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ARTICLE INFO ABSTRACT

Articl_e history: Bilateral injections of moxonidine, an o-adrenoceptor and imidazoline receptor agonist, into the lateral
Received 21 March 2011 parabrachial nuclei (LPBN) enhance sodium appetite induced by extracellular dehydration. In the present
Received in revised form 13 july 2011 study, we examined whether LPBN moxonidine treatments change taste reactivity to hypertonic NaCl

Accepted 14 July 2011 solution administered into the mouth by intra-oral (I0) cannula. Male Holtzman rats prepared with 10 and

bilateral LPBN cannulas received subcutaneous injections of furosemide (FURO; 10 mg/kg) and captopril
Palatability (CAP; 5 mg/kg) to induce hypovolemia with mild hypotension and an accompanying salt appetite and thirst
Taste before testing the taste reactivity to oral infusions of 0.3 M NaCl (1.0 ml/min). In the first experiment 45 min
Adrenoceptors after subcutaneous injections of FURO + CAP or vehicle, moxonidine was bilaterally injected into the LPBN,
Thirst and then 15 min later both bodily and oral-facial ingestive and rejection responses to 0.3 M NaCl delivered
Sodium appetite through the I0 cannula were assessed. Both LPBN vehicle and moxonidine treated rats showed increased
Hindbrain ingestive and decreased rejection responses to the IO hypertonic solution. The 10 0.3 M NaCl infusion-evoked
ingestive and rejection taste related behaviors were comparable in the LPBN vehicle- vs. the LPBN
moxonidine-injected groups. In a second experiment, rats received the same FURO + CAP treatments and
LPBN injections. However, beginning 15 min after the LPBN injections, they were given access to water and
0.3 M NaCl and were allowed to consume the fluids for most of the next 60 min with the free access intake
being interrupted only for a few minutes at 15, 30 and 60 min after the fluids became available. During each of
these three brief periods, a taste reactivity test was conducted. On the three taste reactivity tests rats that
received LPBN vehicle injections showed progressive declines in ingestive responses and gradual increases in
rejection responses. However, in contrast to the LPBN vehicle treated rats, animals receiving bilateral
injections of LPBN moxonidine maintained a high number of ingestive responses and a low number of
rejection responses throughout the test period even in spite of evidencing substantial water and 0.3 M NaCl
consumption during the periods of free access. The results suggest that after a,-adrenoceptor agonist delivery
to the LPBN the acceptance of 0.3 M NaCl is sustained and the negative attributes of the solution are
minimized. The maintained positive rewarding qualities of 0.3 M NaCl are likely to account for why LPBN
moxonidine treated rats show such a remarkable salt appetite when assayed by the volume of hypertonic
0.3 M NaCl consumed.
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1. Introduction

Sodium chloride (NaCl) is an important constituent of the
extracellular fluid compartment and the major determinant of plasma
osmolality and extracellular fluid volume. The acquisition and
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increased ingestion of sodium solutions of concentrations which are
normally avoided [1-3].

In the hindbrain, important inhibitory mechanisms for the control
of water and NaCl intake have been demonstrated in the lateral
parabrachial nucleus (LPBN) [4-10]. The LPBN, a pontine structure
that lies dorsolateral to the superior cerebellar peduncle, is recipro-
cally connected to forebrain areas that have been implicated in the
maintenance of blood pressure and body fluid homeostasis, such as
the paraventricular nucleus of the hypothalamus, the central nucleus
of the amygdala and the median preoptic nucleus. The LPBN is also
richly interconnected with medullary regions, which include the area
postrema (AP) and the medial portion of the nucleus of the solitary
tract (mNTS), [11-18]. Cells in the LPBN are activated after ingestion
of sodium solutions by dehydrated rats or in rats that received
intragastric loads of hypertonic NaCl [19-21], suggesting that the
LPBN might receive inhibitory visceral or taste signals. Therefore, the
LPBN may integrate and relay taste and visceral signals that ascend
from AP/mNTS en route to forebrain areas involved in the control of
fluid and electrolyte balance [7-9,22,23].

The inhibitory mechanisms of the LPBN are modulated by different
neurotransmitters like serotonin, cholecystokinin, glutamate, corti-
cotrophin releasing factor, opioids and noradrenaline [7-10,24-32].
Activation of oy-adrenoceptors with bilateral LPBN injections of
moxonidine (a;-adrenoceptor/imidazoline receptor agonist) or nor-
adrenaline strongly enhances 0.3 M NaCl intake induced by subcuta-
neous treatment with the diuretic furosemide (FURO) when
combined with a low dose of the antihypertensive drug, captopril
(CAP) [24,32,33]. This suggests that activation of a;-adrenoceptors in
the LPBN may reduce the effects of inhibitory mechanisms that limit
sodium intake [24,32,33]. The effects of «,-adrenoceptor agonist
treatment of the LPBN on sodium intake are not due to a non-specific
facilitation of all ingestive behaviors, because sucrose solution intake
is not affected by bilateral LPBN injections of moxonidine [33].

