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A direct version of the boundary element method (BEM) is developed to model the
stationary dynamic response of reinforced plate structures, such as reinforced panels in
buildings, automobiles, and airplanes. The dynamic stationary fundamental solutions of
thin plates and plane stress state are used to transform the governing partial differen-
tial equations into boundary integral equations (BIEs). Two sets of uncoupled BIEs are
formulated, respectively, for the in-plane state (membrane) and for the out-of-plane state
(bending). These uncoupled systems are joined to form a macro-element, in which mem-
brane and bending effects are present. The association of these macro-elements is able
to simulate thin-walled structures, including reinforced plate structures. In the present
formulation, the BIE is discretized by continuous and/or discontinuous linear elements.
Four displacement integral equations are written for every boundary node. Modal data,
that is, natural frequencies and the corresponding mode shapes of reinforced plates, are
obtained from information contained in the frequency response functions (FRFs). A spe-
cific example is presented to illustrate the versatility of the proposed methodology. Dif-
ferent configurations of the reinforcements are used to simulate simply supported and
clamped boundary conditions for the plate structures. The procedure is validated by com-
parison with results determined by the finite element method (FEM).

Copyright © 2007 Luiz Carlos Facundo Sanches et al. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

Reinforced panel systems are widely used in buildings, bridges, ships, aircrafts, and ma-
chines. These structural systems are efficient, economical, and readily constructed from
common materials. The panels are usually built by the association of plates (or shells)
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with orthogonally displaced beams, which are the reinforcements. The main advantage
of applying these structural elements is the increase of structural rigidity without consid-
erable increase in weight.

The static analysis of the reinforced plate systems has been performed using solution
strategies such as methodologies based on energy principles [1], semi-analytical methods
[2], or the differential quadrature methods [3]. Also it is possible to model the behav-
ior of these structures by the finite element method (FEM) [4, 5], the boundary element
method (BEM) [6–10], or a combination of these numerical methods [11]. A rather lim-
ited amount of technical literature is available on the dynamic analysis of stiffened plate
systems. On the other hand, a significant research effort is under way in both the academia
and the industry to improve the numerical models and to develop new modeling meth-
ods for the dynamic analysis [12]. Finite and boundary elements have some limitations
to obtain vibration responses at middle and upper frequency ranges due to the necessity
of intense mesh refining. The use of very fine meshes in the finite element analysis results
in large algebraic systems. An alternative is posed by the BEM. If formulated with the
proper auxiliary state, the BEM only requires boundary discretization, leading to consid-
erable smaller algebraic systems.

Direct boundary element subregion formulations based on Kirchhoff ’s plate theory
has been applied to the dynamic analysis of thin-walled structures formed by assembling
folded plate models using the so-called static fundamental solution [13, 14]. Assembled
plate structures were also analyzed by BEM and comparisons with FEM are given to
demonstrate the accuracy of this methodology [15]. Another dynamic analysis of elastic
plates reinforced with beams takes into account the resulting in-plane forces and defor-
mations in the plate, as well as the axial forces and deformations in the beam, due to
combined response of the system [16]. The method presented in [16] employs the static
solution similar to the models described previously. The consequence of these formula-
tions is that the inertia forces lead to domain integrals. In these previous articles, it was
necessary to develop a procedure to deal with the domain integral. An alternative way to
derive the governing integral equation for the problem is to use a stationary dynamic fun-
damental solution [17–19]. If this fundamental solution is applied, the resulting integral
equation requires only the discretization of the boundary of the single-folded plate being
analyzed.

