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The electric current and the magnetoresistance effect are studied in a double quantum-dot system,

where one of the dots QDa is coupled to two ferromagnetic electrodes ðF1;F2Þ, while the second

QDb is connected to a superconductor S. For energy scales within the superconductor gap, electric

conduction is allowed by Andreev reflection processes. Due to the presence of two ferromagnetic

leads, non-local crossed Andreev reflections are possible. We found that the magnetoresistance

sign can be changed by tuning the external potential applied to the ferromagnets. In addition, it is

possible to control the current of the first ferromagnet (F1) through the potential applied to the

second one (F2). We have also included intradot interaction and gate voltages at each quantum dot

and analyzed their influence through a mean field approximation. The interaction reduces the

current amplitudes with respect to the non-interacting case, but the switching effect still remains as

a manifestation of quantum coherence, in scales of the order of the superconductor coherence

length. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4723000]

I. INTRODUCTION

The study of transport properties of hybrid nanostructures

is a very active field of research, involving new and interest-

ing physical phenomena that appear at the nanometer scale,

with great potential for developing future technology in meso-

scopic systems. Within this context, systems based on combi-

nations of superconductors and ferromagnets are particularly

interesting, since the interplay between these two phenomena

can give rise to unusual effects. It is well known that in ferro-

magnetic/superconducting (F=S) junctions the conductance

can be controlled through the ferromagnet polarization. For

energies within the superconductor gap, the conduction pro-

cess is established via Andreev reflections1 (AR). In this pro-

cess, two electrons of F with opposite spins recombine into a

Cooper pair in S (with total spin S ¼ 0). The Cooper pairs are

the supercurrent carriers of the superconductor and these pairs

are highly correlated in large distances in comparison to the

interatomic distances. This feature has been explored by

Deutscher and Feinberg2 to propose a non-local Andreev

reflection (called crossed AR), where two electrons of differ-

ent leads can combine into a Cooper pair if the distance

between these leads is smaller than the coherence length.

Since this proposal, there has been a profusion of works

exploring crossed AR in different geometries,3–11 resonant

nanostructures involving quantum dots (QDs),12–17 different

conduction regimes18,19 (ballistic and diffusive), and address-

ing more fundamental questions, e.g., the entanglement of the

quasiparticles in different leads.20–25 Within this vast set of

hybrid nanostructures, systems composed by double QDs are

very promising, since this association can serve as a model of

diatomic molecules.26–28 Many works involving double

QDs have been developed mainly concerning the Kondo

effect,29–31 scattering with spin inversion,32 effects of differ-

ent geometries33,34 (series and parallel association), spin

detectors35,36 and systems involving superconductors. In the

latter case, there are studies involving Josephson molecular

junctions37–39 and transport by AR.40,41

By considering the outstanding properties of crossed

ARs and the promising feature of double QDs, we propose a

prototype of a molecular transistor by combining two QDs

with a superconductor and two ferromagnetic electrodes. A

schematic diagram of the system is shown in Fig. 1. There

are two ferromagnetic electrodes, F1 and F2, attached to the

first QD and a superconductor electrode is connected to the

second one. The dot coupled to the ferromagnetic electrodes

(F) is called a, and b is the one coupled to the superconduc-

tor (S). The superconductor has its chemical potential fixed

to zero, and independent voltage bias are applied to the ferro-

magnets which are called V1 and V2. There are also gate

potentials applied to the dots, denoted by Vga and Vgb. By

exploring the resonant structure of the local density of states

(LDOS) and the non-local feature of the crossed AR, we

show that it is possible to switch the current at one ferromag-

netic lead by the applied bias in the second one. In addition,

the magnetoresistance sign can also be changed through the

bias. The control of the current via external parameters can

be of interest in applications of molecular electronics.

We assume the existence of an intradot interaction at

each QD and use a mean-field approximation to include its

effect in our calculation. However, we have not considered

the occurrence of Kondo resonances at the QDs. While the

Kondo effect has been experimentally observed in semicon-

ducting QDs, coupling the dot to a ferromagnetic electrode

will split the dot level, leading to the suppression of the
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Kondo effect.42,43 Electron pairing in the superconductor

electrode also competes with Kondo through the proximity

effect.44 Now, a discussion about the relative magnitude of

the correlation parameters is in order. In this paper, U is lim-

ited to the gap value, since we analyzed the contribution of a

pure Andreev current (subgap current). Our study is then

confined to the weak correlation regime. This also restricts

the voltages to very small values, typically of the order of

mV or smaller. In fact, in the experiment by Beckmann

et al.,45 the superconductor gap of the Al film with thickness

of 80 nm was found to be � 0:18 meV. In another experi-

ment performed by Russo et al.,46 using Nb films, the super-

conductor gap obtained was in the range of 0.90 and

1.45 meV, for films with thicknesses between 15 and 50 nm,

respectively.

