

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" FACULDADE DE MEDICINA

Bárbara Grasiele Müller Coan

"Efeitos dos miRNAs humanos miR-100-5p, miR-192-5p e miR-574-3p na expressão gênica e migração em célula imortalizada de nasofaringe"

> Tese apresentada à Faculdade de Medicina, Universidade Estadual Paulista "Júlio de Mesquita Filho", Câmpus de Botucatu, para obtenção do título de Doutor(a) em Patologia.

Orientador: Prof. Dr. Deilson Elgui de Oliveira Coorientador(a): Prof. Dr. Danillo Pinhal

> Botucatu 2022

Bárbara Grasiele Müller Coan

"Efeitos dos miRNAs humanos miR-100-5p, miR-192-5p e miR-574-3p na expressão gênica e migração em célula imortalizada de nasofaringe"

> Tese apresentada à Faculdade de Medicina, Universidade Estadual Paulista "Júlio de Mesquita Filho", Câmpus de Botucatu, para obtenção do título de Doutor(a) em Patologia.

Orientador: Prof. Dr. Deilson Elgui de Oliveira Coorientador: Prof. Dr. Danillo Pinhal

> Botucatu 2022

FICHA CATALOGRÁFICA ELABORADA PELA SEÇÃO TÉC. AQUIS. TRATAMENTO DA INFORM. DIVISÃO TÉCNICA DE BIBLIOTECA E DOCUMENTAÇÃO - CÂMPUS DE BOTUCATU - UNESP BIBLIOTECÁRIA RESPONSÁVEL: ROSANGELA APARECIDA LOBO-CRB 8/7500

Coan, Barbara Grasiele Muller. Efeitos dos miRNAs humanos miR-100-5p, miR-192-5p e miR-574-3p na expressão gênica e migração em célula imortalizada de nasofaringe / Barbara Grasiele Muller Coan. - Botucatu, 2022 Tese (doutorado) - Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Medicina de Botucatu Orientador: Deilson Elgui de Oliveira Coorientador: Danillo Pinhal Capes: 40105008 1. Câncer. 2. Neoplasias nasofaríngeas. 3. MicroRNAs. 4.

AGRADECIMENTOS

Agradeço a UNESP, a Faculdade de Medicina e o programa de pós-graduação em Patologia da UNESP de Botucatu.

Agradeço às agências financiadoras CAPES e FAPESP (Proc. DR 2017/22312-5) pelo suporte financeiro.

Agradeço ao IBTEC pela estrutura oferecida mesmo nestes tempos difíceis.

Agradeço ao meu orientador Prof. Dr. Deilson Elgui de Oliveira e coorientador Prof. Dr. Danillo Pinhal pelo suporte e apoio durante todo o projeto.

Agradeço ao meu marido Rafael pelo companheirismo, amparo e auxílio neste processo. Agradeço também minha filha Helena por me dar forças nestes últimos 2 anos.

Agradeço a minha família, em especial à minha irmã Cristiane.

Agradeço a todos os amigos que fiz aqui em Botucatu que tornaram esta experiência ainda mais gratificante.

"Efeitos dos miRNAs humanos miR-100-5p, miR-192-5p e miR-574-3p na expressão gênica e migração em célula imortalizada de nasofaringe"

Sumário

Resumo	12
ABSTRACT	13
Capítulo 1 - Introdução	14
Câncer: generalidades	15
Progressão dos cânceres	18
Carcinoma de nasofaringe	20
microRNAs	22
MicroRNAs no carcinoma de nasofaringe	27
CAPÍTULO 2 - MANUSCRITO	29
Preâmbulo	30
Abstract	31
Introduction	33
Material and Methods	35
Cell culture	35
miRNA Target Prediction and Pathway Enrichment Analysis	35
Cellular transfection of miRNA mimetics and assessment of miRNA expression	35
Estimation of cell proliferation and migration rates in vitro	36
Results	
In silico analysis of miR-100-5p, miR-192-5p and miR-574-3p showed unique	deregulated
pathways and target genes.	
Effects if treatment of NP69 cells with mimetics for miRs 100-5p, 192-5p, and	d 574-3p in
selected gene targets	40
MiR-192-5p mimic treatment decreases cell migration but did not induce alter	ation in cell
proliferation or viability in vitro	42

Discussion
Supplementary Material 48
References 63
CAPÍTULO 3 - CONSIDERAÇÕES FINAIS E CONCLUSÃO66
APÊNDICE
Análise da eficiência dos primers utilizados para a amplificação dos respectivos transcritos
alvos para o miR-100-5p, miR-192-5p e miR-574-3p74
Construção de vetores lentivirais para transdução em células imortalizadas de nasofaringe.
75
Vetores psiCHECK2
Ensaios da Luciferase após transfecção com miR-100-5p em células imortalizadas de
nasofaringe (NP69) 104
Referências

FICHA CATALOGRÁFICA ELABORADA PELA SEÇÃO TÉC. AQUIS. TRATAMENTO DA INFORM. DIVISÃO TÉCNICA DE BIBLIOTECA E DOCUMENTAÇÃO - CÂMPUS DE BOTUCATU - UNESP BIBLIOTECÁRIA RESPONSÁVEL: ROSANGELA APARECIDA LOBO-CRB 8/7500

Coan, Barbara Grasiele Muller. Efeitos dos miRNAs humanos miR-100-5p, miR-192-5p e miR-574-3p na expressão gênica e migração em célula imortalizada de nasofaringe / Barbara Grasiele Muller Coan. - Botucatu, 2022 Tese (doutorado) - Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Medicina de Botucatu Orientador: Deilson Elgui de Oliveira Coorientador: Danillo Pinhal Capes: 40105008 1. Câncer. 2. Neoplasias nasofaríngeas. 3. MicroRNAs. 4.

Palavras-chave: Câncer; Carcinoma de nasofaringe; miRNAs.

LISTA DE ABREVIATURAS E SIGLAS

Abaixo estão listadas abreviaturas e siglas utilizadas ao longo do texto. Os de ocorrência única foram descritos conforme se apresentam no texto.

Sigla ou Abreviatura	Definição por extenso	Correspondência em inglês
CSCs	Células tronco cancerígenas	Cancer Stem Cells
EBV	Vírus de Epstein-Barr	Epstein-Barr virus
EGF	Fatores de Crescimento Epidérmico	Epidermal Growth Factor
EGFR	Genes Codificadores dos Receptores de Fator de Crescimento Epidérmico	Epidermal Growth Factor Receptor
EMT	Transição epitelial mesenquimal	Epithelial mesenchymal transition
FGFR3	Receptor Tipo 3 de Fator de Crescimento de Fibroblastos	Receptor, Fibroblast Growth Factor, Type 3
FZD8	Receptor Frizzled 8	Frizzled Receptor 8
HIF-1	Fator 1 Induzível por Hipóxia	Hypoxia-inducible fator 1
IGF1	Fator de Crescimento Semelhante à Insulina I	Insulin-Like Growth Factor I
LMP1	Proteína latente de membrana 1	Latent Membrane Protein 1
МАРК	Fosfatases da Proteína Quinase Ativada por Mitógeno	Mitogen Activated Protein Kinase Phosphatase
MET	Transição mesenquimal epitelial	Mesenquimal-epithelial transition
NF-кВ	Proteína Estimuladora de Ligação de kappa B	kappa B Enhancer Binding Protein
NPC	Carcinoma de nasofaringe	Nasopharyngeal Carcinoma
РІЗК	Fosfatidilinositol 3-Quinases	Phosphatidylinositol 3-Kinases
RAB2A	Proteína rab2 de Ligação ao GTP	rab2 GTP-Binding Protein
STC1	Staniocalcina 1	Stanniocalcin 1
TGF-β	Fator de Crescimento Transformador beta	Transforming Growth Factor beta
TKR	Receptor de tirosina quinase	Tyrosine kinase receptor
UTR	Regiões não Traduzidas	Untranslated regions
VEGF	Receptores de Fatores de Crescimento do Endotélio Vascular vascular	Receptors, Vascular Endothelial Growth Factor
WNT	Proteína Wingless	Wingless Type Protein

LISTA DE FIGURAS

Figura 1 – Modelo de carcinogênese epitelial, com discriminação de eventos das etapas de iniciação, promoção e progressão de carcinomas. Na iniciação ocorrem as primeiras alterações no genoma celular, acrescidas de novas alterações moleculares durante a promoção. O acúmulo progressivo de alterações culmina na transformação celular, o que geralmente delimita a transição entre as etapas de promoção e progressão tumoral. Alterações moleculares genéticas e epigenéticas ocorrem durante toda a carcinogênese, ocasionalmente propiciando novas propriedades biológicas associadas ao fenótipo maligno, tais como capacidade de invasão e de disseminação neoplásica (e.g., por metástase). Admite-se que a formação de metástases de carcinomas pode ser favorecida pela ocorrência de transição epitelialmesenguimal (EMT), fenômeno no qual as células malignas apresentam redução de propriedades de fenótipo epitelial e passam a expressar propriedades mesenguimais, mais favoráveis à ocorrência invasão de tecidual, remodelamento vascular, migração e sobrevida celular. Na metástase, as células malignas disseminadas por via vascular (sanguínea ou linfática) alcançam tecidos à distância do tumor primário e efetuam extravasamento para o interstício tecidual. A colonização dos tecidos alcançados e o desenvolvimento de colônias secundárias de células malignas são favorecidos pela EMT reversa, também conhecida como transição mesenquimal-epitelial (MET), favorecendo o desenvolvimento de macrometástases (HUGO et al., 2007; RYAN; FAUPEL-

Figura 2 - Síntese de microRNAs e sua ação sobre o mRNA alvo. Inicialmente há ação da RNA polimerase II no núcleo celular para síntese de uma molécula poliadenilada precursora, o pri-miRNA. Clivada pelo complexo Drosha, o pri-miRNA origina o pre-miRNA. que é exportado para o citoplasma pela exportina 5. Após nova clivagem (complexo Dicer) ocorre separação das fitas do pre-miRNA e a ligação dos miRNAs formados com proteínas argonautas do complexo RISC (*RNA-induced silencing complex*), que medeia o silenciamento RNA mensageiro alvo. Essa inibição da tradução ocorre principalmente de quatro modos: (A) repressão do reconhecimento do sítio de iniciação da tradução; (B) indução da deadenilação do mRNA, impedindo sua circularização;

(C) indução da saída prematura ribossomal do mRNA; ou (D) promovendo a degradação do mRNA. Figura original baseada em trabalhos da literatura (CHEN Figura 3 – Modelo das atividades do miR-192-5p por sua interação com moléculas e vias preditas nas análise in silico. Células NP69 tratadas com o mimético de miR-192-5p demonstraram uma redução na taxa de migração e uma redução no transcrito RAB2A. Essa relação já está descrita em células de câncer de cólon, onde a redução de RAB2A levou a redução nas taxas de migração, invasão e proliferação celular. Adicionalmente, RAB2A foi relacionado à ativação da via ERK que sofre a influência de outros alvos de miR-192-5p. Esse miRNA foi encontrado aumentado em amostras de soro de pacientes com NPC, tendo sido visto como potencial biomarcador para essa doença. MiR-192-5p já foi descrito como inibidor da via TGF- β , que por sua vez induz a EMT e inibe o transcrito de KHSRP, um inibidor de EMT que induz a maturação do miR-192-5p. Linhas destacadas em azul escuro remetem a achados in vitro desse trabalho; vias e genes em negrito foram preditos como relacionados a miR-192-5p. Imagem baseada nos trabalhos (PUPPO et al., 2016; YUAN et al., 2014, p.

Figura 4 - Modelo das atividades do miR-100-5p e sua interação com moléculas e vias preditas nas análises *in silico*. Células NP69 tratadas com o mimético de miR-100-5p demonstraram uma redução no transcrito *FZD8*. TGF- β foi descrito como indutor do aumento dos níveis de *FZD8*, que por sua vez ativa a via Wnt, levando a um aumento da proliferação e metástase em carcinoma de células renais. Adicionalmente, miR-100-5p foi encontrado com níveis reduzidos em amostras de NPC, levando ao aumento da migração, invasão e proliferação dessas células por meio de IGF1R, além de ser descrito como um inibidor de *mTOR*. Linhas destacadas em azul escuro remetem a achados *in vitro* desse trabalho; vias e genes em negrito foram preditos como relacionados a miR-100-5p. Imagem baseada nos trabalhos (SPANJER et al., 2016; YANG et al., 2017).

Figura 5 - Modelo das atividades do miR-574-3p e sua interação com moléculas e vias preditas na análise *in silico*. Células NP69 tratadas com o mimético de miR-574-3p demonstraram uma redução no transcrito *STC1* que já foi descrito como biomarcador para sobrevida de pacientes com câncer de bexiga. Quando

Resumo

Os cânceres são doenças neoplásicas malignas com etiopatogenia complexa. As células transformadas adquirem diversas propriedades que propiciam alterações em taxas de migração, invasão e sobrevivência celular, facilitando a formação de metástases. Esse processo sofre a influência de diversos fatores, inclusive de pequenos RNAs não codificantes, como os miRNAs. Os miRNAs são moléculas que canonicamente impedem a tradução de um mRNA, podendo agir em diversos processos celulares, incluindo na carcinogênese e progressão do câncer, como o carcinoma de nasofaringe (NPC). O NPC é um câncer agressivo com alta taxa de invasão em tecidos adjacentes, como base do crânio, seios nasais e órbitas, além de alta taxa de metástase para linfonodos regionais. Sua forma não queratinizante compreende mais de 95% dos casos e quando indiferenciado, é fortemente associado ao vírus de Epstein-Barr (EBV). Em um estudo recente de nosso grupo de pesquisa, observamos que células imortalizadas de nasofaringe (NP69) apresentavam um aumento na expressão do miR-100-5p, miR-192-5p e miR-574-3p quando transfectadas com a proteína latente de membrana 1 (Latent Membrane Protein 1 – LMP1) do EBV proveniente da variante viral M81, em comparação com a LMP1 proveniente da variante viral B95-8A. Portanto, este estudo visa elucidar os efeitos do miR-100-5p, miR-192-5p e miR-574-3p na viabilidade, proliferação e migração de células imortalizadas de nasofaringe (NP69) cultivadas in vitro. Para tanto, foi realizada a predição dos alvos dos respectivos miRNAs e o enriquecimento de vias para inferir quais vias de sinalização intracelular poderiam ser moduladas por cada miRNA, seguida pela análise dos transcritos dos genes alvos selecionados. Adicionalmente, células NP69 foram transfectadas com os miméticos do miR-100-5p, miR-192-5p ou miR-574-3p para a análise de comportamento celular. Quando essas foram transfectadas com o mimético do miR-192-5p, foi observada a redução de 40% no transcrito do gene RAB2A e redução de 43% na sua migração celular. No enriquecimento de vias, o miR-192-5p teve sua ação predita em vias como MAPK, GPCRs, TKR e TGF-β. Células NP69 transfectadas com os miméticos do miR-100-5p e miR-574-3p reduziram significativamente os transcritos dos genes FZD8 e STC1, respectivamente. Entretanto, nos ensaios funcionais realizados, não foram observadas alterações significativas no comportamento celular. Com esses resultados pode-se observar que o miR-192-5p possui uma função de supressor tumoral, elucidando parte de sua função em células de nasofaringe. Portanto, isso demonstra sua importância no contexto do NPC e a necessidade de seu estudo adicional.

Abstract

Cancers are malignant neoplastic diseases with complex etiopathogenesis. Transformed cells acquire diverse biological properties that induce alteration in the migration, invasion, and cell survival rates, favoring metastasis formation. This process is under the influence of many factors, including miRNAs. MiRNAs are molecules that canonically prevent mRNA translation, influencing many cellular processes, carcinogenesis and progression of cancers, like nasopharyngeal carcinoma (NPC). NPC is an aggressive cancer with high invasion rates to adjacent tissues, such as the base of the cranium, face sinuses, and orbits, in addition to a high metastatic rate to local lymph nodes. The nonkeratinizing NPC subtype comprehends over 95% of total cases and, when undifferentiated, is highly related to Epstein-Barr virus (EBV) infection. In a recent study of our group, we observed that immortalized nasopharyngeal cells NP69^{SV40T} transfected with the EBV oncoprotein, Latent membrane protein 1 (LMP1), from M81 strain showed increased expression of human miR-100-5p, miR-192-5p, and miR-574-3p compared to NP69^{SV40T} cells transfected with LMP1 from EBV strain B95.8A. Thus, this study aimed to assess the putative effects of each of the identified microRNAs on the viability, migration, and proliferation of human immortalized nasopharyngeal cells (NP69^{SV40T}) cultivated in vitro. Therefore, target prediction and pathway enrichment analysis were performed to infer which pathways could be modulated by each miRNA followed by expression analysis of selected predicted target genes. Additionally, NP69^{SV40T} cells were transfected with miR-100-5p, miR-192-5p, or miR-574-3p mimic to analyze cell behavior. After their transfection with miR-192-5p mimic, we observed a 40% decrease in RAB2A transcript level and a 43% reduction in cell migration. During the pathway enrichment analysis, miR-192-5p showed predicted involvement in pathways such as MAPK, GPCRs, TKR, and TGF-β. NP69^{SV40T} cells transfected with miR-100-5p or miR-574-3p reduced transcriptional levels of its targets FZD8 and STC1, respectively. However, in the performed cellular assays, they did not alter cell behavior. The results demonstrate that miR-192-5p acts as a tumor suppressor, answering part of its function in nasopharyngeal cells. This shows its importance in the NPC context and the necessity of further studies of this miRNA.

Capítulo 1 - Introdução

Câncer: generalidades

Segundo dados do programa Globocan (*Global Cancer Observatory*) da Organização Mundial de Saúde (*World Health Organization* – WHO), mais de 19 milhões de novos casos de cânceres foram diagnosticados em 2020 em todo mundo e essas doenças foram responsáveis por cerca de 9,9 milhões de óbitos naquele ano (SUNG et al., 2021). Em geral, a incidência de cânceres vem aumentando anualmente como consequência, por exemplo, do envelhecimento populacional e do aumento da exposição a riscos cancerígenos, tais como sobrepeso, obesidade e o consumo de álcool (GLOBAL BURDEN OF DISEASE CANCER COLLABORATION, 2015; THUN et al., 2010).

Os cânceres são doenças de etiologia complexa, na qual contribuem fatores constitutivos (e.g., patrimônio genéticos do indivíduo), fatores ambientais e fatores relacionados aos hábitos e estilo de vida. Estima-se que até 50% dos casos de cânceres poderia ser prevenida, incluindo doenças relacionadas à exposição solar, tabagismo, dieta e doenças infecciosas (MATTIUZZI; LIPPI, 2019; MÜLLER-COAN et al., 2018). Essas doenças ocorrem mais comumente em adultos mais velhos e em grande medida são carcinomas – cânceres que se desenvolvem a partir de células epiteliais ou de células de outras histogêneses em tecidos de revestimento.

Os carcinomas estão entre os cânceres mais comuns em todo o mundo, respondendo pela maior fração de desfechos letais em decorrência de neoplasias malignas. Estima-se que 45,6% dos quase 10 milhões de óbitos por cânceres em ambos os sexos em 2020 tenham sido majoritariamente em decorrência de carcinomas ocorrendo em mama, próstata, cólon e reto, traqueia, brônquio e pulmão e estômago (SUNG et al., 2021).

O processo de desenvolvimento do câncer (i.e., *carcinogênese*) é tradicionalmente dividido nas etapas de iniciação, promoção e progressão (Figura 1). Na iniciação ocorrem as primeiras alterações moleculares no patrimônio genético da célula – tipicamente mutações associadas à exposição a carcinógenos ambientais, quer sejam químicos, físicos ou infecciosos. As células iniciadas proliferam e adquirem novas alterações durante a etapa subsequente, a promoção, na qual se observa a instalação progressiva de instabilidade genômica. Ao longo do tempo, esse comprometimento ocorrendo durante a promoção nas células iniciadas propicia o desenvolvimento do fenótipo maligno, que culmina com a transformação celular (BEN-DAVID; AMON, 2020; BRABLETZ et al., 2021). O surgimento de células malignas (transformadas) tende a ocorrer na transição entre a fase de promoção e a fase subsequente da carcinogênese, a progressão tumoral.

Figura 1 - Modelo de carcinogênese epitelial, com discriminação de eventos das etapas de iniciação, promoção e progressão de carcinomas. Na iniciação ocorrem as primeiras alterações no genoma celular, acrescidas de novas alterações moleculares durante a promoção. O acúmulo progressivo de alterações culmina na transformação celular, o que geralmente delimita a transição entre as etapas de promoção e progressão tumoral. Alterações moleculares genéticas e epigenéticas ocorrem durante toda a carcinogênese, ocasionalmente propiciando novas propriedades biológicas associadas ao fenótipo maligno, tais como capacidade de invasão e de disseminação neoplásica (e.g., por metástase). Admite-se que a formação de metástases de carcinomas pode ser favorecida pela ocorrência de transição epitelial-mesenquimal (EMT), fenômeno no qual as células malignas apresentam redução de propriedades de fenótipo epitelial e passam a expressar propriedades mesenquimais, mais favoráveis à ocorrência de invasão tecidual, remodelamento vascular, migração e sobrevida celular. Na metástase, as células malignas disseminadas por via vascular (sanguínea ou linfática) alcançam tecidos à distância do tumor primário e efetuam extravasamento para o interstício tecidual. A colonização dos tecidos alcançados e o desenvolvimento de colônias secundárias de células malignas são favorecidos pela EMT reversa, também conhecida como transição mesenquimal-epitelial (MET), favorecendo o desenvolvimento de macrometástases (HUGO et al., 2007; RYAN; FAUPEL-BADGER, 2016).

A colonização do tecido pelas células transformadas ocorre simultaneamente à consolidação de propriedades biológicas comumente compartilhadas por cânceres. Conforme modelo proposto por Hanahan e Weinberg (2011), essas propriedades incluem a autonomia relativa na geração de estímulos pró-proliferativos, evasão de sinais

inibidores de crescimento e proliferação, evasão da resposta imunitária, subversão da senescência celular (i.e., imortalização), inflamação câncer-induzida, invasão tecidual, remodelamento vascular, instabilidade genética, comprometimento de mecanismos de morte celular (apoptose, notadamente) e desregulação metabólica. Todos estes fatores contribuem para a agressividade biológica dos cânceres, oferecendo condições favoráveis à disseminação de células neoplásicas para outros tecidos no organismo hospedeiro (HANAHAN; WEINBERG, 2011, 2011).

É na progressão da carcinogênese em que tipicamente se observam as manifestações do desenvolvimento de um câncer no organismo hospedeiro, o que pode propiciar o diagnóstico da doença. Nessa etapa a instabilidade genômica das células malignas tende a estar estabelecida tanto em nível gênico como cromossômico, com mutações e rearranjos citogenéticos variados e frequente aneuploidia (BEN-DAVID; AMON, 2020). A instabilidade genômica suscita heterogeneidade fenotípica das células malignas, propiciando a emergência de subpopulações celulares que podem apresentar propriedades particulares que lhes oferecem vantagens em relação às suas congêneres, incluindo melhores condições de sobrevivência no ambiente intratumoral, maior potencial proliferativo, imunoevasão, maior capacidade de invasão e para disseminação neoplásica. Outros fatores importantes estão relacionados com a progressão dos cânceres, e estes serão detalhados a seguir.

Progressão dos cânceres

A manifestação clínica de neoplasias malignas tipicamente ocorre na etapa de progressão dos cânceres, etapa em que ocorrem diversas alterações que habilitam as células transformadas efetuarem a se expandirem, invadir e colonizar tecidos no sítio original de desenvolvimento da doença ou à distância do tumor primário (HANAHAN; WEINBERG, 2011). O entendimento da patogênese da progressão dos cânceres é fundamental para a gestão do cuidado da doença, notadamente porque a existência de doença disseminada (por metástases, por exemplo) compromete o prognóstico do paciente, respondendo por altos índices de morbidade e mortalidade (GUPTA; MASSAGUÉ, 2006; TANG et al., 2020).

O processo de metástase segue uma sequência sucessiva de eventos que compõem a *cascata metastática*, que culmina na formação de pequenas colônias de células neoplásicas malignas disseminadas à distância do tumor primário, denominadas *micrometástases*, que eventualmente se desenvolvem em tumores secundários manifestos, as *macrometástases* (HANAHAN; WEINBERG, 2011).

O sucesso na disseminação metastática requer que células malignas estejam habilitadas a colonizar tecidos distintos do sítio do tumor primário. No caso de carcinomas, admite-se que a ocorrência de metástases seja influenciada pelo fenômeno de transição epitelial-mesenquimal (*Epithelial Mesenchymal Transition - EMT*), no qual se observa mudanças de expressão gênica que levam a célula epitelial a manifestar algumas propriedades relacionadas ao fenótipo mesenquimal, incluindo maior motilidade e capacidade de invasão. Células em EMT também podem sofrer o processo inverso, fenômeno denominado EMT-reversa ou ainda transição mesenquimal-epitelial (*Mesenquimal-Epithelial Transition – MET*), o que tende a ocorrer quando células do carcinoma alcançam novos sítios para colonização metastática (Figura 1). A ocorrência de EMT-reversa/MET no sítio de metástase aparentemente favorece o desenvolvimento tumoral pela maior capacidade proliferativa observada em células expressando propriedades epiteliais, por exemplo (BRABLETZ et al., 2021; GEORGAKOPOULOS-SOARES et al., 2020).

Convém destacar que o estabelecimento de metástases requer modificações do microambiente tecidual no sítio a ser colonizado para propiciar sobrevivência e proliferação das células malignas recém-chegadas. Para tanto, ocorrem interações com células locais (neoplásicas ou não) e células recrutadas, culminando em modificação do

microambiente tecidual que favorece sua colonização pelas células malignas (NEOPHYTOU et al., 2021). Um microambiente tecidual suscetível à colonização neoplásica decorre de modificações em múltiplos tipos celulares, incluindo fibroblastos, células endoteliais, macrófagos, células T, osteoclastos e osteoblastos. Esta comunicação se faz em grande parte por meio de vesículas extracelulares contendo miRNAs, tanto provenientes de células cancerígenas sendo receptados por células normais, como o caminho reverso (SOLÉ; LAWRIE, 2021).

Alguns cânceres, como o carcinoma de nasofaringe (*Nasopharyngeal Carcinoma* – NPC), possuem capacidade invasiva e uma alta frequência no estabelecimento de metástases em linfonodos regionais, apesar da menor taxa de disseminação à distância para outros órgãos. Devido à sua localização anatômica, possui elevada agressividade biológica, com remoção cirúrgica é difícil e responsividade à quimioterapia é pouco eficiente. Motivo pelo qual o estudo detalhado dos mecanismos celulares e moleculares do NPC se tornam essenciais para melhorar seu diagnóstico e tratamento. Estas características do NPC, desde seu surgimento, até sua progressão, podem ser influenciadas por diversos fatores que serão detalhados a seguir.

Carcinoma de nasofaringe

O carcinoma de nasofaringe é um câncer agressivo e de prognóstico tipicamente desfavorável. Sua etiologia é multifatorial, incluindo fatores genéticos, como por exemplo a composição em genes do sistema de antígeno leucocitário humano (*Human Leukocyte Antigen* - HLA) do complexo principal de histocompatibilidade (*Major Histocompatibility Complex* – MHC), exposição a nitrosamidas e, particularmente, infecção pelo vírus de Epstein-Barr (*Epstein-Barr virus* – EBV) (CAETANO et al., 2020). A doença possui elevada capacidade de invasão, que tende a ocorrer principalmente na base do crânio, seios nasais e órbitas. Em aproximadamente 50% dos casos há invasão de nódulos linfáticos e em cadeias linfáticas de cabeça e pescoço. Também pode ocorrer metástase a distância por disseminação hematogênica, notadamente para ossos, pulmões e fígado, habitualmente em até 3 anos após o diagnóstico. A sobrevida média dos pacientes é de 5 anos, variando de 40% em regiões endêmicas, até 80% quando tumores esporádicos (CHEN et al., 2019).

A incidência do NPC varia substancialmente de acordo com a localização geográfica. Esse câncer é relacionado a pouco mais de 133 mil casos e 80 mil mortes no ano de 2020 em nível mundial, sendo endêmico no sudeste da Ásia, notadamente na China (SUNG et al., 2021). Independentemente da região, o NPC ocorre cerca de 2,5 vezes mais em homens do que em mulheres; seu desenvolvimento é inicialmente assintomático, mas pode desenvolver sinais como epistaxe, otite média ou obstrução nasal, dependendo do tamanho do tumor e comprometimentos dos tecidos após a invasão local (CHEN et al., 2019).

Em termos histopatológicos o NPC é classificado em queratinizante, nãoqueratinizante ou basaloide. O NPC não-queratinizante é responsável por mais de 95% dos casos em áreas endêmicas e é subdividido nas formas diferenciadas e indiferenciadas, esta última fortemente associada à infecção pelo EBV. A forma queratinizante do NPC compreende menos de 20% dos casos, sendo rara em regiões endêmicas.(CHEN et al., 2019).

Atualmente, o perfil molecular do carcinoma de nasofaringe auxiliou na identificação de alterações genômicas que estimulam o desenvolvimento e a progressão da doença. Dentre essas estão alterações que proporcionam perdas de função de reguladores negativos de NF-κB, lesões genéticas recorrentes (e.g. perda do *locus* CDKN2A/CDKN2B), amplificação do gene *CCND1* (codifica a ciclina D1), mutação em

TP53 e em componentes da via de sinalização PI3K/MAPK, modificações de cromatina e na maquinaria de reparo do DNA (TSANG et al., 2020). Adicionalmente, a expressão da proteína latente de membrana 1 (LMP1) do EBV proporciona ativação constitutiva da via NF- κ B, um importante fenômeno da patogênese do NPC que é também observado em diversos outros cânceres associados ao EBV, notadamente linfomas (CHEN et al., 2019; LI et al., 2017).

A regulação da expressão gênica no NPC, assim como em outros cânceres, se faz por diversos mecanismos, incluindo mecanismos epigenéticos, tais como remodelamento da cromatina, modificação de histonas, metilação de DNA e expressão de RNAs nãotraduzidos, como os microRNAs (miRNAs) (CHOI; LEE, 2013). Nesse contexto, a ação de miRNAs pode ser particularmente relevante na regulação do padrão de expressão gênica de células malignas, na regulação do microambiente tumoral, invasão local e na disseminação neoplásica, inclusive por metástases (HUSSEN et al., 2021). Isso mostra que os miRNAs possuem ação importante não só em uma etapa da carcinogênese, mas sim em diversas etapas, regulando a tradução de genes com função de supressores tumorais ou oncogenes. O detalhamento da função de um determinado miRNA em uma etapa da carcinogênese, assim como em um determinado tecido, será elucidado em mais detalhes no tópico a seguir.

microRNAs

RNAs que não codificam proteínas – mais comumente referidos como RNAs nãocodificantes (*Non-coding RNAs* – ncRNA) – podem atuar na regulação epigenética da expressão gênica com efeitos duradouros, como no caso de alguns ncRNAs longos (lncRNA), ou de forma transitória e dinâmica, como no caso dos miRNAs (MORRIS, 2011). Estima-se que apenas 2% do genoma humano seja de genes codificadores de proteínas (~20 mil genes), sendo o restante representado por cerca de 11 mil pseudogenes, e 9 mil miRNAs e 10-32 mil lncRNAs (RYAN; FAUPEL-BADGER, 2016; SAW et al., 2021).

MiRNAs em geral (i.e., modo de ação canônico) exercem uma função inibitória na tradução de RNAs mensageiros (mRNA). A ação dessas moléculas foi originalmente descrita por Ambros e Ruvkun no desenvolvimento larval do nematódeo *Caenorhabditis elegans*, onde um pequeno RNA não-traduzido possuía ação inibitória na expressão de determinados genes. Atualmente sabe-se que miRNAs têm papel regulatório em diversas vias fisiológicas e patológicas, incluindo no desenvolvimento de cânceres (CHEN; YAN, 2021).

Os miRNAs são codificados por sequências distribuídas por todo o genoma. Algumas estão presentes em genes não-codificantes, cujos produtos são exclusivamente miRNAs, outras estão localizadas em introns ou na região UTR não-traduzida (*Untranslated Region* - UTR) de um gene codificador de proteína (HAMMOND, 2015). A maioria dos miRNAs é gerada a partir de transcritos primários longos que são clivados sequencialmente pelas enzimas Drosha e Dicer (biogênese pela via canônica). Alguns miRNAs, entretanto, podem ser gerados sem a clivagem por Drosha, sendo geralmente formados a partir de um pequeno RNA não codificante transcrito pela RNA polimerase II (STRIBLING et al., 2021).