The present paper analyzes the dynamic stationary response of reinforced panels sub-
jected to time harmonic loadings using the BEM. In the proposed methodology, the pan-
els are considered as assembled folded-plate structures [20]. The formulation is built by
coupling BE formulations of plate bending and two-dimensional plane stress elasticity.
These uncoupled systems are joined to form a macro-element. The plate structure is di-
vided into several regions, and equilibrium and compatibility equations along the inter-
face boundaries are imposed. The boundaries are discretized by means of linear contin-
uous and discontinuous isoparametric elements. Four displacement integral equations
are written for every boundary node. The stationary dynamic responses are character-
ized by modal quantities, that means by eigenfrequencies and eigenvalues. These quanti-
ties are obtained by analyzing the numerically synthesized frequency response functions
(FRFs) of the reinforced structures. A harmonic force of constant amplitude excites the
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structure at a given point and the resulting displacement is measured (calculated) at an-
other point. From the resonances or peaks of the FRFs, the operational eigenfrequencies
may be determined. The operational eigemodes (vibration mode shapes) are determined
by calculating the folded-plate structure displacement field at the determined operational
eigenfrequencies. In the present article, an example is presented to illustrate the proposed
methodology where different configurations of the reinforcements are used to simulate
simply supported and clamped boundary conditions. The implementation is validated
by comparison with numerical results determined by FE solutions. The results obtained
by the present BEM are shown to be in good agreement with those obtained by the FEM.
The proposed scheme may be seen as an accurate methodology to analyze free and forced
stationary vibrations of structures assembled by folded plates, like plate structures and
reinforced panels. This methodology may be regarded as an extension of the previous
article that analyzed the stationary dynamic behavior of frame structures by the BEM
[21].

2. Boundary integral formulations

The dynamic equilibrium equations for plane stress and thin plate theory will be pre-
sented next with Latin indices taking values {1, 2, and 3} and Greek indices assuming the
range {1, 2}. In the plane macro-element formulation, the membrane displacements u1

and u2 are in the x1-x2 plane. The thin plate transversal displacement w is in the x3 direc-
tions. The equilibrium equations for the dynamic plane stress problem in the domain Ω
is given by

σαβ,β + ρFα = ρüα, (2.1)

where σi j represents the stresses components, ρ is the mass density, Fα (α = 1,2) are the
body forces components in the x1-x2 plane and dots over the quantities indicate differen-
tiation with respect to time.

The equilibrium equations for an infinitesimal thin plate element under a dynamical
transverse loading g and in absence of a body forces are given by

qα,α + g = ρhẅ,

mαβ,β− qα = 0,
(2.2)

where ρh is the mass density per unit area, h is the thickness, qα(q1,q2) represent the
shear forces, mαα(m11,m22) represent the bending moments and mαβ(m12,m21) represent
the twisting moments.

Now consider the plane element occupying the area Ω, bounded by the contour Γ, in
the plane x1-x2. The displacement boundary integral equation for the plane stressproblem
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(membrane) and smooth boundaries is given by

1
2
δαβuβ(P)=

∫
Γ
U∗
αβ(P,Q)tβ(Q)dΓ(Q)

−
∫
Γ
T∗αβ(P,Q)uβ(Q)dΓ(Q) +

∫

Ω

U∗
αβ(P,Q)Fβ(Q)dΩ(Q),

(2.3)

where δαβ is the Kronecker delta; dΓ and dΩ denote boundary and domain differentials,
respectively; uβ(Q) and tβ(Q) are displacement and traction boundary values associated
with a boundary pointQ, respectively. The termU∗

αβ(Q,P) represents a displacement fun-
damental solution and may be interpreted as the displacement at point Q in the direction
α due to a harmonic unit point force applied at the point P in the direction β. Analo-
gosly, the term T∗αβ(Q,P) represents the traction fundamental solution and may also be
interpreted as the traction at point Q in the direction α due to a harmonic unit point load
applied at P in the direction β.

Considering that all variables are undergoing a time harmonic displacement with cir-
cular frequency ω, the displacement and traction fundamental solutions are given, re-
spectively, by the expressions [22]

U∗
αβ =

1
2πρc2

2

[
ψδαβ− χr,αr,β

]
, (2.4)

where
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)
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− 2
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− 2
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(
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2
− 2
)(
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− dχ
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− 1
r
χ
)
r,αnβ