II. MODEL AND FORMULAS

The system displayed in Fig. 1 is described by the fol-

lowing Hamiltonian:

H ¼ H1 þH2 þHS þHdqd þHT ;

where the ferromagnet F1 is modeled by the Stoner model47

given by

H1 ¼
X

kr

�1krâ†
krâkr;

with �1kr ¼ �k � sgnðrÞh1 � l1. In the same way, the lead

F2 is described by

H2 ¼
X

kr

�2krb̂
†

krb̂kr �
X

kr

h2 sin hb̂
†

krb̂k�r ;

with �2kr ¼ �k � sgnðrÞh2cos h� l2.

The spin bands of F1ðF2Þ are split by the exchange

energy h1ðh2Þ and the magnetization direction of F2 has an

angle h with respect to the magnetization of F1. By changing

the value of h, we can change the configuration of the system

from parallel alignment (h ¼ 0) to an antiparallel alignment

(h ¼ p).

The superconductor is described by the BCS Hamiltonian,48

HS ¼
X

kr

�ks†
krŝkr þ

X
k

½Dŝ†
k"ŝ

†
�k# þ H:c:�;

with D being the superconductor gap and the operator

ŝ†
k"ŝ

†
�k# creates a Cooper pair in S. Therefore, we are consid-

ering here a conventional singlet superconductor with

s-wave pairing symmetry.

The chemical potentials l1 and l2 of F1 and F2 are fixed

by the applied bias V1 and V2 while the superconductor

chemical potential (lS) is set to zero as the ground.

The QDs are modeled by the mean-field Hamiltonian,

Hdqd ¼
X

r

Earn̂ar þ
X

r

Ebrn̂br; (1)

where Ear ¼ Ea � eVga þ Uhn̂a�ri=2 and Ebr ¼ Eb � eVgb

þUhn̂b�ri=2. The QDs energy levels, Ear and Ebr, are renor-

malized by the intradot interaction U. This interaction cou-

ples the energy levels to the mean occupations hn̂a�ri and

hn̂b�ri. In addition, gate voltages Vga and Vgb allow one to

tune the position of the bare QD levels with respect to super-

conductor chemical potential.

The tunneling between the QDs and leads is described

by

HT ¼
X

kr

½t1â†
krĉar þ H:c:� þ

X
kr

½t2b̂
†

krĉar þ H:c:�

þ
X

kr

½tsŝ
†
krĉbr þ H:c:� þ

X
r

½tabĉ†
arĉbr þ H:c:�; (2)

where the last term accounts for the hopping between the

QDs. For simplicity, we have assumed that the hopping ma-

trix elements are independent of the spin index. This will

safely cover the case of homogeneous “monodomain” ferro-

magnets, with no spin-flip scattering. Study of more general

situations for the S=F interface shows the possibility of

inducing a “triplet proximity effect” in the ferromagnet from

scattering by inhomogeneities at the interface or at domain

walls in the ferromagnet.49–55 In this latter case, anomalous

Andreev reflections, i.e., reflections with spin-flip into the

triplet state, have to be considered as also contributing to the

current. In the present study, the above phenomenon will not

be taken into account, restricting our calculation to ideal ho-

mogeneous leads. Note that in real experimental setups,

small magnetic fields can remove any domain structure.

In order to calculate the transport properties, we have

used the non-equilibrium Green’s function method.56 All the

physical quantities can be cast in terms of the Green’s func-

tion of the QDs. Since we are dealing with ferromagnet and

superconductor order parameters, it is convenient to introduce

the Nambu representation by using a generalized four-

dimensional spinor Ŵi ¼ ðĉ†
i" ĉi# ĉ†

i# ĉi"Þ† with i ¼ a; b. This

allows one to treat both order parameters on the same footing.

In terms of Nambu spinors the lesser (G<) and retarded/

advanced Green function Gr=a of QDs are written as

G<
ii ðt1; t2Þ ¼ ihŴiðt1Þ � Ŵ

†

i ðt2Þi (3)

and

G
r=a
ii ðt1; t2Þ ¼ � i#ð6t1 � t2ÞhŴiðt1Þ � Ŵ

†

i ðt2Þ

þ Ŵ
†

i ðt2Þ � Ŵiðt1Þi; (4)

FIG. 1. Schematic diagram showing the (F1,F2)-QDa-QDb-S system. The

magnetization of F1 is assumed to be fixed and the magnetization of F2 can

be varied for an angle h with respect to the F1 magnetization. V1 and V2 are

the external potentials applied to F1 and F2, respectively, while the super-

conductor is grounded. Gate voltages are also applied to the QDs, with Vga

and Vgb being the potentials applied to a and b, respectively.

113905-2 E. C. Siqueira and G. G. Cabrera J. Appl. Phys. 111, 113905 (2012)

Downloaded 11 Jul 2013 to 186.217.234.138. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions



with i ¼ a; b. Similar definitions are given for the leads

Green functions. However, all the physical quantities are

determined from the Green functions of the QDs.