A taste reactivity test determining the frequency of ingestive and
rejection behavioral reactions or fixed action patterns in response to
intra-orally delivered solutions was originally developed by Grill and
Norgren[34]. This method assesses the occurrences of species-typical
affective behavioral reactions [such as ingestive-related tongue
protrusions or negative (rejection) gapes| in response to oral
stimulation [34,35]. Lesions placed within either the NTS, parabrachial
nucleus (PBN), or the parvocellular ventral posteromedial thalamic
nucleus (VPMpc) disrupt the shift in taste reactivity observed in intact
animals after sodium deficiency [36]. Lesions placed in the NTS and
PBN, but not the VPMpc, also block increases in home-cage intake
observed in intact, sodium deficient rats [36].

Since «-adrenoceptor activation with the administration of
moxonidine into the LPBN greatly increases NaCl intake in free access
intake tests, the present studies tested whether LPBN o,-adrenoceptor
stimulation modifies taste reactivity responses to 0.3 M NaCl in rats with
an experimentally-induced sodium appetite. The results of the
experiments indicate that before animals ingest 0.3 M NaCl and water,
LPBN moxonidine treatment does not increase or decrease the number
of ingestive or rejection behaviors in comparison to those seen in LPBN
vehicle treated rats. However, the findings do demonstrate that unlike
LPBN vehicle treated animals showing decreased ingestive and
increased rejection responses over the course of restoring body sodium
and water, rats receiving LPBN moxonidine maintain a high level
ingestive responses and a low number of rejection responses through-
out a period of fluid repletion.

2. Material and methods
2.1. Animals

Male Holtzman rats weighing 290 to 310g were housed in
individual stainless steel cages with free access to normal sodium

(0.5-1.0%) diet (Guabi Rat Chow, Paulinia, SP, Brazil), water and 0.3 M
NaCl solution. Temperature was maintained at 2342 °C, and
humidity was maintained at 554+10% on a 12:12 light-dark cycle
with light onset at 7:30 AM. The Ethical Committee for Animal Care
and Use from the Dentistry School of Araraquara — UNESP approved
the experimental protocols used in the present study (protocol
06/2006). The experimental protocols also followed the U.S. National
Institutes of Health Guide for the Care and Use of Laboratory Animals
(NIH publication no. 80-23, 1996).

2.2. Cerebral and 10 cannulas

Rats were anesthetized with ketamine (80 mg/kg of body weight)
combined with xylazine (7 mg/kg of body weight) and placed in a
Kopf stereotaxic instrument. The skull was leveled between bregma
and lambda. Stainless steel 23-gauge cannulas were implanted
bilaterally above the LPBN using the following coordinates: 9.4 mm
caudal to bregma, 2.1 mm lateral to the midline, and 4.2 mm below
the dura mater, according to Paxinos and Watson [37]. The tips of the
cannulas were positioned at a point 2 mm above each LPBN. The
cannulas were fixed to the cranium using dental acrylic resin and
jeweler screws, and 20-gauge metal obturators were used to fill the
cannulas between tests. Immediately after the implantation of LPBN
cannulas, all animals were also implanted with chronic IO cannulas.
Each oral cannula (heat-flared PE 50 tubing) entered the mouth just
lateral to the first maxillary molar. The tubing was tunneled
subcutaneously to ascend lateral to the skull, and posterior to the
nape of neck where the free end was exteriorized. The 10 cannulas do
not interfere with the normal eating behavior of the animal and allow
the direct infusion of solutions into the mouth. The rats were allowed
to recover for 6 days before drug injections were made into the LPBN.

2.3. Injections into the LPBN

Bilateral injections into the LPBN were made using 5-pl Hamilton
syringes connected by polyethylene tubing (PE-10) to 30-gauge
injection cannulas. At time of testing, obturators were removed and
the injection needle (2 mm longer than the guide cannulas) was
introduced in the brain. All the injections into the LPBN were 0.2 pl for
each site and performed over a period of 1 min, with 1 additional min
allowed to elapse before the injection needle was removed from the
guide cannula to avoid reflux. The movement of an air bubble inside
the polyethylene tubing connected to the syringe confirmed drug
flow. The obturators were replaced after injection, and the rats were
placed back into the cage.

2.4. Drugs

Moxonidine hydrochloride (0.5 nmol/0.2 ul) (Solvay Pharma,
Hannover, Germany) dissolved in a mix of propylene glycol and
water 2:1 (vehicle) was injected into the LPBN. Vehicle was injected
as control.

The natriuretic/diuretic drug FURO (10 mg/ml; Sigma Chem., St
Louis, MO, USA) was dissolved in alkaline saline (0.9% NaCl, pH was
adjusted to0 9.0 with NaOH) and administered s.c. at the dose of 10 mg/kg
of body weight. The angiotensin converting enzyme inhibitor CAP
(5 mg/ml; Sigma Chem., St. Louis, MO, USA) was dissolved in saline
(0.9% NaCl) and administered s.c. at the dose of 5mg/kg of body
weight. The pH 9.0 saline solution was used as the vehicle control for
FURO and normal 0.9% saline as the vehicle control for CAP.

2.5. Taste reactivity test
Prior to the testing period, rats with LPBN and IO cannulas were

each given a 3-day habituation period during which they were
exposed to the taste reactivity chamber for 10 min, followed by a 1 ml
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infusion of water. Testing began 6 days after surgery, with a 48-hour
interval between tests.