]
,

(2.5)

where δαβ is again the Kronecker delta, n is the normal vector, K0 and K1 are the zero and
first-order modified Bessel function of second kind, r is the distance between load and
displacement point, k1 = i(ω/c1) and k2 = i(ω/c2), i=√− 1, ω is the circular frequency,
c1 = (λ+ 2μ/ρ)1/2, c2 = (μ/ρ)1/2, λ and μ are the Lamé’s constants which can be written in
terms of the Young Modulus E and the Poisson ratio ν.
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Additionally, the integral equation for the thin plate theory is employed to describe
the bending action:

1
2
δ(P)w(P) +

∫
Γ

[
V∗
n (P,Q)w(Q)−M∗

n (P,Q)w,n(Q)
]
dΓ(Q) +

Nc∑
k=1

R∗ck(P,c)wck(P,c)

=
∫
Γ

[
w∗(P,Q)Vn(Q)−w∗,n(P,Q)Mn(Q)

]
dΓ(Q)

+
Nc∑
k=1

w∗ck(P,Q)Rck(Q) +
∫
Ω
w∗(P,q)g(q)dΩ(q),

(2.6)

where δ(P) is equal to Kronecker delta for a smooth boundary, w is the out-of-plane
displacement, w,n is the rotation in the direction of outward normal to the boundary Γ,
Vn is the equivalent shear, Mn is the bending moment, and Rc is the corner reaction. The
classical theory makes use of the equivalent shear (Vn) in boundary integrals and a corner
reaction (Rc) at each corner when polygonal plates are considered,

Vn =Qn +
∂Mns

∂s
=−D(w,γγα ·nα + (1− ν)w,nss

)
(2.7)

Rck =
(
MF

ns−MB
ns

)
k, (2.8)

where Qn is the shear in the direction of outward normal and Mns is the twisting moment
in the direction normal and tangential to the boundary Γ. The expression (2.8) presents
the corner reaction (Rc) at corner k as the difference between the twisting moments at the
corner neighborhood on the forward side (MF

ns) and the backward side (MB
ns).

Considering again that all variables are undergoing a time harmonic displacement,
u(t)= ûexp(iωt) with circular frequency ω. Under this circumstance, load g and deflec-
tions w will also vary harmonically and the fundamental solution for (2.6) has the form
[23, 24]

w∗ = −iC1J0(ηr) +C1Y0(ηr) +C2K0(ηr) (2.9)

with

C1 = 1
8η2

, C2 = 1
4πη2

,

η4 = ρhω2

D
.

(2.10)

In (2.9) to (2.10), the flexural rigidity D is equal to Eh3/[12(1− ν2)], E is the Young
Modulus and ν is the Poisson ratio. The variables J0 and Y0 are the zero-order Bessel
functions of the first and second kind, respectively, K0 is the zero-order modified Bessel
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function of the second kind. Explicit expressions for derivatives of fundamentals solu-
tions, rotations w∗,n, moments M∗

n , and shear forces V∗
n are as follows [23]:

w,∗n = iC1ηJ1(ηr)cosβ−η[C1Y1(ηr) +C2K1(ηr)
]

cosβ,

M∗
n =−i

{
C1
D

2

[
1 + ν + (1− ν)cos2β

]
η2J0(ηr)−C1Dη(1− ν)

J1(ηr)
r

cos2β
}

+
D

2

{
η2[1 + ν + (1− ν)cos2β

][
C1Y0(ηr)−C2K0(ηr)

]

− 2η(1− ν)
1
r

[
C1Y1(ηr) +C2K1(ηr)

]
cos2β

}
,

V∗
n = iC1D

{
J1(ηr)

[
η3 cosβ+

η3(1− ν)
2

sen2β senβ+
2η(1− ν)

r

(
cos3β
r

− cos2β
R

)]

+ (1− ν)η2J0(ηr)
(

cos2β
R

− cos3β
r

)}
−Dη3[C1Y1(ηr)−C2K1(ηr)

]
cosβ

+D(1− ν)
{
η2

r

[
C1Y0(ηr)−C2K0(ηr)

]− 2η
r2

[
C1Y1(ηr) +C2K1(ηr)

]
cos3β

}

−D(1− ν)
{
η2

R

[
C1Y0(ηr)−C2K0(ηr)

]− 2η
rR

[
C1Y1(ηr) +C2K1(ηr)

]
cos2β

}

− D(1− ν)
2

η3[C1Y1(ηr)−C2K1(ηr)
]

sen2β senβ,

(2.11)

where J1 and Y1 are the first-order Bessel functions of the first and second kind, respec-
tively; K1 is the first-order modified Bessel function of the second kind and β the angle
formed between r and n.