A via canônica de biogênese de miRNAs requer ação da RNA polimerase II, que forma inicialmente uma grande molécula de RNA, o pri-miRNA que passa por processamento pela RNAse III, chamada *Drosha*, originando uma molécula de RNA com aproximadamente 70 nucleotídeos, denominada pre-miRNA. O pre-miRNA, agora no citoplasma, sofre ação da endoribonuclease *Dicer*, de modo a originar dois miRNA maduros, com comprimento de 17-25 nucleotídeos (Figura 2) (ESQUELA-KERSCHER; SLACK, 2006). Estes miRNAs maduros se associam às proteínas argonautas (AGO) e GW182, um complexo indutor de silenciamento (*RNA-induced Silencing complex* –

RISC), permitindo a ligação do miRNA à um mRNA por meio de pareamento em sua região 3' UTR preferencialmente. Embora rara, a ligação do miRISC a éxons e à região 5'UTR já foi previamente reportada (ALI SYEDA et al., 2020).

Figura 2 - Síntese de microRNAs e sua ação sobre o mRNA alvo. Inicialmente há ação da RNA polimerase II no núcleo celular para síntese de uma molécula poliadenilada precursora, o primiRNA. Clivada pelo complexo Drosha, o pri-miRNA origina o pre-miRNA. que é exportado para o citoplasma pela exportina 5. Após nova clivagem (complexo Dicer) ocorre separação das fitas do pre-miRNA e a ligação dos miRNAs formados com proteínas argonautas do complexo RISC (*RNA-induced silencing complex*), que medeia o silenciamento RNA mensageiro alvo. Essa inibição da tradução ocorre principalmente de quatro modos: (A) repressão do reconhecimento do sítio de iniciação da tradução; (B) indução da deadenilação do mRNA, impedindo sua circularização; (C) indução da saída prematura ribossomal do mRNA; ou (D) promovendo a degradação do mRNA. Figura original baseada em trabalhos da literatura (CHEN et al., 2012; DAVIS-DUSENBERY; HATA, 2010; HAMMOND, 2015).

Apesar de pequenos, os miRNAs possuem certa especificidade conferida por sua região *seed*, que consiste nos nucleotídeos de sua região 5' entre as posições dois e oito.

Essa ligação leva à degradação (alta complementariedade) ou repressão da tradução (baixa complementariedade) do mRNA pelo miRNA maduro, podendo ocorrer por quatro processos principais: repressão do reconhecimento do sítio de iniciação da tradução; indução da saída prematura ribossomal do mRNA; indução da deadenilação do mRNA impedindo a circularização do mesmo; ou promovendo a degradação do mRNA. Quando múltiplos miRNAs compartilham da mesma região *seed*, eles são descritos como membros de uma mesma família e comumente podem ter ação sinérgica sobre um mesmo mRNA. (LEITÃO; ENGUITA, 2022).

Alterações na expressão de miRNAs tem sido amplamente documentadas em cânceres (HILL; TRAN, 2021), podendo resultar em estímulo ou inibição da doença, dependendo da sua função como *oncomiRs* ou supressores tumorais (função à ser explicada a diante). Digno de nota, sequências codificadoras de miRNAs estão localizadas em diversas regiões cromossômicas comumente afetadas por deleções e amplificações identificadas nos cânceres (CROCE, 2012).

Os miRNAs participam de diversos processos celulares, invariavelmente causando inibição pós-transcricional de seus genes-alvo. Por exemplo, podem agir na tradução e expressão de reguladores da progressão do ciclo celular, da diferenciação celular, de rotas metabólicas, da morte celular programada (e.g. apoptose), da manutenção da homeostasia tecidual e em respostas imunitárias. Aproximadamente 60% das proteínas humanas têm sua tradução regulada por miRNAs, quer seja em processos fisiológicos ou patológicos, incluindo a carcinogênese e a progressão tumoral (HILL; TRAN, 2021).

Alguns miRNAs agem diretamente na progressão de cânceres, com protagonismo em fenômenos como a cascata metastática, EMT e remodelamento do microambiente (e.g., pela expressão de metaloproteinases (DONG et al., 2021). De modo geral, admite-se que miRNAs podem agir de modo semelhante aos genes supressores tumorais, quando inibem a tradução de oncogenes, ou como *oncomiRs*, quando inibem a tradução de genes supressores tumorais. Entretanto, não são incomuns situações em que miRNAs maduros que se originaram do mesmo pre-miRNA (formas 5p e 3p) apresentam dualidade de ações. Ambos podem ter uma ação sinérgica (e.g., supressora tumoral, como no caso do miR-100 (CHEN et al., 2015; MAIA et al., 2013)) ou antagônica (*oncomiRs* ou supressor tumoral). Essa dualidade de um miRNA se aplica também à um mesmo miRNA maduro, pois esses habitualmente são contexto-dependente, como por exemplo o miR-574-5p (CUI et al., 2014; JI et al., 2013). A expressão de miRNAs pode ser impactada por alterações genéticas e genômicas (e.g. translocações, deleções, amplificações, mutações) que comprometem suas sequências codificadoras ou regulatórias, além da regulação de seus fatores de transcrição e alterações na expressão ou função de enzimas envolvidas em sua biogênese, dentre outros mecanismos (HILL; TRAN, 2021). A primeira evidência de envolvimento de miRNAs na patogênese de cânceres foi apresentada em 2002 por Croce e Calin, que relataram ação supressora tumoral do miR-15 e miR-16-1 na leucemia mieloide crônica (CALIN et al., 2002). Atualmente há evidências de alterações envolvendo miRNAs em diferentes aspectos da carcinogênese, incluindo regulação de propriedades de CSCs, tais como, autorenovação, tumorigenicidade e resistência a drogas (ASADZADEH et al., 2019).

O miR-100 (3p e 5p) é um importante miRNA que aparenta ter ação predominante de supressão tumoral. Em ensaios *in vitro* com células de carcinoma mamário, adenocarcinoma pulmonar e de carcinoma de nasofaringe, a redução de miR-100 foi relacionada ao aumento da proliferação celular e resistência à apoptose (FENG; WANG; CHEN, 2012, p. 1; JIANG et al., 2015, p. 8; SHI et al., 2010, p. 1). Ensaios *in vivo* com células de cânceres colorretal e de nasofaringe demonstraram que a redução na expressão de miR-100 proporcionou maior crescimento tumoral em animais de experimentação (CHEN et al., 2014; SHI et al., 2010, p. 1). Adicionalmente, miR-100 foi encontrado regulado negativamente em diversos tipos de cânceres e sua menor expressão foi relacionada a resistência tumoral à múltiplas drogas, metástase em linfonodos, metástase pulmonar e menor sobrevida média (CHEN et al., 2014; DAI et al., 2011; FENG; WANG; CHEN, 2012; JIANG et al., 2017; ZHOU et al., 2014), além de possuir potencial como biomarcador para diversos tipos de cânceres (DOU et al., 2017).

Outro miRNA relevante nesse contexto é o miR-574, cuja forma 3p possui função supressora tumoral frequentemente reportada. A expressão aumentada desse miRNA foi associada à inibição da migração, da invasão e da proliferação de células de câncer gástrico (SU et al., 2012), enquanto sua redução propiciou resistência ao tamoxifeno no câncer de mama (UJIHIRA et al., 2015). Recentemente o miR-574-3p foi apontado como um potencial biomarcador para diagnóstico de câncer de próstata em amostras de urina (PAIVA et al., 2020). Por outro lado, sua forma 5p tem sido referida como oncomir: por exemplo, a expressão de miR-574-5p foi associada a estímulo de migração e invasão celular em cânceres de pulmão (células pequenas e não-pequenas) e colorretal (JI et al., 2013; ZHOU et al., 2015, 2016) e quantidades elevadas de miR-574-5p foram detectadas em vesículas extracelulares no câncer de pulmão de células pequenas, colorretal e próstata

(BRYANT et al., 2012; JI et al., 2014; ZHOU et al., 2015). Apesar das formas 3p e 5p do miR-574 humano terem sido associadas à ação de supressão tumoral e oncomir, respectivamente, ambas parecem exibir atividade dual dependendo do tipo tumoral e contexto biológico. Por exemplo, a forma 3p também foi associada ao crescimento celular no osteosarcoma (XU et al., 2016, p. 4), enquanto miR-574-5p já foi cogitada como supressora de metástases para o câncer colorretal (CUI et al., 2014, p. 1).

Também o miR-192-5p tem sido frequentemente apresentado como biomarcador tumoral em potencial, com expressão aumentada identificada em células neoplásicas ou em exossomos de cânceres de esôfago, colorretal (DELLA VITTORIA SCARPATI et al., 2014; HUANG et al., 2017; WARNECKE-EBERZ et al., 2015) e no carcinoma hepatocelular relacionado à infecção pelo vírus da hepatite B (HBV) (WEN et al., 2015). Esse miRNA parece atuar como oncomir, pois a elevação de sua expressão foi associada a aumento das taxas de proliferação, migração e invasão em células de carcinoma hepatocelular *in vitro* (YAN-CHUN et al., 2015). Adicionalmente, foi associada a resistência ao tamoxifeno em carcinoma mamário e a recorrência e metástase para carcinomas hepatocelular e mamário *in vivo* (KIM et al., 2016; YAN-CHUN et al., 2015). Ainda assim, a expressão do miR-192 também já foi associada a redução do potencial metastático de células de carcinoma mamário (PUPPO et al., 2016) e esse microRNA tem sido estudado como potencial biomarcador e alvo terapêutico para o carcinoma hepatocelular (MISHAN et al., 2020).

MicroRNAs no carcinoma de nasofaringe

Em um estudo publicado de nosso grupo de pesquisa, ViriCan, observamos que células imortalizadas de nasofaringe NP69^{SV40T} (RRID #CVCL_F755) apresentavam diferenças na expressão de miRNAs endógenos humanos quando transfectadas com variantes da proteína latente de membrana 1 (*Latent Membrane Protein 1 – LMP1*) do EBV dos genótipos virais B95-8A e M81 (MÜLLER COAN et al., 2022, p. 8). Comparado ao EBV genótipo B95-8A, o genótipo M81 possui maior eficiência para infectar células epiteliais, além de levar a uma maior indução de ciclo lítico viral. Pacientes infectados com EBV M81 possuem alta titulação de anticorpos contra proteínas virais que induzem a replicação celular, sendo que esse fator foi relatado como preditivo para o desenvolvimento de NPC, combinado à outros estímulos (TSAI et al., 2013). Assim, há indícios de que o genótipo M81 do EBV possa ter uma ação única nas células neoplásicas infectadas pelo vírus, podendo ocasionar alterações no comportamento tumoral.

Nesse estudo prévio, buscamos investigar se a LMP1 dos genótipos B95-8A e M81 do EBV se equivalem na regulação de expressão de miRNAs humanos selecionados e nas taxas de migração de células de nasofaringe transfectadas de modo transiente para expressão da oncoproteína viral. Observamos a expressão ectópica de LMP1 variante M81 induziu aumento de miR-100-5p, miR-192-5p e miR-574-3p, em comparação com células transfectadas com LMP1 variante B95-8A. Com base de predição *in silico* dos alvos desses miRNAs, identificamos que as alterações nesses miRNAs potencialmente propiciam mudanças na regulação da sobrevivência e proliferação celular, apoptose e angiogênese por meio mudanças em diversas vias intracelulares como PI3K/AKT, MAPK, NF-κB e JAK/STAT (MÜLLER COAN et al., 2022, p. 8).

Baseado nesses dados, é plausível supor que células com expressão aumentada do miRNA-100-5p, -192-5p e -574-3p tenham diferenças de comportamento *in vitro* e *in vivo* relacionadas ao desenvolvimento tumoral e progressão de cânceres. Para a elucidação de sua importância na patogênese de cânceres humanos, como o NPC, as inferências com base nos dados obtidos demandam validação dos efeitos dos miRNAs indicados por análises funcionais. Isso é particularmente relevante no que se refere aos fenômenos da progressão tumoral, os quais condicionam a agressividade biológica das doenças neoplásicas malignas.

Os resultados previamente indicados podem contribuir para melhor entendimento da patogênese do NPC, câncer fortemente associado à infecção pelo EBV e de elevada agressividade, com rápida disseminação loco-regional (CHEN et al., 2019). Assim, o presente estudo buscou investigar possíveis efeitos dos miRNAs miR-100-5p, miR-192-5p e miR-574-3p na viabilidade, proliferação, migração de células humanas imortalizadas de epitélio nasofaríngeo.

Capítulo 2 - Manuscrito

Preâmbulo

A seguir será apresentado manuscrito conforme diretrizes do ICJME (normas de Vancouver)(1). Para realização desse trabalho, foram utilizados resultados de análises de predição de genes alvos dos miRNAs e enriquecimento de vias, além de ensaios de viabilidade celular, proliferação e migração *in vitro* efetuados com a linhagem NP69^{SV40T}.

Além das atividades detalhadas no manuscrito, durante o treinamento de doutorado foi realizada a montagem de vetores para verificação da especificidade do mimético utilizado na transfecção por meio de ensaio repórter da luciferase e vetores para expressão constitutiva dos miRNAs de interesse. Os resultados obtidos nessa etapa de produção de construtos de pesquisa são apresentados no Apêndice.

Effects of human microRNAs 100-5p, 192-5p, and 574-3p on proliferation, migration, and gene expression of human immortalized nasopharyngeal cells

Authors: Barbara G. MÜLLER COAN¹, Deilson ELGUI DE OLIVEIRA^{1,2}

Affiliations:

¹São Paulo State University (UNESP), Department of Pathology, Botucatu Medical School, Botucatu, São Paulo, Brazil.

²São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Botucatu, São Paulo, Brazil.

Abstract

Cancers are malignant neoplastic diseases with complex etiopathogenesis. Transformed cells acquire diverse biological influenced by many factors, including miRNAs. MiRNAs are non-coding RNAs that canonically prevent mRNA translation, influencing many cellular processes, carcinogenesis, and progression of cancers, like nasopharyngeal carcinoma (NPC). NPC is an aggressive cancer with a high metastatic rate to local lymph nodes. The nonkeratinizing NPC subtype comprehends over 95% of total cases and, when undifferentiated, is highly related to Epstein-Barr virus (EBV) infection. In a recent study of our group, we observed that immortalized nasopharyngeal cells NP69^{SV40T} transfected with the EBV oncoprotein, Latent membrane protein 1 (LMP1), from M81 strain showed increased expression of human miR-100-5p, miR-192-5p, and miR-574-3p compared to NP69^{SV40T} cells transfected with LMP1 from EBV strain B95.8A. Thus, this study aimed to assess the putative effects of each of the identified microRNAs on the viability, migration, and proliferation of human immortalized nasopharyngeal cells (NP69^{SV40T}) cultivated in vitro. Therefore, target prediction and pathway enrichment analysis were performed to infer which pathways could be modulated by each miRNA followed by expression analysis of selected predicted target genes. Additionally, NP69^{SV40T} cells were transfected with miR-100-5p, miR-192-5p, or miR-574-3p mimic to analyze cell behavior.

Keywords: miR-100-5p; miR-192-5p; miR-574-3p; *RAB2A*; Nasopharyngeal carcinoma. **Author Contributions (CRediT taxonomy¹):** BGMC performed experiments, data collection, analysis, and interpretation, and drafted the manuscript. DEO concepted and designed the study, performed data analysis and interpretation, drafted the manuscript, contributed with expertise, and got research funding. All authors critically revised the manuscript and approved its final version.

Funding: This study was sponsored by the São Paulo Research Foundation – FAPESP (Ph.D. scholarship to BGMC, Proc. #2017/22312-5; and research grant awarded to DEO, Proc. #2017/23393-9), and the State University of Sao Paulo (UNESP).

¹ Brand, A., Allen, L., Altman, M., Hlava, M., & Scott, J. (2015). Beyond authorship: Attribution, contribution, collaboration, and credit. Learned Publishing, 28, 151–155. DOI: <u>10.1087/20150211</u>

Data Availability Statement: The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials. All material regarding this research is public available on the OpenScience Framework (OSF) platform at https://osf.io/n8xmb/

Acknowledgments: The authors are indebted with Prof. George Sai-Wah Tsao (Hong Kong University, China) for providing NP460hTert cells, Professor Nancy Raab-Traub (University of North Carolina, USA), for providing NP69 cells via Cesarman's laboratory, and Professor Ethel Cesarman (Weill Cornell University, USA), for the insightful and unvaluable discussions about this study.

Conflicts of Interest: The authors declare no conflict of interest.

Ethics committee: This study has an approved Certificate of Ethical Appreciation Presentation (CAAE) #82316118.0.0000.5411 (UNESP, Botucatu School of Medicine, Committee of Research Ethics Proc. #2499053).

Introduction

Cancers are a group of neoplastic diseases with complex etiology. In 2020, Globocan accounted for over 19 million new cancer cases and 9.9 million deaths directly attributed to these diseases (2,3). The nasopharyngeal carcinoma (NPC) is a highly aggressive cancer strongly associated with infection by the Epstein-Barr virus (EBV), environmental (e.g., exposure to nitrosamides, diet) and genetic factors (e.g., HLA genes on chromosome 6p21) (4). In 2020, 133.000 new cases and 80.000 associated deaths were related estimated worldwide for NPC, which is endemic in the southeast of Asia, notably in China (2). NPC invade tissues adjacent to the primary tumor, such as the base of the cranium, face sinuses, and orbits. Furthermore, at the diagnosis the disease manifests with metastasis in regional lymph nodes in about 50% of cases. Disseminated disease usually happens within 3 years after initial presentation, and the most common metastasis sites are bones, lungs, and liver (4,5).

Overall, metastatic dissemination requires that malignant cells acquire particular properties that enable them to colonize tissues distinct from the primary site and it is related to poor cancer prognosis, and increased morbidity and mortality rates (6,7). The metastasis process is influenced by non-coding micro RNAs (miRNAs) (8), small non-coding transcripts that negatively regulate mRNA translation (most common, canonical activity). Alteration in miRNA expression in cancers has been widely described, and these molecules can act as oncomirs, promoting cancer development (targeting tumor suppressor genes), likewise tumor suppressor miRNAs (targeting oncogenes), or even with dual activity, in a context dependent manner, for instance (9).

In a previous study (10), we identified the human miRNAs 100-5p, 192-5p, and 574-3p as deregulated miRNAs in immortalized nasopharyngeal cells transfected with the Epstein-Barr virus (EBV) oncoprotein LMP1 from two viral variants (M81 and B95.8A). We found that miR-192-5p was 2.7 fold downregulated in the NP69^{SV40T} (RRID #CVCL_F755) immortalized nasopharyngeal cells transfected with the EBV LMP1 oncoprotein derived from the prototype viral strain B95.8A (originated from a Burkitt lymphoma, used as a control) compared to cells not expressing LMP1, and miRNAs 100-5p, 192-5p, and 574-3p were upregulated (1.8, 1.7, and 2 fold, respectively) comparing EBV LMP1 derived from the viral strain M81 (originated from NPC) compared to the B95.8A strain. However, no differences in these three miRNAs were found when comparing EBV LMP1 from M81 compared to cells not expressing LMP1.

The obtained result suggests a putative pathogenetic role of the indicated miRNAs in the pathogenesis of NPC, prompting further investigation of their biological roles on human cells of the nasopharyngeal epithelium. Therefore, in this study we aimed to investigate how the microRNAs 100-5p, 192-5p, and 574-3p impact the behavior of human immortalized nasopharyngeal cells (NP69) cultivated *in vitro*, transfected with the respective miRNA mimics, regarding gene expression, migration, and proliferation. as will be detailed further here, we found that miR-192-5p could downregulate the transcript levels of its target gene, *RAB2A* in 40% and decreased migration of NP69 cells in 43%. Despite miR-100-5p and miR-574-3p caused a decrease in its target genes, *FZD8* and *STC1* respectively, they could not induce changes in cell behavior. This indicates that miR-192-5p is a good candidate for further molecular characterization and cell behavior effects in vitro and in vivo in nasopharyngeal carcinoma.

Material and Methods

Cell culture

This study was conducted with the immortalized human nasopharyngeal cell NP69^{SV40T} (RRID #CVCL_F755), herein indicated as NP69. This cell line was generated by the research group headed by Professor George Sai-Wah Tsao (Hong Kong University, China), and it was obtained from Dr. Ethel Cesarman (Cornell University, NY, USA). The cells were cultivated with the Keratinocyte SFM medium (Thermo Fisher Scientific, Waltham, M, USA) supplemented with 5% Fetal Bovine Serum (FBS), EGF and BPE (according to the manufacturer's instructions), and 0.4% gentamicin for microbiological control. The genetic identity of the cell line was confirmed in our lab by short tandem repeats (STRs) analysis using the GenePrint 10 (Promega, Madison, WI, USA), according to the manufacturer instructions. The obtained cell profile matched the deposited for NP69 cells (TH01: 7; D21S11: 31; D5S818: 11; D13S317: 10, 12; D7S820: 11; D16S539: 11, 12; CSF1PO: 12, 13; AMEL: X, Y; vWA: 16, 19; TPOX: 11). Also, the cell cultures were confirmed to be free of *mycoplasma* contamination using a PCR-based protocol using TaKaRa PCR Mycoplasma Detection Set (11).

miRNA Target Prediction and Pathway Enrichment Analysis

For each miRNA investigated, we performed *in silico* target prediction (Supplementary Material, Figure S1) and pathway enrichment analysis to identify predicted transcripts that each miRNA could be targeting and, consequently, which pathways and cellular changes could be expected upon miRNA ectopic expression using miRNA mimics. The target prediction analysis was performed using the online tool mirDIP (12,13) (Supplementary Material, Table S1) and Pathway Enrichment Analysis was performed using the ReactomeFIViz (14) plugin in Cytoscape (15) (Supplementary Material, Table S2). The analysis of complementarity between the miRNA's seed region and the 3' UTR region of target genes was performed using the 3' UTR sequence Database (16), and the in silico pairing was confirmed using the NCBI Blast online tool (17,18).

Cellular transfection of miRNA mimetics and assessment of miRNA expression

Before each functional experiment using miRNA mimics, NP69 cells were maintained under starving (media without FBS) for 24h, counted and plated into a 12 or 24 well plate. After 24 h of incubation, the cells were transfected using Lipofectamine[™]

RNAiMAX Transfection Reagent (Thermo-Fisher) with 10nM of MISSION® miRNA Mimic (Sigma-Aldrich, St Louis, MO, USA), following manufacturer's instructions. For all experiments, the cells were incubated with the transfection reagent for 24 h, dissociated with trypsin, counted using Trypan blue (used for the viability assessment), and subjected to the specific downstream experiment (mRNA analysis, migration, or proliferation assay).

To analyze the relative amount of selected miRNA target transcripts, total RNA was extracted from NP69 cells transiently transfected (miR 100-5p, miR-192-5p, or miR-574-3p mimic) using the TRIzolTM Reagent (Thermo Fisher), according to the manufacturer's instructions. After extraction and quantification, the RNA integrity was indirectly accessed by inspection of ribosomal bands and absence of smears in 1% agarose gels after total RNA electrophoresis. Following, the cDNA was performed to analyze miRNA levels (Supplementary Material, Figure S2) and selected miRNA targets (Figure 3). MiRNA reverse transcription was performed using High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher) with random primers supplied with the mimics with miRNA qPCR kits (Canopy Biosciences). The High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher) was also used to produce cDNA subjected to analysis of the expression of predicted miRNA target transcripts. All protocols were performed following the manufacturers' recommendations. The reverse transcription real-time quantitative PCR (RT-qPCR) assays to assess miRNA and gene expression were performed using the GoTaq® qPCR system in AriaMx Real-Time PCR (qPCR) Instrument (Agilent) and 7500 Real-Time PCR (Applied Biosystems). All RT-qPCR experiments were performed in technical duplicates and biological triplicates, using 2 reference genes. Primers and reaction components are in Supplementary Material, Table S3.

Estimation of cell proliferation and migration rates in vitro

To estimate the cell proliferation rates, NP69 cells transfected with control (cells incubated with the transfection reagent only), miR-100-5p, miR-192-5p, or miR-574-3p were dissociated 24 h post-transfection, counted, and distributed in duplicates in five 96 well plates. These cells were incubated in complete media and evaluated in 24 h intervals at days 0, 1, 2, 3, and 4 post-transfection using the colorimetric assay CellTiter 96® Aqueous One Solution (Promega), following the manufacturer's protocol, with
absorbance readings at 490 nm performed with the spectrometer reader device (Bio-Rad Model 680).

For cell migration, NP69 transfected cells were dissociated 24 h post-transfection, counted, and inoculated (1×10^5 cells) in the inner chamber of transwell inserts with 8µm pores, filled with serum-free media and adjusted into wells filled with complete media in a 24-well plate. After incubation for 18h, the inner side of the membrane was scraped with a cotton swab (to remove cells that did not migrate), fixed with 70% ethanol for 10 min, and stained with violet crystal for 15 min. The Image J software (19) was used to count 25% of the total area of the outer membrane of the insert, considering migrating cells only. The assay was performed with technical duplicates and three independent experiments were performed (biological triplicates).

Results

In silico analysis of miR-100-5p, miR-192-5p and miR-574-3p showed unique deregulated pathways and target genes.

We performed an *in silico* target prediction analysis to identify putative targets for miRs 100-5p, 192-5p, and 574-3p, along with pathway enrichment analysis to predict potential changes in cell behavior in which the investigated miRNAs could be implicated when expressed in the human immortalized nasopharyngeal cell line NP69.

Accounting only for the top 1% predicted targets from the three miRNAs, there were 82, 545, and 10 selected genes for miRs 100-5p, 192-5p, and 574-3p, respectively (Supplementary Material, Table S1 and Figure S1). The pathway enrichment analysis (Supplementary Material, Table S2) provided several insights on behavioral changes induced by each of the miRNAs. The results are shown in Figure 1.

Briefly, the miR-100-5p was predicted to be involved in modulation of gene expression, immune system, metabolism, and signal transduction pathways (Figure 1A), which comprises more than 50% of target genes predicted. Some known pathways that are critical in cancer biology were predicted to be regulated by this miRNA, such as mTOR, GPCR, TGF-β, IGF1R, FGFR3b, and WNT (Figure 1B and Supplementary Material, Table S2). Regarding miR-192-5p, the analysis predicted its activity regulating biological development pathways, metabolic routs, and signal transduction pathways (Figure 1A). Over 40% of the predicted genes were involved in MAPK, GPCRs, TKR, and TGF- β pathways, and approximately 35% of them are related to tyrosine-kinase receptors (TKRs) pathways, such as EGFR, ERBB2, FGFR, PDGF, IGF1R e NGF (Figure 1B and Supplementary Material, Table S2). Finally, miR-574-3p had predicted effects on cellular responses to external stimuli, biological development, vesiclemediated transport and biogenesis, cellular response to hypoxia, as well as signal transduction pathways (Figure 1A and Supplementary Material, Table S2). MiR-574-3p has a smaller number of predicted target genes selected for analysis, but the small number do not prevent further studies. During the pathway enrichment analysis miR-574-3p predicted targets were related to important pathways in cancer, such as TGF- β , WNT, HIF, and TKR signaling (Figure 1B and Supplementary Material, Table S2).

Overall, all the three miRNAs investigated were predicted to be involved in developmental biology, transport of small molecules, and in some specific cellular pathways, such as Bone Morphogenetic Protein signaling (BMP), TGF- β , and TKR

(Figure 1B and Supplementary Material, Table S2). In common, miRs 100-5p and 192-5p were predicted to regulate the immune system, cell cycle, and the GPCR pathway, while miRs 192-5p and 574-3p were predicted to modulate signaling events driven by the adhesion molecule L1CAM and NODAL (Supplementary Material, Table S2). Finally, miRs 100-5p and 574-3p showed up as regulators of VLDLR internalization and degradation, VLDL interactions, and Lipoprotein metabolism (Supplementary Material, Table S2).

Figure 1 – Pathway enrichment analysis for high-score target genes identified for miR-100-5p, miR-192-5p, and miR-574-3p, selected from a previous work (20). (A) Broad cellular categories

pathways and their respective gene hits. (B) Genes hits obtained for pathways within the Signal Transduction category.

These results obtained by after *in silico* analysis of predicted targets of the miRNAs investigated also suggest several cell behavior modifications individually induced by each of the miRNAs, such as mTOR signaling by miR-100-5p, GPCR signaling by miR-192-5p, and vesicle biogenesis and transport by miR-574-3p. Considering all three miRNAs, they were predicted to regulate pathways involved in proliferation, migration, and apoptosis. In conclusion, all three miRNAs could alter cell behavior through different mechanisms, including in NP69 transfected with its mimics.

Effects if treatment of NP69 cells with mimetics for miRs 100-5p, 192-5p, and 574-3p in selected gene targets

To validate the results of the *in silico* analysis performed, the expression of transcripts for selected target genes predicted for each of the investigated miRNAs were assessed by qPCR. As shown in Figure 2 (Panels A to C), all the selected gene targets for miRs 100-5p, 192-5p, and 574-3p had complementarity in at least 1 site at the target 3'-UTR region.

For miR-100-5p, the mRNA levels were assessed for the genes *FZD8* (NCBI Gene ID: 8325), which encodes a frizzled receptor for the WNT pathway, and *SMARCA5* (NCBI Gene ID: 8467), encoding a helicase with nucleosome remodeling activity. NP69 cells transfected with the miR-100-5p mimic showed a 40% decrease in *FZD8* levels, and no significant change for *SMARCA5* (Figure 3A).

For miR-192-5p, the mRNA levels were assessed for the genes *PKRAR1A* (NCBI Gene ID: 5573) which encodes for a protein kinase CAMP-Dependent, and *RAB2A* (NCBI Gene ID: 5862), a small GTPase member of the RAS family. NP69 cells transfected with the miR-192-5p mimic showed a 40% decrease in *RAB2A* levels, and no significant change for *PRKAR1A* (Figure 3B).

For miR-573-3p, the mRNA levels were assessed for the genes *CLTC* (NCBI Gene ID: 1213), which encodes for a clathrin, component of the cytoplasmic face from organelles involved in the formation of coated vesicles, *CUL2* (NCBI Gene ID: 8453), which encodes a cullin protein, core component of multiple cullin-RING-based ECS (ElonginB/C-CUL2/5-SOCS-box protein) related to hypoxia, *FBXL5* (NCBI Gene ID: 26234), a member of the F-box protein family involved in protein ubiquitination, and *STC1* (NCBI Gene ID: 6781), a glycoprotein with autocrine and paracrine functions

involved in cell metabolism and calcium/phosphate homeostasis. Other targets genes predicted not included in the top 1% list were also included due to their relevance in the context of cancer. The transcriptional levels of these genes were also assessed: *EP300* (NCBI Gene ID: 2033), a histone acetyltransferase that regulates transcription via chromatin remodeling, and *CD274* (also called *PDL1* – NCBI Gene ID: 29126), an immune inhibitory receptor ligand. NP69 cells transfected with the miR-574-3p mimic showed a 48% decrease in *STC1* levels, and no significant change for *CLTC*, *CUL2*, *EP300*, *FBXL5* and *PDL1* (*CD274*). (Figure 3C).

А		В	
Position 544-550 of FZD8 3' UTR hsa-miR-100-5p	5" UACACCCCACGUAAAUACGGGUU 3" GUGUUCAAGCCUAGAUGCCCAA	Position 2278-2285 of PRKAR1A 3' UTR hsa-miR-192-5p	5' AGAUUGUCUUAAUGCUAGGUCAA, 3' CCGACAGUUAAGU-AUCCAGUC
Position 51-57 of SMARCA5 3' UTR hsa-miR-100-5p	5' AGUAGUUCUUUAAUUUACGGGUC 	Position 218-225 of RAB2A 3' UTR hsa-miR-192-5p	5' UUUGCAUUUGAUUUCUAGGUCAA 3' CCGACAGUUAAGUAUCCAGUC
С			
Position 573-580 of CLTC 3' UTR	5' UGCCUGAUUUUUAAAUGAGCGUA 3' ACACCCACACAGGUACUCGCAC	Position 98-104 of FBXL5 3' UTR hsa-miR-574-3p	5' UUAACCAUCCUUUUUGAGCGUG 3' ACACCCACACACGUACUCGCAC
Position 149-155 of CUL2 3' UTR hsa-miR-574-3p	5' ACCAGUGCCACGUCAUGAGCGUC 1111111 3' ACACCCACACGUACUCGCAC	Position 68-74 of CD274 3' UTR hsa-miR-574-3p	5' GGGGUUCAUCGGGGCUGAGCGUG 3' ACACCCACACACGUACUCGCAC
Position 653-660 of EP300 3' UTR hsa-miR-574-3p	5' UCUAUUCUGUAAGUCUGAGCGUA 3' ACACCCACACACGUACUCGCAC	Position 1615-1621 of STC1 3' UTR hsa-miR-574-3p	5' CCCAACAGUCCCUUAUGAGCGUC 1 3' ACACCCACACACGUACUCGCAC

Figure 2 – Complementarity analysis of whole miRNA sequence and the 3'UTR region of the respective targets for miR-100-5p, 192-5p or 574-3p. Showed in (A) is the complementarity between miR-100-5p and the 3'UTR sequence from FZD8 and SMARCA5 transcripts, in (B) is the complementarity between miR-192-5p and the 3' UTR region from PRKAR1A and RAB2A transcript, and in (C) is the complementarity between miR-574-3p and the 3'UTR sequence from CUL2, CLTC, EP300, FBXL5, PDL1 and STC1 transcripts. In bold are highlighted the matching nucleotides and in green, the miRNA seed region. Image obtained from TargetScan 7 (21).