2.5.1. Experiment 1 — taste reactivity to 0.3 M NaCl in rats treated with
sc FURO + CAP

On each test day, each rat was treated with sc FURO (10 mg/kg of
body weight) 4+ CAP (5 mg/kg of body weight) or vehicle + saline. At
this time, water, food and 0.3 M NaCl were removed from the rat's
home cage. Forty-five minutes later, rats received bilateral injections
of moxonidine (0.5 nmol/0.2 ul) or vehicle (0.2 ul) into the LPBN.
Immediately after the LPBN injections, the rat's oral cannula was
connected to a stimulus delivery tube, consisting of PE 50 tubing
attached to an infusion pump. The rats were then placed in a
cylindrical plexiglas test chamber (30 cm diameter). Fifteen minutes
later (i.e., 1 h after FURO + CAP sc and 15 min after LPBN injections),
0.3 M NaCl was infused into the mouth of the animal at a constant rate
(1.0 ml/min) for 1 min. The rats were given four tests. For each test the
rats were divided into two groups and each group received one of
the following treatments: 1) vehicle + saline (sc) + vehicle (LPBN), 2)
vehicle 4 saline (sc) + moxonidine (LPBN), 3) FURO + CAP (sc) + vehicle
(LPBN), and 4) FURO + CAP (sc) + moxonidine (LPBN). The sequence of
the treatments in each group was balanced, and by the end of
experiments, all animals had received all four treatments. During testing,
rats had no access to water, 0.3 M NaCl and food.

2.5.2. Experiment 2 — taste reactivity to 0.3 M NaCl in rats treated with
sc FURO + CAP combined with LPBN moxonidine injections after free
access to water and 0.3 M NaCl

The results from experiment 1 (see below) indicated that LPBN
moxonidine treatment did not enhance ingestive responses or decrease
rejection responses to I0 0.3 M NaCl in comparison to LPBN vehicle
treated rats 1h after both groups had received FURO + CAP. Conse-
quently, a second experiment was conducted to determine if taste
reactivity remained unaltered in LPBN vehicle treated vs. LPBN
moxonidine treated rats even after periods of 0.3 M NaCl and water
consumption.

On each test day, each rat received FURO (10 mg/kg of body
weight) + CAP (5 mg/kg of body weight) treatment sc and had water,
0.3 M NaCl and food removed from the home cage. Forty-five minutes
later, rats received bilateral injections of moxonidine (0.5 nmol/0.2 pl)
or vehicle (0.2 pl) into the LPBN. Fifteen minutes after the LPBN
injections, burettes (0.1 ml subdivisions) with water and 0.3 M NacCl
were available in the rat's home cage, and the rats were allowed to
ingest both fluids continuously for 60 min, except for a few minutes at
15, 30 and 60 min after being given free access to both fluids. During
each of these three brief periods, the rats were given a taste reactivity
test. During each test the rat was removed from the home cage and
placed in a taste reactivity chamber. The IO cannula of the rat was
connected to a stimulus delivery tube, consisting of PE 50 tubing
attached to an infusion pump and 0.3 M NaCl was infused into the
mouth of the animal at a constant rate (1.0 ml/min) for 1 min, while
the behavior was videotaped. At the end of each taste reactivity test,
until all three tests were completed, the rat was placed back into its
home cage, where water and 0.3 M NaCl were available, and the rat
was allowed to drink until the next taste reactivity test. Water and
0.3 M NaCl ingested was also measured at 15, 30 and 60 min after
starting the access to these fluids.

The rats received 2 tests. In each test, all rats received FURO + CAP (sc)
and were then divided into two groups. One group received LPBN vehicle
injections and the other LPBN moxonidine injections. The order of the
tests was counterbalanced so that all animals received all treatments.

2.5.3. Video recording and analysis of taste reactivity
For all protocols described above, the behavior of each rat was
videotaped during testing via a mirror mounted beneath the

transparent floor of the test chamber. The recorded image was
enlarged so the face and mouth of the rat filled the entire screen.

The behavior of each rat was scored for the occurrence of ingestive,
rejection (aversive), and “neutral” taste reactivity components (see
[35] for a description and discussion of taste reactivity analysis
components and classification). Ingestive actions were characterized
by paw licking; lateral tongue protrusions, non-rhythmic protrusions
past the lip followed by forward extension; and tongue protrusions,
rhythmic tongue protrusions along the midline. Neutral components
were rhythmic mouth movements at the same or lower frequency as
rhythmic tongue protrusions; and passive dripping, the passive leaking
of fluid from the mouth. Rejection behaviors were gapes, large
openings of the mandible and retraction of the lower lips; chin
rubbing, bringing the mouth in direct contact with the floor and
projecting the body forward; face washing, either a single wipe over
the face with the paws or a bout of several wipes; forelimb flails,
shaking of the forelimb; head shaking; paw treading, planting of the
limbs on the floor and alternating forceful strikes forward and
backward; and rapid locomotion around the chamber. This taste
reactivity analysis components and classification has been previously
used [53,54].

The behaviors were counted each time they occurred as a single
event and were considered as discrete events in accordance with
previous studies [36,55]. Videotapes were scored in a slow motion
analysis at 1/30 to 1/10 normal speed. The means for ingestive,
rejection or neutral score were computed for each group. The
ingestive and rejection scores were independently analyzed, since
they represent phenomenological different categories of behavior.