Under stationary regime, the current through the system

is time-independent and we can work with the Fourier trans-

form of the Green functions. In this case, the total electrical

current coming from the ferromagnets and injected into the

superconductor is given by

I ¼ e

h

ð
dx½Gr

aaðxÞR<
F ðxÞ þG<

aaðxÞRa
FðxÞ þ H:c:�11þ33:

(5)

The subscript “11þ33” means taking the sum of 11 and 33

elements of the 4� 4 matrix. By adopting the equation of

motion method, the Green function of the dot a has been

determined

Gr
aa ¼ Gr0

aa þGr
aat

†
abGr0

bbtabGr0
aa;

with Gr0
aa ¼ gr

aað1� Rr
Fgr

aaÞ
�1

and Gr0
bb ¼ gr

bbð1� Rr
Sgr

bbÞ
�1

.

In these equations Gr
aa is the Green’s function of the

quantum dot a; Gr
bb is the Green’s function of the quantum

dot b; gr
aa and gr

bb are the Green’s functions of the dots a and

b isolated from the electrodes; tab describes the coupling

between the dots; Rr
F ¼ Rr

1 þ Rr
2 and Rr

S are the retarded

self-energies describing the coupling of the dots with the fer-

romagnetic and superconductor electrodes, respectively. Ex-

plicitly, these self-energies are written as

Rr;a
F ðxÞ ¼ �

i

2

A" 0 B 0

0 A# 0 B
B 0 A# 0

0 B 0 A"

2
664

3
775; (6)

with Ar� C1rþc2C2rþs2C2�r , B¼scðC2"�C2#Þ, s� sin h=2,

and c� cos h=2. We also have defined Cir ¼ 2pjtij2Nir, (with

i ¼ 1; 2) as the coupling strength, with ti being the tunneling

amplitude and Nir the density of states for the ferromagnet

spin r band.

The retarded/advanced self-energy of the superconduc-

tor is given by

Rr;a
S ðxÞ ¼ �

i

2
CsqðxÞ

1 �D=x 0 0

�D=x 1 0 0

0 0 1 D=x
0 0 D=x 1

2
664

3
775;

(7)

where Cs ¼ 2pjtsj2Ns, with Ns being the density of states of

the superconductor in the normal state and q is the modified

BCS density of states

qðxÞ � jxj#ðjxj � DÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � D2
p þ x#ðD� jxjÞ

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � x2
p ; (8)

with the imaginary part accounting for Andreev states within

the gap.57

It is important to note that the definition of Ŵi is the

same as the one used in Refs. 15, 57, and 58. As a result, the

self-energies given by Eqs. (6) and (7) are the same as those

found in Refs. 15, 57, and 58.

The “lesser” Green’s function is obtained through the

Keldysh equation

G<
aaðxÞ ¼ Gr

aaðxÞR<
TaðxÞGa

aaðxÞ; (9)

with R<
TaðxÞ ¼ R<

F ðxÞ þ t
†
abGr0

bbR
<
S ðxÞGa0

bbðxÞtab.

The self-energies R<
F ¼ R<

1 þ R<
2 and R<

S are obtained

by the fluctuation-dissipation theorem R<
i ¼ FiðxÞ½Ra

i � Rr
i �,

where i ¼ 1; 2 or s. The Fermi matrix Fi is given by

FiðxÞ ¼

fi 0 0 0

0 �fi 0 0

0 0 fi 0

0 0 0 �fi

2
664

3
775; (10)

in which the Fermi functions are defined as fi ¼ f ðx� eViÞ
and �fi ¼ f ðxþ eViÞ for i ¼ 1; 2 and fi ¼ f ðxÞ, if i ¼ s.

Since the Green’s functions are dependent on mean

occupations through the intradot interaction, it is necessary

to calculate those quantities at the dots. From the definition

of the “lesser” Green’s function, one straightforwardly

obtains the system of equations below:

hna"i ¼
1

2pi

ðþ1
�1

G<
aa;11½x; hna"i; hna#i; hnb"i; hnb#i�;

hna#i ¼
1

2pi

ðþ1
�1

G<
aa;33½x; hna"i; hna#i; hnb"i; hnb#i�;

hnb"i ¼
1

2pi

ðþ1
�1

G<
bb;11½x; hna"i; hna#i; hnb"i; hnb#i�;

hnb#i ¼
1

2pi

ðþ1
�1

G<
bb;33½x; hna"i; hna#i; hnb"i; hnb#i�:

These integral equations must be solved numerically in

a self-consistent way. Once the occupation numbers are

obtained, it is possible to calculate the other physical

quantities.

By using the relations above, it is possible to determine

the electrical current as a function of the applied bias V1 and

V2, the magnetization angle h and the gate potentials Vga and

Vgb. The total current is obtained by adding the two currents

from both ferromagnets. These currents are summed in the

QDs and injected into the superconductor by means of the

Andreev reflection. In this process, an incident electron com-

ing from the ferromagnetic lead, with energy x and spin r,

combines with a second electron with energy �x and spin

�r. Both electrons enter the superconductor as a Cooper

pair, leaving a reflecting hole with spin �r in the ferromag-

netic electrode. Since we need both spins to create a Cooper

pair, the AR is prohibited when the polarization of the ferro-

magnetic lead is equal to unity. In the setup under considera-

tion (see Fig. 1), the Andreev reflection may be local, that is

occurring in the same lead of the incident electron, or may

be nonlocal, with the reflected hole appearing in the other
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lead. For instance, an incident electron in F1 can be reflected

as a hole at F1 or F2. The latter case, called crossed AR, is

possible only if the distance between F1 and F2 is of the

order of or less than the superconductor coherence length.