3. Algebraic formulation of the macro-elements

In this session, the plane macro-element will be assembled by superposition of the mem-
brane and thin plate effects. The plane stress boundary integral equation (2.3) repre-
senting the membrane may be discretized leading to the following algebraic system of
equations:

[
Hm

11 Hm
12

Hm
21 Hm

22

]{
u1

u2

}
=
[
Gm

11 Gm
12

Gm
21 Gm

22

]{
t1
t2

}
. (3.1)

Analogosly, the BIE (2.6) describing the out-of-plane bending effect (thin plate) may
be discretized as follows:

⎡
⎣H

p
11 H

p
12

H
p
21 H

p
22

⎤
⎦
{
w
w,n

}
=
⎡
⎣G

p
11 G

p
12

G
p
21 G

p
22

⎤
⎦
{
Vn

Mn

}
. (3.2)

In (3.1) and (3.2), the upper indicesm and p on the coefficient matricesH andG stand,
respectively, for membrane and plate mechanisms. Furthermore, u1 and u2 represent the
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x1

x2

x3

Figure 3.1. Global coordinate system and macro-elements interfaces.

in-plane membrane displacements associated with the in-plane tractions t1 and t2. The
plate displacement normal to the x1-x2 plane is w and its derivative with respect to the
boundary normal n is w,n. The corresponding generalized forces are the shear forces Vn

and the bending moment Mn. Equations (3.1) and (3.2) may be superposed to form the
plane macro-element in which membrane and bending mechanisms are uncoupled:

⎡
⎢⎢⎢⎢⎢⎣

Hm
11 Hm

12 0 0

Hm
21 Hm

22 0 0

0 0 H
p
11 H

p
12

0 0 H
p
21 H

p
22

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1

u2

w
w,n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
=

⎡
⎢⎢⎢⎢⎢⎣

Gm
11 Gm

12 0 0

Gm
21 Gm

22 0 0

0 0 G
p
11 G

p
12

0 0 G
p
21 G

p
22

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t1
t2
Vn

Mn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (3.3)

The interface boundaries between macro-elements must be parallel to a single axis.
In a global coordinate system, this axis is called x3, as shown in Figure 3.1. Figure 3.1
also shows a plate with reinforcements. It can be noticed that the reinforcements are all
aligned parallel to the x3 axis.

The plane macro-element given by (3.3) is written in terms of a local coordinate sys-
tem. To perform the coupling of distinct macro-elements, as the ones shown in Figure 3.1,
it is necessary to transform (3.3) from a local to a global coordinate system. This is done
by means of an intermediate coordinate system and a set of two coordinate transfor-
mation matrices. After the macro-element equations have been written in terms of the
global coordinate system, the assemblage may take place. The vector of generalized dis-
placements and forces may now be subdivided into ones belonging or not to a common
interface. For the case of two macro-elements, the individual equations for every macro-
element may be written as

[
H1

11 H1
1i

H1
i1 H1

ii

]{
U1

U1
i

}
=
[
G1

11 G1
1i

G1
i1 G1

ii

]{
T1

T1
i

}
,

[
H2

11 H2
1i

H2
i1 H2

ii

]{
U2

U2
i

}
=
[
G2

11 G2
1i

G2
i1 G2

ii

]{
T2

T2
i

}
.

