that the flow stream is asymmetric and the velocity of the upper and lower surface of
the airfoil are different. Therefore, it can be said that the pressure at the upper surface
of the airfoil is less than the lower surface airfoil since the upper surface velocity is
higher than the velocity at lower surface, pressure difference between the lower and
upper body of the airfoil results in lift force as expected from the literature.

Figure 24 presents the Cp comparison between the experimental data provided by
Pan & Loth (2003) and the numerical data evaluated with the analysis over airfoil NACA
23012.

Figure 24: Comparison of the Cp evaluated with the numerical analysis with the ex-
perimental data provided by Pan & Loth (2003) for NACA 23012 airfoil.

Source: Author

As can be seen in Figure 24, the numerical data evaluated in the analysis keeps the
same behavior of the experimental data presented by Pan & Loth (2003). However,
the numerical results diverge slightly from the values found by the experiments.

Another issue found in the NACA 23012 case was the representation of the flow
over the leading edge. In this region, the numerical data presented a significant differ-
ence from the experimental values of Cp from the meshes with higher y+.

Differing from the NACA0012 test case, where was found a problem in the rep-
resentation of the flow over the trailing edge, the numerical analysis was capable of
representing the flow over the trailing edge as the NACA0021 case, fitting experimen-
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tal and numerical data in this region.
Following the procedure of Celik et al. (2008), was verified the GCI for the NACA

23012 test case generated meshes with Cp as the chosen parameter, the results eval-
uated are presented in Table 4.

Table 4: GCI analysis for NACA 23012 test case.
Number of Elements in mesh 1 4238400
Number of elements in mesh 2 2119200
Number of elements in mesh 3 1210200

Refinement factor r21 1, 4142

Refinement factor r32 1, 3233

Approximate relative error ea21 15, 54%

Approximate relative error ea32 0, 19%

Extrapolated relative error eex21 0, 35%

Extrapolated relative error eex32 0, 009%

Convergence index GCI21 0, 44%

Convergence index GCI32 0, 012%

Source: Author

Comparing the results presented in Table 4 was verified that the finest grid needs
to be used in NACA 23012 case analysis due to approximate relative error being 15%

even with GCI21 less than 1%.
Comparing the curves in Figure 19 was verified that the mesh with y+ = 40 almost

fit with the experimental data, while y+ = 80 and y+ = 140 mesh presented some
difference, diverging from the other meshes next to the Cp peak.
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5 Final Consideration

5.1 Conclusion

The main goal of this research was to develop an algorithm to automatically gen-
erate a structured mesh with airfoil points as input, using the simulation results and
experimental values as parameters to validate the method.

The results obtained in symmetrical airfoils using the structured mesh generated by
the method proposed have an error with the literature of approximately 0.9% for NACA
0012 and 2.1% for NACA 0021 results in the leading edge. The CGI analysis indicates
that the quantity of elements in the mesh does not need to be high for the same results,
being the number for symmetrical cases approximately 1 to 2 million elements, having
results with great accuracy.

For the asymmetrical airfoil an error of approximately 0.81% for NACA 23012 results
agrees with the literature in the leading edge. The CGI analysis show a quantity of 4
million elements in the mesh generate excellent results.

The results presented demonstrate the versatility and quality of the mesh, proving
the efficacy of the method and good cost benefit since it uses only free software.

5.2 Future study

Suggestions for future works to amplify the understanding of the topics approached
in this work:

• Amplify the number of cases;

• Generate a mesh for an airfoil with a higher camber;

• Develop an automatic mesh generation for wings;

• Generate other files for the simulation on OpenFOAM (controlDict, transportProp-
erties, etc.);

• Develop better integration between Python and OpenFOAM to automate all pro-
cess.
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Code
Pedro Henrique de Araújo Bitencourt

October 27, 2021

[ ]: %matplotlib

import string

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

'''Este programa serve para criar um arquivo de BlockMesh do perfil inserido

Autor: Pedro Henrique de Araújo Bitencourt'''