2.6. Histology

At the end of the tests, the animals received bilateral injections of
2% Evans blue solution (0.2 ul) into the LPBN. They were deeply
anesthetized with sodium thiopental (80 mg/kg) and perfused
transcardially with 0.9% NaCl followed by 10% formalin. The brains
were removed, fixed in 10% formalin, frozen, cut in 50-um sections,
stained with cresyl violet, and analyzed by light microscopy to
confirm the injection sites in the LPBN.

2.7. Statistical analysis

The results are reported as means+ SEM. One-way analysis of
variance (ANOVA) or two-way repeated-measures ANOVA (using
treatment and time as factors), followed by Student Newman Keuls
tests were used for comparisons of the results from experiments 1 and
2, respectively. Differences were considered significant at P<0.05.

3. Results

3.1. Experiment 1 — taste reactivity to 0.3 M NaCl by rats treated with sc
FURO + CAP that received moxonidine injections into the LPBN

The FURO + CAP treatment combined with vehicle injected into
the LPBN increased ingestive [F(3,28) =4.5; p<0.05] and decreased
rejection behaviors [F(3,28) =8.2; p<0.05] to I0 0.3 M NaCl when
compared to control treatment (vehicle + saline sc combined with
vehicle into the LPBN) (Fig. 1). Bilateral injections of moxonidine
(0.5 nmol/0.2 pl) into the LPBN did not change these responses in rats
with no access to water and 0.3 M NaCl (Fig. 1).

3.2. Experiment 2 — taste reactivity to 0.3 M NaCl by FURO + CAP
treated rats that received LPBN moxonidine injections and had free
access to water and 0.3 M NaCl

As previously demonstrated, bilateral injections of moxonidine
(0.5 nmol/0.2 pl) into the LPBN increased FURO + CAP-induced 0.3 M



CAF. Andrade et al. / Physiology & Behavior 104 (2011) 702-708 705

[ VEH+SAL (sc) - VEH (LPBN) n=5
400 - FURO+CAP (sc) - VEH (LPBN) n=9

w B8 FURO+CAP (sc) - MOXO (LPBN) n=9
350 - VEH+SAL (sc) - MOXO (LPBN) n=9
3 300
7}
8
8 2501
»
([
5 200
- * different from VEH+SAL - VEH
@ 150
<]
g
2 100
50
0 %
ingestive rejection
reactions reactions

Fig. 1. Ingestive and rejection behavioral responses to intra-oral (10) infusion of 0.3 M
NaCl in rats treated with sc furosemide + captopril (FURO + CAP) or sc vehicle + saline
(VEH+SAL) combined with bilateral injections of vehicle (VEH) or moxonidine
(MOXO, 0.5 nmol/0.2 pl) into the LPBN. Results expressed as means 4 SEM. n = number
of animals.

NaCl [F(1,24) =11.9; p<0.05], without significant changes in water
intake [F(1,24)=2.2; p>0.05] (Fig. 2).

In rats treated with FURO + CAP sc, moxonidine injected into the
LPBN enhanced ingestive reactions at 30 and 60 min after free access
to water and 0.3 M NaCl intake [F(1,24) = 13.2; p<0.05] (Fig. 3A), and
decreased rejection responses at 15, 30 and 60 min after free access to
water and 0.3 M NaCl intake [F(1,24) =20.2; p<0.05] (Fig. 3B).

Most of the LPBN injections were centered in the central lateral
and dorsal lateral portions of the LPBN (Fig. 4). Injections also reached
the ventral lateral and external lateral portions of the LPBN, and in
some rats the caudal parts of the Kolliker-Fuse nucleus. The LPBN
injection sites in the present study were similar to those of previous
studies that showed the effects of moxonidine on NaCl and water
intake [24,33,38,39].

4. Discussion

Both LPBN vehicle and LPBN moxonidine treated animals showed
enhanced ingestive responses and decreased rejection responses after
FURO + CAP treatment before the access to water and NaCl solution.
As compared to LPBN vehicle injections, LPBN moxonidine treatment
did not affect either ingestive responses or rejection responses in
sodium and water depleted rats before the rats consumed any water
or 0.3 M NaCl. However, in comparison to LPBN treated vehicle
controls, LPBN moxonidine treated rats continued to show enhanced
ingestive reactions and reduced rejection responses even after
consuming large volumes of 0.3 M NaCl and water. In other words,
LPBN moxonidine treatment appears to block the satiation related
declines in ingestive responses or increase in rejection responses that
normally occur over the course of 0.3 M NaCl and water consumption.

The increase in ingestive and the decrease in rejection reactions to
0.3 M NaCl in FURO + CAP treated rats is consistent with previous
results demonstrating that animals with experimentally-induced salt
appetite show enhanced ingestive and reduced rejection oro-facial
and body behaviors [40,41]. In these previous experiments where
sodium depletion was induced by furosemide followed by 18 to 24 h
of restricted dietary sodium, rats showed comparable increased
ingestive and decreased rejection responding to I0 hypertonic NaCl
solution [40,41]. In the present studies Experiment 1 showed that
FURO + CAP treatment, which induces a rapid onset of sodium
appetite, elicits increased ingestive behaviors and decreased rejection
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o/ . . .