(3.4)

The coupling of the macro-elements is performed by considering kinematic compati-
bility and equilibrium at the interface nodes. Considering T the vector of external loads
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applied at the elements interface, compatibility and equilibrium is given by

U1
i =U2

i =Ui,

T1
i +T2

i +T = 0.
(3.5)

After (3.5) has been applied to (3.4), the basic system of equation for two coupled
macro-elements is given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

H1
11 H1

1i 0 −G1
1i 0

H1
i1 H1

ii 0 −G1
ii 0

0 H2
ii H2

i2 0 −G2
ii

0 H2
2i H2

22 0 −G2
2i

0 0 0 I I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U1

Ui

U2

T1
i

T2
i

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

G1
11 0 0

G1
1i 0 0

0 0 G2
i2

0 0 G2
22

0 I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨
⎪⎩
T1

T
T2

⎫⎪⎬
⎪⎭ . (3.6)

In (3.6), U1 and U2 are generalized displacement vectors (bending and stretching) re-
lated to subregions Ω1 and Ω2, respectively. T1 and T2 are the corresponding generalized
forces. The displacement vector Ui and the corresponding forces vector Ti stand for the
values at the interface; T1

i and T2
i represent forces vectors at the interfaces for each one of

the macro-elements.

4. BEM formulations

In this paper, the macro-elements coupled by (3.6) were discretized by rectilinear bound-
ary elements described by linear shape functions. Considering B1 and B2 the initial and
final coordinates of the elements, the element geometry may be expressed in terms of
intrinsic coordinates, σ:

b(σ)= B1
1− σ

2
+B2

1 + σ

2
. (4.1)

This same interpolation is used for the field variables of the boundary elements pos-
sessing no corners, leading to an isoparametrical formulation. For elements with corners,
the field variables were discretized by discontinuous elements. The corner nodes were
displaced towards the interior by one-fourth of the element length (0.25 Le). Four inte-
gral equations were written for every boundary node. The collocation points were placed
outside the plane element (macro-element) domains. When collocation point P is placed
outside the plate domain (P /∈Ω), the integration free-term disappears, δ(P)= 0. More-
over, the corner reactions Rck can be written in terms of neighbor node rotations using a
finite difference scheme. Although this is the correct way to treat corner reactions, in the
present implementation these terms were neglected.

A final algebraic system [A]{X} = {B} is obtained once the equations are assembled
and the prescribed boundary conditions applied. The solution of this system, the vec-
tor X , contains all unknown boundary quantities. The system matrix [A(ω)] contains
frequency dependent terms. After the vector X is determined, the displacement at the as-
sembled folded plate domains may be readily obtained by the nonsingular integrations
indicated in (2.3) and (2.6).
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xp = 304mm

x

zp =
160
mm

Plate 1 Plate 2

Lz

z
Lx

Figure 5.1. Two plates, S-F-S-F, no reinforcements.

5. Numerical analysis

This session applies the previously described strategy to analyze reinforced panels. The
strategy is simple. Consider two joined rectangular plates, simply supported (S) in two
edges z = 0 and z = Lz, and freely supported (F) at the remaining edges, x = 0 and x = Lx,
as shown in Figure 5.1. The plates are excited by a concentrated force applied at the point
with coordinates xp and zp. The frequency of excitation is continuously changed within
a preestablished range. The displacement response at some point of the plates to this
frequency dependent excitation is the so-called frequency response function (FRF).

In the sequence, reinforcements are placed at the boundaries x = 0 and x = Lx. If the
reinforcement is very thin but very high in the y-direction, then the bending effect of the
support is very small compared to the membrane effect. This should simulate a simply
supported (S) boundary condition. On the other hand, if the plate thickness is increased,
then the clamped (C) boundary condition should be simulated. The validation strategy
is composed of these three steps. In the first step, the FRF of S-F-S-F plate is determined
and the natural frequencies of the present methodology compared to results from a fi-
nite element (FE) analysis. In the second step, high but thin reinforcements are placed
at the originally free boundaries, giving rise to a model that simulates completely sim-
ply supported plates S-S-S-S. Again the operational eigenfrequencies are obtained from
the FRF. Comparisons are also made with the FE solution. Finally, thicker reinforcements
are placed at the free boundaries, simulating the clamped (C) boundary condition. The
operational eigenfrequencies for this C-S-C-S plate are compared to the FE results. This
strategy is sketched in Figure 5.2.