Recent experiments probing crossed ARs estimate supercon-

ducting coherence lengths in the range of 10–15 nm for Nb

films46 and 200–300 nm for Al films,45 depending on the

sample, but showing that the effect can be checked experi-

mentally within the present state of the art in nanodevices.

Crossed ARs allow us to control the current through the

angle h and the polarization of the ferromagnets. The polar-

ization is defined in terms of the coupling constants

Pi ¼
Ci" � Ci#
Ci" þ Ci#

; i ¼ 1; 2:

The most interesting case is the one when both leads are full

polarized. In this case, AR in the same electrode is not possi-

ble and the crossed AR is the only mechanism to carry cur-

rent through the system.59 As a result, the current can be

tuned from zero to its maximum by varying the angle h of

the magnetization of F2. In fact, when h ¼ 0, the total cur-

rent is zero since we have the same spin in both electrodes

which implies no availability of states for the reflected hole.

On the other hand, when h ¼ p, all the electrons of F1 are

up-spin and the electrons of F2 are down-spin and the current

exhibits a maximum value. Materials with a high degree of

spin polarization are currently being used to study spin-

dependent transport properties. The most promising case

corresponds to CrO2, which has been predicted to be half-

metallic and 100% polarized at the Fermi level.60

In order to compare the current in these two different

configurations, we define the Andreev magnetoresistance as

ARMR ¼ jIAPj � jIPj
jIAPj þ jIPj

; (11)

in which IAP ¼ Iðh ¼ pÞ and IP ¼ Iðh ¼ 0Þ.
The definition (11) is different from the usual one, since

we use the absolute value of the currents. This definition

allows us to compare the amplitude of the currents in terms

of the bias of each electrode. In this system the sign of cur-

rent in each ferromagnetic terminal is linked to the averaged

chemical potential of the two leads. Thus, it contains the

case that V1 > 0 and V2 < 0 but I > 0. This unusual behav-

ior is characteristic of the crossed AR and has been first

pointed out by Zhu et al. in a one-dot three-terminal sys-

tem.15 By using the definition (11), we can determine which

current is larger through the sign of ARMR, even in cases

when we consider the dependence of ARMR with the bias V1

or V2.

III. RESULTS AND DISCUSSION

Some ARMR curves are presented in Fig. 2(a) for differ-

ent values of the applied bias in the electrodes F1 and F2.

For V2 ¼ 0, ARMR is positive in the entire range of V1 with

a rapid oscillation around V1 ¼ 0. For V2 ¼ þ0:30 the

ARMR displays a step-like behavior with positive values for

V1 > 0 and negative values for V1 < 0. The trend is inverted

for V2 ¼ �0:30. These results indicate that one can control

the sign of the system magnetoresistance through external

parameters V1 and V2. In order to understand the ARMR
curves, in Figs. 2(b) and 2(c) the corresponding IP and IAP

curves are shown. In the parallel configuration, the total cur-

rent IP is very small since the polarization values

(P1 ¼ P2 ¼ 0:95) are close to unity. In this case, the crossed

AR does not contribute significantly since the magnetiza-

tions of F1 and F2 are pointing in the same direction. When

the magnetization of F2 is inverted, the crossed AR domi-

nates the conduction process making IAP much higher than

IP. In this way, when the polarization is close to unity, the

usual situation is to find positive values of ARMR (see

Eq. (11)) since the current IAP is mainly carried by the

crossed AR plus a small direct AR contribution. However, as

shown in Fig. 2(a), for V2 6¼ 0, the ARMR presents negative

values even for high values of the P1 and P2. In fact, the

potential V2 shifts IP and IAP along the current axis, as shown

in Fig. 2(b). In this case, the current IP can be higher than IAP

for some range of V1 even if the amplitude of the former is

close to zero.

The parameters controlling the amplitude and the shift

of the currents with V1 and V2 are the coupling constants C1

and C2, respectively. In fact, by increasing C1 and C2, the

admixture of states at the ferromagnets with the dot levels is

also increased. Therefore, more electrons can be transferred

to the superconductor by direct ARs, resulting in higher

amplitudes of IP. Since the values used are C1 ¼ 0:20 and

C2 ¼ 0:80, the amplitude of IP is smaller in comparison to

the shift along the current axis. On the other hand, by com-

paring the Figures 2(b) and 2(c), we note that the amplitude

of IAP is almost independent on the relation between C1 and

C2. In fact, IAP is carried almost through crossed ARs which

picks up one up-spin electron from F1 and another down-

spin electron from F2. Since the total current entering into

the superconductor must be unpolarized, it is limited by the

electrode with lower injection of electrons. The difference

FIG. 2. Magnetoresistance ARMR and correspond-

ing currents IP and IAP through the system for differ-

ent values of the applied bias V1 and V2. (a) ARMR.