Figure 3 – Assessment of mRNA expression of gene targets predicted for (A) miR-100-5p (*FZD8* and *SMARCA5*), (B) miR-192-5p (*PRKAR1A* and *RAB2A*), and (C) miR-574-3p (*CUL2*, *CLTC*, *EP300*, *FBXL5*, *PDL1* and *STC1*) in NP69 cells transfected with 10nM of the respective microRNA mimic. A 40% reduction in mRNA expression levels was found for *FZD8* and *RAB2A* in cells treated with mimics for miR-100-5p and miR-192-5p, respectively. Furthermore, cells treated with the miR-574-3p mimic showed a reduction of 48% on the transcriptional levels of *STC1*. No significant changes were observed for other conditions/targets. * p<0.05; ** p<0,005 and ***p<0.002.

MiR-192-5p mimic treatment decreases cell migration but did not induce alteration in cell proliferation or viability in vitro

To investigate *in vitro* effects induced by the treatment with miR-100-5p, 192-5p, or 574-3p (Supplementary Material, Figure S2), 24h post-transfection with the miRNA mimetics, the NP69 cells were subjected to assays to assess cell viability (trypan-blue dye exclusion assay; Figure 4), cell proliferation rates (colorimetric assay with cell titer; Figure 5), and cell migration (transwell assay; Figure 6).

Treatment with miR-192-5p caused a 43% reduction in the number of migrating

NP69 cells compared to control (Figure 6) and no statistical differences were found in viability (Figure 4A and B), cell count (Figure 4C and D), or proliferation (Figure 5). Regarding treatments with miR-100-5p or miR-574-3p mimic in NP69 cells, no statistical differences were found in cell viability (Figure 4A and B), cell count (Figure 4C and D), proliferation (Figure 5), or migration (Figure 6).

Figure 4 – Assessment of (A) total cell count, (B) cell count relative to control, (C) cell viability and (D) cell viability relative to control in NP69 cells transfected with 10nM of the miR-100-5p, miR-192-5p or miR-574-3p mimic. Cell count and viability was perfumed using trypan blue stain and Newbauer chamber. using Trypan blue stain. Demonstrated in (A) total percentage of cell viability, (B) viability related to control, (C) total number of cells counted on Newbauer chamber and (D) number of counted cells related to control. No significant changes were observed for any of the conditions.

Figure 5 - Proliferation rate, of NP69 cells transfected with mimetics for miRs 100-5p (orange), 192-5p (grey), miR-574-3p (yellow), or the control (blue) using a MTT-based assay (Promega CellTiter 96® AQueous One Solution reagent). Readings started performed 24h post-transfection (0h). No significant changes were observed for any of the conditions.

Figure 6 – Migration analysis using transwell assay of NP69 cells transfected with the mimic for miR-100-5p, miR-192-5p, miR-574-3p or the control (transfection reagent only). Showed in (A) is the total number of cells that migrated through the transwell membrane, in (B) is the relative number of migrating cells compared to control and (C) is a representative image of migrating cells. A 43 % reduction in migration rates was found in cells treated with miR-192-5p mimic. No significant changes were observed for miR-100-5p or miR-574-3p mimic treatment. * p<0,001; ** p<0,0001.

Discussion

MiRNAs have been described as important molecules involved in cancer development and progression. MiR-100-5p, 192-5p, and 574-3p have being previously related to be involved in several cellular pathways and modulating malignant cell behavior, such as migration, invasion, proliferation, EMT, and metastasis rates.

MiR-100-5p has as a tumor suppressor function, and our work shows that can potentially modulate several cellular pathways important in cancer, such as mTOR, IGF1R, and TKR. Corroborating with our prediction analysis, miR-100-5p was already described to regulate mTOR in cardiac hypertrophy (22). Additionally, it is downregulated in chordoma and nasopharyngeal carcinoma samples, and, when upregulated, reduced migration, invasion, and proliferation of those cells through IGF1R pathway (23,24).

Transfection of NP69 cells with miR-100-5p mimic showed a 40% reduction in mRNA levels of *FZD8* and correlation with miR-100-5p as a target is yet unpublished. *FZD8* is known to be involved in several key signaling cascades affected in cancers (25), including the TGF- β and Wnt pathways, predicted by the *in silico* analysis performed here (Figure 1B). TGF- β is known to promote *FZD8* expression, leading to non-canonical activation of Wnt via its WNT-5b ligand (26). Along with *FZD5*, *FZD8* is essential for Wnt activation (27) and is being used as a therapeutic target to inhibit this pathway (25). The activation of the Wnt pathway (either canonical or non-canonical) by *FZD8* was reported to increase cell proliferation rates and metastasis in renal cell carcinoma (28), as well as the frequency of bone metastasis and acquisition of cancer stem cell (CSC) properties in prostate cancers (29).

The results reported here provide relevant insights about the effects of upregulation of miR-192-5p in nasopharyngeal cells. The pathway prediction analysis showed that over 40% of the predicted genes were involved in MAPK, GPCRs, TKR, and TGF- β pathways, and approximately 35% of them are related to tyrosine-kinase receptors (TKRs) pathways, such as EGFR, ERBB2, FGFR, PDGF, IGF1R e NGF. MiR-192-5p has a context dependent function, acting as a oncomiR or tumor suppressor (30,31) and in this study, the miRNA had a tumor suppressor role. NP69 cells treated with the miR-192-5p mimic showed a reduction of 40% on the transcriptional levels of *RAB2A*, along with a 43% in the migration capabilities of cells. In this work, *in silico* analysis of *RAB2A* showed a predicted involvement in cell cycle and cellular transcription. The RAB2A protein is a small GTPase, member of the RAS family, that controls canonical Golgi-to-Plasma membrane trafficking of a metalloprotease, MT1-MMP, essential to the acquisition of mesenchymal traits (32,33). *RAB2A* was previously described as a miR-192-5p target in a colon cancer model. In that context, when inhibited by miR-192-5p, *RAB2A* reduction led to inhibition of cell proliferation, migration, and invasion (34).

Considering that *RAB2A* is known to induce the acquisition of mesenchymal traits, the results reported here strengthens the idea that miR-192-5p may behave as a tumor suppressor. Accordingly, this miRNA was found downregulated in several cancers; also, thyroid papillary carcinoma cells were sensitized to apoptosis and showed reduced proliferation and migration rates upon upregulation of miR-192-5p (35). In serum samples, from NPC patients, miR-192-5p was increased and proposed as a potential biomarker (36), however, *RAB2A* importance in NPC is still unpublished.

The pathway enrichment analysis performed in this study indicated that miR-192-5p regulates the TGF- β pathway (Figure 1B). The TGF- β signaling induces EMT and reduces *KHSRP* transcript, which favors the epithelial phenotype by inhibiting EMTassociated factors (Zeb1, Sai1, and Fn1, for instance), and induces miR-192-5p maturation (31). Nonetheless, miR-192-5p may also inhibit TGF- β signaling via another target, Fbln2 (37). This miRNA was also predicted to regulate the expression of fibroblast growth factor receptor (FGF) receptors 1, 2, 2b, 3, and 4. The expression of FGFR4 was previously described to be increased in NPC tissues and cell lines, as well as correlated with higher stages and poor prognosis for NPC patients.

Worth to note, a fusion transcript from genes *FGFR3* and the gene encoding the transforming acidic coiled-coil-containing protein 3 (*TACC3*) appears to be recurrent in NPC and was related to promoting cell transformation, proliferation, and colony formation (38). The *FGFR3-TACC3* fusion also leads to overactivation of the MAPK/ERK signaling pathway, acting as an oncogenic driver, and inhibition of FGFR or MEK with BGJ398 or trametinib, respectively, blocks the transforming effects (39,40). The expression of *RAB2A*, which is targeted by miR-192-5p, regulate the ERK1/2 pathway, sustaining its activation and increasing the nuclear accumulation of β -catenin, an effect reported to be essential to enrich CSCs in a breast cancer model (41).

Pathway enrichment analysis of miR-574-3p indicates a predicted effect on cellular responses to external stimuli, biological development, vesicle-mediated transport and

biogenesis, cellular response to hypoxia, as well as signal transduction pathways, such as TGF- β , WNT, HIF, and TKR signaling. NP69 cells transfected with miR-574-3p mimic showed a 48% reduction on mRNA levels of *STC1*, a gene previously described to promote cancer development. In gastric cancer cells, *STC1* was increased in hypoxic, but not normoxic conditions, and when upregulated induced cell proliferation and chemoresistance(42). This gene was also included in a proposed hypoxia signature to predict the patient outcome with bladder cancer (43).

The relation of miR-574-3p and hypoxia was previously described in a histiocytic lymphoma cell line (U937 cells) context. In a hypoxic environment, miR-574-3p is sequester by the heterogeneous nuclear ribonucleoprotein L (hnRNP L), allowing VEGFA expression and expression of another miR-574-3p target, *EP300*, which is a transcriptional co-activator of NF- κ B and HIF-1 α (44). In a gastric cancer context, this miRNA was described as an oncomir, increasing cell proliferation, migration, invasion, and EMT, in addition to targeting *CUL2* (another tested target), which suppresses HIF-1 α (45), which was also described to be a transcriptional regulator of *STC1* (46).

Conclusion

In conclusion, this study shows that the expression miR-192-5p (mimic) in immortalized nasopharyngeal cells inhibits the cell migration *in vitro* and the expression of the expression *RAB2A*, a member of the RAS oncogenes. These activities suggest that this miRNA may behave as a tumor suppressor, which requires further investigation *in vivo* to assess its value in the pathogenesis of NPC.

Supplementary Material

Supplementary Table S1 – Top 1% predicted target genes for miR-100-5p, miR-192-5p and miR-574-3p obtained from mirDIP platform with respective gene symbol, Uniprot code, integrated score and number of platforms that had the same prediction (number of sources).

Gene Symbol	Uniprot	Integrated Score	Number of Sources	Gene Symbol	Uniprot	Integrated Score	Number of Sources
miR-100-5p				CDC25A	P30304	0,589	17
SMARCA5	O60264	0,944	20	PHOX2B	Q99453	0,588	8
CTDSPL	015194	0,938	18	DESI2	Q9BSY9	0,575	11
MTOR	P42345	0,932	20	FAM126B	Q8IXS8	0,549	7
KBTBD8	Q8NFY9	0,916	18	EPC2	Q52LR7	0,546	7
FGFR3	P22607	0,908	20	GRHL1	Q9NZI5	0,538	12
MTMR3	Q13615	0,897	18	ZBTB7A	O95365	0,535	7
FZD8	Q9H461	0,897	18	FOXA1	P55317	0,533	8
HS3ST2	Q9Y278	0,880	16	CEP85	Q6P2H3	0,518	9
MBNL1	Q9NR56	0,878	18	RRN3	Q9NYV6	0,509	16
AGO2.	Q9UKV8	0,878	18	NXF1	Q9UBU9	0,506	9
HOXA1	P49639	0,876	18	OGT	O15294	0,500	5
TRIB2	Q92519	0,876	18	RASGRP3	Q8IV61	0,499	12
HS3ST3B1	Q9Y662	0,852	15	TMEM30A	Q9NV96	0,497	10
SLC44A1	Q8WWI5	0,847	17	GMPS	P49915	0,493	8
ADCY1	Q08828	0,820	14	TAOK1	Q7L7X3	0,492	10
BAZ2A	Q9UIF9	0,801	17	KDM6B	O15054	0,486	13
AP1AR	Q63HQ0	0,795	17	RRAGD	Q9NQL2	0,484	11
ZZEF1	O43149	0,785	16	ATP11C	Q8NB49	0,484	13
RAVER2	Q9HCJ3	0,777	18	SLC14A1	Q13336	0,482	17
INSM1	Q01101	0,765	16	ST6GALNAC4	Q9H4F1	0,482	10
PPP3CA	Q08209	0,740	16	PI15	O43692	0,482	9
THAP2	Q9H0W7	0,706	17	RMND5A	Q9H871	0,477	9
IGF1R	P08069	0,697	15	PRDM1	075626	0,477	7
VLDLR	P98155	0,681	12	NR6A1	Q15406	0,476	8
TTC39A	Q5SRH9	0,674	15	TARDBP	Q13148	0,474	12
BMPR2	Q13873	0,664	10	IREB2	P48200	0,474	13
PPP1CB	P62140	0,644	13	TMPRSS13	Q9BYE2	0,465	13
FKBP5	Q13451	0,642	12	C5orf22	Q49AR2	0,447	14
CYP26B1	Q9NR63	0,640	12	ADGRE2	Q9UHX3	0,441	16
ST5	P78524	0,637	15	IMPDH1	P20839	0,436	15
ICMT	O60725	0,637	15	ETV3	P41162	0,434	8
LRRC8B	Q6P9F7	0,633	14	RAP1B	P61224	0,415	12
CLDN11	O75508	0,632	14	HES7	Q9BYE0	0,414	12
EPDR1	Q9UM22	0,625	13	CLDN4	O14493	0,414	7
FZD5	Q13467	0,605	12	PCSK9	Q8NBP7	0,406	12
TRIB1	Q96RU8	0,589	11	NOX4	Q9NPH5	0,403	12

Gene Symbol	Uniprot	Integrated Score	Number of Sources	Gene Symbol	Uniprot	Integrated Score	Number of Sources
ZNF845	Q96IR2	0,397	14	CTCF	P49711	0.742	19
NTRK3	Q16288	0,393	7	ADGRL3	Q9HAR2	0.739	17
PLPPR4	Q7Z2D5	0,392	9	FABP3	P05413	0.718	13
TMEM135	Q86UB9	0,392	8	BLCAP	P62952	0.712	17
SMAD7	O15105	0,391	9	NKAIN2	Q5VXU1	0.709	15
NIPBL	Q6KC79	0,390	6	PDP1	Q9P0J1	0.704	16
ANKRD28	O15084	0,389	13	SLC39A6	Q13433	0.701	15
RNF144B	Q7Z419	0,386	11	NAA50	Q9GZZ1	0.699	18
ZNF197	O14709	0,386	12	OLIG3	Q7RTU3	0.698	14
miR-192-5p				SLC19A2	O60779	0.694	19
PKP4	Q99569	0.890	19	NRIP1	P48552	0.691	13
H3F3B	P84243	0.883	19	ALX1	Q15699	0.691	11
PABPC4	Q13310	0.875	20	SOAT1	P35610	0.689	16
RAB2A	P61019	0.863	21	NCOA3	Q9Y6Q9	0.685	16
ARFGEF1	Q9Y6D6	0.858	18	SLC5A3	P53794	0.685	14
EREG	O14944	0.842	20	KPNA6	O60684	0.683	16
MSN	P26038	0.835	17	FAM229B	Q4G0N7	0.679	14
ALCAM	Q13740	0.832	18	ZNF280C	Q8ND82	0.678	15
DYRK1A	Q13627	0.824	20	ACVR2A	P27037	0.675	17
FRMD4B	Q9Y2L6	0.821	19	IKZF2	Q9UKS7	0.673	19
LPAR4	Q99677	0.820	18	RUNX1	Q01196	0.671	16
WDR44	Q5JSH3	0.817	16	CHD7	Q9P2D1	0.668	13
CCNT2	O60583	0.812	19	DDX50	Q9BQ39	0.667	14
DBT	P11182	0.811	20	B3GALNT1	075752	0.665	19
GPR22	Q99680	0.810	16	SLMAP	Q14BN4	0.663	17
FNDC3B	Q53EP0	0.809	19	TRERF1	Q96PN7	0.662	15
BHLHE22	Q8NFJ8	0.803	17	CREB5	Q02930	0.654	16
CTNNBIP1	Q9NSA3	0.801	21	RPAP2	Q8IXW5	0.653	15
RB1	P06400	0.801	18	ACVR2B	Q13705	0.653	15
NIPBL	Q6KC79	0.799	19	ARL4C	P56559	0.652	14
ZNF536	O15090	0.787	17	COL5A1	P20908	0.652	15
MIPOL1	Q8TD10	0.787	17	C6orf106	Q9H6K1	0.649	16
MTMR4	Q9NYA4	0.785	18	DDX3X	O00571	0.649	12
PRKAR1A	P10644	0.771	18	CLSTN1	O94985	0.649	16
DDX6	P26196	0.770	19	PRKACB	P22694	0.648	15
DICER1	Q9UPY3	0.767	18	TRIM44	Q96DX7	0.647	14
PPP1R3D	O95685	0.766	17	ZC3HAV1	Q7Z2W4	0.646	18
RUNX1T1	Q06455	0.766	15	BRD3	Q15059	0.645	17
ZEB2	O60315	0.765	18	KCNA7	Q96RP8	0.645	17
SRSF6	Q13247	0.758	17	PTPRT	014522	0.643	15
DYRK3	O43781	0.756	18	ZFHX4	Q86UP3	0.641	11
WNK1	Q9H4A3	0.755	17	KCNK1	O00180	0.640	15
ZBTB34	Q8NCN2	0.752	16	PHTF2	Q8N3S3	0.640	13
TDG	Q13569	0.748	16	LARP4	Q71RC2	0.638	18
CBL	P22681	0.746	17	ARHGAP36	Q6ZRI8	0.636	15

Gene Symbol	Uniprot	Integrated Score	Number of Sources	· -	Gene Symbol	Uniprot	Integrated Score	Number of Sources
CBLN4	Q9NTU7	0.636	16		TMEM30A	Q9NV96	0.582	14
GAPVD1	Q14C86	0.633	16		CCDC121	Q6ZUS5	0.580	14
SERTAD2	Q14140	0.630	9		CCDC152	Q4G0S7	0.579	13
LRRFIP1	Q32MZ4	0.630	15		SMARCAD1	Q9H4L7	0.578	13
MED14	O60244	0.629	15		AMER1	Q5JTC6	0.578	15
ADGRG6	Q86SQ4	0.628	13		FGD5	Q6ZNL6	0.577	15
ANKRD44	Q8N8A2	0.627	13		SH3RF3	Q8TEJ3	0.576	13
TMTC3	Q6ZXV5	0.624	14		CDON	Q4KMG0	0.575	13
ATF1	P18846	0.623	12		EGR1	P18146	0.575	15
SYT6	Q5T7P8	0.623	16		RIC8B	Q9NVN3	0.574	14
ZBTB4	Q9P1Z0	0.623	14		TOR1AIP1	Q5JTV8	0.573	16
PCDH9	Q9HC56	0.622	14		APLN	Q9ULZ1	0.573	14
SCN3A	Q9NY46	0.620	16		ZNF451	Q9Y4E5	0.573	12
XIAP	P98170	0.619	13		FAM129A	Q9BZQ8	0.572	16
AP3M2	P53677	0.618	16		SLC11A2	P49281	0.571	14
CDC7	O00311	0.617	17		MYLK	Q15746	0.570	14
CNGB3	Q9NQW8	0.616	16		WASHC4	Q2M389	0.569	15
KHDRBS3	075525	0.613	15		CEP70	Q8NHQ1	0.568	15
KIF1B	O60333	0.612	17		UBL3	O95164	0.566	13
TYMS	P04818	0.612	15		IGDCC3	Q8IVU1	0.565	9
HIGD1A	Q9Y241	0.612	14		NOD2	Q9HC29	0.563	14
RICTOR	Q6R327	0.610	14		SMC5	Q8IY18	0.561	11
PRKD3	O94806	0.610	15		HIF1AN	Q9NWT6	0.560	15
CPEB4	Q17RY0	0.608	9		ARL2BP	Q9Y2Y0	0.559	14
EFNB2	P52799	0.608	13		DCC	P43146	0.557	14
ZMAT3	Q9HA38	0.605	16		GABPB1	Q06547	0.556	13
MFAP3	P55082	0.605	14		HIBADH	P31937	0.554	14
ARHGEF39	Q8N4T4	0.604	12		TSHZ2	Q9NRE2	0.554	14
EMC7	Q9NPA0	0.599	11		NSD2	O96028	0.552	14
LIMS1	P48059	0.599	15		KIF5B	P33176	0.551	12
ANKS1A	Q92625	0.598	16		LPAR1	Q92633	0.550	15
C4orf46	Q504U0	0.597	13		SAMD4A	Q9UPU9	0.549	16
ARHGAP19	Q14CB8	0.597	15		PLXNB2	O15031	0.548	13
RNF141	Q8WVD5	0.595	15		CERS6	Q6ZMG9	0.548	11
ALKBH8	Q96BT7	0.595	15		DIXDC1	Q155Q3	0.548	14
L2HGDH	Q9H9P8	0.594	17		SPIN1	Q9Y657	0.547	14
SEMA4D	Q92854	0.591	15		DCUN1D4	Q92564	0.546	15
TMEM106B	Q9NUM4	0.591	16		FAM167A	Q96KS9	0.546	13
IER5	Q5VY09	0.591	13		GRHL1	Q9NZI5	0.546	13
RABGAP1	Q9Y3P9	0.590	13		PCDH19	Q8TAB3	0.545	14
ENC1	O14682	0.585	11		CUL3	Q13618	0.545	14
TRIP13	Q15645	0.585	14		F13A1	P00488	0.543	15
CXCL2	P19875	0.584	17		RFWD3	Q6PCD5	0.543	14
C1orf21	Q9H246	0.583	12		ZFHX3	Q15911	0.542	11
USP1	O94782	0.582	12		FOXN1	O15353	0.542	9

Gene Symbol	Uniprot	Integrated Score	Number of Sources	Gene Symbo	ol Uniprot	Integrated Score	Number of Sources
NFAT5	O94916	0.541	13	CUL5	Q93034	0.510	15
FGF7	P21781	0.539	15	ASB6	Q9NWX5	0.510	11
SPARC	P09486	0.538	12	RPRD1B	Q9NQG5	0.510	13
SCN1A	P35498	0.535	12	C8orf46	Q8TAG6	0.509	16
GLP1R	P43220	0.534	10	KLHL42	Q9P2K6	0.509	14
ZPBP2	Q6X784	0.534	10	FAM98A	Q8NCA5	0.509	14
RAP1GAP2	Q684P5	0.534	9	ATAD2B	Q9UL10	0.507	13
SRSF3	P84103	0.534	11	ABCG5	Q9H222	0.506	14
CSMD3	Q7Z407	0.532	14	DYNC2H1	Q8NCM8	0.506	14
KMT2A	Q03164	0.532	14	ZNF654	Q8IZM8	0.505	13
KIF20B	Q96Q89	0.531	15	CAV1	Q03135	0.504	14
PERP	Q96FX8	0.531	14	SEC63	Q9UGP8	0.503	13
DLG5	Q8TDM6	0.530	8	KPNA4	O00629	0.503	10
DIAPH1	O60610	0.528	14	CRTC2	Q53ET0	0.503	9
WWC2	Q6AWC2	0.528	11	MGEA5	O60502	0.502	13
CNOT6L	Q96LI5	0.528	15	GCLM	P48507	0.502	13
ABI2	Q9NYB9	0.528	16	DIAPH2	O60879	0.501	9
NIN	Q8N4C6	0.527	14	ACPP	P15309	0.501	14
RAD54B	Q9Y620	0.526	11	ACTBL2	Q562R1	0.500	12
ARMC8	Q8IUR7	0.525	15	PTBP2	Q9UKA9	0.499	11
APPBP2	Q92624	0.524	12	NTRK2	Q16620	0.498	13
KLHL15	Q96M94	0.523	12	GAD1	Q99259	0.497	14
SRGAP3	O43295	0.522	10	CRISP1	P54107	0.496	14
KCNQ5	Q9NR82	0.522	15	CADM1	Q9BY67	0.496	14
ASXL2	Q76L83	0.522	13	IGDCC4	Q8TDY8	0.494	9
SLC30A9	Q6PML9	0.521	12	HOXA10	P31260	0.494	9
CRK	P46108	0.521	14	ELOA	Q14241	0.493	9
C10orf90	Q96M02	0.520	14	UMODL1	Q5DID0	0.493	15
ARIH1	Q9Y4X5	0.519	14	DPP10	Q8N608	0.493	11
FAM234B	A2RU67	0.519	13	MAPK1	P28482	0.492	11
CD164	Q04900	0.519	15	DPYSL2	Q16555	0.490	13
NAV1	Q8NEY1	0.518	12	FAM46A	Q96IP4	0.490	15
SNRPG	P62308	0.518	14	CYCS	P99999	0.490	15
CRX	O43186	0.518	17	CACNA1I	Q9P0X4	0.489	12
NSF	P46459	0.517	14	TCF7	P36402	0.489	16
WSCD2	Q2TBF2	0.515	12	CLIP3	Q96DZ5	0.488	14
VAPB	O95292	0.515	12	GABBR2	O75899	0.488	10
SEMA3A	Q14563	0.513	12	DIS3L	Q8TF46	0.487	13
KIDINS220	Q9ULH0	0.513	14	NEFL	P07196	0.487	11
CALD1	Q05682	0.513	14	GOLGA8A	A7E2F4	0.486	13
IL6ST	P40189	0.513	10	ZBTB38	Q8NAP3	0.486	14
MAP3K1	Q13233	0.513	13	PARP8	Q8N3A8	0.486	12
SREK1IP1	Q8N9Q2	0.513	15	INO80D	Q53TQ3	0.486	14
ITGAV	P06756	0.511	15	IDS	P22304	0.486	14
RSAD2	Q8WXG1	0.511	14	TRPM7	Q96QT4	0.486	10

Gene Symbol	Uniprot	Integrated Score	Number of Sources	Gene Symbol	Uniprot	Integrated Score	Number of Sources
TPM1	P09493	0.486	12	PCDH17	014917	0.462	8
STAG1	Q8WVM7	0.484	10	CCDC171	Q6TFL3	0.462	9
MACF1	Q9UPN3	0.483	10	BMPR2	Q13873	0.461	12
NRIP3	Q9NQ35	0.483	15	TRAF5	O00463	0.461	13
PCGF5	Q86SE9	0.483	14	DCK	P27707	0.461	7
DCAF4L2	Q8NA75	0.482	13	BMPER	Q8N8U9	0.460	15
CAMTA1	Q9Y6Y1	0.481	11	GABPB2	Q8TAK5	0.460	11
MEF2C	Q06413	0.481	11	TMEM67	Q5HYA8	0.460	15
SLC24A4	Q8NFF2	0.481	14	ATF3	P18847	0.460	14
SOCS6	O14544	0.480	12	IL1RAP	Q9NPH3	0.460	14
CAMSAP2	Q08AD1	0.480	12	AFF2	P51816	0.459	13
PPP1CB	P62140	0.480	14	DNAH5	Q8TE73	0.459	11
MCM10	Q7L590	0.479	14	PRNP	F7VJQ1	0.459	12
LYRM7	Q5U5X0	0.478	13	KCNK3	O14649	0.459	11
ZMYM1	Q5SVZ6	0.478	13	MYO6	Q9UM54	0.458	14
BCAP29	Q9UHQ4	0.478	14	FAM199X	Q6PEV8	0.457	12
CTH	P32929	0.477	11	FZD9	O00144	0.457	7
TCTEX1D1	Q8N7M0	0.477	10	SIK1	P57059	0.456	12
INPP4A	Q96PE3	0.477	14	PPP2CB	P62714	0.455	14
CCDC47	Q96A33	0.476	14	PMP2	P02689	0.455	14
DNM3	Q9UQ16	0.476	14	RNF6	Q9Y252	0.454	9
SH2D1A	O60880	0.476	16	TRAIP	Q9BWF2	0.454	13
SH3TC2	Q8TF17	0.476	12	CCND2	P30279	0.454	13
SC5D	075845	0.476	14	TBC1D22B	Q9NU19	0.454	13
MECP2	P51608	0.475	12	LARP1B	Q659C4	0.453	12
ESR1	P03372	0.475	14	DLGAP1	O14490	0.453	14
FZD4	Q9ULV1	0.474	14	RAD1	O60671	0.453	14
SYNPO2	Q9UMS6	0.474	13	OSBPL10	Q9BXB5	0.452	10
RETREG2	Q8NC44	0.473	13	NKX2-5	P52952	0.452	12
DIEXF	Q68CQ4	0.473	12	LOXL2	Q9Y4K0	0.451	14
NID1	P14543	0.472	13	C2orf71	A6NGG8	0.451	14
TRIM2	Q9C040	0.471	12	PSMD5	Q16401	0.451	12
GMEB1	Q9Y692	0.471	11	PRKG1	Q13976	0.449	9
NR6A1	Q15406	0.470	10	C1D	Q13901	0.448	13
NEK1	Q96PY6	0.470	13	MUM1L1	Q5H9M0	0.447	12
TRAF4	Q9BUZ4	0.469	7	MKL2	Q9ULH7	0.447	12
HBS1L	Q9Y450	0.467	16	INAVA	Q3KP66	0.447	14
ZNF136	P52737	0.467	13	LRCH2	Q5VUJ6	0.446	11
ATP2C1	P98194	0.467	14	C16orf46	Q6P387	0.446	14
NUDT15	Q9NV35	0.467	13	SLC35F3	Q8IY50	0.446	13
BCL2L11	O43521	0.465	14	MIS12	Q9H081	0.446	13
CTTNBP2NL	Q9P2B4	0.464	13	OTUD3	Q5T2D3	0.446	12
PTPRE	P23469	0.464	10	CRNKL1	Q9BZJ0	0.446	14
BRWD1	Q9NSI6	0.463	13	NAB1	Q13506	0.446	10
PNPT1	Q8TCS8	0.463	15	ATXN7	O15265	0.445	15

Gene Symbol	Uniprot	Integrated Score	Number of Sources	Gene Symbol	Uniprot	Integrated Score	Number of Sources
GOLGA8B	A8MQT2	0.445	11	PDHB	P11177	0.429	7
IGF1	P05019	0.445	12	YY1	P25490	0.428	7
SGCD	Q92629	0.445	12	USP45	Q70EL2	0.428	13
BCAT1	P54687	0.444	13	XPO4	Q9C0E2	0.428	9
ATP8B4	Q8TF62	0.444	13	POLR3F	Q9H1D9	0.428	14
COPS7A	Q9UBW8	0.444	14	C3orf14	Q9HBI5	0.428	8
NKX3-1	Q99801	0.444	13	ZC3H12B	Q5HYM0	0.428	12
CXCR5	P32302	0.443	9	MCM6	Q14566	0.428	13
RALB	P11234	0.443	12	NCAM1	P13591	0.427	12
PHACTR2	075167	0.443	13	RGMB	Q6NW40	0.427	13
ICK	Q9UPZ9	0.443	12	MKNK2	Q9HBH9	0.427	15
CRYBG3	Q68DQ2	0.442	11	LINC01554	Q52M75	0.426	6
CENPBD1	B2RD01	0.442	12	ADCY7	P51828	0.426	13
REPS2	Q8NFH8	0.441	12	ABHD2	P08910	0.426	12
ORC4	O43929	0.439	14	GLYCTK	Q8IVS8	0.426	12
PRKCQ	Q04759	0.439	13	DCAF8	Q5TAQ9	0.426	13
SNTB2	Q13425	0.438	13	PIP4K2B	P78356	0.426	10
MED28	Q9H204	0.438	15	C5orf30	Q96GV9	0.425	12
CSTF1	Q05048	0.437	14	ATF7	P17544	0.424	12
SLAMF7	Q9NQ25	0.437	13	RCOR1	Q9UKL0	0.424	11
ONECUT2	O95948	0.436	13	CWC25	Q9NXE8	0.424	13
GNG3	P63215	0.436	13	B4GALT2	O60909	0.423	10
STX7	O15400	0.436	12	SOD2	P04179	0.423	13
VPS37B	Q9H9H4	0.436	14	FBXO11	Q86XK2	0.423	9
UBA6	A0AVT1	0.435	14	ZBTB39	O15060	0.422	11
JCHAIN	P01591	0.435	12	RALGPS1	Q5JS13	0.422	12
WFDC13	Q8IUB5	0.434	13	GAS7	O60861	0.422	12
C14orf105	Q9NVL8	0.434	11	ENOX2	Q16206	0.421	14
RFX6	Q8HWS3	0.434	8	SLC35B4	Q969S0	0.421	12
NKRF	O15226	0.433	11	TAB2	Q9NYJ8	0.420	10
SYNJ2	O15056	0.433	12	SYAP1	Q96A49	0.420	11
JAGN1	Q8N5M9	0.433	14	KRAS	P01116	0.419	9
LEFTY2	O00292	0.432	15	PCDHGB7	Q9Y5F8	0.419	9
GALNTL6	Q49A17	0.432	7	G6PC	P35575	0.418	12
ACADSB	P45954	0.432	12	MMP16	P51512	0.418	7
EIF5A2	Q9GZV4	0.432	8	DYRK2	Q92630	0.418	12
MAP1LC3B	Q9GZQ8	0.432	14	HOMER1	Q86YM7	0.418	13
VCAN	P13611	0.431	12	TOP1	P11387	0.417	10
ANAPC16	Q96DE5	0.431	11	PPP1R18	Q6NYC8	0.417	15
ZDHHC2	Q9UIJ5	0.431	10	FGF2	P09038	0.416	10
BIN2	Q9UBW5	0.431	13	SLC23A3	Q6PIS1	0.416	8
TRIM23	P36406	0.430	13	STRIP2	Q9ULQ0	0.416	11
LHX6	Q9UPM6	0.430	13	GPR137B	O60478	0.416	14
SCD	O00767	0.430	12	CSNK1G3	Q9Y6M4	0.416	8
SDE2	Q6IQ49	0.429	13	ATP1A2	P50993	0.415	12