Take initially the two plates loaded by a unit harmonic normal excitation on the in-
terface between the two plates at distances x1 = 304 mm and x3 = 160 mm (X-Z plane),
as shown in Figure 5.1. The two plates are assembled and are simply supported (S) at
their edges z = 0 and z = Lz, andfree (F) at their boundaries x = 0 and x = Lx. Each
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Figure 5.2. Reinforcements as replacements for distinct boundary conditions.

Plate 2

Plate 1

Node 18

Figure 5.3. Example of the discretization for the two plates.

Table 5.1. First six natural frequencies of the two SFSF plates [Hz].

Method Mesh ω1 ω2 ω3 ω4 ω5 ω6

BEM
1 6056 7618 12 110 19 922 24 415 26 172

2 6056 7618 12 305 20 313 24 415 26 172

FEM 1 5951 7459 12 013 19 709 23 878 25 575

assembled plate is made of same constitutive properties with Young’s modulus E = 6.9×
1010 kN/m2, thickness h = 4 mm, density ρ = 2700 Kg/m3, length Lx = 704 mm, width
Lz = 400 mm, and Poisson ratio ν= 0.3.

Computations by the BEM are carried out for the following boundary discretization
(two macro-elements) using linear micro-elements: Mesh 1 : 18 and 20 boundary ele-
ments per macro-element (plate 1 and 2, resp.) and Mesh 2 : 28 and 30 boundary el-
ements per macro-element (plate 1 and 2, resp.). An example of the discretization of
boundary is shown in Figure 5.3.

Figure 5.4 shows the FRF18-18 for the first BEM mesh. The FRF18-18 is obtained by
exciting node 18 (see Figure 5.3) and measuring the response at the same node. In this
FRF, the resonances and antiresonances can be clearly recognized. The system operational
eigenfrequencies (natural frequencies) are determined from the frequencies at which res-
onances in the FRF occur.

The values of the first six eigenfrequencies taken from the FRF of the two assembled
plates given in Figure 5.4 are reproduced in Table 5.1. These valuesare compared with
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3002001000

ω (Hz)

1E� 4

1E� 3

0.01

0.1

1

10

u
(m

)

Displacement

Figure 5.4. FRF18-18 for the first BE discretization of the two SFSF plates.

Plate 2

Plate 1

Reinforcement

Reinforcement

Length

Width

Height

Figure 5.5. Reinforced panel structure subjected to concentrated time-harmonic load.

similar discretization of the FEM by ANSYS� using SHELL63� elements. The discretiza-
tion of de FEM by ANSYS� consisted of the 18× 30 finite elements.

Now the reinforcements are included in the originally freely supported boundary con-
ditions (F). The resulting reinforced panel structure is shown in Figure 5.5. In the rein-
forcements, only the central nodes of the sides are submitted to simply supported bound-
ary conditions. The remaining nodes are free.

To simulate a simply supported boundary condition (S) as shown in Figure 5.6, the re-
inforcement is a thin and high macro-element. In this case, the plates and reinforcements
are made of same material properties described in the previous example.

The reinforced panel is discretized with 4 macro-elements, 2 elements for the plates
and 2 elements for the reinforcements (see Figure 5.7). Two BE meshes are used to per-
form the calculations. In the first mesh, all 4 macro-elements are discretized with 18× 20
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xp = 304mm

x
zp =
160
mm

Plate 1 Plate 2

Lz

z Lx

(a) Boundary conditions (S-S-S-S)

xp = 304mm

x
zp =
160
mm

Plate 1 Plate 2

Lz

z
Lx

Reinf.

Reinf.

(b) Equivalent thin reinforcements

Figure 5.6. Schematic illustration of the reinforced panel structure.

Node 18

Figure 5.7. BEM for the reinforced panel structure (Mesh 1).

Table 5.2. First six natural frequencies of the SSSS structure [Hz].

Method Mesh ω1 ω2 ω3 ω4 ω5 ω6

BEM
1 8203 14063 24024 26563 32617 37891

2 8203 14 063 24 024 26 563 32 617 37 891

FEM 1 7911 13 638 23 174 25 771 31 292 36 528

linear elements. In the second mesh, the 4 macro-elements have been discretized with
28× 30 linear elements. The geometric properties of the reinforcements are thickness
0.4 mm, height 400 mm, and width 400 mm.