1 Airfoil Input

[ ]: airfoil = input('Airfoil name')

perf = airfoil+'.dat'

perfil = np.genfromtxt(perf,skip_header=1)

[ ]: plt.figure()

plt.axis([-0.1, 1.1, -0.5, 0.5])

plt.plot(perfil[:,0], perfil[:,1])

perfil = np.concatenate((perfil,np.zeros((perfil.shape[0],1))),axis=1)

2 y+ calculation

[ ]: y_plus = eval(input('y+ value'))

Mach = eval(input('Mach value'))

rho = eval(input('rho value'))

mi = eval(input('mi value'))

L = eval(input('Chord value'))

u = 0.12*Mach

Re = rho*u*L/mi

#Se Re < 10

Cf = (2*np.log10(Re)-0.65)**-2.3

tal = Cf*0.5*rho*u**2

u_star = (tal/rho)**0.5

y = y_plus*mi/(rho*u_star)

Appendix

In this appendix the developed algorithm is presented.
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3 Far Field Calculation

[ ]: lines =[]

Lu = -25*L #Upstream length from tip of leading edge

Ld = 25*L

Hy = 20*L #Height of computational domain perpendicular to flow

Y1 = Hy*0.2

Y2 = Hy*0.1

Y3 = Hy*0.05

Zw = 1

Y4 = -1.00*Y1

Y5 = -1.00*Y2

Y6 = -1.00*Y3

Hd = -1.00*Hy

X1 = -0.20

X2 = 0.50

X3 = 1.25

nx1 = 200

nx2 = 100

nx3 = 100

ny1 = np.int(Y2/y)

ny2 = np.int(ny1/3)

nz = 1

nd = 200
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NLE = 100

NTE = 100

n1 = 100

4 File writing

[ ]: t = 'blockMeshDict'

mesh = open(t,'w')

[ ]: cabe = '''/*--------------------------------*- C++ 

↪→-*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1606+ |

| \\ / A nd | Web: http://www.OpenFOAM.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

convertToMeters 1; \n'''

mesh.write(cabe),mesh.flush()

[ ]: def apen(v):

resp = '\n ('+str(np.format_float_positional(v[0]))+' '+str(np.

↪→format_float_positional(v[1]))+' '+str(np.format_float_positional(v[2]))+')'

return resp

[ ]: ident = int((perfil.shape[0]-1))

ident0 = int(ident/2-1)

ident1 = int(0.45*(ident))

ident2 = int(0.25*(ident))

ident3 = int(ident/2+1)

ident4 = int(0.56*ident)

ident5 = int(0.76*ident)
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4.1 Vertices

[ ]: lines =[]

lines.append('\n vertices \n ( \n')

# Upper surface

v0 = (perfil[ident0][0], perfil[ident0][1], 0.000) # 0

lines.append(apen(v0)) #0

v2 = (perfil[ident2][0], perfil[ident2][1], 0.000) # 1

lines.append(apen(v2)) #1

v3 = (perfil[1][0], perfil[1][1], 0.000) # 2

lines.append(apen(v3)) #2

# Lower Surface

v4 = (perfil[ident3][0], perfil[ident3][1], 0.000) # 3

lines.append(apen(v4)) #3

v6 = (perfil[ident5][0], perfil[ident5][1], 0.000) # 4

lines.append(apen(v6))#4

v7 = (perfil[-2][0], perfil[-2][1], 0.000) # 5

lines.append(apen(v7))#5

v8 = (-1.5*L, L, 0.000) # 6

lines.append(apen(v8))#6

v9 = (0.5*L, L, 0.000) # 7

lines.append(apen(v9))#7

v10 = (2.5*L, L, 0.000) # 8

lines.append(apen(v10))#8

v11 = (-1.5*L, -L, 0.000) #9

lines.append(apen(v11))#9

v12 = (0.5*L, -L, 0.000) # 10

lines.append(apen(v12))#10

v13 = (2.5*L, -L, 0.000) # 11

lines.append(apen(v13))#11

v14 = (Lu, Hy, 0.000) # 12

lines.append(apen(v14)) #12

v16 = (X2, Hy, 0.000) # 13

lines.append(apen(v16)) #13

v18 = (Ld, Hy, 0.000) # 14

lines.append(apen(v18)) #14

v25 = (Lu, Hd, 0.000) # 15

lines.append(apen(v25)) #15
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v27 = (X2, Hd, 0.000) # 16