(b) IP ¼ Iðh ¼ 0Þ. (c) IAP ¼ Iðh ¼ pÞ. Fixed parame-

ters: C1 ¼ 0:20, C2 ¼ 0:80, Cs ¼ 0:30, tab ¼ 0:20,

Vga ¼ Vgb ¼ 0, U ¼ 0:40, P1 ¼ P2 ¼ 0:95, kBT
¼ 0:01. All the parameters are expressed in super-

conductor gap units.
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between these two processes (crossed and direct AR) with

respect to the variations of C1 and C2 allows the control of

the sign of ARMR through external parameters.

The curves for IAP display some interesting features.

Unlike the current IP, the shift of IAP along the current axis is

related to the applied bias rather than the coupling constants

C1 and C2. In fact, the zero value of the current IAP is found

through the condition V1 ¼ �V2 (see also Ref. 15 for one-dot

case). This condition determines the shifts of the current IAP

when the value of the bias is changed in the electrode F2. The

current IAP is given by the sum of the currents of each elec-

trode, I1 and I2, which present the same behavior shown by

the total current. This is a result of the coherence between the

leads in the crossed AR. To illustrate this point, in Fig. 3,

the current curves in the electrode F1 are shown for values of

the intradot interaction U ranging from 0 up to 0.80. By com-

paring the curves of Figs. 3(c) and 2(c), it can be noted that

the amplitude of I1 is half the amplitude of the total current

showing a balance in the contribution of each ferromagnet.

For all curves shown in Fig. 3, the system works as a switch

when jV1j& 0:32 (out of the shaded region): if the bias in F2

is changed from zero to 60:30 the current through F1 is com-

muted from its maximum to a value close to zero. In Fig. 2(c),

the current is reduced from 0.20 to 4:5� 10�3 at V1 ¼ 0:60

as V2 is changed from þ0.30 to �0.30. This implies that the

current is reduced to 2% of its maximum value. This small

“leakage” current could be eliminated in the case in which the

ferromagnets are fully polarized. This switching behavior of

the system can be useful in practical applications since the

system behaves as a transistor. The switching effect persists

even for high values of the intradot interaction as shown in

Fig. 3(f), for U ¼ 0:80. However, as the interaction increases,

an asymmetry in the curves with respect to the sign of V1

emerges: the amplitude of I1 is strongly reduced for V1 > 0

but is weakly reduced for V1 < 0. In curves with V2 ¼ þ0:30,

there is a reduction of the current with the increase of the

applied potential for U > 0:20. This effect has been studied

by the authors in a previous work61 and its explanation is

based on the appearance of asymmetries caused by the inter-

action in the LDOS at the QDs.

The results for the transistor based on AR depend on

high values of the polarization of the electrodes since the dif-

ference between direct and crossed processes is the key for

the behavior observed in this system. In addition, the step-

like behavior of the current stems from the localized LDOS

around the superconductor chemical potential (lS). This

way, in an experimental realization of this system, a perti-

nent question would be if the transistor effect persists for

FIG. 3. Current through the terminal F1

for V2 ¼ �0:30 (red curve) and V2 ¼
0:30 (black curve) for different values of

the intradot interaction U. Fixed parame-

ters: h ¼ p, C1 ¼ 0:20, C2 ¼ 0:80,

Cs ¼ 0:30, tab ¼ 0:20, Vga ¼ Vgb ¼ 0,

P1 ¼ P2 ¼ 0:95, kBT ¼ 0:01. All the pa-

rameters are expressed in superconduc-

tor gap units.

FIG. 4. Current through the terminal F1

for different values of hopping parameter

tab. (a) and (b): P1 ¼ P2 ¼ 0:95; (c) and

(d): P1 ¼ P2 ¼ 0:60; (e) and (f): P1

¼ P2 ¼ 0:24. Fixed parameters: h ¼ p,

C1 ¼ 0:20, C2 ¼ 0:80, Cs ¼ 0:30, U
¼ 0:40, and kBT ¼ 0:01. All the parame-

ters are expressed in superconductor gap

units.
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smaller values of polarization and hopping between the QDs.