Gene Symbol	Uniprot	Integrated Score	Number of Sources	Gene Symbol	Uniprot	Integrated Score	Number of Sources
KDM1B	Q8NB78	0.415	13	RNF8	O76064	0.402	13
SLC16A14	Q7RTX9	0.415	10	ZBTB24	O43167	0.402	10
MYO5B	Q9ULV0	0.414	13	MYPN	Q86TC9	0.402	13
MYO1E	Q12965	0.414	15	TPD52L3	Q96J77	0.402	13
ARHGEF15	O94989	0.414	12	PRDM10	Q9NQV6	0.402	13
VSX1	Q9NZR4	0.414	12	CFAP65	Q6ZU64	0.401	13
MPZ	P25189	0.413	14	SLAIN2	Q9P270	0.401	12
PTCHD1	Q96NR3	0.413	8	B3GAT1	Q9P2W7	0.400	13
IFFO2	Q5TF58	0.413	14	CRLF3	Q8IUI8	0.399	13
PCNP	Q8WW12	0.413	9	SNX33	Q8WV41	0.399	9
NCEH1	Q6PIU2	0.412	13	C11orf68	Q9H3H3	0.398	13
U2SURP	O15042	0.412	11	FGFR10P	O95684	0.398	9
ZFYVE26	Q68DK2	0.412	12	TRPS1	Q9UHF7	0.398	9
EXOC4	Q96A65	0.412	13	SERF1A	O75920	0.397	12
FAM210B	Q96KR6	0.412	12	SRRM4	A7MD48	0.397	12
TIGAR	Q9NQ88	0.412	9	MBTD1	Q05BQ5	0.397	11
EIF1	P41567	0.411	7	SHANK2	Q9UPX8	0.396	10
SLC22A15	Q8IZD6	0.411	12	MRAP	Q8TCY5	0.396	13
PPM1A	P35813	0.411	11	USP48	Q86UV5	0.396	11
ZC3H6	P61129	0.411	12	NSD1	Q96L73	0.396	13
DCX	O43602	0.410	13	PDSS2	Q86YH6	0.396	10
BCO2	Q9BYV7	0.410	12	HOXB9	P17482	0.395	12
HOOK3	Q86VS8	0.410	10	MRVI1	Q9Y6F6	0.395	12
TRIM58	Q8NG06	0.410	13	ERCC3	P19447	0.395	14
TAOK1	Q7L7X3	0.409	9	KIAA1147	A4D1U4	0.394	12
B3GALNT2	Q8NCR0	0.409	11	NPAS3	Q8IXF0	0.394	10
MS4A1	P11836	0.409	12	CEP85L	Q5SZL2	0.394	13
DPYSL3	Q14195	0.409	14	LVRN	Q6Q4G3	0.393	13
DNAJC24	Q6P3W2	0.409	9	FURIN	P09958	0.393	14
PRRG1	O14668	0.408	14	KRBA2	Q6ZNG9	0.393	8
SPCS3	P61009	0.408	12	RBM26	Q5T8P6	0.392	8
PLEKHA1	Q9HB21	0.408	9	UBE2QL1	A1L167	0.392	8
PRKAA2	P54646	0.407	14	SLC7A6	Q92536	0.392	11
MYO9B	Q13459	0.407	12	OPRM1	P35372	0.391	12
NIPAL1	Q6NVV3	0.407	7	CD47	Q08722	0.391	12
OXR1	Q8N573	0.407	10	PHF20	Q9BVI0	0.391	8
HDAC2	Q92769	0.407	12	VCPIP1	Q96JH7	0.391	9
GOLGA6A	Q9NYA3	0.406	13	ATM	Q13315	0.391	10
DNAJC19	Q96DA6	0.406	6	KPNA1	P52294	0.390	10
UBE2W	Q96B02	0.405	12	DHTKD1	Q96HY7	0.390	12
DLD	P09622	0.404	10	CACNA1C	Q13936	0.390	13
STXBP4	Q6ZWJ1	0.404	12	APPL1	Q9UKG1	0.390	11
AP1S3	Q96PC3	0.404	12	STRBP	Q96SI9	0.390	13
ANGEL2	Q5VTE6	0.404	11	CREBRF	Q8IUR6	0.390	9
PTGER3	P43115	0.403	13	MEGF10	Q96KG7	0.389	13

Gene Symbol	Uniprot	Integrated Score	Number of Sources	Gene Symbol	Uniprot	Integrated Score	Number of Sources
SSH2	Q76176	0.389	11	MYH15	Q9Y2K3	0.382	12
LMTK2	Q8IWU2	0.389	7	miR-574-3p			
RAB6A	P20340	0.388	10	CUL2	Q13617	0,601	16
CEBPG	P53567	0.388	11	CLTC	Q00610	0,484	13
TUB	P50607	0.388	12	STRN3	Q13033	0,476	13
PHF20L1	A8MW92	0.388	9	SNRK	Q9NRH2	0,456	13
ARHGAP29	Q52LW3	0.387	12	TMCC1	O94876	0,410	11
CST9	Q5W186	0.387	11	TP53TG3	Q9ULZ0	0,405	11
SERF1B	075920	0.385	12	ACVR2B	Q13705	0,403	12
VPS53	Q5VIR6	0.385	11	SLC6A3	Q01959	0,400	13
TNRC6B	Q9UPQ9	0.384	10	STC1	P52823	0,384	12
ASPH	Q12797	0.383	11	FBXL5	Q9UKA1	0,384	14
ADAMTS3	015072	0.383	11				
ATP6V1C2	Q8NEY4	0.383	8				

Supplementary Figure S1 – Target prediction analysis of miR-100-5p, miR-192-5p and miR-574-3p shows that miR-100-5p (blue) has 82 targets, miR-192-5p (yellow) has 545 targets and miR-574-3p (green) has 10 targets. There is 7 targets shared between miR-100-5p and miR-192-5p, and 1 shared between miR-192-5p and miR-574-3p.

Supplementary Table S2 – Pathway Enrichment Analysis performed with Reactome platform using only predicted genes with the top 1% integrated scores generated in mirDIP target prediction software.

Reactome Pathway	Ratio of Protein In Pathway	Number of Protein In Pathway	Protein from Gene Set	P-value
miR-100-5p				
VLDLR internalisation and degradation	0,0015	12	2	1,58E-03
Macroautophagy	0,0074	60	3	3,07E-03
Choline catabolism	0,0001	1	1	4,82E-03
mTORC1-mediated signalling	0,0027	22	2	5,14E-03
Signaling by BMP	0,0028	23	2	5,60E-03
VLDL interactions	0,0028	23	2	5,60E-03
PI3K Cascade	0,0098	79	3	6,57E-03
HS-GAG biosynthesis	0,0032	26	2	7,09E-03
Downregulation of TGF-beta receptor signaling	0,0032	26	2	7,09E-03
IRS-related events triggered by IGF1R	0,0314	254	5	7,26E-03
IGF1R signaling cascade	0,0314	254	5	7,26E-03
Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R)	0,0316	255	5	7,38E-03
Energy dependent regulation of mTOR by LKB1-AMPK	0,0035	28	2	8,18E-03
Regulation of TP53 Expression and Degradation	0,0035	28	2	8,18E-03
Lipid digestion, mobilization, and transport	0,0113	91	3	9,66E-03
TGF-beta receptor signaling activates SMADs	0,004	32	2	0,0106
Ca2+ pathway	0,0047	38	2	0,0146
mTOR signalling	0,0048	39	2	0,0153
PKB-mediated events	0,005	40	2	0,0161
Heparan sulfate/heparin (HS-GAG) metabolism	0,0054	44	2	0,0192
NoRC negatively regulates rRNA expression	0,0061	49	2	0,0235
Class B/2 (Secretin family receptors)	0,0061	49	2	0,0235
Cyclin B2 mediated events	0,0006	5	1	0,0239
CREB phosphorylation through the activation of Adenylate Cyclase	0,0006	5	1	0,0239
Vitamins	0,0006	5	1	0,0239
Regulation of gene expression in endocrine- committed (NEUROG3+) progenitor cells	0,0006	5	1	0,0239
Activation of RAS in B cells	0,0006	5	1	0,0239
Reelin signalling pathway	0,0006	5	1	0,0239
Negative epigenetic regulation of rRNA expression	0,0064	52	2	0,0262
IRS-mediated signalling	0,0309	250	4	0,0319
Insulin receptor signalling cascade	0,0313	253	4	0,0331
Purine ribonucleoside monophosphate biosynthesis	0,0009	7	1	0,0332
FGFR3b ligand binding and activation	0,0009	7	1	0,0332
Opioid Signalling	0.0077	62	2	0,0362
SHC-related events triggered by IGF1R	0.0011	9	1	0,0425
Signaling by Insulin receptor	0.0343	277	4	0,0439
Lipoprotein metabolism	0.0085	69	2	0,0439
MET activates RAP1 and RAC1	0.0012	10	1	0.0472

Reactome Pathway	Ratio of Protein In Pathway	Number of Protein In Pathway	Protein from Gene Set	P-value
WNT5A-dependent internalization of FZD2, FZD5 and ROR2	0,0012	10	1	0,0472
Adenylate cyclase activating pathway	0,0012	10	1	0,0472
Cohesin Loading onto Chromatin	0,0012	10	1	0,0472
complex formation	0,0012	10	1	0,0472
Signaling by TGF-beta Receptor Complex	0,009	73	2	0,0485
miR-192-5p Hormone-sensitive lipase (HSL)-mediated triacylglycerol hydrolysis NGF signalling via TRKA from the plasma	0.002	16	4	1.78E-03
membrane	0.0422	341	21	2.98E-03
Signaling by NODAL	0.0024	19	4	3.30E-03
Glyoxylate metabolism and glycine degradation	0.0025	20	4	3.95E-03
Signalling by NGF	0.0521	421	24	4.06E-03
Regulation of signaling by NODAL	0.0012	10	3	4.11E-03
Negative regulation of FGFR2 signaling	0.0042	34	5	4.80E-03
Branched-chain amino acid catabolism Activation of ATR in response to replication	0.0015	12	3	6.78E-03
stress	0.0046	37	5	6.79E-03
Signaling by FGFR3	0.005	40	5	9.30E-03
Integration of energy metabolism Vasopressin regulates renal water homeostasis via Aguanorins	0.0114	92 26	8	9.52E-03
Regulation of pyruvate dehydrogenase (PDH) complex	0.0032	14	3	0.0103
Signaling by FGFR4	0.0051	41	5	0.0103
Ca-dependent events	0.0035	28	4	0.0125
Negative regulation of FGFR3 signaling	0.0036	29	4	0.014
CRMPs in Sema3A signaling	0.002	16	3	0.0147
PKA activation	0.002	16	3	0.0147
Rap1 signalling	0.002	16	3	0.0147
Spry regulation of FGF signaling	0.002	16	3	0.0147
Aquaporin-mediated transport	0.0037	30	4	0.0157
PKA activation in glucagon signalling	0.0021	17	3	0.0172
PKA-mediated phosphorylation of CREB	0.0021	17	3	0.0172
Negative regulation of FGFR4 signaling	0.0038	31	4	0.0175
Activation of the pre-replicative complex	0.004	32	4	0.0194
TGF-beta receptor signaling activates SMADs	0.004	32	4	0.0194
Regulation of insulin secretion	0.0061	49	5	0.0205
Signaling by FGFR1	0.0061	49	5	0.0205
Apoptotic factor-mediated response	0.0009	7	2	0.021
Glucagon signaling in metabolic regulation	0.0041	33	4	0.0214
NCAM1 interactions	0.0041	33	4	0.0214
Negative regulation of FGFR1 signaling	0.0041	33	4	0.0214
Mitochondrial biogenesis	0.0064	52	5	0.0256
Signaling by FGFR2	0.0088	71	6	0.0263
Lipid digestion. mobilization. and transport	0.0113	91	7	0.0267
FGFR2b ligand binding and activation	0.001	8	2	0.0269

Reactome Pathway	Ratio of Protein In Pathway	Number of Protein In Pathway	Protein from Gene Set	P-value
Ligand-independent caspase activation via DCC	0.001	8	2	0.0269
MAPK1 (ERK2) activation	0.001	8	2	0.0269
Axon guidance Nuclear Events (kinase and transcription factor	0.0589	476	23	0.029
activation)	0.0026	21	3	0.0296
Signal transduction by L1	0.0026	21	3	0.0296
Signaling by TGF-beta Receptor Complex	0.009	73	6	0.0296
Signaling by PDGF Glucagon-like Peptide-1 (GLP1) regulates insulin secretion	0.0406	328 22	17 3	0.0325
SHC-related events triggered by IGE1R	0.0011	9	2	0.0334
Downstream signal transduction	0.0379	306	16	0.0004
	0.0079	23	3	0.000
Nuclear signaling by ERDD4	0.0028	23	3	0.0372
	0.0028	23	3	0.0372
Signaling by BMP	0.0028	23	3	0.0372
MyD88 cascade initiated on plasma membrane	0.0097	78	6	0.0388
Toll Like Receptor 10 (TLR10) Cascade	0.0097	78	6	0.0388
Toll Like Receptor 5 (TLR5) Cascade	0.0097	78	6	0.0388
Cohesin Loading onto Chromatin	0.0012	10	2	0.0404
Interleukin-6 signaling	0.0012	10	2	0.0404
MAP kinase activation in TLR cascade	0.0073	59	5	0.0405
PI Metabolism	0.0073	59	5	0.0405
Signaling by ERBB4	0.0052	42	4	0.0453
Signaling by PTK6	0.0076	61	5	0.0455
Signaling by EGFR	0.0392	317	16	0.0455
FRS-mediated FGFR2 signaling	0.0031	25	3	0.0456
Pyruvate metabolism	0.0031	25	3	0.0456
L1CAM interactions	0.0102	82	6	0.0473
Opioid Signalling	0.0077	62	5	0.0482
Signaling by ERBB2 Transcriptional activation of mitochondrial	0.0053	43	4	0.0486
biogenesis	0.0053	43	4	0.0486
MAPK family signaling cascades	0.0303	245	13	0.0491
Signalling to ERKs	0.0274	221	12	0.0498
miR-574-3p				
Dopamine clearance from the synaptic cleft Na+/Cl- dependent neurotransmitter	0,0002	2	1	1,24E-03
transporters Neurotransmitter Clearance In The Synaptic	0,0007	6	1	3,71E-03
	0,0007	6	1	3,71E-03
vvivi 5A-dependent internalization of FZD4	0,0012	10	1	6,1/E-03
Regulation of signaling by NODAL WNT5A-dependent internalization of FZD2, FZD5 and ROR2	0,0012	10 10	1	6,17E-03
Patrograde neurotrophin signalling	0.0012	11	1	6 70E 02
	0.0014	10	1	U,19E-U3
	0,0010	12	1	1,41E-U3
	0,0016	13	1	8,02E-03
Signaling by NODAL	0,0024	19	1	0,0117

Reactome Pathway	Ratio of Protein In Pathway	Number of Protein In Pathway	Protein from Gene Set	P-value
LDL-mediated lipid transport	0,0025	20	1	0,0123
VLDL interactions	0,0028	23	1	0,0142
Signaling by BMP	0,0028	23	1	0,0142
Recycling pathway of L1	0,0028	23	1	0,0142
Lysosome Vesicle Biogenesis	0,0031	25	1	0,0154
Golgi Associated Vesicle Biogenesis Transport of glucose and other sugars, bile salts and organic acids, metal ions and amine	0,0036	29	1	0,0178
compounds	0,0053	43	1	0,0263
Clathrin derived vesicle budding	0,0056	45	1	0,0275
trans-Golgi Network Vesicle Budding Oxygen-dependent proline hydroxylation of	0,0056	45	1	0,0275
Hypoxia-inducible Factor Alpha	0,0079	64	1	0,039
Lipoprotein metabolism Regulation of Hypoxia-inducible Factor (HIF) by	0,0085	69	1	0,042
oxygen	0,009	73	1	0,0444
Cellular response to hypoxia	0,009	73	1	0,0444
PCP/CE pathway	0,0097	78	1	0,0474
L1CAM interactions	0,0102	82	1	0,0497

Supplementary Table S3 – Primers and reaction components from RT-qPCR reaction performed to analyzed mRNA levels of target genes from miR-100-5p, miR-192-5p or miR-574-3p after mimic treatment in NP69 cells.

Target Genes	Primers (5' – 3')	Efficiency (R ²) ¹ .	
miR-100-5p			
FZD8	Fwd: CCTCTTCATCGGCACCATGT / Rev: GGTGTAGAGCACGGTGAACA	0,9983	
SMARCA5	Fwd: GGTCTTGGCATCAATCTTGCG / Rev: CAAGCCTCCCATAGCCTGAA'	0,9898	
miR-192-5p			
<u>PRKAR1A</u> (47)	Fwd: GTTTTCGGTCTCCTTTATCGC / Rev: TGCTCTCGGTGTTCCATAAATC	0.98921	
<u>RAB2A</u> (41)	Fwd: AGTTCGGTGCTCGAATGATAAC / Rev: AATACGACCTTGTGATGGAACG	0.9650 ¹	
miR-574-3p			
<u>CLTC</u>	Fwd: TGCCATGCCCTATTTCATCCA / Rev: CATCAACTGGGGCTGACCATA	0,9935	
<u>CUL2</u>	Fwd: ATGTTCTACAGGCTGGTGCG / Rev: TCCTTCCACTGAAATGTTGGCT	0,9989	
<u>EP300</u>	Fwd: CCGAGACATCTTGAGACGACAG' / Rev: GGGTTGCTGGAACTGGTTATGG	0,9007	
FBXL5	Fwd: AGCCTCTTTGAAAAGGGACTGA/ Rev: ACATGGGCTGAAAAACCTCCT	0,9940	
<u>PD-L1</u>	Fwd: GCCCCATACAACAAAATCAACC / Rev: GCTTGTCCAGATGACTTCGG	0,9971	
STC1	Fwd: AAGATGGCGACCACCAAAGT / Rev: GCAGTGACGCTCATAAGGGA	0,9926	
Reference gene	S		
<u>HSPCB</u>	Fwd: TCTGGGTATCGGAAAGCAAGCC / Rev: GTGCACTTCCTCAGGCATCTTG	0.9799 ¹	
<u>RPS13</u>	Fwd: CGAAAGCATCTTGAGAGGAACA / Rev: TCGAGCCCAAACGGTGAATC	0.99861	
<u>RRN18S</u>	Fwd: AGAAACGGCTACCACATCCA / Rev: CACCAGACTTGCCCTCCA	0.99461	
1 Reaction components (GoTaq® qPCR Master Mix 2X. 0.2 µM primers. Nuclease-free water (NF) ²) and cycling protoco			

 $(95^{\circ}\text{C} - 2 \text{ min } (1x); 95^{\circ}\text{C} - 15\text{s}. 60^{\circ}\text{C} - 60\text{s}. 72^{\circ}\text{C} - 30\text{s} (40x); 60-95^{\circ}\text{C} (1x)^3)$ was performed according to the manufacturer instructions.

Supplementary Figure S2 – Relative expression of miR-100-5p, miR-192-5p, and miR-574-3p in NP69 cells 24 h after transfection with 10nM of the respective mimics compared to control (reagent only).

References

- 1. Uniform requirements for manuscripts submitted to biomedical journals: Writing and editing for biomedical publication. J Pharmacol Pharmacother. 2010;1(1):42–58.
- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49.
- Thun MJ, DeLancey JO, Center MM, Jemal A, Ward EM. The global burden of cancer: priorities for prevention. Carcinogenesis. 2010 Jan;31(1):100–10.
- 4. Chen Y-P, Chan ATC, Le Q-T, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. The Lancet. 2019 Jul 6;394(10192):64–80.
- 5. Thompson LDR. Update on Nasopharyngeal Carcinoma. Head Neck Pathol. 2007 Sep;1(1):81–6.
- 6. Gupta GP, Massagué J. Cancer Metastasis: Building a Framework. Cell. 2006 Nov 17;127(4):679–95.
- 7. Tang Q, Su Z, Gu W, Rustgi AK. Mutant p53 on the path to metastasis. Trends Cancer. 2020 Jan;6(1):62–73.
- 8. Choi JD, Lee J-S. Interplay between Epigenetics and Genetics in Cancer. Genomics Inform. 2013;11(4):164.
- 9. Ali Syeda Z, Langden SSS, Munkhzul C, Lee M, Song SJ. Regulatory Mechanism of MicroRNA Expression in Cancer. Int J Mol Sci. 2020 Mar 3;21(5):1723.
- Müller Coan BG, Cesarman E, Acencio ML, Elgui de Oliveira D. Latent Membrane Protein 1 (LMP1) from Epstein–Barr Virus (EBV) Strains M81 and B95.8 Modulate miRNA Expression When Expressed in Immortalized Human Nasopharyngeal Cells. Genes. 2022 Feb;13(2):353.
- 11. Uemori T, Asada K, Kato I, Harasawa R. Amplification of the 16S-23S Spacer Region in rRNA Operons of Mycoplasmas by the Polymerase Chain Reaction. Syst Appl Microbiol. 1992 May 1;15(2):181–6.
- 12. Tokar T, Pastrello C, Rossos AEM, Abovsky M, Hauschild A-C, Tsay M, et al. mirDIP 4.1—integrative database of human microRNA target predictions. Nucleic Acids Res. 2018 Jan 4;46(D1):D360–70.
- Shirdel EA, Xie W, Mak TW, Jurisica I. NAViGaTing the Micronome Using Multiple MicroRNA Prediction Databases to Identify Signalling Pathway-Associated MicroRNAs. PLOS ONE. 2011 Feb 25;6(2):e17429.
- 14. Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 2014 Jan 1;42(Database issue):D472–7.
- Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003 Nov;13(11):2498–504.
- Grillo G, Turi A, Licciulli F, Mignone F, Liuni S, Banfi S, et al. UTRdb and UTRsite (RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res. 2010 Jan 1;38(suppl_1):D75–80.
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–10.
- 18. Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, et al. BLAST: a more efficient report with usability improvements. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W29–33.

- 19. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012 Jun 28;9:671–5.
- 20. Müller-Coan BG, Elgui de Oliveira D. Efeitos da Oncoproteína LMP1 do Vírus de Epstein-Barr no Potencial de Invasão e na Expressão de microRNAs Endógenos em Células Humanas in vitro. 2016.
- 21. Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 4:e05005.
- 22. Zeng J, Wang L, Zhao J, Zheng Z, Peng J, Zhang W, et al. MiR-100-5p regulates cardiac hypertrophy through activation of autophagy by targeting mTOR. Hum Cell. 2021 Sep 1;34(5):1388–97.
- 23. Zhang H, Yang K, Ren T, Huang Y, Liang X, Yu Y, et al. miR-100-5p Inhibits Malignant Behavior of Chordoma Cells by Targeting IGF1R. Cancer Manag Res. 2020 Jun 2;12:4129–37.
- 24. Sun X, Liu X, Wang Y, Yang S, Chen Y, Yuan T. miR-100 inhibits the migration and invasion of nasopharyngeal carcinoma by targeting IGF1R. Oncol Lett. 2018 Jun;15(6):8333–8.
- 25. Le P, McDermott JD, Jimeno A. Targeting the Wnt pathway in human cancers: therapeutic targeting with a focus on OMP-54F28. Pharmacol Ther. 2015 Feb;0:1–11.
- Spanjer AIR, Baarsma HA, Oostenbrink LM, Jansen SR, Kuipers CC, Lindner M, et al. TGF-β-induced profibrotic signaling is regulated in part by the WNT receptor Frizzled-8. FASEB J. 2016;30(5):1823– 35.
- Alok A, Lei Z, Jagannathan NS, Kaur S, Harmston N, Rozen SG, et al. Wnt proteins synergize to activate β-catenin signaling. J Cell Sci. 2017 May 1;130(9):1532–44.
- Yang Q, Wang Y, Pan X, Ye J, Gan S, Qu F, et al. Frizzled 8 promotes the cell proliferation and metastasis of renal cell carcinoma. Oncotarget. 2017 Sep 8;8(45):78989–9002.
- Li Q, Ye L, Zhang X, Wang M, Lin C, Huang S, et al. FZD8, a target of p53, promotes bone metastasis in prostate cancer by activating canonical Wnt/β-catenin signaling. Cancer Lett. 2017 Aug 28;402:166– 76.
- Kim YS, Park SJ, Lee YS, Kong HK, Park JH. miRNAs involved in LY6K and estrogen receptor alpha contibute to tamoxifen-suceptibility in breast cancer. Oncotarget. 2016;5(7):42261–73.
- Puppo M, Bucci G, Rossi M, Gorlero F, Gherzi R, Briata P. miRNA-Mediated KHSRP Silencing Rewires Distinct Post-transcriptional Programs during TGF-β-Induced Epithelial-to-Mesenchymal Transition. Cell Rep. 2016;(16):967–78.
- 32. Kajiho H, Kajiho Y, Scita G. Harnessing membrane trafficking to promote cancer spreading and invasion: The case of RAB2A. Small GTPases. 2017 Jan 27;9(4):304–9.
- Kajiho H, Kajiho Y, Frittoli E, Confalonieri S, Bertalot G, Viale G, et al. RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs. EMBO Rep. 2016 Jul;17(7):1061–80.
- Zheng X-F, Liu K-X, Wang X-M, Zhang R, Li X. MicroRNA-192 acts as a tumor suppressor in colon cancer and simvastatin activates miR-192 to inhibit cancer cell growth. Mol Med Rep. 2019 Mar 1;19(3):1753–60.
- Fu S, Ma C, Tang X, Ma X, Jing G, Zhao N, et al. MiR-192-5p inhibits proliferation, migration, and invasion in papillary thyroid carcinoma cells by regulation of SH3RF3. Biosci Rep [Internet]. 2021 Sep 6 [cited 2021 Sep 19];(BSR20210342). Available from: https://doi.org/10.1042/BSR20210342

- 36. Zou X, Zhu D, Zhang H, Zhang S, Zhou X, He X, et al. MicroRNA expression profiling analysis in serum for nasopharyngeal carcinoma diagnosis. Gene. 2020 Feb 15;727:144243.
- Tang C-Z, Yang J-T, Liu Q-H, Wang Y-R, Wang W-S. Up-regulated miR-192-5p expression rescues cognitive impairment and restores neural function in mice with depression via the Fbln2-mediated TGFβ1 signaling pathway. FASEB J. 2019;33(1):606–18.
- Yuan L, Liu Z-H, Lin Z-R, Xu L-H, Zhong Q, Zeng M-S. Recurrent FGFR3-TACC3 fusion gene in nasopharyngeal carcinoma. Cancer Biol Ther. 2014 Dec 23;15(12):1613–21.
- Nelson KN, Meyer AN, Wang CG, Donoghue DJ. Oncogenic driver FGFR3-TACC3 is dependent on membrane trafficking and ERK signaling. Oncotarget. 2018 Sep 28;9(76):34306–19.
- 40. Tamura R, Yoshihara K, Saito T, Ishimura R, Martínez-Ledesma JE, Xin H, et al. Novel therapeutic strategy for cervical cancer harboring FGFR3-TACC3 fusions. Oncogenesis. 2018 Jan 23;7(1):4.
- Luo M-L, Gong C, Chen C-H, Hu H, Huang P, Zheng M, et al. The Rab2A GTPase Promotes Breast Cancer Stem Cells and Tumorigenesis via Erk Signaling Activation. Cell Rep. 2015 Apr 7;11(1):111– 24.
- 42. Wang Y, Qi Z, Zhou M, Yang W, Hu R, Li G, et al. Stanniocalcin-1 promotes cell proliferation, chemoresistance and metastasis in hypoxic gastric cancer cells via Bcl-2. Oncol Rep. 2019 Mar;41(3):1998–2008.
- 43. Zhang F, Wang X, Bai Y, Hu H, Yang Y, Wang J, et al. Development and Validation of a Hypoxia-Related Signature for Predicting Survival Outcomes in Patients With Bladder Cancer. Front Genet. 2021;12:670384.
- 44. Yao P, Wu J, Lindner D, Fox PL. Interplay between miR-574-3p and hnRNP L regulates VEGFA mRNA translation and tumorigenesis. Nucleic Acids Res. 2017 Jul 27;45(13):7950–64.
- Ji Z, Wang X, Liu Y, Zhong M, Sun J, Shang J. MicroRNA-574-3p Regulates HIF-α Isoforms Promoting Gastric Cancer Epithelial-Mesenchymal Transition via Targeting CUL2. Dig Dis Sci [Internet]. 2021 Oct 16 [cited 2022 Jan 24]; Available from: https://doi.org/10.1007/s10620-021-07263-0
- Waclawiczek A, Hamilton A, Rouault-Pierre K, Abarrategi A, Albornoz MG, Miraki-Moud F, et al. Mesenchymal niche remodeling impairs hematopoiesis via stanniocalcin 1 in acute myeloid leukemia. J Clin Invest. 2020;130(6):3038–50.
- 47. Xie K, Ma H, Liang C, Wang C, Qin N, Shen W, et al. A functional variant in miR-155 regulation region contributes to lung cancer risk and survival. Oncotarget. 2015 Oct 29;6(40):42781–92.

Capítulo 3 - Considerações finais e conclusão

Os ensaios realizados nesta tese de doutorado tinham como objetivo analisar o efeito do miR-100-5p, miR-192-5p e miR-574-3p no comportamento celular e prever seus genes alvo em células imortalizadas de nasofaringe NP69^{SV40T}. Para tanto, foram realizadas análises *in silico* (predição de genes alvo e enriquecimento de vias), assim como análise de expressão de genes alvos selecionados, de migração e proliferação celular.

Vale ressaltar que o trabalho inicialmente incluía a análise de formação de colônia e ensaios *in vivo* que demandavam construção de vetores lentivirais para expressão estável dos miRNAs nas células imortalizadas de nasofaringe, além de vetores para validação da expressão dos miRNAs por meio de ensaio da luciferase (vetores psiCHECK). Os progressos em relação a esses experimentos estão descritos no Apêndice.

O aumento da expressão de miR-192-5p pela transfecção de seu mimético em células NP69 levou a redução na migração celular e uma redução significativa do nível transcricional do oncogene *RAB2A*, mas sem efeito sobre a viabilidade e proliferação celular. No geral, esse resultado sugere que o miR-192-5p pode se comportar como um miRNA supressor tumoral no contexto de células imortalizadas de nasofaringe. Isso demonstra a importância de uma investigação minuciosa do seu papel no contexto da patogênese e progressão do NPC.

O miR-192-5p foi reportado aumentado em soro de pacientes com NPC, demonstrando seu potencial como biomarcador. Adicionalmente já foi descrito como inibidor da via TGF- β , que por sua vez induz a EMT e inibe o transcrito de *KHSRP*. *KHSRP* é um inibidor de EMT que induz a maturação do miR-192-5p, sugerindo um mecanismo regulatório ainda não estudado no contexto da nasofaringe. Em carcinoma de cólon (PUPPO et al., 2016), *RAB2A* também foi considerado um alvo de miR-192-5p, e quando houve inibição desse gene, levou a redução de migração, invasão e proliferação celular (Figura 3) (ZHENG et al., 2019).

A transfecção de células NP69 com miméticos do miR-100-5p ou miR-574-3p demonstrou uma diminuição significativa de seus respectivos genes alvos preditos, *FZD8* e *STC1*. Esses alvos por si só não são suficientes para inferir se há ou não modulação de vias intracelulares importantes e alteração de algum comportamento celular não testado. Com relação aos ensaios adicionais realizados, não houve diferença estatística na viabilidade, proliferação ou migração de células NP69 transfectadas com o cada um dos

miméticos em comparação com o controle. Esses resultados indicam que mais análises *in vitro* são necessárias para avaliar a função de miR-100-5p e miR-574-3p no contexto de células de nasofaringe.