lines.append(apen(v27)) #16

v29 = (Ld, Hd, 0.000) # 17

lines.append(apen(v29)) #17

v30 = (perfil[ident0][0], perfil[ident0][1], Zw ) # 18

lines.append(apen(v30)) #18

v32 = (perfil[ident2][0], perfil[ident2][1], Zw ) # 19

lines.append(apen(v32)) #19

v33 = (perfil[1][0], perfil[1][1], Zw ) # 20

lines.append(apen(v33)) #20

v34 = (perfil[ident3][0], perfil[ident3][1], Zw ) # 21

lines.append(apen(v34)) #21

v36 = (perfil[ident5][0], perfil[ident5][1], Zw) # 22

lines.append(apen(v36)) #22

v37 = (perfil[-2][0], perfil[-2][1], Zw ) # 23

lines.append(apen(v37)) #23

v38 = (-1.5*L, L, Zw ) # 24

lines.append(apen(v38))#24

v39 = (0.5*L, L, Zw ) # 25

lines.append(apen(v39))#25

v40 = (2.5*L, L, Zw ) # 26

lines.append(apen(v40))#26

v41 = (-1.5*L, -L, Zw ) # 27

lines.append(apen(v41))#27

v42 = (0.5*L, -L, Zw ) # 28

lines.append(apen(v42))#28

v43 = (2.5*L, -L, Zw) # 29

lines.append(apen(v43))#29

v44 = (Lu, Hy, Zw) # 30

lines.append(apen(v44)) #30

v46 = (X2, Hy, Zw) # 31

lines.append(apen(v46)) #31

v48 = (Ld, Hy, Zw) # 32

lines.append(apen(v48)) #32

v55 = (Lu, Hd, Zw) # 33
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lines.append(apen(v55)) #33

v57 = (X2, Hd, Zw) # 34

lines.append(apen(v57)) #34

v59 = (Ld, Hd, Zw) # 35

lines.append(apen(v59)) #35

lines.append(');')

mesh.writelines(lines),mesh.flush()

4.2 Edges

[ ]: def apen_spline(spline):

resp = ''

for i in range(spline.shape[0]):

resp += '\n ('+str(np.format_float_positional(spline[i,0]))+' '+str(np.

↪→format_float_positional(spline[i,1]))+' '+str(np.

↪→format_float_positional(spline[i,2]))+')'

return resp

[ ]: lines = []

lines.append('\n edges \n ( \n')

# Upper body (upper circular arcs).

arc_0_4 = np.array([0, 0, 0])

lines.append('\n arc 0 3 ('+str(arc_0_4[0])+' '+str(arc_0_4[1])+' 

↪→'+str(arc_0_4[2])+')')

arc_30_34 = np.array([0, 0, Zw])

lines.append('\n arc 18 21 ('+str(arc_30_34[0])+' '+str(arc_30_34[1])+' 

↪→'+str(arc_30_34[2])+')')