The latter parameter being responsible for the resonant struc-

ture of the LDOS around lS. In order to analyze these points,

in Fig. 4 some curves for the current I1 are presented for dif-

ferent values of the ferromagnet polarizations and hopping

parameter between dots. We considered three different val-

ues of polarizations: P1 ¼ P2 ¼ 0:95 (Figs. 4(a) and 4(b));

P1 ¼ P2 ¼ 0:60 (Figs. 4(c) and 4(d)) and P1 ¼ P2 ¼ 0:24

(Figs. 4(e) and 4(f)). In Figs. 4(a) and 4(b), the polarizations

take the same values as in Figs. 2 and 3, but tab is ranging

from 0.05 up to 0.20. As tab is reduced from the value of

0.20, the amplitude of the current is strongly reduced for

both signs of V2. In spite of this reduction, the dependence of

I1 on V1 is qualitatively the same for all values of tab. Thus,

the variation of tab within this range of values preserves the

behavior of the system as a transistor. In Figs. 4(c) and 4(d),

the polarization is reduced to P1 ¼ P2 ¼ 0:6. In this case, an

important change can be observed in comparison to the

curves of Figs. 4(a) and 4(b): the leakage current displays

now a noticeable value which increases with the hopping pa-

rameter. For tab ¼ 0:20, the maximum value of the leakage

current is approximately 60:02 for V1 ¼ 60:78 and

V2 ¼ �0:3. As the hopping parameter is reduced, the leak-

age current is also reduced as shown in Figs. 4(c) and 4(d) in

which tab is changed from 0.20 to 0.05. Even though, for all

curves the maximum value of the leakage current is about

13% of the current maximum for both signs of V2. As the

polarization is further reduced, the leakage current increases

as shown in Figs. 4(e) and 4(f), for P1 ¼ P2 ¼ 0:24. In this

case, the leakage current is about 20% of the maximum cur-

rent. Hence, the switching effect of the system becomes less

efficient as the polarization is reduced below 80%. On the

other hand, the reduction of tab does not destroy the switch-

ing effect since it just reduces the current amplitudes.

In the results shown in Figs. 2 to 4, the intradot interac-

tion has introduced a negative differential conductance on the

current response. However, there are other effects which can

also take place under the presence of electronic correlations at

the QDs. In particular, the intradot interaction splits the up

and down-spin states at each QD, with the corresponding

splitting of peaks in the transmittance and differential con-

ductance. In the case in which crossed ARs are present, the

effect of U on the spin-degeneracy is more complex in com-

parison to systems with two–terminals as the one studied in

Ref. 61. To illustrate this point, a comparison between the

responses of the present system and the two-terminal system

of Ref. 61 is shown in Fig. 5. The solid curve (black curve)

corresponds to the total current through the system F1 �
QDa � QDb � S and the dotted-dashed curve (red curve) is

the total current flowing in the ðF1;F2Þ � QDa � QDb � S
system. For the first system, which conducts via normal ARs,

we chose a not so big value of the polarization (P1 ¼ 0:50),

otherwise the current will be very small. For the two-terminal

system, both polarization are close to 1, and the current is

mainly due to non-local crossed ARs. The corresponding dif-

ferential conductance curves are shown in Fig. 5(b). For the

system with one ferromagnet, the current displays eight steps

corresponding to the eight peaks of the differential conduct-

ance. Note that admixture between the QD levels with the

continuum of states from the ferromagnet and the Andreev

levels of the superconductor, gives rise to a four-peak struc-

ture of the LDOS at the QDs.61 Under the presence of the

intradot interaction, those four peaks are split, resulting in

eight peaks in the LDOS and eight steps in the current. In con-

trast, only four peaks appear in the figure of the differential

conductance for the system with 2 ferromagnets. To under-

stand the difference between those responses, the key factor is

to note that the polarizations have been chosen close to unity

in the two-terminal system. As a result, the conduction is car-

ried mainly by crossed ARs, since the ferromagnets are in the

antiparallel configuration. The electrodes carry the current in

a coherent way, i.e., one spin-up electron from F1 and another

spin-down electron from F2 are combined as a Cooper pair in

the superconductor. In Fig. 5(c), the transmittance curves for

FIG. 5. (a) Currents through the one-terminal F1 �QDa �
QDb � S system (solid black curve) and the two-terminals

ðF1;F2Þ � QDa � QDb � S system (red dashed-dotted

curve). (b) Corresponding differential conductance curves.

(c) Transmittance curves for crossed AR of the two-

terminal ðF1;F2Þ � QDa � QDb � S system. TAR;12 repre-

sents the transmittance for an up-spin electron of F1 to be

reflected as a down-spin hole of F2; TAR;21 represents the

transmittance for an up-spin electron of F2 to be reflected

as a down-spin hole of F1. (d) Transmittance curve for the

one-terminal system F1 � QDa �QDb � S. Fixed parame-

ters: C1 ¼ 0:20, Cs ¼ 0:30, U ¼ 0:90, tab ¼ 0:20,

kBT ¼ 0:01, V2 ¼ 0:30. C2 ¼ 0:80, and P1 ¼ P2 ¼ 0:95 for

the system with two-terminals, and C2 ¼ 0 and P1 ¼ 0:50

for the system with one ferromagnet. All the parameters are

expressed in superconductor gap units.
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crossed ARs are shown. TAR;12 represents the transmittance

for a spin-up electron of F1 to be reflected as a spin-down

hole in F2, while TAR;21 represents the transmittance for a

spin-down electron of F2 to be reflected as a spin-up hole in

F1. It can be noted that the curves are not symmetric with

respect to the energy origin. This feature contrasts with the

transmittance in the case of one ferromagnetic electrode,

which is illustrated in Fig. 5(d). However, the two curves dis-

played in (c), when combined present a symmetric character,

as one can observe by locating the peaks of each spectrum.