0 15 30 60
Time (min)
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Fig. 2. Cumulative A) 0.3 M NaCl and B) water and intake by rats receiving taste
reactivity tests to 0.3 M NaCl after treatment with sc furosemide + captopril combined
with bilateral injections of vehicle or moxonidine (0.5 nmol/0.2 pl) into the LPBN.
Results expressed as means 4 SEM. n = number of animals.

reactions to 10 hypertonic NaCl and that this occurred regardless of
whether animals received LPBN vehicle or moxonidine treatment.
Interestingly the results from experiment 1 indicated that LPBN
moxonidine treatment failed to enhance ingestive behaviors or
decrease rejection responses to I0 0.3 M NaCl beyond those changes
seen in LPBN vehicle treated rats. In light of this outcome, we
considered that this outcome might reflect a ceiling effect for
ingestive responses and/or a floor effect for rejection responses.
Therefore, we conducted a second experiment to test taste reactivity
to 10 0.3 M NaCl in FURO + CAP treated rats after fixed periods of
0.3 M NaCl and water consumption. In the second experiment rats
with LPBN vehicle treatment showed a progressive reduction in
ingestive responses and an increase in rejection behaviors over the
course of a 1h test period. In contrast rats with LPBN moxonidine
injections maintained a high level of ingestive responses and a low
level of rejection reactions to 0.3 M NaCl throughout the entire course
of the 60 min test period of free access to water and sodium. In
comparison to animals treated with LPBN vehicle injections, mox-
onidine maintained significantly increased ingestive reactions and
reduced rejection responses in spite of ingesting significant amounts
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Fig. 3. A) Ingestive responses and B) rejection responses to 10 infusion of 0.3 M NaCl in
rats treated with sc furosemide + captopril combined with bilateral injections of
vehicle or moxonidine (0.5 nmol/0.2 pl) into the LPBN at 15, 30 and 60 min after free
access to 0.3 M NaCl and water. Results expressed as means +SEM. n = number of
animals.

Fig. 4. Photomicrograph of a transverse brain section from an animal representative of
the group tested showing the bilateral injection sites in the lateral parabrachial nuclei
(arrows). scp, superior cerebellar peduncle (outlined).

of 0.3 M NaCl and water. These results suggest that LPBN moxonidine
possibly reduces some type of inhibitory signals produced as a
consequence of the ingestion of NaCl and water. An obvious
consequence of blocking such inhibitory mechanisms would be to
increase hypertonic NaCl intake in free access tests (i.e., to produce an
enhanced salt appetite, as defined by increased hypertonic NaCl
solution ingestion). Of course rats treated with FURO + CAP combined
with LPBN moxonidine injections, stop the ingestion of hypertonic
0.3 M NaCl eventually, but this is likely to be the result of either a
reduction of the action of moxonidine in the LPBN or due to stronger
inhibition generated by the large quantity of NaCl and water ingested.

Previous studies have found that visceral inhibitory feedback
affects NaCl intake in rats [56-60]. For example, Krause and colleagues
[57] demonstrated the importance of post-ingestive signals for the
satiation of salt appetite and thirst in rats treated with FURO and
instrumented with gastric fistulas to allow sham drinking. These
investigators found that when the fistulas were open, saline and water
intakes were significantly increased as compared to that of closed
fistula controls. In a similar vein, Flynn et al. [58] have found that the
increased intake of hypertonic NaCl observed in spontaneously
hypertensive rats (SHR) in comparison to normotensive Wistar
Kyoto (WKY) rats is associated with a decrease in the decline in lick
rate over the course of saline access in the SHR as compared to WKY
rats. These investigators suggested that the reduced decline in lick
rate evidenced by SHR may be because this strain is less responsive to
ingestion-contingent inhibitory feedback [58].

Evidence indicates that interactions between taste input and
inhibitory gastrointestinal, osmotic and vascular (e.g., arterial and low
pressure baroreceptor) signals may act to limit excessive salt and
water consumption. Information generated in the periphery is likely
to influence activity at one or more central nervous system (CNS) sites
where input from gustatory and various visceral sensory systems
converge. The parabrachial nucleus is potentially one of these places.

Sodium taste information arrives in the CNS through the facial
nerve (VII) that innervates the anterior tongue [42]. Fibers from the
chorda tympani branch of the facial nerve terminate in the rostral
portion of the nucleus of the solitary tract (rNTS). In turn, the rNTS
sends ascending projections to the PBN. From the PBN, signals ascend
to a thalamic relay, the parvocellular ventral posteromedial thalamic
nucleus (VPMpc), [18,36,43]. Lesions placed in the NTS, PBN, or
VPMpc disrupt the shift in taste reactivity observed in intact animals
after sodium deficiency. However, only lesions in the NTS and PBN
block increases in home-cage intake observed after intact animals
were made sodium deficient [36]. Flynn and colleagues (36) showed
that the PBN, the second synaptic relay of the ascending sodium taste
information in rats, is also important for the taste reactivity to sodium
in states of sodium deficit.

As sodium is consumed, neural and humoral post-ingestive signals
from the gut and blood are detected by neurons in the caudal NTS and AP
(see [44] for review). Viscerosensory afferent fibers in the vagus nerve
are stimulated by gut distention (proportional to the volume of ingested
fluid), by luminal hyperosmolarity (due to the hypertonicity of NaCl),
and probably also by sodium-specific sensors within the portal
vasculature as sodium is absorbed [45]. These activated vagal afferents
stimulate neurons in the NTS as well as cells in the AP, some of which can
directly monitor humoral variables such as plasma osmolarity.