# Upper body longitudinal splines.

spline_0_1 = perfil[ident0:ident2:-1,:]

spline_0_1[:,2] = 0

lines.append('\n spline 0 1 ('+apen_spline(spline_0_1)+')')

spline_30_31 = spline_0_1

spline_30_31[:,2] = Zw

lines.append('\n spline 18 19 ('+apen_spline(spline_30_31)+')')

spline_2_3 = perfil[ident2:0:-1,:]

lines.append('\n spline 1 2 ('+apen_spline(spline_2_3)+')')
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spline_32_33 = spline_2_3

spline_32_33[:,2] = Zw

lines.append('\n spline 19 20 ('+apen_spline(spline_32_33)+')')

spline_4_5 = perfil[ident3:ident5,:]

lines.append('\n spline 3 4 ('+apen_spline(spline_4_5)+')')

spline_34_35 = spline_4_5

spline_34_35[:,2] = Zw

lines.append('\n spline 21 22 ('+apen_spline(spline_34_35)+')')

spline_6_7 = perfil[ident5:-1,:]

lines.append('\n spline 4 5 ('+apen_spline(spline_6_7)+')')

spline_36_37 = spline_6_7

spline_36_37[:,2] = Zw

lines.append('\n spline 22 23 ('+apen_spline(spline_36_37)+')')

lines.append('\n ); \n')

mesh.writelines(lines),mesh.flush()

4.3 Blocks

[ ]: def apen_block(blo):

resp = '\n hex '

cont = 0

for j in blo:

resp += '('

for i in j:

resp += str((i))+' '

cont +=1

if cont==2:

resp += ') simpleGrading '

else:

resp += ') '

return resp

[ ]: lines =[]

lines.append('\n blocks \n ( \n')

simpleGrading6 = [1, 1, 1]

hex_1 = np.array([[3, 0, 6, 9, 21, 18, 24, 27],[nx2, ny1, nz], simpleGrading])

lines.append(apen_block(hex_1))

hex_2 = np.array([[0, 1, 7, 6, 18, 19, 25, 24],[nx2, ny1, nz], simpleGrading])

lines.append(apen_block(hex_2))

hex_3 = np.array([[1, 2, 8, 7, 19, 20, 26, 25], [nx2, ny1, nz],  

↪→simpleGrading])

lines.append(apen_block(hex_3))
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hex_4 = np.array([[2, 5, 11, 8, 20, 23, 29, 26], [nx2, ny1, nz],  

↪→simpleGrading])

lines.append(apen_block(hex_4))

hex_5 = np.array([[10, 11, 5, 4, 28, 29, 23, 22],[nx2, ny1, nz], simpleGrading])

lines.append(apen_block(hex_5))

hex_6 = np.array([[9, 10, 4, 3, 27, 28, 22, 21],[nx2, ny1, nz], simpleGrading])

lines.append(apen_block(hex_6))

hex_7 = np.array([[9, 6, 12, 15, 27, 24, 30, 33],[nx2, ny2, nz], simpleGrading])

lines.append(apen_block(hex_7))

hex_8 = np.array([[6, 7, 13, 12, 24, 25, 31, 30],[nx2, ny2, nz], simpleGrading])

lines.append(apen_block(hex_8))

hex_9 = np.array([[7, 8, 14, 13, 25, 26, 32, 31], [nx2, ny2, nz],  

↪→simpleGrading])

lines.append(apen_block(hex_9))

hex_10 = np.array([[8, 11, 17, 14, 26, 29, 35, 32], [nx2, ny2, nz],  

↪→simpleGrading])

lines.append(apen_block(hex_10))

hex_11 = np.array([[16, 17, 11, 10, 34, 35, 29, 28],[nx2, ny2, nz], 

↪→simpleGrading])

lines.append(apen_block(hex_11))

hex_12 = np.array([[10, 9, 15, 16, 28, 27, 33, 34],[nx2, ny2, nz], 

↪→simpleGrading])

lines.append(apen_block(hex_12))

lines.append('\n ); \n')

mesh.writelines(lines),mesh.flush()

4.4 Boundary

[ ]: def apen_faces(face):

resp = '\n faces ( \n'

for i in range(face.shape[0]):

resp += '('+str(int(face[i,0]))+' '+str(int(face[i,1]))+'  