The peak labeled by 1 in TAR;12 and the peak 1
0

in TAR;21 are

located at x ¼ þ0:16 and �0:16, respectively. The same

symmetry can be observed between the other pairs of peaks.

This shows us that the ferromagnets act cooperatively in the

transport, circumventing the effect of U in breaking spin

degeneracy. In fact, the interaction U is only responsible for

the shifts of the curves with respect to the origin. However,

since TAR;12 and TAR;21 are displaced symmetrically, there is

no sensible effect on the current and differential conductance

as shown in Figs. 5(a) and 5(b). In the case with one ferro-

magnet, there is only one transmittance curve, and the effects

of the interaction can be observed by the splitting of the

peaks. It is important to note that transport via AR requires

electrons with energies disposed symmetrically with respect

to the superconductor chemical potential. This is necessary in

order to form Cooper pairs within the superconductor and sus-

tain the subgap current associated with AR. Next, we consider

the effect of the gate potentials on the electric transport of the

system. In Fig. 6, the current through F1 (I1) is plotted in

terms of the gate potentials Vga and Vgb applied on the QDs a
and b, respectively. The bias in the ferromagnets are fixed at

V1 ¼ V2 ¼ 60:30 corresponding to the maximum value of I1

for the curves of Figs. 4(a) and 4(b). In Figs. 6(a) and 6(b),

the interaction at the QDs is zero and I1 displays a single peak

centered at Vga ¼ Vgb ¼ 0. The same behavior is observed in

Fig. 6(b) for V1 ¼ V2 ¼ �0:30. When the interaction at the

QDs is present, the current still exhibits a single peak as

observed in Figs. 6(c) and 6(d) for U ¼ 0:80. However, the

peak is now located at Vga ¼ Vgb ¼ �0:18 and its amplitude

has been reduced to half of the value for U ¼ 0:0. Therefore,

under the presence of interaction at the QDs, gate voltages

must be used in order to find the maximum condition for the

electrical current. By the projections on the plane Vgb � Vga

in Figs. 6(b) and 6(d), it can be noted that the variation of I1 is

asymmetric with respect to the gate potentials. In fact, I1 is

different from zero in the entire range of Vga but is appreci-

able only within a very narrow range of Vgb. This can be

explained by noting that the system is not symmetric, with

each QD connected to a different electrode, and subjected to a

different hybridization of quantum states. This is also reflected

in the structure of the LDOS in both QDs, as shown in Fig. 7.

By changing the gate voltages Vga and Vgb, it is possible to

change the QDs levels and the LDOS. In simpler systems, in

which the coupling between the QDs and the electrodes is

weak, the gate voltage just shifts the QDs levels with respect

to the chemical potential of the electrodes. Hence, the behav-

ior of the LDOS can be described in a intuitive manner, being

possible to relate the changes of the current directly with those

of the levels of the QDs. In our example, the analysis is

subtler, since the QD levels are admixed with the continuous

band of the ferromagnets and the discrete Andreev levels of

the superconductor. This way, the effects of the gate voltages

on the LDOS are more complex to resolve. To illustrate this

point, in Fig. 7 we display some curves for the LDOS of both

QDs, for different values of Vga and Vgb. The LDOS are

obtained by standard methods, from the imaginary part of

FIG. 6. Current through the terminal F1 as a function of

the gate voltages Vga and Vgb. (a) V1 ¼ V2 ¼ þ0:30

and U ¼ 0. (b) V1 ¼ V2 ¼ �0:30 and U ¼ 0. (c) V1 ¼ V2

¼ þ0:30 and U ¼ 0:8. (d) V1 ¼ V2 ¼ �0:30 and U ¼ 0:80.

Fixed parameters: h ¼ p, C1 ¼ 0:20, C2 ¼ 0:80, Cs ¼ 0:30,

tab ¼ 0:20, P1 ¼ P2 ¼ 0:95, kBT ¼ 0:01. All the parame-

ters are expressed in superconductor gap units.
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elements 11 (dot a) and 33 (dot b) of the retarded Green func-

tion of these QDs. Explicit formulae can be found in Ref. 61.

The curves correspond to the bias V1 and V2 equal to

0.30 meaning that only the states within the range of conduc-

tion �0:30 < x < þ0:30 are contributing to the transport. As

the gate voltages are varied, the LDOS within this window

changes, modifying the response of the system to applied vol-

tages in F1 and F2. For the non-interacting case, the maximum

value of the current occurs for Vga ¼ Vgb ¼ 0. The corre-

sponding LDOS for both QDs are represented by the solid

curves (black curves) in Figs. 7(a) and 7(b). It can be noted

that the LDOS is spread over the entire range �0:30 < x <
þ0:30 which implies that the current is carried almost over all

range determined by the applied bias. For Vga ¼ �0:90 (blue

dotted curve) and Vga ¼ þ0:90 (red dashed-dotted curve)

LDOS-A exhibits a maximum at x ¼ �0:93 and þ0.93,

respectively. In the range of interest, there are two well local-

ized peaks but with asymmetric amplitudes. These two peaks

also appear in the curves for LDOS-B as shown in Fig. 7(b).