The FRF18-18, of the reinforced panel structure is shown in Figure 5.8, for the dis-
cretization (Mesh 1) mentioned above.

The values of the first six eigenfrequencies of the reinforced panel structure are repro-
duced in Table 5.2. These values are compared with results obtained by the FEM com-
mercial code ANSYS� using 18× 30 SHELL63� elements.
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Figure 5.8. FRF18-18 for the first BEM discretization of the reinforced SSSS panel.
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(a) Boundary condition (CCCC)
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(b) Equivalent thick reinforcements

Figure 5.9. Scheme to reproduce clamped boundary conditions on the plate by thick reinforcements.

Let us now consider the plate structure with its entire contour under clamped (C)
boundary conditions (Figure 5.9(a)). The intention is to simulate a clamped boundary
condition of the two plates on the boundaries z = 0 and z = Lz using a thick reinforce-
ment. The idea was to introduce thick reinforcements to increase the bending rigidity.
This strategy is illustrated in Figure 5.9(b). In the reinforcement, only the central nodes
of the sides are considered clamped. The others are considered free. In this case, the plates
are made of same material properties and geometry described in the previous example.
However, the thickness of the two reinforcements is increased to 40 mm. This thickness
is increased by a factor 100, compared to the previous case.

The FRF18-18, of the reinforced (campled) panel structure discretized by BE is shown
in Figure 5.10. The discretization utilized is the same as the previous case (mesh 1).
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Figure 5.10. FRF18-18 for the first BEM discretization of the reinforced CCCC panel.

Table 5.3. First six natural frequencies of the CCCC structure [Hz].

Method Mesh ω1 ω2 ω3 ω4 ω5 ω6

BEM 1 15 821 22 071 32 813 40 235 46 289 48 046

FEM 1 15 456 21 485 32 019 39 328 45 023 46 860

(a) ω1 = 15821 Hz (b) ω2 = 22071 Hz
and ω3 = 32813 Hz

(c) ω4 = 40235 Hz

Figure 5.11. Four lower operational eigenmodes for the CCCC structure.

The values of the first six (operational) eigenfrequencies are reproduced in Table 5.3.
The eigenvalues obtained by the commercial FEM code ANSYS� using 18 × 30
SHELL63� elements are also given in Table 5.3.

The other modal quantity necessary to characterize the stationary dynamic behav-
ior of the reinforced panel structure is given by the eigenmodes or the natural modes of
vibration. For the last case (clamped bc), the operational eigenmodes are obtained by cal-
culating the displacement field at boundary of the structure at each resonance frequency
present in the FRF.
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Figure 5.11 shows the boundary displacements corresponding to the first four eigen-
modes of the excited structure. In this case, all external boundary nodes of the structure
are campled. It should be noticed that the second and third modes present the same
boundary displacement.

6. Concluding remarks

An implementation of the direct version of the boundary element method has been pre-
sented to analyze the stationary dynamic behavior of the reinforced panel structures.
The dynamic stationary fundamental solution has been used to transform the differential
equations governing the thin plate and membrane behavior into boundary-only integral
equations. The proposed scheme is used, exemplarily, to obtain modal data, that is, op-
erational eigenfrequencies and eigenmodes of the assembled plates and reinforced panel
structures with different boundary conditions. The formulation was shown to be capable
of modelling plates subjected to varied boundary conditions and out-of-plane loadings.
Frequency response functions may be determined for every boundary or domain point
of the structure. In the reported examples, the FRF of a node on an interface boundary
is used to recover eigenfrequencies. The eigenfrequencies are determined from the reso-
nances of the FRF. At these resonance frequencies, the displacement fields of the structure
furnish the operational eigenmodes. The presented results agree well with numerical so-
lutions obtained by a FEM commercial code. The proposed scheme may be seen as an
accurate methodology to analyze free and forced stationary vibrations of structures as-
sembled by folded plates, plate structures, and also reinforced panels which only require
the discretization of the folded plate boundary. The simplicity of the BE mesh generation
presents some advantages over other domain methods.
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