Figura 3 – Modelo das atividades do miR-192-5p por sua interação com moléculas e vias preditas nas análise *in silico*. Células NP69 tratadas com o mimético de miR-192-5p demonstraram uma redução na taxa de migração e uma redução no transcrito *RAB2A*. Essa relação já está descrita em células de câncer de cólon, onde a redução de *RAB2A* levou a redução nas taxas de migração, invasão e proliferação celular. Adicionalmente, *RAB2A* foi relacionado à ativação da via ERK que sofre a influência de outros alvos de miR-192-5p. Esse miRNA foi encontrado aumentado em amostras de soro de pacientes com NPC, tendo sido visto como potencial biomarcador para essa doença. MiR-192-5p já foi descrito como inibidor da via TGF-β, que por sua vez induz a EMT e inibe o transcrito de *KHSRP*, um inibidor de EMT que induz a maturação do miR-192-5p. Linhas destacadas em azul escuro remetem a achados *in vitro* desse trabalho; vias e genes em negrito foram preditos como relacionados a miR-192-5p. Imagem baseada nos trabalhos (PUPPO et al., 2016; YUAN et al., 2014, p. 3; ZHENG et al., 2019).

MiR-100-5p já foi encontrado reduzido em amostras de NPC e esta redução levou a um aumento na migração, invasão e proliferação dessas células por meio de *IGF1R*. A

via TGF- β (SPANJER et al., 2016) foi previamente relacionada ao aumento da expressão de *FZD8*, alvo de miR-100-5p, que por sua vez levou ao aumento da proliferação e metástase em carcinoma de células renais por meio da ativação de Wnt (Figura 4) (YANG et al., 2017).

Figura 4 - Modelo das atividades do miR-100-5p e sua interação com moléculas e vias preditas nas análises *in silico*. Células NP69 tratadas com o mimético de miR-100-5p demonstraram uma redução no transcrito *FZD8*. TGF- β foi descrito como indutor do aumento dos níveis de *FZD8*, que por sua vez ativa a via Wnt, levando a um aumento da proliferação e metástase em carcinoma de células renais. Adicionalmente, miR-100-5p foi encontrado com níveis reduzidos em amostras de NPC, levando ao aumento da migração, invasão e proliferação dessas células por meio de IGF1R, além de ser descrito como um inibidor de *mTOR*. Linhas destacadas em azul escuro remetem a achados *in vitro* desse trabalho; vias e genes em negrito foram preditos como relacionados a miR-100-5p. Imagem baseada nos trabalhos (SPANJER et al., 2016; YANG et al., 2017).

Com relação ao miR-574-3p, dados da literatura apontam uma associação entre sua expressão e os fenômenos celulares regulados por hipóxia. Essa correlação já foi descrita no contexto de linhagem celular U937 de linfoma histiocítico (RRID: CVCL_8932). Quando em um ambiente com hipóxia, o miR-574-3p foi sequestrado por hnRNP L, estimulando a expressão de VEGFA e de outro alvo do miR-574-3p, *EP300*, um coativador transcricional de NF- κ B e HIF-1 α (YAO et al., 2017). No contexto de câncer gástrico, este miRNA foi descrito como um oncomir, aumentando EMT, proliferação, migração e invasão celular, além de ter como alvo *CUL2* (outro alvo testado), um repressor de HIF-1 α (JI et al., 2021) e regulador transcricional de *STC1* (Figura 5) (WACLAWICZEK et al., 2020).

Figura 5 - Modelo das atividades do miR-574-3p e sua interação com moléculas e vias preditas na análise *in silico*. Células NP69 tratadas com o mimético de miR-574-3p demonstraram uma redução no transcrito *STC1* que já foi descrito como biomarcador para sobrevida de pacientes com câncer de bexiga. Quando aumentado, *STC1* induziu a proliferação e quimioresistência em células de câncer gástrico, além de ser descrito como ativador da via TGF-β, que por sua vez leva ao aumento da expressão de miR-574-3p. Esse miRNA quando na presença de hipóxia (linhagem celular de linfoma histiocítico), é sequestrado pela ribonucleoproteína hnRNP L, levando ao aumento de VEGFA e *EP300* (alvo do miR-574-3p, com ativação de HIF1α e via NF-κB.

Em uma meta-análise recentemente publicada foi demonstrada a importância de diferentes miRNAs como biomarcadores no carcinoma de nasofaringe (SHAW et al., 2021). Esse estudo compreendeu 1.116 pacientes com NPC de 13 estudos selecionados (exclusão consecutiva de 5.459 trabalhos) para se obter um painel de miRNAs com importância no manejo clínico do paciente. Foram identificados 6 miRNAs relacionados a um melhor prognóstico e 15 com pior sobrevida para o NPC. Dentre esses 15 miRNAs, miR-192 foi um dos miRNAs indicados. No contexto de NPC, miR-192 induziu a proliferação celular, além de aumentar transcrição de marcadores de EMT (HUANG et al., 2020). Vale destacar que no presente estudo utilizamos células imortalizadas de nasofaringe e não de NPC, de modo que pode ser notada uma diferença contexto-dependente .

Esse trabalho oferece indícios de que o miR-192-5p possa ter uma função semelhante à de um gene supressor tumoral em células imortalizadas de nasofaringe transfectadas com seu mimético, onde inibiu a migração celular e a expressão de *RAB2A*. A correlação entre RAB2A e o miR-192-5p no contexto de células imortalizadas de nasofaringe ainda não foi descrito, indicando que o miR-192-5p pode ser um bom candidato para ser investigado em estudos futuros.

Apêndice

Neste apêndice serão descritos os ensaios adicionais realizados durante o trabalho de doutorado que se mostravam essenciais no período. Principalmente a montagem de vetores, com ou sem validação funcional, tendo como objetivo a validação do modelo e/ou a realização dos ensaios *in vivo* inicialmente inclusos no projeto. Os principais reagentes e recursos utilizados durante o doutoramento estão descritos na Tabela 1.

Reagent or Resource	Source//Manufacturer	Identifier / Reference		
Assay kits				
CellTiter 96® AQueous One Solution Cell Proliferation Assay	Promega	G3582		
GenePrint® 10 System	Promega	B9510		
QIAprep® Spin Miniprep Kit	QIAGen	27104		
Tryzol Reagent	Thermo Fisher	15596026		
Cell lines				
NP69SV40T	Gao Lab	RRID #CVCL_F755;		
Chemicals, peptides, recombinant proteins				
Lipofectamine 3000 Transfection Reagent	Thermo Fisher	L3000015		
Invitrogen™Lipofectamine™ RNAiMAX Transfection Reagent	Thermo Fisher	13778075		
High-Capacity cDNA Reverse Transcription Kit	Thermo Fisher	4368814		
Oligonucleotides, RNAi				
miR-100-5p, miR-192-5p e miR- 574-3p mimic	Canopy Biosciences	miRNA Mimic - Powered by Nawgen		
FZD8 (miR-100-5p	Fwd: CCTCTTCATCGGCACCATGT Rev: GGTGTAGAGCACGGTGAACA			
RAB2A [5] (mIR-192-5p	Fwd: 5' - AGTTCGGTGCTCGAATGATAAC Rev: AATACGACCTTGTGATGGAACG'			
PRKAR1A	Fwd: GTTTTCGGTCTCCTTTATCGC Rev: TGCTCTCGGTGTTCCATAAATC	[#1 - Xie et al 2015]		

Tabela 1 – Reagentes e recursos utilizados durante a tese de doutorado.

SMARCA5	Fwd: GGTCTTGGCATCAATCTTGCG Rev: CAAGCCTCCCATAGCCTGAA	
CLTC	Fwd: TGCCATGCCCTATTTCATCCA Rev: CATCAACTGGGGCTGACCATA	
CUL2	Fwd: ATGTTCTACAGGCTGGTGCG Rev: TCCTTCCACTGAAATGTTGGCT	
EP300	Fwd: CCGAGACATCTTGAGACGACAG-3' Rev: GGGTTGCTGGAACTGGTTATGG-3'	
FBXL5	Fwd: AGCCTCTTTGAAAAGGGACTGA Rev: ACATGGGCTGAAAAACCTCCT	
PDL1	Fwd: GCCCCATACAACAAAATCAACC Rev: GCTTGTCCAGATGACTTCGG	
STC1	Fwd: AAGATGGCGACCACCAAAGT Rev: GCAGTGACGCTCATAAGGGA	
HSPCB	Fwd: TCTGGGTATCGGAAAGCAAGCC Rev: GTGCACTTCCTCAGGCATCTTG	
RPS13	Fwd: CGAAAGCATCTTGAGAGGAACA Rev: TCGAGCCCAAACGGTGAATC	
RRN18S	Fwd: AGAAACGGCTACCACATCCA Rev: CACCAGACTTGCCCTCCA	
Plasmids		
psiCHECK-100 (3p, SCR 3p, 5p and SCR 5p)		
psiCHECK-192 (3p, SCR 3p, 5p and SCR 5p)		
psiCHECK-574 (3p, SCR 3p)		
pLenti-100		
pLenti-192		
pLenti-574		
Software		
---------------	------------------------------------	---
ImageJ2	OpenSource (httpFwd://imagej.net/)	RUEDEN C. T. et al. BMC Bioinformatics 18:529, 2017. DOI: 10/gdsmf9 [PMID: 29187165].
mirDIP		TokarT,PastrelloC,Rossos AEM, Abovsky M, Hauschild A-C,TsayM, et al. mirDIP4.1—integrativedatabase of human microRNA targetpredictions.NucleicAcidsRes46:D360–70,2018.DOI:10.1093/nar/gkx1144
ReactomeFIViz		Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, et al. The Reactome pathway knowledgebase. Nucleic Acids Res 42:D472–7, 2014. DOI: 10.1093/nar/gkt1102 PMID: http://pmid.virican.net/24243840; PMC: PMC3965010.
Cytoscape		ShannonP,MarkielA,Ozier O, Baliga NS, Wang JT, RamageD, et al. Cytoscape: A SoftwareEnvironment for Integrated Models ofBiomolecularInteractionNetworks.GenomeRes13:2498–504, 2003.DOI:10.1101/gr.1239303

Análise da eficiência dos primers utilizados para a amplificação dos respectivos transcritos alvos para o miR-100-5p, miR-192-5p e miR-574-3p

Figura S1 – Gráficos demonstrando curva de amplificação, curva de *melting* e eficiência de amplificação dos transcritos provenientes dos genes alvos selecionados. (A) curva de eficiência e *melting* do transcrito do gene FZD8 em verde escuro, (B) curva de eficiência e *melting* do transcrito do gene RAB2A em azul e (C) curva de eficiência e *melting* do transcrito do gene STC1 em vermelho. As curvas de *melting* em C apresentadas na cor bege e cinza são provenientes de dois outros conjuntos de primers para o transcrito do gene PD-L1 (dados não demonstrados).

Figura S2 - Resultados de PCR em tempo real para análise da expressão em nível transcricional dos genes FZD8 e RAB2A, preditos como alvos para os miRNAs humanos 100-5p e 192-5p, respectivamente e observação de sua especificidade com relação aos demais miRNAs estudados. Foram utilizadas células imortalizadas de nasofaringe (NP69) sem tratamento, expostas ao reagente de transfecção somente (Controle) ou transfectadas com miméticos sintéticos para miR-100-5p, miR-192-5p ou miR574-3p. (A) O tratamento com mimético de miR-100-5p levou à redução do transcrito de FZD8, porém o transcrito não reduziu após tratamento com os outros miméticos . (B) O tratamento com mimético de miR-192-5p levou à redução do transcrito não reduziu após tratamento com so miméticos. ** p<0,005; *** p<0,002.

Construção de vetores lentivirais para transdução em células imortalizadas de nasofaringe.

Os vetores lentivirais foram estabelecidos para que as células NP460hTert tivessem a expressão estável do miR-100-5p, miR-192-5p ou miR-574-3p. Para tanto, as sequências genômicas dos pre-miR-100, -192 e -574 foram obtidas no GenBank ("National Center for Biotechnology Information (NCBI)[Internet]. Bethesda (MD): National Library of Medicine (US)", 2021). Estas sequências foram então utilizadas para realização do desenho dos iniciadores, conforme orientações da literatura e do fabricante do sistema, e encaminhadas para síntese dos oligonucleotídeos em serviço especializado. Esses iniciadores foram utilizados para amplificação da região genômica do pre-miR de interesse (Quadro S1) e o produto da PCR foi inserido no vetor pENTR/SD/D-TOPO® (Thermo Fisher), empregando a estratégia Gateway[®] de clonagem (Thermo Fisher). Desse modo foram gerados construtos para expressão constitutiva de cada um dos miRNAs de interesse. Os cassetes de expressão dos pre-miRNAs nos construtos pENTR/SD/D-TOPO/miR-(100, 192 ou 574) obtidos foram então transferidos para o vetor de destino pLenti6.3/TO/V5-DEST por meio de recombinação molecular. Após o término da montagem do vetor lentiviral, células HEK293FT seriam utilizadas para produção de partícula viral que por sua vez seriam utilizadas para transdução das células de interesse (NP460hTert) (Figura Suplementar S3). Abaixo, detalharemos a montagem dos vetores lentivirais estabelecidos.

Figura Suplementar S3 – Desenho esquemático do fluxograma de montagem dos vetores lentivirais, pLenti-miR-100, -192 ou -574, que tinham como objetivo a indução de expressão estável dos respectivos miRNAs em células imortalizadas de nasofaringe (NP69). Primeiramente, as sequencias dos pre-miR-100, -192 ou -574, adicionadas de uma região de flanqueamento de 100 pb, foram amplificadas utilizando uma reação de PCR utilizando iniciadores que continham uma região de iniciação e de término de leitura. Esta sequência foi inserida no vetor comercial

pENTR/SD/D-TOPO que após confirmação da inserção por meio de sequenciamento, seguiu para reação de recombinação molecular com o vetor lentiviral pLenti6.3/TO/V5-DEST. Os vetores lentivirais finais foram validados utilizando sequenciamento Sanger.

Desenho dos iniciadores da região genômica para pre-miR-100, pre-miR-192 e pre-miR-574

Para a amplificação da região de interesse e consequente inserção da região amplificada em vetor lentiviral, foi adicionada uma região de flanqueamento, com aproximadamente 100 pares de bases (pb), adjacente ao pre-miRNA de interesse. Para tanto, a sequência completa do pre-miRNA foi obtida do banco de dados miRBase (KOZOMARA; BIRGAOANU; GRIFFITHS-JONES, 2019) e as sequências genômicas com 200 pb adjacentes, tanto em região 5' como em região 3' (região de flanqueamento) foram obtidas do banco de dados GenBank ("National Center for Biotechnology Information (NCBI)[Internet]. Bethesda (MD): National Library of Medicine (US)", 2021). Essa região de flanqueamento é necessária para que o transcrito seja normalmente processado pela maquinaria da célula, originando um ou dois miRNAs maduros (3p, 5p ou ambos).

A sequência final (região de flanqueamento de 200 pb contendo a sequência completa do pre-miRNA) foi utilizada para realizar o desenho dos iniciadores para cada miRNA de interesse (Quadro S1 e S2), que contém, além da sequência do pre-miRNA, uma sequência de iniciação e de parada de leitura (*start* e *stop* códon) necessárias para que haja a leitura da região de interesse do vetor pela maquinaria celular.

Quadro S1 – Sequências dos pre-miRNAs de interesse (-100, -192 e -574) obtidas por meio das plataformas online miRBase e GenBank-NCBI. Com sublinhado simples estão destacados os iniciadores sense, e com sublinhado duplo os iniciadores antisense para inserção em vetor de entrada pENTR-SD/D/TOPO. Em negrito estão as sequências genômicas dos pre-miRNAs de interesse.

Sequências obtidas para os pre-miRNAs de interesse

Pre-miR-100 (353 pb)

>hsa-mir-100 MI0000102

CCUGUUGCCACAAACCCGUAGAUCCGAACUUGUGGUAUUAGUCCGCACAAGCUUGUA UCUAUAGGUAUGUGUCUGUUAGG

>NR_029515.1 Homo sapiens microRNA 100 (MIR100), microRNA CCTGTTGCCACAAACCCGTAGATCCGAACTTGTGGTATTAGTCCGCACAAGCTTGTA TCTATAGGTATGTGTCTGTTAGG

>hg38_dna range=chr11:122152029-122152508 5'pad=200 3'pad=200 strand=+ repeatMasking=none

Pre-miR-192 (418pb)

>hsa-mir-192 MI0000234

GCCGAGACCGAGUGCACAGGGCUCUGACCUAUGAAUUGACAGCCAGUGCUCUCGUCU CCCCUCUGGCUGCCAAUUCCAUAGGUCACAGGUAUGUUCGCCUCAAUGCCAGC

>NR_029578.1 Homo sapiens microRNA 192 (MIR192), microRNA GCCGAGACCGAGTGCACAGGGCTCTGACCTATGAATTGACAGCCAGTGCTCTCGTCT CCCCTCTGGCTGCCAATTCCATAGGTCACAGGTATGTTCGCCTCAATGCCAGC

>hg38_dna range=chr11:64890937-64891446 5'pad=200 3'pad=200 strand=+ repeatMasking=none

Pre-miR-574 (406 pb)

>hsa-mir-574 MI0003581

>hg38_dna range=chr4:38867832-38868327 5'pad=200 3'pad=200 strand=+ repeatMasking=none

Quadro S2 - Iniciadores e componentes da reação de PCR para amplificação da região genômica do pre-miR-100, pre-miR-192 e pre-miR-574, do sítio de clonagem do vetor pENTRTM/SD/D-TOPO e da região de recombinação entre o vetor pENTRTM/SD/D-TOPO e pLenti6.3/TO/V5-DEST.

Alvos e iniciadores	Componentes da reação	Termociclagem
Iniciadores para amplificação da região genômica do pre-miR-100, pre-miR-192 e pre- miR-574 <u>Pre-miR-100 (genômico)</u> S: CACCATGGTTGTGAGAGTGGGACGAA AS: CTAAAAAGGTCTCCTTCCTCCACC	Tampão PCR 10x (600 mM Tris- SO4 , 180 mM (NH4) ₂ SO4, pH 8,9), 2.5 mM MgCl, 10 mM DNTP mix, 10 µM iniciadores, 1U enzima Taq DNA Polimerase Alta Fidelidade ²	95°C - 3 min (1x); 94°C - 30s, 57°C - 30s, 68°C - 30s (35x); 68°C - 10min (1x), 4°C - ∞
<u>Pre-miR-192 (genômico)</u> S: CTAGTTCAGGCTCATTCACGGGG AS: CACCATGGCCCCTGTAACAGCAACTCCAT	Tampão PCR 10x (600 mM Tris- SO4, 180 mM (NH4) ₂ SO4, pH 8,9), 2.5 mM MgCl, 10 mM DNTP mix, 10 µM iniciadores, 1U enzima Taq DNA Polimerase Alta Fidelidade ²	95°C - 1 min (1x); 94°C - 30s, 55°C - 15s, 68°C - 45s (35x); 68°C - 10min (1x), 4°C - ∞
<u>Pre-miR-573 (genômico)</u> S: CACCATGGTCGGTCCCCATCCCCTTC AS:CTACTGCAGCCCACCTCTGAC	Tampão PCR 10x (600 mM Tris- SO ₄ , 180 mM (NH ₄) ₂ SO ₄ , pH 8,9), 2.5 mM MgCl, 10 mM DNTP mix, 10 µM iniciadores, 1U enzima Taq DNA Polimerase Alta Fidelidade ²	95°C - 1 min (1x); 94°C - 30s, 61°C - 15s, 68°C - 45s (35x); 68°C - 10min (1x), 4°C - ∞
Iniciadores para amplificação do sítio de inserção do vetor pENTR™/SD/D-TOPO S: GTAAAACGACGGCCAG AS: CAGGAAACAGCTATGAC	Tampão PCR 10x (100 mM Tris- HCl, 500mM KCl, pH 8,5), 50 mM MgSO4, 20 mM DNTP mix, 30 µM iniciadores, 1U enzima Taq DNA Polimerase Convencional ¹	95°C - 3 min (1x); 94°C - 30s, 55°C - 30s, 72°C - 30s (37x); 72°C - 10min (1x), 4°C - ∞
Iniciadores para amplificação da região de recombinação entre o vetor pENTR™/SD/D- TOPO e pLenti6.3/TO/V5-DEST S: CGCAAATGGGCGGTAGGCGTG AS: CATAGCGTAAAAGGAGCAACA	Tampão PCR 10x (100 mM Tris- HCl, 500mM KCl, pH 8,5), 50 mM MgSO4, 20 mM DNTP mix, 30 µM iniciadores, 1U enzima Taq DNA Polimerase Convencional ¹	95°C - 3 min (1x); 94°C - 30s, 55°C - 30s, 72°C - 30s (37x); 72°C - 10min (1x), 4°C - ∞

¹NeoTaq DNA Polymerase. ²Platinum® Taq DNA Polymerase High Fidelity;

Sequenciamento das regiões referentes ao pre-miR-100, -192 e -574 amplificadas por PCR.

Após a amplificação da região genômica do pre-miR-100, -192 ou -574, esses foram enviados para serviço especializado de sequenciamento Sanger, onde verificamos que as sequências eram complementares a região genômica esperada (Figura Suplementar S4 a S6). Após essa confirmação, as sequências foram ligadas ao vetor de entrada pENTR/SD/D-TOPO na proporção molar 1:3 em reação de ligação overnight a 16°C.

Α	Score 536 bi	Expect ts(290)	Identities 2e-148	Gaps	Strand 292/293(9	9%) 0	/293(0%)	Plu	us/Plus	
	Query	1	TAAGGGGAAGAGAA	GGAGAATO	GAAATAACTCG.	AAGGGA	TATTGAATGG	CATATA	AGCAAA	60
	Sbjct	120107	TAAGGGGAAGAGAA	GGAGAATO	GAAATAACTCG.	AAGGGA	TATTGAATGG	CATATA	AGCAAA	120166
	Query	61	GCCCCAGGTCTGTG.	AGATTGCC	CTAACAGACAC	ATACCI	ATAGATACAA	GCTTGT	GCGGAC	120
	Sbjct	120167	GCCCCAGGTCCGTG	AGATTGCC	CTAACAGACAC	ATACCI	ATAGATACAA	GCTTGT	GCGGAC	120226
	Query	121	TAATACCACAAGTT	CGGATCTA	CGGGTTTGTG	GCAACA	GGCCTCAATA	ICTTCT	CTCTTT	180
	Sbjct	120227	TAATACCACAAGTT	CGGATCTA	ACGGGTTTGTG	GCAACA	GGCCTCAATA:	IIIII ICTTCT(CTCTTT	120286
	Query	181	TGGGGCTGTGACAT	GTCTGAAA	ATAAAATATT.	ACAACC	ATTAATCCAA	TAAAAGA	AGTCTA	240
	Sbjct	120287	TGGGGCTGTGACAT	GTCTGAAA	ATAAAATATT.	ACAACC	ATTAATCCAA	IIIII TAAAAGA	AGTCTA	120346
	Query	241	CCATTCAATTGTTT	TATGCCAI	AAATGGAAAG	GACTTC	GTCCCACTCT	CACAA	293	
	Sbjct	120347	CCATTCAATTGTTT	TATGCCAI	TAAATGGAAAG	GACTTC	GTCCCACTCT	CACAA	120399	
в	Sc	core	Expect Ident	tities	Gaps	Str	and			
	536 bi	its(290)	4e-157 292/29	93(99%)	0/293(0%)	Plus	/Plus			
	Query	1 TAA	AGGGGAAGAGAAGGA	GAATGAAA	TAACTCGAAG	GGATAI	TGAATGGCATA	ATAAGCA	AAA 60	

Sbjct	121	TAAGGGGAAGAAGGAGAATGAAATAACTCGAAGGGATATTGAATGGCATATAAGCAAA	180
Query	61	GCCCCAGGTCTGTGAGATTGCCTAACAGACACATACCTATAGATACAAGCTTGTGCGGAC	120
Sbjct	181	GCCCCAGGTCCGTGAGATTGCCTAACAGACACATACCTATAGATACAAGCTTGTGCGGAC	240
Query	121	TAATACCACAAGTTCGGATCTACGGGTTTGTGGCAACAGGCCTCAATATCTTCTCTCTTT	180
Sbjct	241	TAATACCACAAGTTCGGATCTACGGGTTTGTGGCAACAGGCCTCAATATCTTCTCTCTTT	300
Query	181	TGGGGCTGTGACATGTCTGAAAATAATAAAATATTACAACCATTAATCCAATAAAAGAGTCTA	240
Sbjct	301	TGGGGCTGTGACATGTCTGAAAATAAAAATATTACAACCATTAATCCAATAAAAGAGTCTA	360
Query	241	CCATTCAATTGTTTTATGCCATAAATGGAAAGGACTTCGTCCCACTCTCACAA 293	

Figura S4 - Análise do amplificado da região genômica do pre-miR-100 para inserção no vetor-base pENTR/SD/D-TOPO® para subsequente construção de vetor lentiviral empregando clonagem Gateway®. (A e B) Confirmação da sequência do produto de PCR obtido (Query), condizente com a região genômica do pre-miR-100 (Sbjct), conforme confirmação de sequenciamento Sanger das fitas antisense e sense (A e B respectivamente).

Α	Sc	core	Expe	ect I	dentities	Gaps	Strand			
	671 bi	ts(36	53) 0.0	363	3/363(100%)	0/363(0%)	Plus/Plu	S		
	Query	1	ACTGG	GTCGC	AGGATCTCTGC	CTGACTGCTG	GACACCCCC	GCCCTCCCC	TATCCCTGCA	60
	Sbjct	56	ACTGGO	GGTCGC	AGGATCTCTGC	CTGACTGCTG	GACACCCCC	GCCCTCCCC	TATCCCTGCA	115
	Query	61	GGTCCI	IGGTGG	CTGGCATTGAG	GCGAACATA	CCTGTGACC	TATGGAATTG	GCAGCCAGAG	120
	Sbjct	116	GGTCCI	GGTGG	CTGGCATTGAG	GCGAACATA	CCTGTGACC	IATGGAATTG	GCAGCCAGAG	175
	Oueru	101	CCCACI		CONCRECE	ירא אייירא דירא דירא	CCTTCACACC	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		100
	Query	121	GGGAGA		GCACIGGCIGI					100
	Sbjct	176	GGGAGZ	ACGAGA	GCACTGGCTGI	CAATTCATA	GGTCAGAGC	CCTGTGCACT	CGGTCTCGGC	235
	Query	181	AGCCCA	ACCGAC.	AGCCCTCCACI	ACCCGCCAC	CATCTGGCC	IGGGAGCGTC	GCCACGGTAG	240
	Sbjct	236	AGCCCA	ACCGAC.	AGCCCTCCACI	ACCCGCCAC	CATCTGGCC	IGGGAGCGTC	GCCACGGTAG	295
	Querv	241	TCCTG	CTGGT	CTGCTGGCCAG	CACCTGCCT	CTCCTTCTT	CGTGGGTACT	GGCCCTCGCC	300
	guo1 j	0.11								000
	Sbjct	296	TCCTG	GCTGGT	CTGCTGGCCAG	GCACCTGCCT	CTCCTTCTT	CGTGGGTACT	GGCCCTCGCC	355
	Query	301	CCAGAT	TAACAG	CAGCCCCACTG	GAACCAGTG	GGCACTTCC	ACATGGAGTT	GCTGTTACAG	360
	Sbjct	356	CCAGAT	TAACAG	CAGCCCCACTO	GGAACCAGTG	GGCACTTCC	ACATGGAGTT	GCTGTTACAG	415
	Query	361	GGG 3	363						
	Zact J	001								
	Sbjct	416	GGG 4	118						

В	S	core	Expect	Identities	Gaps	Strand	
	651 bi	ts(35	52) 0.0	352/352(100%)	0/352(0%)	Plus/Minus	
	Query	1	CTGGGGCGAGG	GCCAGTACCCACGAA	GAAGGAGAGGC.	AGGTGCTGGCCAGCAGACCAGC	C 60
							I
	Sbjct	359	CTGGGGCGAGG	GCCAGTACCCACGAA	GAAGGAGAGGC.	AGGTGCTGGCCAGCAGACCAGC	C 300
	Query	61	AGGACTACCGT	GGCGACGCTCCCAGG	CCAGATGGTGG	CGGGTAGTGGAGGGCTGTCGGI	G 120
	Sbjct	299	AGGACTACCGT	GGCGACGCTCCCAGG	CCAGATGGTGG	CGGGTAGTGGAGGGCTGTCGGI	'G 240

Query	121	GGCTGCCGAGACCGAGTGCACAGGGCTCTGACCTATGAATTGACAGCCAGTGCTCTCGTC	180
Sbjct	239	GGCTGCCGAGACCGAGTGCACAGGGCTCTGACCTATGAATTGACAGCCAGTGCTCTCGTC	180
Query	181	${\tt tcccctctggctgccaattccataggtcacaggtatgttcgcctcaatgccagcca$	240
Sbjct	179	TCCCCTCTGGCTGCCAATTCCATAGGTCACAGGTATGTTCGCCTCAATGCCAGCCA	120
Query	241	GACCTGCAGGGATAGGGGAGGGCCGGGGGGTGTCCAGCAGTCAGCAGAGATCCTGCGACCC	300
Sbjct	119	GACCTGCAGGGATAGGGGAGGGCCGGGGGGTGTCCAGCAGTCAGCAGAGATCCTGCGACCC	60
Ouerv	301		
~ 1	~ ~ -		
2			

Figura S5 – Análise do amplificado da região genômica do pre-miR-192 para inserção no no vetor-base pENTR/SD/D-TOPO® para subsequente construção de vetor lentiviral empregando clonagem Gateway®. (A e B) Confirmação da sequência do produto de PCR obtido (Query), condizente com a região genômica do pre-miR-192 (Sbjct), conforme confirmação de sequenciamento Sanger das fitas antisense e sense (A e B respectivamente).

Α	Scor	e E	Expect	Identities	Gaps	Strand	
	638 bits((345) 0	.0 3	355/363(98%)	0/363(0%)	Plus/Plus	
	Query	1	GCTG	CCCGGGGGGTG	GTGGGAA	CACCATACCTTGGCGCCTCGTCCGGGACCCACGAATCCT 6	0
	Sbjct	54	GCTG	CCCGGGGGGTG	GTGGGAA	CACCATACCTTGGCGCCTCGTCCGGGACCCACGAATCCT 1	13
	Query	61	GCCC	TCTGCGTTAG	TGAGAAG	CAGTGGTCAGGGAGGACCCGGCTCTGGGGTGAGGGTCTG 1	20
	Sbjct	114	GCCC	TCTGCGTTAG	TGAGAAG	CAGTGGTCAGGGAGGACCCGGCTCTGGGGTGAGGGTCTG 1	73
	Query	121	GGGC	GGCGCGGCCG	A <mark>GGGACC</mark>	IGCGTGGGTGCGGGCgtgtgagtgtgtgtgtgtgagtgt 1	80
							~ ~
	Sbjct	174	GGGC	GGCGCGGCCG	AGGGACC'.	TGCGTGGGTGCGGGCGTGTGAGTGTGTGTGTGTGGGGTGT 2	33
	Queru	101	atat	CCTCCCC	CCACCO	СЪ ПСОВОЗ СЪ СОСТА СЪ СОССЕВОЗ СПОЗ СС СПОПОСОСС 2	10
	Query	101				IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	10
	Sbict	234	GTGT	CGCTCCGGGT	ссассто	CATGCACACCCCACACGCCCACACTCAGGGTCTGCCCC 2	93
	Query	241	CTCG	G <mark>G</mark> CTG <mark>S</mark> GKGA	ACCTCCG	CGGAGCCTGCCTGGATCTCCCAAAGTATCCAGTCCTGGC 3	00
	Sbjct	294	CTCG	GCCTGCGTGA	ACCTCCG	CGGAGCCTGCCTGGATCTCCCAAAGTATCCAGTCCTGGC 3	53
	Query	301	ACCA.	AGCAAGTCTG	GAAAAGTO	GCCCCCRATGGCTCGGGGGCCRAGTCAGGGGTGGGCTGCA 3	60
	Sbjct	354	ACCA	AGCAAGTCTG	GAAAAGTO	GCCCCCAATGGCTCGGGGCCAAGTCAGAGGTGGGCTGCA 4	13
	Query	361	GTA	363			

Shi	ct	414	GTA	416
201		- 1 T T	GIA	- I U

||||

В	Scor	e E	Expect	Identities	Gaps	Strand				
	534 bits	(289) 1	e-156	315/330(95%)	1/330(0%)	Plus/Minus				
	Query	4	TTGC	TTGGTGCCAG	GACTGGAT	ACTTTGGGA	GATCCAGO	CAGGCTCC	GCGGAGGTTCAC	G 63
	Sbjct	362	TTGC	TTGGTGCCAG	GACTGGAT	ACTTTGGGA	GATCCAGO	CAGGCTCC	GCGGAGGTTCAC	G 303
	Query	64	CAGG	CCGAGGGGGC	agac <mark>cctg</mark>	AGTGTGGGC	GTGTGGG	GTGTGCAT	GAGCGTG <mark>R</mark> ACCC	<mark>G</mark> 123
	Sbjct	302	CAGG	CCGAGGGGGC	AGACCCTG	AGTGTGGGC	GTGTGGG	GTGTGCAT	GAGCGTGGACCC	G 243
		104	<u> </u>							- 100
	Query	124		Gacacacact	crcacaca I IIIIII	.cacactcac			AGTGCCCTCGGC	C 183
	Sbjct	242	GAGC	GACACACACT	CACACACA	CACACTCAC	ACGCCCG	CACCCACGC	AGGTCCCTCGGC	' C 183
	2									
	Query	184	GCGC	CGCCCCAGAC	CCTCACCC	ATGAGCCGG	GTCCTCS	TGACCACT	G G TTCTCACTAA	.C 243
	Sbjct	182	GCGC	CGCCCCAGAC	CCTCACCC	CAGAGCCGG	GTCCTCCC	TGACCACT	GCTTCTCACTAA	.C 123
	0.10.001	244	CCAC		macmacar		CCCCCCA	CCERAECCE		202
	Query	244	GCAG	AGGGGAGIAI			IIIIIII	-GGIAIGGI(JIICCCACCWCC	1
	Sbjct	122	GCAG	AGGGCAGGAT	TCGTGGGT	CCCGGACGA	.GGCGCCA	AGGTATGGT	GTTCCCACCACC	C 63
	2									
	Query	303	CCGG	GCAG <mark>S</mark> CGCCC	CCGCGCTC	GCCCGCCC	332			
	Sbjct	62	CCGG	GCAGCCGCCC	CCGCGCTC	GCCCGCCC	33			

Figura S6 - Análise do amplificado da região genômica do pre-miR-574 para inserção no no vetor-base pENTR/SD/D-TOPO® para subsequente construção de vetor lentiviral empregando clonagem Gateway®. (A e B) Confirmação da sequência do produto de PCR obtido (Query), condizente com a região genômica do pre-miR-574 (Sbjct), conforme confirmação de sequenciamento Sanger das fitas antisense e sense (A e B, respectivamente). Todas as regiões de alteração de base (azul) presentes no iniciador sense, não estão no antisense e vice-versa, indicando que a alteração se deve a um erro de leitura de base do sequenciamento Sanger. Em letras minúsculas está destacada uma região de repetição presente neste pre-miRNA.