However, these peaks present higher amplitudes for

Vga ¼ þ0:90, being very suppressed for Vga ¼ �0:90. This

asymmetric pattern explains the suppression of the current for

these values of the gate potentials. As pointed in our previous

work,61 the symmetry of the peaks in the LDOS is crucial for

the transport, since states located at opposite values of the

energy combine to form Cooper pairs in the superconductor.

If one of these peaks is suppressed, the effective number of

states participating in the conduction process is effectively

reduced and the current becomes smaller. For the interacting

case, shown in Figs. 7(c) and 7(d), the intradot interaction

splits the peaks of the LDOS at both QDs. However, since

some peaks are strongly suppressed, we do not see them

within the scale of the graph. As an example, take the value

Vga ¼ 60:90. For the QD coupled to the superconductor (dot

b), the LDOS exhibits four peaks localized inside the range

�0:30 < x < þ0:30. However, the corresponding states for

the QD coupled to the ferromagnets (dot a) are completely

suppressed in the same range (LDOS-A displays only four

small peaks around x ¼ 0). In contrast, when Vga ¼ �0:18,

both LDOS are appreciable inside the range of conduction,

which explains the maximum value of the current shown in

Figs. 6(c) and 6(d).

The system is very sensible to variations of the gate

potentials, as shown by the results in Figs. 6 and 7. In fact,

the voltage values involved are restricted to the superconduc-

tor gap, and small variations of the parameters within this

range are sufficient to change the transport response of the

system. See, for instance, the cases of Figs. 6(c) and 6(d), for

fixed Vgb ¼ �0:18. Changing Vga from �0.18 to 0, reduces

the current to 38% of its maximum value.

IV. CONCLUSION

The combination of superconductivity with ferromag-

netism in nanostructures gives rise to most interesting prop-

erties, probably useful in future technologies. In this work

we have studied the magnetoresistance and the current prop-

erties of the ðF1;F2Þ � QDa � QDb � S hybrid system, in

the case of subgap currents, when the transport is solely due

to AR processes. We found that the magnetoresistance sign

can be switched by applying an external potential in one of

the ferromagnetic leads. In addition, the current carried by

crossed ARs can also be controlled through the potential of

the ferromagnets. Being a nonlocal process, crossed ARs

allow control of the current in one ferromagnet, say F1, by

means of the potential applied to the other, say F2, with the

system behaving as a switch for some values of the parame-

ters. The switching effect works better for polarization val-

ues close to unity. In fact, the leakage current in the inverse

direction is completely suppressed when the ferromagnets

are fully polarized. High polarizations (>90%) values have

been observed in ferromagnetic films of CrO2 by Soulen, Jr.

FIG. 7. LDOS for the QDs for some values of the gate

voltage Vga. LDOS-A is the density of states of the QD con-

nected to the ferromagnets. LDOS-B is the density of states

of the second QD, connected to the superconductor. (a)

LDOS-A with Vgb ¼ 0 and U ¼ 0:0. (b) LDOS-B with

Vgb ¼ 0 and U ¼ 0:0. (c) LDOS-A with Vgb ¼ �0:15 and

U ¼ 0:8. (d) LDOS-B with Vgb ¼ �0:15 and U ¼ 0:8.

Fixed parameters: h ¼ p, C1 ¼ 0:20, C2 ¼ 0:80,

Cs ¼ 0:30, tab ¼ 0:20, P1 ¼ P2 ¼ 0:95, kBT ¼ 0:01. All

the parameters are expressed in superconductor gap units.
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and co-workers.62 Some high values (>85%) have also been

reported in ferromagnetic semiconductors based on

GaMnAs.63 This way, representative values used in our nu-

merical calculations could be implemented in experiments.

Inclusion of the intradot interaction U does not kill the

switching effect, as shown by examples in Fig. 3. However,

it is worth mentioning that our results were obtained from a

mean field approximation in treating correlations at the QDs,

with fluctuations being neglected. Important effects, such as

the negative differential conductance and the lifting of spin

degeneracy, could be washed out by fluctuations, and we

have to look for a safe ground in order to apply mean field

results. Qualitatively, this domain corresponds to high polar-

ization values and nonzero gate voltages, which strongly

suppress fluctuations. However, the exact extension of the

validity of the approximation used in this work can be

addressed only by experiments.

The switching property shown by the ðF1;F2Þ � QDa �
QDb � S system resembles the conventional transistors used

in large scale in any commercial electronic device. The

future of the electronics in the nanometer domain demands

devices which mimic the conventional ones, and the system

presented in this work may be a contribution in this

direction.
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