↪→'+str(int(face[i,2]))+' '+str(int(face[i,3]))+')'

resp += '\n ); \n'

return resp

[ ]: lines =[]

lines.append('\n boundary \n ( \n')

#inlet

lines.append('\n inlet{ \n')
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type_inlet = 'type patch;'

lines.append(type_inlet)

faces_inlet = np.array([[15, 12, 30, 33]])

lines.append(apen_faces(faces_inlet))

lines.append(' }')

#outlet

lines.append('\n outlet{ \n')

type_outlet = 'type patch;'

lines.append(type_outlet)

faces_outlet = np.array([[14, 17, 35, 32]])

lines.append(apen_faces(faces_outlet))

lines.append(' }')

#wall

lines.append('\n walls{ \n')

type_aerofoil = 'type wall;'

lines.append(type_aerofoil)

faces_aerofoil = np.array([

[0, 1, 19, 18], [1, 2, 20, 19], [2, 5, 23, 20],

[5, 4, 22, 23], [4, 3, 21, 22], [3, 0, 18, 21]])

lines.append(apen_faces(faces_aerofoil))

lines.append(' }')

#topAndBottom

lines.append('\n topAndBottom{ \n')

type_upper = 'type wall;'

lines.append(type_upper)

faces_upper = np.array([

[12, 13, 31, 30], [13, 14, 32, 31], [15, 16, 34, 33],

[16, 17, 35, 34]])

lines.append(apen_faces(faces_upper))

lines.append(' }')

#frontandback

lines.append('\n frontAndBack{ \n')

type_lower = 'type empty;'

lines.append(type_lower)

faces_lower = np.array([

[0, 1, 7, 6], [3, 0, 6, 9], [1, 2, 8, 7], [5, 2, 8, 11],

[5, 4, 10, 11], [4, 3, 9, 10], [6, 7, 13, 12], [9, 6, 12, 15],

[7, 8, 14, 13], [8, 11, 17, 14], [11, 10, 16, 17], [10, 9, 15, 16],

[18, 19, 25, 24], [21, 18, 24, 27], [19, 20, 26, 25], [23, 20, 26, 29],

[23, 22, 28, 29], [22, 21, 27, 28], [24, 25, 31, 30], [27, 24, 30, 33],
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[25, 26, 32, 31], [26, 29, 35, 32], [29, 28, 34, 35], [28, 27, 33, 34]])

lines.append(apen_faces(faces_lower))

lines.append('\n }); \n')

mesh.writelines(lines),mesh.flush()

end = '''mergePatchPairs ();

// ************************************************************************* //

↪→'''

mesh.write(end),mesh.flush()

5 Data analysis

[ ]: def data_analysis_graph(File):

Cp = File+'.csv'

file = open(Cp)

data = pd.read_csv(Cp)

file.close()

Cp_Data = np.array(data.loc[data['z']>0,'Cp'])

x_Data = np.array(data.loc[data['z']>0,'x'])

return Cp_Data,x_Data

[ ]: Cp_Simu1, x_Simu1 = data_analysis_graph('Cp_Naca23012_y+40')

Cp_Simu2, x_Simu2 = data_analysis_graph('Cp_Naca23012_y+80')

Cp_Simu3, x_Simu3 = data_analysis_graph('Cp_Naca23012_y+140')

Cp_Teoric, x_Teoric = data_analysis_graph('Cp_Naca23012_Teorico')

plt.figure()

plt.axis([-0.1, 1.1, 1.5, -1.5])

plt.scatter(x_Simu1, Cp_Simu1, marker='^', s=40)

plt.scatter(x_Simu2, Cp_Simu2, marker='*')

plt.scatter(x_Simu3, Cp_Simu3, marker='1')

plt.scatter(x_Teoric, Cp_Teoric)

plt.xlabel('x/c')

plt.ylabel('Cp')

#plt.title('Naca23012')

plt.legend(['y+ = 40', 'y+ = 80', 'y+ = 140', 'Experimental data'])
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