Sequenciamento das regiões do pre-miR-100, -192 e -574 inseridas em vetor pENTR SD/D/TOPO[®].

Após o término da montagem dos vetores de entrada pENTR-miR-100, -192 ou -574, esses foram enviados para serviço especializado de sequenciamento Sanger, onde verificamos que as sequências eram complementares a região genômica esperada (Figura Suplementar S7 a S9). Com isso, os vetores selecionados foram utilizados para realização da recombinação molecular com o vetor comercial pLenti6.3/TO/V5-DEST, conforme recomendação do fabricante.

Α	Se	core	Expect	Identities	Gaps	Strand	
	732 b:	its(39	96) 0.0	422/447(94%) (0/447(0%)	Plus/Plus	
	Query	1	GCCAACTTT	GTACAAAAAAGCA	GGCTCCGCG	GCCGCCYTGTTTAACTTTRAGAAGGAGCC	60
	Sbjct	107	GCCAACTTT	GTACAAAAAAGCA	GGCTCCGCG	GCCGCCTTGTTTAACTTTAAGAAGGAGCC	166
	Query	61	CTTCACCAT	GGTTGKGAGAGTG	GGACGAAGY	CCTTTCCATTTATGGCATAAAACAATTGA	120
	Sbjct	167	CTTCACCAT	GGTTGTGAGAGTG	GGACGAAGT	CCTTTCCATTTATGGCATAAAACAATTGA	226
	Query	121	ATGG <mark>K</mark> AGAC	TCTTTTATTGGAT	TAATGGTTG	TAATATTTTATTTTCRGACATGTCACAGC	180
	Sbjct	227	ATGGTAGAC	TCTTTTATTGGAT	TAATGGTTG	TAATATTTTATTTTCAGACATGTCACAGC	286
	Query	181	CCCAAAAGA	GAGAAGATATTGA	GGCCTGTTG	CCACARACCCGTASATCCGAACTTGTGGT	240
	Sbjct	287	CCCAAAAGA	GAGAAGATATTGA	GGCCTGTTG	CCACAAACCCGTAGATCCGAACTTGTGGT	346
	Query	241	ATTAGKCCG	CACWAGCWTGWRT	CYATAGGTA	TGTGTCTGTKAGGCAATCYCACARACCTG	300
	Sbjct	347	ATTAGTCCG	CACAAGCTTGTAT	CTATAGGTA	TGTGTCTGTTAGGCAATCTCACGGACCTG	406
	Query	301	GGGCTTTGC	TTATRTGCCAWTC.	ARTATCCCW	TCGAGTTATTTCATTCTCCTTCTCTCCC	360
	Sbjct	407	GGGCTTTGC	TTATATGCCATTC.	AATATCCCT	TCGAGTTATTTCATTCTCCTTCTCTTCCC	466
	Query	361	CTTAGTTTC	CTTTAAGAGTGAT	AAAAATGGA	AAAGGGGGCTGAGGYGGASGAMGGAGACC	420
	Sbjct	467	CTTAGTTTC	CTTTAAGAGTGAT.	AAAAATGGA.	AAAGGGGGCTGAGGTGGAGGAAGGAGACC	526
	Query	421	TTTTTAGAA	GGGTGGGCGCGCC	GACCC 44	7	
	Sbjct	527	TTTTTAGAA	.GGGTGGGCGCGCC	GACCC 55	3	

S	core	Expect	Identities	Gaps	Strand	
1044 k	bits(5	565) 0.0	570/574(99%)	0/574(0%) Pl	us/Minus	
Query	1	TTGATAAGCA	ATGCTTTCTTATA	ATGCCAACTTT	GTACAAGAAAGCTGGGTCGGCGCGCC	60
Sbjct	600	TTGATAAGCA	ATGCTTTCTTATA	ATGCCAACTTTC	GTACAAGAAAGCTGGGTCGGCGCGCC	541
Query	61	CACCCTTCTA	AAAAGGTCTCCTT	CCTCCACCTCA	GCCCCCTTTTCCATTTTTATCACTCT	120
Chiat	E 4 0		1			101
SDJCL	540	CACCUTTUTA	AAAAGGTCTCCTT	CUTCUACUTUA	GUUUUTTTTUUATTTTTATUAUTUT	481
Query	121	TAAAGGAAAC	TAAGGGGAAGAGA	AGGAGAATGAA	ATAACTCGAAGGGATATTGAATGGCA	180
Sbjct	480	TAAAGGAAAC	TAAGGGGAAGAGA	AGGAGAATGAA	ATAACTCGAAGGGATATTGAATGGCA	421
Query	181	TATAAGCAAA	GCCCCAGGTCTGT	GAGATTGCCTA	ACAGACACATACCTATAGATACRAGC	240
Sbjct	420	TATAAGCAAA	GCCCCAGGTCCGT	GAGATTGCCTA	ACAGACACATACCTATAGATACAAGC	361
Query	241	TTGTGCGGAC	TAATACCACAAGT	TCGGATCTACG	<u>GGTTTGTGGCRACAGG</u> CCTCAATATC	300
01	200					201
ວມງປະ	300	TIGIGCGGAC	IAAIACCACAAGI	ICGGAICIACG	JGI I I G I GGCAACAGGCCI CAAIAIC	301
Ouerv	301	TTCTCTCTTT	TGGGGCTGTGACA	TGTCTGAAAAT	AAAATATTACAACCATTAATCCAATA	360
Sbjct	300	TTCTCTCTTT	TGGGGCTGTGACA	TGTCTGAAAATA	ААААТАТТАСААССАТТААТССААТА	241
Query	361	AAAGAGTCTA	CCATTCAATTGTT	TTATGCCATAA	ATGGAAAGGACTTCGTCCCACTCTCA	420
Sbjct	240	AAAGAGTCTA	CCATTCAATTGTT	TTATGCCATAA	ATGGAAAGGACTTCGTCCCACTCTCA	181
Quoru	421	CAACCATCCM	CAACCCCTCCTTC	<u> </u>		190
Query	421					400
Sbjct	180	CAACCATGGT	GAAGGGCTCCTTC	TTAAAGTTAAAG	CAAGGCGGCCGCGGAGCCTGCTTTTT	121
-						
Query	481	TGTACAAAGT	TGGCATTATAAAA	AAGCATTGCTCA	ATCAATTTGTTGCAACGAACAGGTCA	540
Sbjct	120	TGTACAAAGT	TGGCATTATAAAA	AAGCATTGCTC	ATCAATTTGTTGCAACGAACAGGTCA	61
Query	541	CTATCAGTCA	AAATAAAATCATT	ATTTGGGGCCC	574	
Shict	60				27	
	00	CINICAGICA	nnninnnniurii		<u> </u>	

В

Figura S7 – Anelamento da sequência proveniente de sequenciamento Sanger da colônia 10 contendo o vetor pENTR-miR-100 (*Query*) com a região esperada no vetor (Sbjct). (A e B) Confirmação da sequência do pre-miR-100 após amplificação por PCR (*Query*), condizente com a região genômica do pre-miR-100 (*Sbjct*), conforme confirmação de sequenciamento Sanger das fitas antisense e sense (A e B, respectivamente). Em negrito está demonstrada toda a sequência inserida contendo a sequência iniciadora inserida no vetor por meio do iniciador (verde) e a sequência de parada inserida no vetor por meio do iniciador (vermelho). Adicionalmente estão destacadas a sequência genômica do pre-miR-100 (caixa) e os *mismatchs* (azul).

Sco	re	Expect	Identities	Gaps	5	Strand	
1240 bit	s(671)	0.0 6	74/677(99%)	0/677(0%) Pl	Plus/Plus	
Query	1	ACTGAF	AGTGACCTO	GTTCGTT	GCA	AACAAATTGATGAGCAATGCTTTTTTATAATGCCAAC	60
Sbict	66	ACTGAT	AGTGACCTO	STTCGTT	GCA	AACAAATTGATGAGCAATGCTTTTTTATAATGCCAAC 1	125
_							
Query	61	TTTGTA	CAAAAAAG	CAGGCTC	CGC	CGGCCGCCTTGTTTWAYTTTAAGAAGGAGCCCTT CAC	120
Sbjct	126	TTTGTA	CAAAAAAG	CAGGCTC	CGC	CGGCCGCCTTGTTTAACTTTAAGAAGGAGCCCTTCAC	185
Querv	121	CATGGO	CCCTGTAA	CAGCAAC	TCC	CATGTGGAAGTGCCCACTGGTTCCAGTGGGGGCTGCTG	180
~ · · 1							
C 1. 1	100	0.00000					0.45
Sbjct	180	CATGGC	CCCTGTAA	CAGCAAC'	ree	CATGTGGAAGTGCCCACTGGTTCCAGTGGGGCTGCTG 2	245
Query	181	TTATCI	GGGGCGAG	GCCAGT	ACC	CCACGAAGAAGGAGAGGCAGGTGCTGGCCAGCAGACC	240
Sbjct	246	TTATCI	GGGGCGAG	GCCAGT	ACC	CCACGAAGAAGGAGAGGCAGGTGCTGGCCAGCAGACC	305
	0.41				~~~		200
Query	241	AGCCAG	GACTACCG	GGCGAC	GCT	TCCCAGGCCAGATGGTGGCGGGTAGTGGAGGGCTGTC	300
Sbjct	306	AGCCAG	GACTACCG	GGCGAC	GCT	TCCCAGGCCAGATGGTGGCGGGTAGTGGAGGGCTGTC	365
Ouerv	301	GGTGGG	CTGCCGAG	ACCGAGT	GCA	ACAGGGCTCTGACCTATGAATTGACAGCCAGTGCTCT	360
21							
Sbjct	366	GGTGGG	SCTGCCGAG ²	ACCGAGT	GCA	ACAGGGCTCTGACCTATGAATTGACAGCCAGTGCTCT 4	425
Query	361	CGTCTC	CCCTCTGG	CTGCCAA	TTC	CCATAGGTCACAGGTATGTTCGCCTCAATGCCAGCCA	420
Chiat	126	CCTCTC					105
SDJCL	420	CGICIC	CCCICIGG	IGCCAA.	IIC	CCATAGGICACAGGIAIGIICGCCICAAIGCCAGCCA	40J
Query	421	CCAGGA	CCTGCAGGO	GATAGGG	GAG	GGGCCGGGGGTGTCCAGCAGTCAGCAGAGATCCTGCG	480
Sbjct	486	CCAGGA	CCTGCAGG	GATAGGG	GAG	GGGCCGGGGGTGTCCAGCAGTCAGCAGAGATCCTGCG	545
Query	481	ACCCCA	GTCCACCA	יייראייכפי	TCC	ссъсстссстстстстстстстсссстстстстстс	540
Query	101						010
Sbjct	546	ACCCCA	GTGCAGCA	CTCATGG	TCC	CCACCTCCCTCTGTCTCATTCCCCGTGAATGAGCCTG	605
Query	541	AACTAC	AAGGGTGGG	GCGCGCCC	GAC	CCCAGCTTTCTTGTACAAAGTTGGCATTATAAGAAAG	600
Shict	606	7 7 C T 7 C	NACCOTCC		 	CCCACCTTTCTTCTTCTTCTTCTTCTTTTTTTTTTTTT	665
SDJCL	000	AACIAG	JAAGGGIGGU		GAC	CCCAGCIIICIIGIACAAAGIIGGCAIIAIAAGAAAG	005
Query	601	CATTGO	TTATCAAT	TGTTGC	AAC	CGAACAGGTCACTATCAGTCAAAATAAAATCATTATT (660
Sbjct	666	CATTGO	TTATCAAT	TGTTGC	AAC	CGAACAGGTCACTATCAGTCAAAATAAAATCATTATT	725
-							
0110	6.01	mccoar	1003 00003	nam (7)	7		
Quer.À	υυι	IGUCAI	CCAGCTGA'	LAT 0/	'		
Sbjct	726	TGCCAI	CCAGCTGA	TAT 742	2		

Figura Suplementar S8 - Anelamento da sequência proveniente de sequenciamento Sanger da colônia 1 contendo o vetor pENTR-miR-192 (Query) com a região esperada no vetor (Sbjct). Observada a confirmação da sequência do pre-miR-192 após amplificação por PCR (Query), condizente com a região genômica do pre-miR-192 (Sbjct), conforme confirmação de sequenciamento Sanger da fita sense. Em negrito está demonstrada toda a sequência inserida

contendo a seqüencia iniciadora inserida no vetor por meio do iniciador (verde) e a seqüencia de parada inserida no vetor por meio do iniciador (vermelho). Adicionalmente está destacada a sequência genômica do pre-miR-192 (caixa).

Α

627 bits(339) 0.0 340/341(99%) 0/341(0%) Plus/Plus

Query	1	TGATAGTGACCTGTTCGTTGCAACAAATTGATGAGCAATGCTTTTTTATAATGCCAACTT	60
Sbjct	55	TGATAGTGACCTGTTCGTTGCAACAAATTGATGAGCAATGCTTTTTTATAATGCCAACTT	114
Query	61	TGTACAAAAAAGCAGGCTCCGCGGCCGCCTTGYTTAACTTTAAGAAGGAGCCCTTCACCA	120
Sbjct	115	TGTACAAAAAAGCAGGCTCCGCGGCCGCCTTGTTTAACTTTAAGAAGGAGCCCTTCACCA	174
Query	121	TGGTCGGTCCCCATCCCCTTCCCcggggggggggggggggggggggg	180
Sbjct	175	TGGTCGGTCCCCATCCCCTTCCCCGGGGGGGGGGGGGGG	234
Query	181	TGGTGGGAACACCATACCTTGGCGCCTCGTCCGGGACCCACGAATCCTGCCCTCTGCGTT	240
Query Sbjct	181 235	TGGTGGGAACACCATACCTTGGCGCCTCGTCCGGGACCCACGAATCCTGCCCTCTGCGTT IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	240 294
Query Sbjct Query	181 235 241	TGGTGGGAACACCATACCTTGGCGCCTCGTCCGGGACCCACGAATCCTGCCCTCTGCGTT IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	240 294 300
Query Sbjct Query Sbjct	181 235 241 295	TGGTGGGAACACCATACCTTGGCGCCTCGTCCGGGACCCACGAATCCTGCCCTCTGCGTT IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	240 294 300 354
Query Sbjct Query Sbjct Query	181 235 241 295 301	TGGTGGGAACACCATACCTTGGCGCCTCGTCCGGGACCCACGAATCCTGCCCTCTGCGTT TGGTGGGAACACCATACCTTGGCGCCCCGGGACCCACGAATCCTGCCCTCTGCGTT TGGTGAGAAGCAGTGGTCAGGGAGGACCCGGCTCTGGGGTGAGGGTCTGGGGCGGGC	240 294 300 354

В

Expect Identities Gaps Score Strand 448 bits(242) 2e-130 243/244(99%) 0/244(0%) Plus/Minus Query 1 CTGATAGTGACCTGTTCGTTGCAACAAATTGATAAGCAATGCTTTCTTATAATGSCAACT 60 622 Sbjct 681 CTGATAGTGACCTGTTCGTTGCAACAAATTGATAAGCAATGCTTTCTTATAATGCCAACT Query 61 TTGTACAAGAAAGCTGGGTCGGCGCGCCCACCCTTCTACTGCAGCCCACCTCTGACTTGG 120 562 Sbict 621 TTGTACAAGAAAGCTGGGTCGGCGCGCCCCCCCTTCTACTGCAGCCCACCTCTGACTTGG Query 121 ${\tt CCCCGAGCCATTGGGGGGGCACTTTTCCAGACTTGCTTGGTGCCAGGACTGGATACTTTGGG$ 180 Sbjct 561 CCCCGAGCCATTGGGGGGCACTTTTCCAGACTTGCTTGGTGCCAGGACTGGATACTTTGGG 502 181 AGATCCAGGCAGGCTCCGCGGAGGTTCACGCAGGCCGAGGGGGGCAGACCCTGAGTGTGGG 240 Query Sbjct 501 442 AGATCCAGGCAGGCTCCGCGGAGGTTCACGCAGGCCGAGGGGGCAGACCCTGAGTGTGGG CGTG Ouerv 241 244 |||||438 Sbict 441 CGTG

Figura Suplementar S9 - Anelamento da sequência proveniente de sequenciamento Sanger da colônia 2 contendo o vetor pENTR-miR-574 (Query) com a região esperada no vetor (Sbjct). Observada a confirmação da sequência do pre-miR-574 após amplificação por PCR (Query), condizente com a região genômica do pre-miR-574 (Sbjct), conforme confirmação de sequenciamento Sanger da fita sense. Em negrito está demonstrada toda a sequência inserida contendo a seqüencia iniciadora inserida no vetor por meio do iniciador (verde) e a seqüencia de

parada inserida no vetor por meio do iniciador (vermelho). Adicionalmente está destacada a sequência genômica do pre-miR-574 (caixa).

Sequenciamento dos vetores lentivirais pLenti-miR-100, -192 e -574

Após a confirmação da sequência do pre-miR-100, -192 e -574 em seu vetor de entrada (pENTR/SD/D-TOPO), foi realizada a reação de recombinação molecular do vetor de entrada com o vetor comercial pLenti6.3/TO/V5-DEST (Figura Suplementar S3). Este novo vetor, denominado pLenti-100, -192 ou -574 foi então enviado para sequenciamento Sanger em serviço especializado para confirmação da presença do pre-miRNA de interesse (Figura Suplementar S10).

Α

Scor	·e	Expect	Identities	Gaps	Strand					
828 bits	(448)	0.0	458/463(99%)	0/463(0%)	Plus/Plus					
Query	104	CAAG	TTTGTACAAA	AAAGCAGO	GCTCCGC	GCCGCC	ITGTTTAAC	TTTAAGAA	GGAGCCCT	163
Sbjct	251	CAAC	TTTGTACAAA	AAAGCAG	GCTCCGC	GGCCGCC	ITGTTTAAC	TTTAAGAA	GGAGCCCT	310
Query	164	TCAC	CATGGTTGTG	AGAGTGGG	GACGAAG	TCCTTTCO	CATTTATGG	CATAAAAC	AATTGAAT	223
Sbjct	311	TCAC	CATGGTTGTG	AGAGTGGG	GACGAAG	FCCTTTC	CATTTATGG	CATAAAAC	AATTGAAT	370
Query	224	GGTA	GACTCTTTTA	TTGGATT <i>I</i>	ATGGTT	GTAATAT?	TTTATTTTC	AGACATGT	CACAGCCC	283
Sbjct	371	GGTA	GACTCTTTTA	TTGGATT <i>I</i>	ATGGTT	GTAATAT	TTTATTTTC	AGACATGT	CACAGCCC	430
Query	284	CAAA	AGAGAGAAGA	TATTGAGO	GCCTGTT	GCCACAA	ACCCGTAGA	TCCGAACT	TGTGGTAT	343
Sbjct	431	CAAA	AGAGAGAAGA'	TATTGAGO	GCCTGTT	GCCACAA	ACCCGTAGA	TCCGAACT	TGTGGTAT	490
Query	344	TAGI	CCGCACAAGC	TTGTATC	TATAGGT	ATGTGTC	TGTTAGGCA	ATCTCAC	GACCTGGG	403
Sbjct	491	TAGT	CCGCACAAGC	TTGTATCI	TATAGGT	ATGTGTC	IGTTAGGCA	ATCTCACG	GACCTGGG	550
Query	404	GCTT	TGCTTATATG	CATTCA	ATATCCC	TCGAGT	TATTTCATT	CTCCTTCT	CTTCGGGT	463
Sbjct	551	GCTT	TGCTTATATG	CCATTCAR	ATATCCC	TCGAGT	TATTTCATT	CTCCTTCT	CTTCCCCT	610
Query	464	TAGT	TTCCTTTAAG	AGTGATAZ	AAATGG	AAAAGGGG	GCTGAGGT	GGAGGAAG	GAGACCTT	523
Sbjct	611	TAGT	TTCCTTTAAG	AGTGATA	AAATGG	AAAAGGGG	GGCTGAGGT	GGAGGAAG	GAGACCTT	670
Query	524	TTTA	GAAGGGTGGG	CGCGCCGZ	ACCCAGC	TTCTTG	TACAAAGT	566		
Sbjct	671	TTTA	GAAGGGTGGG	CGCGCCGA	ACCCAGC	TTTCTTG	TACAAAGT	713		

В

Scor	e l	Expect	Identities	Gaps	Strand				
970 bits((525) (0.0	527/528(99%)	0/528(0%)	Plus/Plus				
Query	108	CAAG	GTTTGTACAAA	AAAGCAG	GCTCCGCC	GCCGCCTTGTTTAACT	TTAAGAAGG	AGCCCT	167
				$[\] \] \ [\] \ [\] \] \ [\] \]$					
Sbjct	251	CAAC	CTTTGTACAAA	AAAGCAG	GCTCCGCC	GCCGCCTTGTTTAACT	TTAAGAAGG	AGCCCT	310
Query	168	TCAC	CATGGCCCCI	GTAACAG	CAACTCCA	ATGTGGAAGTGCCCACT	GGTTCCAGT	GGGGCT	227
Sbjct	311	TCAC	CATGGCCCCI	GTAACAG	CAACTCCA	TGTGGAAGTGCCCACT	GGTTCCAGT	GGGGCT	370
Query	228	GCTO	TTATCTGGGG	CGAGGGC	CAGTACCO	CACGAAGAAGGAGAGGC	AGGTGCTGG	CCAGCA	287
Sbjct	371	GCTO	GTTATCTGGGG	CGAGGGC	CAGTACCO	CACGAAGAAGGAGAGGC	AGGTGCTGG	CCAGCA	430
Query	288	GACO	CAGCCAGGACI	ACCGTGG	CGACGCTC	CCAGGCCAGATGGTGG	CGGGTAGTG	GAGGGC	347
Sbjct	431	GACO	CAGCCAGGACI	ACCGTGG	CGACGCTC	CCAGGCCAGATGGTGG	CGGGTAGTG	GAGGGC	490
Query	348	TGTC	GGTGGGCTGC	CGAGACC	GAGTGCAC	CAGGGCTCTGACCTATG	AATTGACAG	CCAGTG	407
Sbjct	491	TGTC	GGTGGGCTGC	CGAGACC	GAGTGCAC	CAGGGCTCTGACCTATG	AATTGACAG	CCAGTG	550
Query	408	CTC	CGTCTCCCCT	CTGGCTG	CCAATTCO	CATAGGTCACAGGTATG	TTCGCCTCA	ATGCCA	467
				$[\] \] \ [\] \ [\] \] \ [\] \]$					
Sbjct	551	CTCI	CGTCTCCCCI	CTGGCTG	CCAATTCC	CATAGGTCACAGGTATG	TTCGCCTCA	ATGCCA	610
Query	468	GCC2	ACCAGGACCTO	CAGGGAT	AGGGGAG	GGCCGGGGGGTGTCCAGC	AGTCAGCAG	AGATCC	527
Sbjct	611	GCCF	CCAGGACCTO	CAGGGAT	AGGGGAGG	GCCGGGGGGTGTCCAGC	AGTCAGCAG	AGATCC	670
Query	528	TGCO	ACCCCAGTGO	AGCACTC	ATGGTCCC	CACCTCCCTCTGTCTCA	TTCCCCGTG	AATGAG	587
				$[\] \] \ [\] \ [\] \] \ [\] \]$					
Sbjct	671	TGCO	GACCCCAGTGC	AGCACTC	ATGGTCCC	CACCTCCCTCTGTCTCA	TTCCCCGTG	AATGAG	730
Query	588	CCTO	BAACTAG AAGO	GTGGGCG	CGCCGACC	CAGCTTTCTTGTACAA	AGT 635		
Sbjct	731	CCTG	GAACTAGAAGO	GTGGGCG	CGCCGACC	CAGCTTTCTTGTACAA	AGT 778		

С

Sco	re	Expect	Identities	Gaps	Strand	
525 bits	(284)	2e-153	286/287(99%)	0/287(0%)	Plus/Plus	
Query	49	CAA	GTTTGTACAAA	AAAGCAG	GCTCCGCGGCCGCCTTGTTTAACTTTAAGAAGGAGCC	CT 108
Sbjct	251	CAA	CTTTGTACAAA	AAAGCAG	GCTCCGCGGCCGCCTTGTTTAACTTTAAGAAGGAGCC	СТ 310
Query	109	TCA	CCATGGTCGGI	CCCCATCO	CCCTTCCCcgggggggggggggggggggggggggggggg	cc 168
_						
Sbict	311	TCA	CCATGGTCGGT	CCCCATC		CC 370
Ouerv	169	caa	aaaTGGTGGGZ	ACACCAT	٥	rc 228
Query	100					10 220
		111				
Sbjct	371	CGG	GGGTGGTGGGA	ACACCAT	ACCTTGGCGCCTCGTCCGGGACCCACGAATCCTGCCC'	IC 430
Query	229	TGC	GTTAGTGAGAA	GCAGTGG	ICAGGGAGGACCCGGCTCTGGGGTGAGGGTCTGGGGC	GG 288
				$[\ [\] \ [\] \] \ [\] \ [\] \]$		
Sbjct	431	TGC	GTTAGTGAGAA	GCAGTGG	ICAGGGAGGACCCGGCTCTGGGGTGAGGGTCTGGGGC	GG 490

Figura S10 - Anelamento da sequência proveniente de sequenciamento Sanger (Sbjct) do vetor pLenti-miR-100 colônia 2 (A), pLenti-miR-192 colônia 1 (B) e pLenti-miR-574 colônia 1 (C) com a região esperada no vetor (Sbjct)) após recombinação plasmideal por sistema Gateway®. Observada a confirmação das sequências dos pre-miR-100, 192 e 574 após amplificação por PCR (Query), condizente com a respectiva região genômica, conforme confirmação de sequenciamento Sanger da fita sense. Em caixa está demosntrada a sequência do pre-miR em questão, em negrito está demonstrada toda a sequência inserida contendo a sequência iniciadora do vetor inserida por meio do iniciador região genômica dos respectivos pre-miRNA (verde) e a sequência de parada inserida no vetor do mesmo modo (vermelho).

Vetores psiCHECK2

Para validação funcional dos miRNAs utilizados, tanto no tratamento com miméticos, como para expressão constitutiva por meio de vetores lentivirais, foram montados vetores para realização do ensaio da luciferase utilizando o vetor comercial psiCHECKTM-2 (Promega). Brevemente, o desenho dos insertos foi realizado conforme descrito no boletim técnico Promega (SCHAGAT; VIDUGIRIENE, 2008), sendo constituído pela sequência complementar ao miRNA maduro (5p ou 3p) e três regiões correspondentes a sítios para enzimas de restrição (Quadro Suplementar S3). Um dos sítios está localizado na região 5' (XhoI), outro na região 3' (PmeI) e um terceiro contendo o sítio de clivagem da enzima XbaI, empregado na validação do vetor montado (Figura Suplementar S11 e Quadro Suplementar S4).

Com esse sítio de clivagem da enzima XbaI, empregado na validação do vetor montado, é possível verificar se há ou não a presença do inserto, sendo que o vetor digerido sem o inserto com essa enzima torna-se apenas linearizado (6273 pb) ou quando há a presença do inserto proporciona digestão com duas bandas, com 2561 e 3732 pb (Figura Suplementar S12). Como controle do ensaio da luciferase, foram montados vetores com a sequência complementar ao miRNA maduro, porém embaralhadas (*scrambled*), para tanto, foi utilizado a plataforma online *Sequence Scramble* (GenScript)("Sequence Scramble (GenScript)", 2002) Quadro S3 - Enzimas, reagentes e condições da reação de digestão para clonagem e verificação

da presença do inserto utilizando o vetor psiCHECK2

Propósito experimental	Componentes da reação	Condições da reação	
Verificação da presença do inserto no vetor psiCHECK2	Tampão NEB 2 (50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl ₂ , 1 mM DTT, pH 7.9), BSA 1x, 2U de cada Enzima Xbal), 500ng de DNA e H_2O q.s.p. 20µL.	Incubação a 37°C por 2h, inativação 65°C por 20 min.	
Digestão do vetor psiCHECK2 para ligação com inserto (duplex)	Tampão NEB 4 (50 mM Potassium Acetate, 20 mM Tris-acetate, 10 mM Magnesium Acetate, 1 mM DTT, pH 7.9), BSA 1x, 2U de cada Enzima Xhol, Pmel e Fosfatase Antártica, 1µg de DNA e H ₂ O q.s.p. 20µL.	Incubação a 37°C por 2h, inativação 65°C por 20 min.	
T4 Polynucleotide Kinase (PNK)	Tampão (70 mM Tris-HCl, 10 mM MgCl2, 5 mM DTT, pH 7.6), 10U de PNK, 1µL ATP 50nM, 500 ng DNA (dulpex) e H ₂ O q.s.p. 25µL.		

Figura S11 - Desenho esquemático do mapa do vetor psiCHECK2 demonstrando as regiões de anelamento dos primers (vermelho), e região dos sítios para as enzimas de restrição PmeI (Verde), XbaI (Azul claro) e XhoI (lilás) no vetor-base sem o inserto (A) e no construto, com o inserto (B).