The region of AP/mNTS also receives afferent projections from
volume receptors (arterial baroreceptors and cardiopulmonary re-
ceptors), and these receptors can influence the ingestion of water and
sodium [22,23,46,47]. Activation of superior vena cava-right atrial
junction receptors has been shown to attenuate isoproterenol-
induced water intake in intact rats, and this inhibition is abolished
by electrolytic lesions of the LPBN [48]. These findings support the
hypothesis that the LPBN is involved in the inhibition of drinking
mediated by volume receptor stimulation. Many neurons in the
caudal or medial NTS and AP project to nuclei within the LPBN [13]. In
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turn, neurons in these LPBN nuclei transmit this information to a
variety of limbic and hypothalamic targets in the forebrain [49,50],
providing negative feedback signals that inhibit ingestive behaviors
[7,10,22,23,33,38,51,52].

In summary, the present results demonstrate that moxonidine
injections into the LPBN change the pattern of taste reactivity to 0.3 M
NaCl by maintaining ingestive reactions, and reducing rejection
responses after free access to water and 0.3 M NaCl intake. Therefore,
the present results suggest that LPBN moxonidine injections reduce
inhibitory signals activated as a consequence of the ingestion of
hypertonic NaCl solution and water.

Acknowledgements

The authors thank Terry G. Beltz, Silas P. Barbosa, Reginaldo C.
Queiroz and Silvia Foglia for expert technical assistance, Silvana A. D.
Malavolta for secretarial assistance, and Ana L. V. de Oliveira for animal
care. The authors also thank Solvay Pharma and Dr. P. Ernsberger for the
donation of moxonidine. This research was supported by public funding
from Brazil: Fundacdo de Amparo a Pesquisa do Estado de Sdo Paulo
(FAPESP — 07/52343-8), Fundacdo de Amparo a Pesquisa do Estado de
Minas Gerais (FAPEMIG — APQ-00713-09) and Coordenacdo de
Aperfeicoamento de Pessoal de Nivel Superior (CAPES — 1419-09-9).

References

[1] Richter CP. Salt taste thresholds for normal and adrenalectomized rats.
Endocrinology 1939;24:367-71.

[2] Epstein AN, Stellar E. The control of salt preference in the adrenalectomized rat. ]
Comp Physiol Psychol 1955;48:167-72.

[3] Morrison GR, Young JC. Taste control over sodium intake in sodium deficient rats.
Physiol Behav 1972;8:29-32.

[4] Colombari DS, Menani JV, Johnson AK. Forebrain angiotensin type 1 receptors and
parabrachial serotonin in the control of NaCl and water intake. Am ] Physiol
1996;271:R1470-6.

[5] Edwards GL, Johnson AK. Enhanced drinking after excitotoxic lesions of the
parabrachial nucleus in the rat. Am J Physiol 1991;261:R1039-44.

[6] Menani JV, Johnson AK. Lateral parabrachial serotonergic mechanisms: angioten-
sin-induced pressor and drinking responses. Am ] Physiol 1995;269:R1044-9.

[7] Menani ]V, Thunhorst RL, Johnson AK. Lateral parabrachial nucleus and
serotonergic mechanisms in the control of salt appetite in rats. Am ] Physiol
1996;270:R162-8.

[8] Menani ]V, Colombari DSA, Beltz TG, Thunhorst RL, Johnson AK. Salt appetite:
interaction of forebrain angiotensinergic and hindbrain serotonergic mechanisms.
Brain Res 1998;801:29-35.

[9] Menani JV, De Luca Jr LA, Johnson AK. Lateral parabrachial nucleus serotonergic
mechanisms and salt appetite induced by sodium depletion. Am ] Physiol
1998;274:R555-60.

[10] Menani ]V, De Luca Jr LA, Thunhorst RL, Johnson AK. Hindbrain serotonin and the
rapid induction of sodium appetite. Am ] Physiol 2000;279:R126-31.

[11] Ciriello J, Lawrence D, Pittman QJ. Electrophysiological identification of neurons in
the parabrachial nucleus projecting directly to the hypothalamus in the rat. Brain
Res 1984;322:388-92.

[12] Fulwiler CE, Saper CB. Subnuclear organization of the efferent connections of the
parabrachial nucleus in the rat. Brain Res Rev 1984;7:229-59.

[13] Herbert H, Moga MM, Saper CB. Connections of the parabrachial nucleus to the
solitary tract and the medullary reticular formation in the rat. ] Comp Neurol
1990;293:540-80.

[14] Jhamandas JH, Harris KH, Petrov T, Krukoff TL. Characterization of the parabrachial
nucleus input to the hypothalamic paraventricular nucleus in the rat. ]
Neuroendocrinol 1992;4:461-71.

[15] Jhamandas JH, Petrov T, Harris KH, Vu T, Krukoff TL. Parabrachial nucleus
projection to the amygdala in the rat. Electrophysiological and anatomical
observations. Brain Res Bull 1996;39:115-26.

[16] Krukoff TL, Harris KH, Jhamandas JH. Efferent projections from the parabrachial
nucleus demonstrated with the anterograde tracer Phaseolus vulgaris leucoagglu-
tinin. Brain Res Bull 1993;30:163-72.

[17] Langa AJ, van der Kooy D. A serotonin-containing pathway from the area postrema
to the parabrachial nucleus in the rat. Neuroscience 1985;14:1117-26.