Quadro S4 - Sequências sense e antisense sintetizadas referentes aos insertos dos miR-100, -192 e -574, tanto 3p quanto 5p e seus respectivos scramble. Estão inseridas as sequências regiões parciais para as enzimas de restrição XhoI (lilás) e PmeI (verde), sítio completo da enzima XbaI (azul) e, quando necessário, região filler (vermelho).

miRNA		Sequência para síntese (5' – 3')
(miRBase ID)		
hsa-miR-100-5p	Idêntica	TCGAGtgaTCTAGACAAGTTCGGATCTACGGGTTGTTT
(MIMAT0000098)	Complementar	AAACAACCCGTAGATCCGAACTTGTGTCTAGAtcaC
hsa-miR-100-3p	Idêntica	TCGAGca <mark>TCTAGA</mark> CATACCTATAGATACAAGCTTG <mark>GTTT</mark>
(MIMAT0004512)	Complementar	AAACCAAGCTTGTATCTATAGGTATG <mark>TCTAGA</mark> tg <mark>C</mark>
hsa-miR-192-5p	Idêntica	TCGAGTCTAGAGGCTGTCAATTCATAGGTCAGGTTT
(MIMAT0000222)	Complementar	AAACCTGACCTATGAATTGACAGCCTCTAGAC
hsa-miR-192-3p	Idêntica	TCGAGTCTAGAtgaCTGTGACCTATGGAATTGGCAGGTTT
(MIMAT0004543)	Complementar	AAACCTGCCAATTCCATAGGTCACAGtcaTCTAGAC
hsa-miR-574-5p	Idêntica	TCGAGTCTAGAACACACTCACACACACACACTCA
(MIMAT0004795)	Complementar	AAACTGAGTGTGTGTGTGTGAGTGTGT <mark>TCTAGAC</mark>
hsa-miR-574-3p	Idêntica	TCGAGTCTAGATGTGGGTGTGTGCATGAGCGTG
(MIMAT0003239)	Complementar	AAACCACGCTCATGCACACACCCACATCTAGAC
has-miR-100-5p	Idêntica	TCGAGtgaTCTAGA ACACGTGGATATCGGCTATTCG
(SCRAMBLED)	Complementar	AAAC CGAATAGCCGATATCCACGTGT TCTAGAtcaC
hsa-miR-100-3p	Idêntica	TCGAG <mark>caTCTAGA</mark> ATGCAGAGATATCTTCCATAAC <mark>GTTT</mark>
(SCRAMBLED)	Complementar	AAACGTTATGGAAGATATCTCTGCAT <mark>TCTAGA</mark> tg <mark>C</mark>
hsa-miR-192-5p	Idêntica	TCGAGTCTAGAATTGCGTGCGGTACGTAATCAGTTT
(SCRAMBLED)	Complementar	AAACTGATTACGTACCGCACGCAATTCTAGAC
hsa-miR-192-3p	Idêntica	TCGAGTCTAGAtgaGATAAGGTGTACTGCCGATGTCGTTT
(SCRAMBLED)	Complementar	AAACGACATCGGCAGTACACCTTATCtca <mark>TCTAGAC</mark>
hsa-miR-574-5p	Idêntica	TCGAGTCTAGACACCCAACTCAATCACACCAACGTTT
(SCRAMBLED)	Complementar	AAACGTTGGTGTGATTGAGTTGGTGTG <mark>TCTAGAC</mark>
hsa-miR-574-3p	Idêntica	TCGAG <mark>TCTAGA</mark> GTGCGTGTGAGTGGCTTAGTGG <mark>GTTT</mark>
(SCRAMBLED)	Complementar	AAACCCACTAAGCCACTCACACGCACTCTAGAC

Figura S12 - Digestão dos vetores psiCH-miR-100-5p, SCR-100-5p, -192-5p, SCR-192-5p, -574-3p e -SCR-574-3p com a enzima XbaI para confirmação da presença do inserto antes da realização do sequenciamento Sanger. (A) Pode-se verificar a não digestão do vetor psiCH-100-5p e seu respectivo scramble devido a inserção do sítio de metilação para E. coli (Dam+) que é revertido após amplificação por PCR, sendo então (B) digerido pela enzima XbaI e verificado a formação de três bandas nos vetores com inserto, sendo uma referente ao vetor não digerido (196 pb) e duas provenientes da digestão com 133 e 66 pb, enquanto que no controle há uma banda de 176 pb (ausência do sítio de clivagem).(C e D) Verificação da digestão dos vetores psiCH-192-5p, SCR-192-5p, -574-3p e -SCR-574-3p, podendo-se verificar uma banda (6293pb) quando digerido um vetor sem o inserto, ou duas bandas (3732 e 2561 pb) quando positivo para o inserto.

Sequenciamento Sanger dos vetores psiCHECK2

Após montagem e confirmação dos vetores psiCHECK2 conforme brevemente descrito acima, foi realizado o sequenciamento Sanger para verificar se as sequências complementares aos miRNAs maduros estavam presentes no vetor sem inserções ou mutações (Figura Suplementar S13).

^A psiCHECK-miR-100-5p (sense)

	Score	Expect	Identities	Gaps	Strand	
957	bits(518) 0.0	518/518(100%)	0/518(0%)	Plus/Plus	
Quer	y 1	GCGATCG	CTCGAGTGATCTAG	ACACAAGTTO	CGGATCTACGGGTTGTTTAAACCTA	GAGCG 60
Sbjc	t 548	GCGATCG	CTCGAGTGATCTAG	GACACAAGTTO	CGGATCTACGGGTTGTTTAAACCTA	AGAGCG 607
Quer	y 61	GCCGCTG	GCCGCAATAAAATA	TCTTTATTT	ICATTACATCTGTGTGTTGGTTTTI	TGTGT 120
Sbjc	t 608	GCCGCTG	GCCGCAATAAAATA	TCTTTATTT	FCATTACATCTGTGTGTTGGTTTTI	TGTGT 667
Quer	y 121	GAGGATCT	TAAATGAGTCTTCG	GACCTCGCG	GGGGCCGCTTAAGCGGTGGTTAGGG	TTTGT 180

Sbjct	668	GAGGATCTAAATGAGTCTTCGGACCTCGCGGGGGCCGCTTAAGCGGTGGTTAGGGTTTGT	727
Query	181	CTGACGCggggggggggggggggggggggggggggggggg	240
Sbjct	728	CTGACGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	787
Query	241	GTCTTGGTGGCCACGGGCACGCAGAAGAGCGCCGCGATCCTCTTAAGCAccccccGCCC	300
Sbjct	788	GTCTTGGTGGCCACGGGCACGCAGAAGAGCGCCGCGATCCTCTTAAGCACCCCCCGCCC	847
Query	301	TCCGTGGAGGCGGGGTTTGGTCGGCGGGTGGTAACTGGCGGGCCGCTGACTCGGGCGGG	360
Sbjct	848	TCCGTGGAGGCGGGGTTTGGTCGGCGGGTGGTAACTGGCGGGCCGCTGACTCGGGCGGG	907
Query	361	TCGCGCGCCCCAGAGTGTGACCTTTTCGGTCTGCTCGCAGACCCCCGGGCGGCGCCGCCG	420
Sbjct	908	TCGCGCGCCCCAGAGTGTGACCTTTTCGGTCTGCTCGCAGACCCCCGGGCGGCGCCGCCG	967
Query	421	CGGCGGCGACGGGCTCGCTGGGTCCTAGGCTCCATGGGGACCGTATACGTGGACAGGCTC	480
Sbjct	968	CGGCGGCGACGGGCTCGCTGGGTCCTAGGCTCCATGGGGACCGTATACGTGGACAGGCTC	1027
Query	481	TGGAGCATCCGCACGACTGCGGTGATATTACCGGAGAC 518	
Sbjct	1028	TGGAGCATCCGCACGACTGCGGTGATATTACCGGAGAC 1065	

B psiCHECK-miR-100-5p (antisense)

	Score	Expect	Identities	Gaps	Strand		
961	bits(5	20) 0.0	520/520(100%) C)/520(0%)	Plus/Minus		
Quer	y 1	AGATGTAAT	GAAAATAAAGATAT	TTTATTGCC	GGCCAGCGGCCGCTCTAGGI	TTAAACAAC	60
Sbjc	t 648	AGATGTAAT	GAAAATAAAGATAT	TTTATTGCC	GCCAGCGGCCGCTCTAGG	TTAAACAAC	589
Quer	y 61	CCGTAGATC	CGAACTTGTGTCTA	GATCACTCO	GAGCGATCGCCTAGAATTAC	CTGCTCGTTC	120
Sbjc	t 588	CCGTAGATC	CGAACTTGTGTCTA	GATCACTCO	GAGCGATCGCCTAGAATTAC	CTGCTCGTTC	529
Quer	y 121	TTCAGCACG	CGCTCCACGAAGCT	CTTGATGT	ACTTACCCATTTCATCTGGA	AGCGTCCTCC	180
Sbjc	t 528	TTCAGCACG	CGCTCCACGAAGCT	CTTGATGT	ACTTACCCATTTCATCTGGA	AGCGTCCTCC	469
Quer	y 181	TGGCTGAAG	TGGAGGCCCTTCAC	CTTCACGA	ACTCGGTGTTAGGGAACTTC	CTTAGCTCCC	240
Sbjc	t 468	TGGCTGAAG	TGGAGGCCCTTCAC	CTTCACGA	ACTCGGTGTTAGGGAACTTC	CTTAGCTCCC	409
Quer	y 241	TCGACAATA	GCGTTGGAAAAGAA	CCCAGGGT	CGGACTCGATGAACATCTTA	AGGCAGATCG	300
Sbjc	t 408	TCGACAATA	GCGTTGGAAAAGAA	CCCAGGGT	CGGACTCGATGAACATCTT	AGGCAGATCG	349

Query	301	TCGCTGGCCCGAAGGTAGGCGTTGTAGTTGCGGACAATCTGGACGACGTCGGGCTTGCCT	360
Sbjct	348	TCGCTGGCCCGAAGGTAGGCGTTGTAGTTGCGGACAATCTGGACGACGTCGGGCTTGCCT	289
Query	361	CCCTTAACGAGAGGGATCTCGCGAGGCCAGGAGAGGGTAGGCCGTCTAACCTCGCCCTTC	420
Sbjct	288	CCCTTAACGAGAGGGATCTCGCGAGGCCAGGAGAGGGTAGGCCGTCTAACCTCGCCCTTC	229
Query	421	TCCTTGAATGGCTCCAGGTAGGCAGCGAACTCCTCAGGCTCCAGTTTCCGCATGATCTTG	480
Sbjct	228	TCCTTGAATGGCTCCAGGTAGGCAGCGAACTCCTCAGGCTCCAGTTTCCGCATGATCTTG	169
Query	481	CTTGGGAGCATGGTCTCGACGAAGAAGTTATTCTCAAGCA 520	
Sbjct	168	CTTGGGAGCATGGTCTCGACGAAGAAGTTATTCTCAAGCA 129	

c psiCHECK-SCR-miR-100-5p (sense)

802 bits(434) 0.0 437/438(99%) 1/438(0%) Plus/Plus Query 1 ATCGCTCCACTGATCTAGAACACGTGGATATCGGCTATTCGGTTTAAACCTAGAGCGGCC 60 Sbjct 457 ATCGCTCGAGTGATCTAGAACACGTGGGATATCGGCTATTCGGTTTAAACCTAGAGCGGCC 516 Query 61 GCTGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTG	Scor	e E	xpect Identities Gaps Strand	
Query 1 ATCGCTCGAGTGATCTAGAACACGTGGATATCGGCTATTCGGTTTAAACCTAGAGCGGCC 60 Sbjet 457 ATCGCTCGAGTGATCTAGAACACGTGGATATCGGCTATTCGGTTTAAACCTAGAGCGGCC 516 Query 61 GCTGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTG	802 bits	(434) 0	0 437/438(99%) 1/438(0%) Plus/Plus	
Sbjet 457 ATCGCTCGAGTGATCTAGAACACGTGGATATCGGCTATTCGGTTTAAACCTAGAGCGGCC 516 Query 61 GCTGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTG	Query	1	ATCGCTCGAGTGATCTAGA ACACGTGGATATCGGCTATTCG GTTTAAACCTAGAGCGGCC	60
Sbjet 457 ATCGCTCGAGTGATCTAGAACACGTGGATATCGGCTATTCGGTTTAAACCTAGAGCGGCC 516 Query 61 GCTGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTG				
Query 61 GCTGGCCGCAATAAAATATCTTTATTTCATTACATCTGTGTGTTGGTTTTTTGTGTGGA 120 Sbjct 517 GCTGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTTGTGTGGA 576 Query 121 GATCTAAATGAGTCTTCGGACCTCGCGGGGGCCGCCTTAAGCGGTGGTTAGGGTTTGTCTG 180 Sbjct 577 GATCTAAATGAGTCTTCGGACCTCG-GGGGGGCCGCTTAAGCGGTGGTTAGGGTTTGTCTG 635 Query 181 ACGCgggggggggggAGGAACGAAACAACTCTCATTCGGAGGCGGCTCGGGGTTGGTC 240 111111111111111111111111111111111111	Sbjct	457	ATCGCTCGAGTGATCTAGAACACGTGGATATCGGCTATTCGGTTTAAACCTAGAGCGGCC	516
Sbjet 517 GCTGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGGTTTTTTGTGTGAG 576 Query 121 GATCTAAATGAGTCTTCGGACCTCGCGGGGGCCGCTTAAGCGGTGGTTAGGGTTTGTCTG 180 Sbjet 577 GATCTAAATGAGTCTTCGGACCTCG-GGGGGCCGCTTAAGCGGTGGTTAGGGTTTGTCTG 635 Query 181 ACGCggggggaggggAAGGAACGAAACACTCTCATTCGGAGGCGGCTCGGGGTTGGTC 240 Sbjet 636 ACGCGGGGGGAGGGGAAGGAACGAAACACTCTCATTCGGAGGCGGCTCGGGGTTGGTC 645 Query 241 TTGGTGGCCACGGGCACGCAGAAGAGCGCCGCGGATCCTCTTAAGCACCCCCCGGCCTCC 300 Sbjet 696 TTGGTGGCCACGGGCACGCAGAAGAGCGCCGCGGATCCTCTTAAGCACCCCCCGGCCCTCC 755 Query 301 GTGGAGGCGGGGGTTGGTCGCGGGGGGGGGGGGGCGCGCGGGATCCTCTTAAGCACCCCCCGGCGGGCG	Query	61	GCTGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTTGTGTGAG	120
Sbjet 517 GCTGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTTTGTT				
Query 121 GATCTAAATGAGTCTTCGGACCTCGCGGGGGCCGCTTAAGCGTGGTTAGGGTTTGTCTG 180 Sbjet 577 GATCTAAATGAGTCTTCGGACCTCG-GGGGGCCGCTTAAGCGTTGGGGTTGGTCT 635 Query 181 ACGCggggggggggAAGGAACGAAACACTCTCATTCGGAGGCGGCTCGGGGTTTGGTC 240 Sbjet 636 ACGCGGGGGGGAGGGGAAGGAACGAAACACTCTCATTCGGAGGCGGCTCGGGGTTTGGTC 695 Query 241 TTGGTGGCCACGGGCACGCAGAAAGAGCGCCGCGCATCCTCTTAAGCACCCCCCGGCCTCC 300 Sbjet 696 TTGGTGGCCACGGGCACGCAGAAAGAGCGCCGCGCATCCTCTTAAGCACCCCCCGGCCCTCC 755 Query 301 GTGGAGGCGGGGGTTTGGTCGGCGGGGTGGTAACTGGCGGGCCGCTGACTCGGGCGGG	Sbjct	517	GCTGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTG	576
Sbjet 577 GATCTAAATGAGTCTTCGGACCTCG-GGGGGCCGCTTAAGCGGTGGTAGGGTTTGTCTG 635 Query 181 ACGCGggggggggggAAGGAACGAAACACTCTCATTCGGAGGCGGCTCGGGGTTTGGTC 240 Sbjet 636 ACGCGGGGGGGAGGGGAAGGAACGAAACACTCTCATTCGGAGGCGGCTCGGGGTTTGGTC 695 Query 241 TTGGTGGCCACGGGCACGCAGAAAGAACGCCCGCGCATCCTCTTAAGCACccccccGCCCTCC 300 Sbjet 696 TTGGTGGCCACGGGCACGCAGAAAGAGCGCCGCGCGCTCTCTTAAGCACCCCCCGCCCCCC 755 Query 301 GTGGAGGCGGGGGTTTGGTCGGCGGGGGGGGAACTGCGCGGGCGCCGCGCGCG	Ouerv	121	GATCTAAATGAGTCTTCGGACCTCGCGGGGGCCGCTTAAGCGGTGGTTAGGGTTTGTCTG	180
Sbjet 577 GATCTAAATGAGTCTTCGGACCTCG-GGGGGCCGCTTAAGCGGTGGTTAGGGTTTGTCTG 635 Query 181 ACGCGggggggggggggggggAAGGAACGAAACACTCTCATTCGGAAGCGGGCTCGGGGTTTGGTC 240 Sbjet 636 ACGCGGGGGGGGGGGGGGAAGGAACGAAACACTCTCATTCGGAAGCGCGCGC	~ 1			
Query 181 ACGCggggggggggAAGGAACGAAACACTCTCATTCGGAGGCGGCTCGGGGTTTGGTC 240 Sbjet 636 ACGCGGGGGGAGGGGAAGGAACGAAACACTCTCATTCGGAGGCGGCTCGGGGTTTGGTC 695 Query 241 TTGGTGGCCACGGGCACGCAGAAGAAGCGCCGCGGATCCTCTTAAGCACccccccGCCCTCC 300 Sbjet 696 TTGGTGGCCACGGGCACGCAGAAGAAGAGCGCCGCGGATCCTCTTAAGCACCCCCCGGCCGCCTCC 755 Query 301 GTGGAGGCGGGGGTTTGGTCGGCGGGGGGGGGCGCGCGCG	Sbjct	577	GATCTAAATGAGTCTTCGGACCTCG-GGGGGCCGCTTAAGCGGTGGTTAGGGTTTGTCTG	635
Query 101 Indexsygggggggggggggggggggggggggggggggggggg	Ouerv	181	JT232TTT232323232323237TT42TT2T24244232444234423442344232323232	240
Sbjet 636 ACGCGGGGGGGGGGGGGGGGGGGAGGGGGAGGGAGCGAACACTCTCATTCGGAGGCGGCGCCGCGGGTTTGGTC 695 Query 241 TTGGTGGCCACGGGCACGCAGAAGAAGAGCGCCGCGATCCTCTTAAGCAcccccccGCCCCCC 300 Sbjet 696 TTGGTGGCCACGGGCACGCAGAAGAGGCGCCGCGGATCCTCTTAAGCACCCCCCGCGCCCCC 755 Query 301 GTGGAGGCGGGGGTTTGGTCGGCGGGGTGGTAACTGGCGGGGCCGCTGACTCGGGCGGG	Query	101		210
Query 241 TTGGTGGCCACGGGCACGCAGAAGAGCGCCGCGATCCTCTTAAGCACCCCCGCCCTCC 300 Sbjct 696 TTGGTGGCCACGGGCACGCAGAAGAGCGCCGCGGATCCTCTTAAGCACCCCCCGCCCTCC 755 Query 301 GTGGAGGCGGGGGGTTTGGTCGGCGGGGTGGTAACTGGCGGGCCGCTGACTCGGGCGGG	Sbjct	636	ACGCGGGGGGGGGGGGAAGGAACGAAACACTCTCATTCGGAGGCGGCTCGGGGTTTGGTC	695
Query 241 TTGGTGGCCACGGGCACGCAGAAGAGCGCCGCGATCCTCTTAAGCAccccccGCCCTCC 300 Sbjct 696 TTGGTGGCCACGGGCACGCAGAAGAGCGCCGCGGATCCTCTTAAGCACCCCCCGCCCTCC 755 Query 301 GTGGAGGCGGGGGTTTGGTCGGCGGGGTGGTAACTGGCGGGCCGCTGACTCGGGCGGG				
Sbjet 696 TTGGTGGCCACGGGCACGCAGAAGAGCGCCGCGGATCCTCTTAAGCACCCCCCGCCCTCC 755 Query 301 GTGGAGGCGGGGGTTTGGTCGGCGGGTGGTAACTGGCGGGCCGCTGACTCGGGCGGG	Query	241	TTGGTGGCCACGGGCACGCAGAAGAGCGCCGCGATCCTCTTAAGCAccccccGCCCTCC	300
Sbjet 696 TTGGTGGCCACGGGCACGCAGAAGAGGCGCGCGCGCGCATCCTCTTAAGCACCCCCCGCCCTCC 755 Query 301 GTGGAGGCGGGGGTTTGGTCGGCGGGTGGTAACTGGCGGGCCGCTGACTCGGGCGGG				
Query 301 GTGGAGGCGGGGGTTTGGTCGGCGGGTGGTAACTGGCGGGCCGCTGACTCGGGCGGG	Sbjct	696	TTGGTGGCCACGGGCACGCAGAAGAGCGCCGCGATCCTCTTAAGCACCCCCCGCCCTCC	755
Sbjet 756 GTGGAGGCGGGGGTTTGGTCGGCGGGTGGTAACTGGCGGGCCGCCGACTCGGGGGGGG	Query	301	GTGGAGGCGGGGGTTTGGTCGGCGGGTGGTAACTGGCGGGCCGCTGACTCGGGCGGG	360
Sbjet 756 GTGGAGGCGGGGGTTTGGTCGGCGGGTGGTAACTGGCGGGCCGCCGACTCGGGGGGGG				
Query 361 CGCGCCCCAGAGTGTGACCTTTTCGGTCTGCTCGCAGACCCCCGGGCGCCGCCGCGG 420 Sbjct 816 CGCGCCCCAGAGTGTGACCTTTTCGGTCTGCTCGCAGACCCCCGGGCGCCGCCGCGG 875 Query 421 CGGCGACGGGCTCGCTGG 438 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Sbjct	756	GTGGAGGCGGGGGTTTGGTCGGCGGGGTGGTAACTGGCGGGCCGCTGACTCGGGCGGG	815
Sbjet 816 CGCGCCCAGAGTGTGACCTTTTCGGTCTGCTCGCAGACCCCCGGGCGCCGCCGCGG 875 Query 421 CGGCGACGGGCTCGCTGG 438	Query	361	CGCGCCCCAGAGTGTGACCTTTTCGGTCTGCTCGCAGACCCCCGGGCGCCGCCGCGG	420
Sbjet 816 CGCGCCCAGAGTGTGACCTTTTCGGTCTGCTCGCAGACCCCCGGGCGCCGCCGCGG 875 Query 421 CGGCGACGGGCTCGCTGG 438 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				
Query 421 CGGCGACGGGCTCGCTGG 438	Sbjct	816	CGCGCCCCAGAGTGTGACCTTTTCGGTCTGCTCGCAGACCCCCGGGCGCCGCCGCGGG	875
	Ouerv	421	CGCCGACGGCTCGCTGG 438	
	Zuct J	161		
SDJCT 8/6 CGGCGACGGGCTCGCTGG 893	Sbjct	876	CGGCGACGGGCTCGCTGG 893	

^D psiCHECK-SCR-miR-100-5p (antisense)

Scor	e E	xpect Ide	ntities	Gaps	Strand					
793 bits	(429) 0	.0 429/42	29(100%)) 0/429(0%)	Plus/Minu	S				
Query	1	GATATTTI	ATTGCO	GCCAGCGG	GCCGCTCT	AGGTTTAAA	CCGAATAG	CCGATATC	CACGTG	60
Sbjct	536	GATATTTI	ATTGCO	GCCAGCGG	GCCGCTCT	AGGTTTAAA	CCGAATAG	CCGATATC	CACGTG	477
Query	61	T TCTAGAI	CACTCO	GAGCGATCO	GCCTAGAA'	TTACTGCTC	GTTCTTCA	.GCACGCGC	TCCACG	120
Sbjct	476	TTCTAGAI	CACTCO	GAGCGATCO	CCTAGAA'	TTACTGCT	GTTCTTCA	GCACGCGC	TCCACG	417
2										
Ouerv	121	AAGCTCTI	GATGTA	ACTTACCCA	ATTTCATC'	IGGAGCGTO	CTCCTGGC	TGAAGTGG.	AGGCCC	180
~ 1										
Shict	416	ΔΑGCͲCͲͲ	GATGTZ			TGGAGCGTO		ТСААСТСС	AGGCCC	357
52500	110	10001011	0111 0 11	1011110001				101110100		007
0110 717	101	THE ACCENT	CACCAT	CTCCCTCT	ייייאררכאא	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	macamaaa	CAAWACCC	ͲͲϹϹϪϪ	240
Query	101	IICACCII			IAGGGAA		LILLILLI	LIIIIII	IIGGAA	240
	256									0.07
SDJCT	320	TTCACCTI	CACGAA	ACTCGGTGT	TAGGGAA	UTTCTTAGC	TCCCTCGA	CAATAGCG	TTGGAA	291
Query	241	AAGAACCC	AGGG'I'C	CGGACTCGA	'I'GAACA'I'	C'I''I'AGGCAG	GATCGTCGC	'TGGCCCGA	AGG'I'AG	300
Sbjct	296	AAGAACCC	AGGGT	CGGACTCGA	TGAACAT	CTTAGGCAG	GATCGTCGC	TGGCCCGA.	AGGTAG	237
Query	301	GCGTTGTA	GTTGCO	GGACAATCI	GGACGAC	GTCGGGCTI	GCCTCCCT	TAACGAGA	GGGATC	360
Sbjct	236	GCGTTGTA	GTTGCC	GGACAATCI	GGACGAC	GTCGGGCTI	GCCTCCCT	TAACGAGA	GGGATC	177
Query	361	TCGCGAGG	CCAGGA	AGAGGGTAG	GCCGTCT	AACCTCGCC	CTTCTCCT	TGAATGGC	TCCAGG	420
Sbjct	176	TCGCGAGG	CCAGGA	AGAGGGTAG	GCCGTCT	AACCTCGCC	CTTCTCCT	TGAATGGC	TCCAGG	117
Ouerv	421	TAGGCAGC	G 429)						
			1							
Sbict	116	TAGGCAGC	G 108	3						
20100	± ± 0	1110001100	5 100	,						

^E psiCHECK- miR-192-5p (sense)

Score	E	xpect	Identitie	s Ga	ps	Strand							
898 bits(4	86) 0.	.0	494/498(99	9%) 0/498	(0%)	Plus/Plus							
Query	1	ATTC	TAGGCGA	TCGCTCO	GAGT	CTAGA <mark>GG</mark>	CTGTC	CAATTC	ATAGGT	CAGGTT	TAAACC	TAGA	60
Sbjct	447	ATTC	TAGGCGA	TCGCTCG	GAGT	CTAGAGG	CTGTC	CAATTC	ATAGGT	CAGGTT	TAAACC	TAGA	506
Query	61	GCGG	CCGCTGG	CCGCAAI	AAA	ATATCTT	TATTI	TCATT	ACATCT	GTGTGT	TGGTTT	TTTG	120
Sbjct	507	GCGG	CCGCTGG	CCGCAAI	'AAA	ATATCTT	TATTI	TCATT	ACATCT	GTGTGT	TGGTTT	TTTG	566
Query	121	TGTG	AGGATCT	AAATGAG	STCT	ICGGACC	TCGCG	GGGGC	CGCTTA	AGCGGT	GGTTAG	GGTT	180
Sbjct	567	TGTG	AGGATCT	AAATGAG	STCT	ICGGACC	TCGCG	GGGGC	CGCTTA	AGCGGT	GGTTAG	GGTT	626

Query	181	TGTCTGACGCggggggggggggggAAGGAACGAAACACTCTCATTCGGAGGCGGCTCGGGGT	240
Sbjct	627	TGTCTGACGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	686
Query	241	TTGGTCTTGGTGGCCACGGGCACGCAGAAGAGCGCCGCGATCCTCTTAAGCAcccccCG	300
Sbjct	687	TTGGTCTTGGTGGCCACGGGCACGCAGAAGAGCGCCGCGATCCTCTTAAGCACCCCCCG	746
Query	301	CCCTCCGTGGAGGCGGGGGTTTGGTCGGCGGGTGGTAACTGGCGGGCCGCTGACTCGGGC	360
Sbjct	747	CCCTCCGTGGAGGCGGGGGTTTGGTCGGCGGGTGGTAACTGGCGGGCCGCTGACTCGGGC	806
Query	361	GGGTCGCGCGCCCCAGAGTGTGACCTTTTCGGTCTGCTCGCAGACCCCCGGGCGGCGCCG	420
Sbjct	807	GGGTCGCGCGCCCCAGAGTGTGACCTTTTCGGTCTGCTCGCAGACCCCCGGGCGCGCCG	866
Query	421	CCGCGGCGGCGACGGGCTCGCTGGGTCCTAGGCTGGGTGGG	480
Sbjct	867	CCGCGGCGGCGACGGGCTCGCTGGGTCCTAGGCTCCATGGGGACCGTATACGTGGACAGG	926
Query	481	CTCTGGAGCATCCGCACG 498	
Sbjct	927	CTCTGGAGCATCCGCACG 944	

^F psiCHECK- miR-192-5p (antisense)

Scor	e E	ect Identities Gaps Strand	
809 bits	(438) 0	440/441(99%) 0/441(0%) Plus/Minus	
Query	1	TGTAATGAAAATAAAGATATTTTATTGCGGCCAGCGGCCGCTCTAGGTTTAAAC CTGAC	60
Sbjct	548	TGTAATGAAAATAAAGATATTTTATTGCGGCCAGCGGCCGCTCTAGGTTTAAACCTGAC	489
Query	61	TATGAATTGACAGCCTCTAGACTCGAGCGATCGCCTAGAATTACTGCTCGTTCTTCAGC	120
Sbjct	488	TATGAATTGACAGCCTCTAGACTCGAGCGATCGCCTAGAATTACTGCTCGTTCTTCAGC	429
Query	121	CGCGCTCCACGAAGCTCTTGATGTACTTACCCATTTCATCTGGAGCGTCCTCCTGGCTG	180
Sbjct	428	CGCGCTCCACGAAGCTCTTGATGTACTTACCCATTTCATCTGGAGCGTCCTCCTGGCTG	369
Query	181	AGTGGAGGCCCTTCACCTCCGAACTCGGTGTTAGGGAACTTCTTAGCTCCCTCGACA	240
Sbjct	368	AGTGGAGGCCCTTCACCTCCGAACTCGGTGTTAGGGAACTTCTTAGCTCCCTCGACA	309
Query	241	TAGCGTTGGAAAAGAACCCAGGGTCGGACTCGATGAACATCTTAGGCAGATCGTCGCTG	300
Sbjct	308	TAGCGTTGGAAAAGAACCCAGGGTCGGACTCGATGAACATCTTAGGCAGATCGTCGCTG	249
Query	301	CCCGAAGGTAGGCGTTGTAGTTGCGGACAATCTGGACGACGTCGGGCTTGCCTCCCTTA	360
Sbjct	248	CCCGAAGGTAGGCGTTGTAGTTGCGGACAATCTGGACGACGTCGGGCTTGCCTCCCTTA	189

^G psiCHECK- miR-SCR-192-5p (sense)

Scor	e I	Expect	Identities	Gaps	Strand	
819 bits((443) (0.0	443/443(100%)	0/443(0%)	Plus/Plus	
Query	1	GGCG	ATCGCTCGAG'	ICTAGA AT	TGCGTGCGGTACGTAATCAGTTTAAACCTAGAGCGGCC	60
Sbjct	453	GGCG	ATCGCTCGAG	ICTAGAAT	TGCGTGCGGTACGTAATCAGTTTAAACCTAGAGCGGCC	512
Query	61	GCTG	GCCGCAATAA	AATATCTT	TATTTCATTACATCTGTGTGTTGGTTTTTTGTGTGAG	120
Sbjct	513	GCTG	GCCGCAATAA	AATATCTT	TATTTTCATTACATCTGTGTGTGTTGGTTTTTTGTGTGAG	572
Ouerv	121	GATC	TAAATGAGTC'	ITCGGACC	TCGCGGGGGCCGCTTAAGCGGTGGTTAGGGTTTGTCTG	180
~ 1						
Sbict	573	GATC	TAAATGAGTC'	TTCGGACC	TCGCGGGGGCCGCTTAAGCGGTGGTTAGGGTTTGTCTG	632
2						
Query	181	ACGC	ggggggaggg	ggAAGGAA	CGAAACACTCTCATTCGGAGGCGGCTCGGGGTTTGGTC	240
Sbjct	633	ACGC	GGGGGGGAGGG	GGAAGGAA	CGAAACACTCTCATTCGGAGGCGGCTCGGGGTTTGGTC	692
Query	241	TTGG	TGGCCACGGG	CACGCAGA	AGAGCGCCGCGATCCTCTTAAGCAccccccGCCCTCC	300
Sbjct	693	TTGG	TGGCCACGGG	CACGCAGA	AGAGCGCCGCGATCCTCTTAAGCACCCCCCGCCCTCC	752
Query	301	GTGG	AGGCGGGGGT	ITGGTCGG	CGGGTGGTAACTGGCGGGCCGCTGACTCGGGCGGGTCG	360
Sbjct	753	GTGG	AGGCGGGGGT	ITGGTCGG	CGGGTGGTAACTGGCGGGCCGCTGACTCGGGCGGGTCG	812
Query	361	CGCG	CCCCAGAGTG	IGACCTTT	TCGGTCTGCTCGCAGACCCCCGGGCGCGCCGCCGCGG	420
Sbjct	813	CGCG	CCCCAGAGTG	IGACCTTT	TCGGTCTGCTCGCAGACCCCCGGGCGCGCCGCCGCGG	872
Query	421	CGGC	GACGGGCTCG	CTGGGTCC	T 443	
					I	
Sbjct	873	CGGC	GACGGGCTCG	CTGGGTCC	T 895	

^H psiCHECK- miR-SCR-192-5p (antisense)