[18] Norgren R. Gustatory system. In: Paxinos G, editor. The rat nervous system.
Australia: Academic Press; 1995. p. 751-71.

[19] Franchini LF, Vivas L. Distribution of Fos immunoreactivity in rat brain after
sodium consumption induced by peritoneal dialysis. Am ] Physiol 1999;276:
R1180-7.

[20] Kobashi M, Ichikawa H, Sugimoto T, Adachi A. Response of neurons in the solitary
tract nucleus, area postrema and lateral parabrachial nucleus to gastric load of
hypertonic saline. Neurosci Lett 1993;158:47-50.

[21] Yamamoto T, Shimura T, Sako N, Sakai N, Tanimizu T, Wakisaka S. c-Fos expression
in the parabrachial nucleus after ingestion of sodium chloride in the rat.
Neuroreport 1993;4:1223-6.

[22] Johnson AK, Thunhorst RL. The neuroendocrinology of thirst and salt appetite:
visceral sensory signals and mechanisms of central integration. Front Neuroen-
docrinol 1997;18:292-353.

[23] Johnson AK, Thunhorst RL. The neuroendocrinology, neurochemistry and
molecular biology of thirst and salt appetite. In: Lajtha A, Laustein ]D, editors.
Handbook of Neurochemistry and Molecular Neurobiology: Behavioral Neuro-
chemistry, Neuroendocrinology and Molecular Neurobiology. 3rd Edition. New
York: Springer; 2007. p. 641-87.

[24] Andrade-Franzé GMF, Andrade CAF, De Luca Jr LA, De Paula PM, Menani JV. Lateral
parabrachial nucleus and central amygdala in the control of sodium intake.
Neuroscience 2010;165:633-41.

[25] Andrade-Franzé GMF, Andrade CAF, De Luca Jr LA, De Paula PM, Colombari DSA,
Menani JV. Lesions in the central amygdala impair sodium intake induced by the
blockade of the lateral parabrachial nucleus. Brain Res 2010;1332:57-64.

[26] De Castro e Silva E, Fregoneze ]B, Johnson AK. Corticotropin-releasing hormone in
the lateral parabrachial nucleus inhibits sodium appetite in rats. Am ] Physiol
2005;290:R1136-41.

[27] De Gobbi JIF, Beltz TG, Johnson RF, Menani ]V, Thunhorst RL, Johnson AK. Non-
NMDA receptors in the lateral parabrachial nucleus modulate sodium appetite.
Brain Res 2009;1301:44-51.

[28] De Gobbi JIF, De Luca Jr LA, Menani JV. Serotonergic mechanisms of the lateral
parabrachial nucleus on DOCA-induced sodium intake. Brain Res 2000;880:131-8.

[29] De Gobbi JIF, Menani JV, Beltz TG, Johnson RF, Thunhorst RL, Johnson AK. Right
atrial stretch alters fore- and hind-brain expression of c-fos and inhibits the rapid
onset of salt appetite. ] Physiol 2008;586:3719-29.

[30] De Oliveira LB, Callera JC, De Luca Jr LA, Colombari DSA, Menani JV. GABAergic
mechanisms of the lateral parabrachial nucleus on sodium appetite. Brain Res Bull
2007;73:238-47.

[31] De Oliveira LB, De Luca Jr LA, Colombari DSA, Colombari E, Menani JV. Opioid
activation in the lateral parabrachial nucleus induces hypertonic sodium intake.
Neuroscience 2008;155:350-8.

[32] Gasparini S, De Luca Jr LA, Colombari DS, De Paula PM, Barbosa SP, Menani JV.
Adrenergic mechanisms of the Kolliker-Fuse/A7 area on the control of water and
sodium intake. Neuroscience 2009;164(2):370-9.

[33] Andrade CAF, Barbosa SP, De Luca Jr LA, Menani JV. Activation of alpha2-
adrenergic receptors into the lateral parabrachial nucleus enhances NaCl intake in
rats. Neuroscience 2004;129:25-34.

[34] Grill HJ, Norgren R. The taste reactivity test. I. Mimetic responses to gustatory
stimuli in neurologically normal rats. Brain Res 1978;143:263-79.

[35] Grill HJ, Berridge KC. Taste reactivity as a measure of the neural control of
palatability. In: Sprague JM, Epstein AN, editors. Progress in Psychobiology and
Physiological Psychology. Orlando: Academic Press; 1985. p. 1-61.

[36] Flynn FW, Grill HJ, Schulkin ], Norgren R. Central gustatory lesions: II. Effects on
sodium appetite, taste aversion learning, and feeding behaviors. Behav Neurosci
1991;105:944-54.

[37] Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 5th ed. San Diego,
CA: Academic Press; 2004.

[38] Andrade CAF, De Luca Jr LA, Colombari DSA, Menani JV. Alpha2-adrenergic
activation in the lateral parabrachial nucleus induces NaCl intake under conditions
of systemic hyperosmolarity. Neuroscience 2006;142:21-8.

[39] Andrade CAF, De Luca Jr LA, Colombari DSA, Menani JV. Enhancement of meal-
associated hypertonic NaCl intake by monoxidine into the lateral parabrachial
nucleus. Behav Brain Res 2007;183:156-60.

[40] Berridge KC, Flynn FW, Schulkin ], Grill H]. Sodium depletion enhances salt
palatability in rats. Behav Neurosci 1984;98:652-60.

[41] Grill HJ, Bernstein IL. Strain differences in taste reactivity to NaCl. Am ] Physiol
1988;255:R424-30.

[42] Frank ME, Contreras R], Hettinger TP. Nerve fibers sensitive to ionic taste stimuli in
chorda tympani of the rat. ] Neurophysiol 1983;50:941-60.

[43] Hamilton RB, Norgren R. Central projections of gustatory nerves in the rat. ] Comp
Neurol 1984;222:560-77.

[44] Geerling JC, Loewy AD. Sodium deprivation and salt intake activate separate
neuronal subpopulations in the nucleus of the solitary tract and the parabrachial
complex. ] Comp Neurol 2007;504(4):379-403.

[45] Morita H, Yamashita Y, Nishida Y, Tokuda M, Hatase O, Hosomi H. Fos induction in
rat brain neurons after stimulation of the hepatoportal Na-sensitive mechanism.
Am ] Physiol 1997;272:R913-23.

[46] Norgren R. The central organization of the gustatory and visceral systems in the
nucleus of the solitary tract. In: Katsuki Y, Norgren R, Sato M, editors. Brain
mechanisms of sensation. New York: Wiley; 1981. p. 143-60.

[47] Johnson AK. The sensory psychobiology of thirst and salt appetite. Med Sci Sports
Exerc 2007;39(8):1388-400.

[48] Ohman LE, Johnson AK. Role of lateral parabrachial nucleus in the inhibition of
water intake produced by right atrial stretch. Brain Res 1995;695:275-8.

[49] Bernard JF, Alden M, Besson JM. The organization of the efferent projections
from the pontine parabrachial area to the amygdaloid complex: a Phaseolus
vulgaris leucoagglutinin (PHA-L) study in the rat. ] Comp Neurol 1993;329:
201-29.

[50] Bester H, Besson JM, Bernard JF. Organization of efferent projections from the
parabrachial area to the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study
in the rat. ] Comp Neurol 1997;383:245-81.

[51] Contreras RJ, Stetson PW. Changes in salt intake lesions of the area postrema and
the nucleus of the solitary tract in rats. Brain Res 1981;211:355-66.



708 CA.F. Andrade et al. / Physiology & Behavior 104 (2011) 702-708

[52] Menani ]V, Johnson AK. Cholecystokinin actions in the parabrachial nucleus:
effects on thirst and salt appetite. Am ] Physiol 1998;275:R1431-7.

[53] Pecifia S, Berridge KC. Brainstem mediates diazepam enhancement of palatability
and feeding: microinjections into fourth ventricle versus lateral ventricle. Brain
Res 1996;727(1-2):22-30.

[54] Pecifa S, Berridge KC. Hedonic hot spot in nucleus accumbens shell: where do mu-
opioids cause increased hedonic impact of sweetness? ] Neurosci 2005;25(50):
11777-86.

[55] Grill HJ, Spector AC, Schwartz GJ, Kaplan JM, Flynn FW. Evaluating taste effects on
ingestive behavior. In: Toates FM, Rowland NE, editors. Feeding and drinking.
Amsterdam: Elsevier; 1987. p. 151-88.

[56] Flynn FW, Smith M, Bieber S. Differential effects of intraventricular injections of
tachykinin NK1 and NK3 agonists on normal and sham drinking of NaCl by sodium
deficient rats. Behav Neurosci 1999;113:776-86.

[57] Krause EG, de Kloet AD, Sakai RR. Post-ingestive signals and satiation of water and
sodium intake of male rats. Physiol Behav Apr 19 2010;99(5):657-62.

[58] Flynn FW, Culver B, Newton SV. Salt intake by normotensive and spontaneously
hypertensive rats: two-bottle and lick rate analyses. Physiol Behav Apr 2003;78(4-5):
689-96.

[59] Tordoff MG, Schulkin ], Freidman MI. Further evidence for hepatic control of salt
intake. Am ] Physiol Regul Integr Comp Physiol 1987;253:R444-9.

[60] Wolf G, Schulkin J, Simson PE. Multiple factors in the satiation of salt appetite.
Behav Neurosci 1984;98:661-73.



	Changes in taste reactivity to intra-oral hypertonic NaCl after lateral parabrachial injections of an α2-adrenergic receptor agonist
	1. Introduction
	2. Material and methods
	2.1. Animals
	2.2. Cerebral and IO cannulas
	2.3. Injections into the LPBN
	2.4. Drugs
	2.5. Taste reactivity test
	2.5.1. Experiment 1 — taste reactivity to 0.3M NaCl in rats treated with sc FURO+CAP
	2.5.2. Experiment 2 — taste reactivity to 0.3 M NaCl in rats treated with
sc FURO+CAP combined with LPBN moxonidine injections after free
access to water and 0.3 M NaCl

	2.5.3. Video recording and analysis of taste reactivity

	2.6. Histology
	2.7. Statistical analysis

	3. Results
	3.1. Experiment 1 — taste reactivity to 0.3M NaCl by rats treated with sc FURO+CAP that received moxonidine injections into the LPBN
	3.2. Experiment 2 — taste reactivity to 0.3 M NaCl by FURO+CAP
treated rats that received LPBN moxonidine injections and had free
access to water and 0.3 M NaCl


	4. Discussion
	Acknowledgements
	References