 Score
 Expect
 Identities
 Gaps
 Strand

 996 bits(539)
 0.0
 546/549(99%)
 1/549(0%)
 Plus/Minus

 Query
 1
 GATGT-ATGAAAATAAAGATATTTTATTGCGGCCAGCGGCCGCTCTAGGTTTAAACTGAT
 59

	Sbjct	549	GATGTAATGAAAATAAAGATATTTTATTGCGGCCAGCGGCCGCTCTAGGTTTAAACTGAT	490
	Query	60	TACGTACCGCACGCAATTCTAGACTCGAGCGATCGCCTAGAATTACTGCTCGTTCTTCAG	119
	Sbjct	489	TACGTACCGCACGCAATTCTAGACTCGAGCGATCGCCTAGAATTACTGCTCGTTCTTCAG	430
	Query	120	CACGCGCTCCACGAAGCTCTTGATGTACTTACCCATTTCATCTGGAGCGTCCTCCTGGCT	179
	Sbjct	429	CACGCGCTCCACGAAGCTCTTGATGTACTTACCCATTTCATCTGGAGCGTCCTCCTGGCT	370
	Query	180	GAAGTGGAGGCCCTTCACCTTCACGAACTCGGTGTTAGGGAACTTCTTAGCTCCCTCGAC	239
	Sbjct	369	GAAGTGGAGGCCCTTCACCTACGAACTCGGTGTTAGGGAACTTCTTAGCTCCCTCGAC	310
	Query	240	AATAGCGTTGGAAAAGAACCCAGGGTCGGACTCGATGAACATCTTAGGCAGATCGTCGCT	299
	Sbjct	309	AATAGCGTTGGAAAAGAACCCAGGGTCGGACTCGATGAACATCTTAGGCAGATCGTCGCT	250
	Query	300	GGCCCGAAGGTAGGCGTTGTAGTTGCGGACAATCTGGACGACGTCGGGCTTGCCTCCCTT	359
	Sbjct	249	GGCCCGAAGGTAGGCGTTGTAGTTGCGGACAATCTGGACGACGTCGGGCTTGCCTCCCTT	190
	Query	360	AACGAGAGGGATCTCGCGAGGCCAGGAGAGGGTAGGCCGTCTAACCTCGCCCTTCTCCTT	419
	Sbjct	189	AACGAGAGGGATCTCGCGAGGCCAGGAGAGGGTAGGCCGTCTAACCTCGCCCTTCTCCTT	130
	Query	420	GAATGGCTCCAGGTAGGCAGCGAACTCCTGGGGCTCCAGTTTCCGCATGATCTTGCTTG	479
	Sbjct	129	GAATGGCTCCAGGTAGGCAGCGAACTCCTCAGGCTCCAGTTTCCGCATGATCTTGCTTG	70
	Query	480	GAGCATGGTCTCGACGAAGAAGTTATTCTCAAGCACCATTTTCTCGCCCTCTTCGCTCTT	539
	Sbjct	69	GAGCATGGTCTCGACGAAGAAGTTATTCTCAAGCACCATTTTCTCGCCCTCTTCGCTCTT	10
	Query	540	GATCAGGGC 548	
	Sbjct	9	GATCAGGGC 1	
I	psiC	HEC	K- miR-574-3p (sense)	

Scor	e E	Expect	Identities	Gaps	Strand						
809 bits((438) 0.	.0.	440/441(99%)	0/441(0%)	Plus/Plus						
Query	1	GGCG	GATCGCTCGA	GTCTAGA <mark>T</mark>	GTGGGTG	TGTGCA	IGAGCGT	GTTTAAA	ACCTAGAG	CGGC	60
Sbjct	453	GGCG	GATCGCTCGA	GTCTAGAT	GTGGGTG	TGTGCA	IGAGCGT	GGTTTAA	ACCTAGAG	CGGC	512
Query	61	CGCI	GGCCGCAATA	AAAATATC	TTTATTT	TCATTA	CATCTGT	GTGTTGGI	TTTTTTGT	GTGA	120
Sbjct	513	CGCI	GGCCGCAATA	AAAATATC	TTTATTT	TCATTA	CATCTGT	GTGTTGGI	TTTTTGT	GTGA	572
Query	121	GGAI	CTAAATGAG	ICTTCGGA	CCTCGCG	GGGGCCC	GCTTAAG	CGGTGGTI	TAGGGTTT	GTCT	180
Sbjct	573	GGAI	CTAAATGAG	ICTTCGGA	CCTCGCG	GGGGCCC	GCTTAAG	CGGTGGT	TAGGGTTT	GTCT	632

Query	181	GACGCggggggggggggggAAGGAACGAAACACTCTCATTCGGAGGCGGCTCGGGGTTTGGT	240
Sbjct	633	GACGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	692
	0.41		200
Query	241	CTTGGTGGCCACGGGCACGCAGAAGAGCGCCGCGATCCTCTTAAGCAccccccGCCCTC	300
Sbjct	693	CTTGGTGGCCACGGGCACGCAGAAGAGCGCCGCGATCCTCTTAAGCACCCCCCGCCCTC	752
Query	301		360
Query	001		000
Chiat	750		010
SDJCC	/55		012
Query	361	GCGCGCCCCAGAGTGTGACCTTTTCGGTCTGCTCGCAGACCCCCGGGCGCCGCCCCCG	420
Sbjct	813	GCGCGCCCCAGAGTGTGACCTTTTCGGTCTGCTCGCAGACCCCCGGGCGCCGCCGCGC	872
Query	421	GCGGCGACGGGCTCGCTGGGT 441	
Sbjct	873	GCGGCGACGGGCTCGCTGGGT 893	
psiCl	HEC	K- miR-574-3p (antisense)	
Scor	e E	xpect Identities Gaps Strand	
793 bits	(429) 0	.0 429/429(100%) 0/429(0%) Plus/Minus	
Query	1	AAAGATATTTTATTGCGGCCAGCGGCCGCTCTAGGTTTAAACCACGCTCATGCACACACCC	60
Sbjct	536	AAAGATATTTTATTGCGGCCAGCGGCCGCTCTAGGTTTAAACCACGCTCATGCACACACC	477
Query	61	CACATCTAGACTCGAGCGATCGCCTAGAATTACTGCTCGTTCTTCAGCACGCGCTCCACG	120
Sbjct	476	CACATCTAGACTCGAGCGATCGCCTAGAATTACTGCTCGTTCTTCAGCACGCGCTCCACG	417
Query	121	AAGCTCTTGATGTACTTACCCATTTCATCTGGAGCGTCCTCCTGGCTGAAGTGGAGGCCC	180
Sbjct	416	AAGCTCTTGATGTACTTACCCATTTCATCTGGAGCGTCCTCCTGGCTGAAGTGGAGGCCC	357

Query 181 TTCACCTTCACGAACTCGGTGTTAGGGAACTTCTTAGCTCCCTCGACAATAGCGTTGGAA 240

Sbjct 356 TTCACCTTCACGAACTCGGTGTTAGGGAACTTCTTAGCTCCCTCGACAATAGCGTTGGAA 297

Query 241 AAGAACCCAGGGTCGGACTCGATGAACATCTTAGGCAGATCGTCGCCGGAGGTAG 300

Sbjct 296 AAGAACCCAGGGTCGGACTCGATGAACATCTTAGGCAGATCGTCGCCGGAGGTAG 237

Query 301 GCGTTGTAGTTGCGGACAATCTGGACGACGTCGGGCTTGCCTCCCTTAACGAGAGGGATC 360

Sbjct 236 GCGTTGTAGTTGCGGACAATCTGGACGACGTCGGGCTTGCCTCCCTTAACGAGAGGGATC 177

Query 361 TCGCGAGGCCAGGAGAGGGTAGGCCGTCTAACCTCGCCCTTCTCCTTGAATGGCTCCAGG 420

Sbjct 176 TCGCGAGGCCAGGAGAGGGTAGGCCGTCTAACCTCGCCCTTCTCCTTGAATGGCTCCAGG 117

J

L

к psiCHECK- miR-SCR-574-3p (sense)

Scor	e E	Expect Identities	Gaps	Strand		
778 bits((421) 0	.0 421/421(100%	b) 0/421(0%)	Plus/Plus		
Query	1	AGTGCGTGTGAGT	GGCTTAGTG	GTTTAAACCTAGAGCGGCCGCTGGCCGC	АТАААТАА	60
Sbjct	472	AGTGCGTGTGAGT	GGCTTAGTG	GTTTAAACCTAGAGCGGCCGCTGGCCGC	ААТААААТА	531
Query	61	TCTTTATTTTCAT	TACATCTGT	TGTTGGTTTTTTTGTGTGAGGATCTAAAI	GAGTCTTCG	120
Sbjct	532	TCTTTATTTTCAT	TACATCTGT	TGTTGGTTTTTTTGTGTGAGGATCTAAAI	GAGTCTTCG	591
Query	121	GACCTCGCGGGGG	CCGCTTAAG	GGTGGTTAGGGTTTGTCTGACGCggggg	JgagggggAA	180
Sbjct	592	GACCTCGCGGGGG	CCGCTTAAG	GGTGGTTAGGGTTTGTCTGACGCGGGGG	GAGGGGGAA	651
Query	181	GGAACGAAACACT	CTCATTCGG.	GGCGGCTCGGGGTTTGGTCTTGGTGGCC	ACGGGCACG	240
Sbjct	652	GGAACGAAACACT	CTCATTCGG.	GGCGGCTCGGGGTTTGGTCTTGGTGGCC	ACGGGCACG	711
Query	241	CAGAAGAGCGCCG	CGATCCTCT	AAGCAccccccGCCCTCCGTGGAGGCG	GGGGTTTGG	300
Sbjct	712	CAGAAGAGCGCCG	CGATCCTCT	AAGCACCCCCCCGCCTCCGTGGAGGCG	GGGGTTTGG	771
Query	301	TCGGCGGGTGGTA	ACTGGCGGG	CGCTGACTCGGGCGGGTCGCGCGCCCCA	GAGTGTGAC	360
Sbjct	772	TCGGCGGGTGGTA	ACTGGCGGG	CGCTGACTCGGGCGGGTCGCGCGCCCCA	GAGTGTGAC	831
Query	361	CTTTTCGGTCTGC	TCGCAGACC	CCGGGCGGCGCCGCCGCGGCGGCGACGG	GCTCGCTGG	420
Sbjct	832	CTTTTCGGTCTGC	TCGCAGACC	CCGGGCGGCGCCGCCGCGGCGGCGACGG	GCTCGCTGG	891
Query	421	G 421				
Sbjct	892	G 892				
psiCl	HEC	K- miR-SCR	-574-3p	(antisense)		
G		T 1	- -			

Scor	e	Expect	Ident	unes	Gaps	Stra	na							
791 bits	(428)	0.0	428/428	(100%)	0/428(0%)	Plus/M	linus							
Query	1	TAA	AGATAT	TTTATT	GCGGCCA	GCGGC	CGCT	CTAGGI	TTAA	ACCCA	CTAAG	CCACI	CACA	60
Sbjct	537	TAA	AGATAT	TTTATI	GCGGCCA	GCGGC	CGCT	CTAGGI	TTAA	ACCCA	CTAAG	CCACI	TCACA	478
Query	61	CGCI	AC TCTA	GACTCO	GAGCGATC	GCCTA	GAAT	TACTGC	CTCGT	TCTTC	CAGCAC	GCGCI	CCAC	120
Sbjct	477	CGCZ	ACTCTA	GACTCO	GAGCGATC	GCCTA	.GAAT:	TACTGC	CTCGT	TCTTC	AGCAC	GCGCI	CCAC	418
-														
Querv	121	GAA	CTCTT	GATGTA	CTTACCC	ΑͲͲͲϹ	ATCT	GGAGCO	TCCT	CCTGG	CTGAA	GTGGZ	AGGCC	180
×~~~ ĭ		51111	001011	0111011				00110000		00100	.0101111	.01001	10000	100

Sbjct	417	GAAGCTCTTGATGTACTTACCCATTTCATCTGGAGCGTCCTCCTGGCTGAAGTGGAGGCC	358
Query	181	CTTCACCTTCACGAACTCGGTGTTAGGGAACTTCTTAGCTCCCTCGACAATAGCGTTGGA	240
Sbjct	357	CTTCACCTTCACGAACTCGGTGTTAGGGAACTTCTTAGCTCCCTCGACAATAGCGTTGGA	298
Query	241	AAAGAACCCAGGGTCGGACTCGATGAACATCTTAGGCAGATCGTCGCTGGCCCGAAGGTA	300
Sbjct	297	AAAGAACCCAGGGTCGGACTCGATGAACATCTTAGGCAGATCGTCGCTGGCCCGAAGGTA	238
Query	301	GGCGTTGTAGTTGCGGACAATCTGGACGACGTCGGGCTTGCCTCCCTTAACGAGAGGGAT	360
Sbjct	237	GGCGTTGTAGTTGCGGACAATCTGGACGACGTCGGGCTTGCCTCCCTTAACGAGAGGGAT	178
Query	361	CTCGCGAGGCCAGGAGAGGGTAGGCCGTCTAACCTCGCCCTTCTCCTTGAATGGCTCCAG	420
Sbjct	177	CTCGCGAGGCCAGGAGAGGGTAGGCCGTCTAACCTCGCCCTTCTCCTTGAATGGCTCCAG	118
Query	421	GTAGGCAG 428	
		1111111	
Sbjct	117	GTAGGCAG 110	

Figura 13 – Anelamento das regiões sequenciadas (Sbjct) com a região esperada no sítio de clonagem contendo a sequência para os miR-100-5p, SCR-miR-100-5p, miR-192-5p, SCR-192-5p, 574-3p e SCR-574-3p (verde) em vetor psiCHECK2 (Query). Pode-se observar complementariedade no sequenciamento da fita (A,C, E, G, I e K) sense e (B, D, F, H, J e L) antisense.

Ensaios da Luciferase após transfecção com miR-100-5p em células imortalizadas de nasofaringe (NP69)

Para verificação da especificidade dos miméticos foi efetuado o ensaio da luciferase por meio de vetores que contêm a região complementar ao miRNA maduro analisado utilizando células NP69. Para tanto foram empregadas 6 condições, para cada miRNA: 1) Vetor psiCHECK2 somente; 2) vetor psiCHECK2 + mimético (miR-100-5p, -192-5p ou -574-3p); 3) vetor psiCHECK-miR-100-5p, -192-5p ou 574-3p somente; 4) vetor psiCHECK-miR-100-5p, -192-5p ou 574-3p + respectivo mimético 5) vetor psiCHECK-SCR-miR-100-5p, -192-5p ou 574-3p; 6) vetor psiCHECK-SCR-miR-100-5p, -192-5p ou 574-3p + respectivo mimético. Todos os grupos possuíam reagente para transfecção Lipofectamine RNAiMAX (Thermo Fisher Scientific).

Nesse experimento espera-se que a expressão da luciferase de *Renilla* seja reduzida na presença do mimético de miRNA compatível com o vetor repórter recombinante

empregado, de modo a reduzir a luminescência e evidenciar a inibição pós-transcricional exercida pelo mimético e sua especificidade pela região regulatória introduzida no vetor repórter.

Conforme observado na Figura Suplementar S14 a S16, houve redução de 84% na detecção de unidade relativa de luciferase quando realizada a co-transfecção do vetor psiCHECK-miR-100-5p com o mimético do miR-100-5p (Figura Suplementar S14), redução de 86% na detecção de unidade relativa de luciferase quando realizada a co-transfecção do vetor psiCHECK-miR-192-5p com o mimético do miR-192-5p (Figura Suplementar S15) e 82% na detecção de unidade relativa de luciferase quando realizada a cotransfecção do vetor psiCHECK-miR-574-3p com o mimético do miR-574-3p (Figura Suplementar S16). Adicionalmente, foi verificado 43% de redução na detecção de unidade relativa de luciferase quando realizada a co-transfecção do vetor psiCHECK-miR-574-3p (Figura Suplementar S16). Adicionalmente, foi verificado 43% de redução na detecção de unidade relativa de luciferase quando realizada a co-transfecção do vetor psiCHECK-miR-SCR-574-3p com o mimético do miR-574-3p (Figura Suplementar S16), isso provavelmente se deve ao fato desse miRNA possui muitas regiões de repetição, proporcionando uma ligação parcial do mimético ao respectivo vetor psiCHECK.

Figura Suplementar 14 - Diferença na taxa de luminescência emitida pela atividade de luciferase (Renilla/Firefly) em células NP69SV40 24h após a transfecção com vetor psiCHECK (controle), psiCHECK-miR-100-5p ou psiCHECK-SCR-100-5p, todos com ou sem o mimético do miR-100-5p. Foi observada uma redução de 84% na taxa relativa da luciferase em células co-transfectadas com o vetor psiCHECK-miR-100-5p e o mimético do miR-100-5p. quando comparada com as células co-transfectadas com o vetor psiCHECK e o mimético do miR-100-5p * p<0,03.

Figura Suplementar 15 - Diferença na taxa de luminescência emitida pela atividade de luciferase (*Renilla/Firefly*) em células NP69SV40 24h após a transfecção com vetor psiCHECK (controle), psiCHECK-miR-192-5p ou psiCHECK-SCR-192-5p, todos com ou sem o mimético do miR-192-5p. Foi observada uma redução de 86% na taxa relativa da luciferase em células co-transfectadas com o vetor psiCHECK-miR-192-5p e o mimético do miR-192-5p quando comparada com as células co-transfectadas com o vetor psiCHECK e o mimético do miR-192-5p, e redução de 91% quando comparada com células transfectadas com o vetor psiCHECK somente. * p<0,009; ** p<0,007.

Figura 16 - Diferença na taxa de luminescência emitida pela atividade de luciferase (Renilla/Firefly) em células NP69SV40 24h após a transfecção com vetor psiCHECK (controle), psiCHECK-miR-574-3p ou psiCHECK-SCR-574-3p, todos com ou sem o mimético do miR-574-3p. Foi observada uma redução de 82% na taxa relativa da luciferase em células co-transfectadas

com o vetor psiCHECK-miR-574-3p e o mimético do miR-574-3p quando comparada com as células co-transfectadas com o vetor psiCHECK e o mimético do miR-574-3p, e redução de 85% quando comparada com células transfectadas com o vetor psiCHECK somente. Adicionalmente, foi observada uma redução de 42% na taxa relativa da luciferase em células co-transfectadas com o vetor psiCHECK-SCR-miR-574-3p e o mimético do miR-574-3p quando comparada com as células co-transfectadas com o vetor psiCHECK e o mimético do miR-574-3p, e redução de 55% quando comparada com células transfectadas com o vetor psiCHECK somente. *p<0,04; **p<0,03; ***p<0,004.

Referências

- ALI SYEDA, Z. et al. Regulatory Mechanism of MicroRNA Expression in Cancer. International Journal of Molecular Sciences, v. 21, n. 5, p. 1723, mar. 2020. DOI: http://doi.org/10.3390/ijms21051723
- ASADZADEH, Z. et al. microRNAs in cancer stem cells: Biology, pathways, and therapeutic opportunities. Journal of Cellular Physiology, v. 234, n. 7, p. 10002–10017, 2019. DOI: http://doi.org/10.1002/jcp.27885
- BEN-DAVID, U.; AMON, A. Context is everything: aneuploidy in cancer. **Nature Reviews. Genetics**, v. 21, n. 1, p. 44–62, jan. 2020. DOI: http://doi.org/10.1038/s41576-019-0171-x
- BRABLETZ, S. et al. Dynamic EMT: a multi-tool for tumor progression. **The EMBO journal**, v. 40, n. 18, p. e108647, set. 2021. DOI: http://doi.org/10.15252/embj.2021108647
- BRYANT, R. J. et al. Changes in circulating microRNA levels associated with prostate cancer. **British** Journal of Cancer, v. 106, n. 4, p. 768–774, fev. 2012. DOI: http://doi.org/10.1038/bjc.2011.595
- CAETANO, B. F. R. et al. Epstein-Barr virus microRNAs in the pathogenesis of human cancers. **Cancer** Letters, nov. 2020. DOI: http://doi.org/10.1016/j.canlet.2020.11.019
- CALIN, G. A. et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, v. 99, n. 24, p. 15524–15529, nov. 2002. DOI: http://doi.org/10.1073/pnas.242606799
- CHEN, B. et al. Roles of microRNA on cancer cell metabolism. Journal of Translational Medicine, v. 10, p. 228, 2012. DOI: http://doi.org/10.1186/1479-5876-10-228
- CHEN, J. F.; YAN, Q. The roles of epigenetics in cancer progression and metastasis. **The Biochemical Journal**, v. 478, n. 17, p. 3373–3393, set. 2021. DOI: http://doi.org/10.1042/BCJ20210084
- CHEN, P. et al. Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in colorectal cancer. **Medical Oncology**, v. 31, n. 10, p. 235, out. 2014. DOI: http://doi.org/10.1007/s12032-014-0235-x
- CHEN, Y.-P. et al. Nasopharyngeal carcinoma. **The Lancet**, v. 394, n. 10192, p. 64–80, jul. 2019. DOI: http://doi.org/10.1016/S0140-6736(19)30956-0
- CHEN, Z. et al. Identification and characterization of tumor suppressor and oncogenic miRNAs in gastric cancer. **Oncology Letters**, v. 10, n. 1, p. 329–336, jul. 2015. DOI: http://doi.org/10.3892/ol.2015.3179
- CHOI, J. D.; LEE, J.-S. Interplay between Epigenetics and Genetics in Cancer. **Genomics & Informatics**, v. 11, n. 4, p. 164, 2013. DOI: http://doi.org/10.5808/GI.2013.11.4.164
- CROCE, C. M. Causes and consequences of microRNA dysregulation in cancer. **National Institutes of Health**, v. 10, n. 10, p. 704–14, 2012. DOI: http://doi.org/10.1038/nrg2634.Causes
- CUI, Z. et al. Hsa-miR-574-5p negatively regulates MACC-1 expression to suppress colorectal cancer liver metastasis. Cancer Cell International, v. 14, p. 47, 2014. DOI: http://doi.org/10.1186/1475-2867-14-47
- DAI, Y. et al. MicroRNA expression profiles of head and neck squamous cell carcinoma with docetaxelinduced multidrug resistance. Head & Neck, v. 33, n. 6, p. 786–791, jun. 2011. DOI: http://doi.org/10.1002/hed.21540
- DAVIS-DUSENBERY, B. N.; HATA, A. Mechanisms of control of microRNA biogenesis. Journal of Biochemistry, v. 148, n. 4, p. 381–392, out. 2010. DOI: http://doi.org/10.1093/jb/mvq096
- DELLA VITTORIA SCARPATI, G. et al. Analysis of Differential miRNA Expression in Primary Tumor and Stroma of Colorectal Cancer Patients. **BioMed Research International**, v. 2014, p. 1–8, 2014. DOI: http://doi.org/10.1155/2014/840921
- DONG, B. et al. MiRNA-mediated EMT and CSCs in cancer chemoresistance. **Experimental Hematology** & Oncology, v. 10, fev. 2021. DOI: http://doi.org/10.1186/s40164-021-00206-5
- DOU, Z. et al. Pooling-analysis for diagnostic and prognostic value of MiRNA-100 in various cancers. **Oncotarget**, v. 8, n. 37, p. 62703–62715, jun. 2017. DOI: http://doi.org/10.18632/oncotarget.18697
- ESQUELA-KERSCHER, A.; SLACK, F. J. Oncomirs microRNAs with a role in cancer. **Nature reviews. Cancer**, v. 6, n. 4, p. 259–69, abr. 2006. DOI: http://doi.org/10.1038/nrc1840
- FENG, B.; WANG, R.; CHEN, L.-B. MiR-100 resensitizes docetaxel-resistant human lung adenocarcinoma cells (SPC-A1) to docetaxel by targeting Plk1. Cancer Letters, v. 317, n. 2, p. 184–191, abr. 2012. DOI: http://doi.org/10.1016/j.canlet.2011.11.024
- GEORGAKOPOULOS-SOARES, I. et al. EMT Factors and Metabolic Pathways in Cancer. Frontiers in Oncology, v. 10, abr. 2020. DOI: http://doi.org/10.3389/fonc.2020.00499
- GLOBAL BURDEN OF DISEASE CANCER COLLABORATION. The global burden of cancer 2013. JAMA Oncology, v. 1, n. 4, p. 505–527, jul. 2015. DOI: http://doi.org/10.1001/jamaoncol.2015.0735
- GUPTA, G. P.; MASSAGUÉ, J. Cancer Metastasis: Building a Framework. **Cell**, v. 127, n. 4, p. 679–695, nov. 2006. DOI: http://doi.org/10.1016/j.cell.2006.11.001
- HAMMOND, S. M. An overview of microRNAs. Advanced Drug Delivery Reviews, v. 87, p. 3–14, jun. 2015. DOI: http://doi.org/10.1016/j.addr.2015.05.001
- HANAHAN, D.; WEINBERG, R. A. Hallmarks of Cancer: The Next Generation. **Cell**, v. 144, n. 5, p. 646– 674, mar. 2011. DOI: http://doi.org/10.1016/j.cell.2011.02.013
- HILL, M.; TRAN, N. miRNA interplay: mechanisms and consequences in cancer. Disease Models & Mechanisms, v. 14, n. 4, p. dmm047662, abr. 2021. DOI: http://doi.org/10.1242/dmm.047662
- HUANG, Q. et al. MicroRNA-192 promotes the development of nasopharyngeal carcinoma through targeting RB1 and activating PI3K/AKT pathway. **World Journal of Surgical Oncology**, v. 18, n. 1, p. 29, fev. 2020. DOI: http://doi.org/10.1186/s12957-020-1798-y
- HUANG, Z. et al. A novel serum microRNA signature to screen esophageal squamous cell carcinoma. **Cancer Medicine**, v. 6, n. 1, p. 109–119, jan. 2017. DOI: http://doi.org/10.1002/cam4.973
- HUGO, H. et al. Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. Journal of Cellular Physiology, v. 213, n. 2, p. 374–383, nov. 2007. DOI: http://doi.org/10.1002/jcp.21223
- HUSSEN, B. M. et al. The Impact of Non-coding RNAs in the Epithelial to Mesenchymal Transition. Frontiers in Molecular Biosciences, v. 8, mar. 2021. DOI: http://doi.org/10.3389/fmolb.2021.665199
- JI, H. et al. Deep Sequencing of RNA from Three Different Extracellular Vesicle (EV) Subtypes Released from the Human LIM1863 Colon Cancer Cell Line Uncovers Distinct Mirna-Enrichment Signatures. PLoS ONE, v. 9, n. 10, out. 2014. DOI: http://doi.org/10.1371/journal.pone.0110314

- JI, S. et al. miR-574-5p negatively regulates Qki6/7 to impact β-catenin/Wnt signalling and the development of colorectal cancer. **Gut**, v. 62, n. 5, p. 716–726, maio 2013. DOI: http://doi.org/10.1136/gutjnl-2011-301083
- JI, Z. et al. MicroRNA-574-3p Regulates HIF-α Isoforms Promoting Gastric Cancer Epithelial-Mesenchymal Transition via Targeting CUL2. **Digestive Diseases and Sciences**, out. 2021. DOI: http://doi.org/10.1007/s10620-021-07263-0
- JIANG, Q. et al. MicroRNA-100 suppresses the migration and invasion of breast cancer cells by targeting FZD-8 and inhibiting Wnt/β-catenin signaling pathway. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, nov. 2015. DOI: http://doi.org/10.1007/s13277-015-4342-x
- KIM, Y. S. et al. miRNAs involved in LY6K and estrogen receptor alpha contibute to tamoxifen-suceptibility in breast cancer. v. 5, n. 7, p. 42261–42273, 2016.
- KOZOMARA, A.; BIRGAOANU, M.; GRIFFITHS-JONES, S. miRBase: from microRNA sequences to function. Nucleic Acids Research, v. 47, n. D1, p. D155–D162, jan. 2019. DOI: http://doi.org/10.1093/nar/gky1141
- LEITÃO, A. L.; ENGUITA, F. J. A Structural View of miRNA Biogenesis and Function. **Non-coding RNA**, v. 8, n. 1, p. 10, jan. 2022. DOI: http://doi.org/10.3390/ncrna8010010
- LI, Y. Y. et al. Exome and genome sequencing of nasopharynx cancer identifies NF-κB pathway activating mutations. **Nature Communications**, v. 8, p. 14121, jan. 2017. DOI: http://doi.org/10.1038/ncomms14121
- MAIA, B. DE M. et al. microRNA Portraits in Human Vulvar Carcinoma. **Cancer Prevention Research**, v. 6, n. 11, p. 1231–1241, nov. 2013. DOI: http://doi.org/10.1158/1940-6207.CAPR-13-0121
- MATTIUZZI, C.; LIPPI, G. Current Cancer Epidemiology. Journal of Epidemiology and Global Health, v. 9, n. 4, p. 217–222, dez. 2019. DOI: http://doi.org/10.2991/jegh.k.191008.001
- MISHAN, M. A. et al. Functional mechanisms of miR-192 family in cancer. Genes, Chromosomes and Cancer, v. 59, n. 12, p. 722–735, 2020. DOI: http://doi.org/https://doi.org/10.1002/gcc.22889
- MORRIS, K. V. The emerging role of RNA in the regulation of gene transcription in human cells. Seminars in cell & developmental biology, v. 22, n. 4, p. 351–358, jun. 2011. DOI: http://doi.org/10.1016/j.semcdb.2011.02.017
- MÜLLER COAN, B. G. et al. Latent Membrane Protein 1 (LMP1) from Epstein–Barr Virus (EBV) Strains M81 and B95.8 Modulate miRNA Expression When Expressed in Immortalized Human Nasopharyngeal Cells. **Genes**, v. 13, n. 2, p. 353, fev. 2022. DOI: http://doi.org/10.3390/genes13020353
- MÜLLER-COAN, B. G. et al. Cancer Progression Goes Viral: The Role of Oncoviruses in Aggressiveness of Malignancies. Trends in Cancer, v. 4, n. 7, p. 485–498, jul. 2018. DOI: http://doi.org/10.1016/j.trecan.2018.04.006
- National Center for Biotechnology Information (NCBI)[Internet]. Bethesda (MD): National Library of Medicine (US). . , abr. 2021. . Acesso em: 20 abr. 2021
- NEOPHYTOU, C. M. et al. The Role of Tumor Microenvironment in Cancer Metastasis: Molecular Mechanisms and Therapeutic Opportunities. Cancers, v. 13, n. 9, p. 2053, jan. 2021. DOI: http://doi.org/10.3390/cancers13092053

- PAIVA, R. M. et al. Urinary microRNAs expression in prostate cancer diagnosis: a systematic review. Clinical and Translational Oncology, v. 22, n. 11, p. 2061–2073, nov. 2020. DOI: http://doi.org/10.1007/s12094-020-02349-z
- PUPPO, M. et al. miRNA-Mediated KHSRP Silencing Rewires Distinct Post-transcriptional Programs during TGF-β-Induced Epithelial-to-Mesenchymal Transition. n. 16, p. 967–978, 2016.
- RYAN, B. M.; FAUPEL-BADGER, J. M. The hallmarks of premalignant conditions: a molecular basis for cancer prevention. Seminars in oncology, v. 43, n. 1, p. 22–35, fev. 2016. DOI: http://doi.org/10.1053/j.seminoncol.2015.09.007
- SAW, P. E. et al. Non-coding RNAs: the new central dogma of cancer biology. Science China Life Sciences, v. 64, n. 1, p. 22–50, jan. 2021. DOI: http://doi.org/10.1007/s11427-020-1700-9
- SCHAGAT, T.; VIDUGIRIENE, J. MicroRNA Biosensors:Application for the psiCHECK[™]-2 Vector. **Promega corporation**, 2008.
- Sequence Scramble (GenScript), 2002. Disponível em: https://www.genscript.com/tools/createscrambled-sequence. Acesso em: 25 ago. 2021
- SHAW, P. et al. A Clinical Update on the Prognostic Effect of microRNA Biomarkers for Survival Outcome in Nasopharyngeal Carcinoma: A Systematic Review and Meta-Analysis. Cancers, v. 13, n. 17, p. 4369, ago. 2021. DOI: http://doi.org/10.3390/cancers13174369
- SHI, W. et al. Significance of Plk1 regulation by miR-100 in human nasopharyngeal cancer. International Journal of Cancer. Journal International Du Cancer, v. 126, n. 9, p. 2036–2048, maio 2010. DOI: http://doi.org/10.1002/ijc.24880
- SOLÉ, C.; LAWRIE, C. H. MicroRNAs in Metastasis and the Tumour Microenvironment. International Journal of Molecular Sciences, v. 22, n. 9, p. 4859, jan. 2021. DOI: http://doi.org/10.3390/ijms22094859
- SPANJER, A. I. R. et al. TGF-β-induced profibrotic signaling is regulated in part by the WNT receptor Frizzled-8. The FASEB Journal, v. 30, n. 5, p. 1823–1835, 2016. DOI: http://doi.org/10.1096/fj.201500129
- STRIBLING, D. et al. A noncanonical microRNA derived from the snaR-A noncoding RNA targets a metastasis inhibitor. RNA, v. 27, n. 6, p. 694–709, jan. 2021. DOI: http://doi.org/10.1261/rna.078694.121
- SU, Y. et al. Aberrant expression of microRNAs in gastric cancer and biological significance of miR-574-3p. **International Immunopharmacology**, v. 13, n. 4, p. 468–475, ago. 2012. DOI: http://doi.org/10.1016/j.intimp.2012.05.016
- SUNG, H. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, v. 71, n. 3, p. 209–249, 2021. DOI: http://doi.org/10.3322/caac.21660
- TANG, Q. et al. Mutant p53 on the path to metastasis. **Trends in cancer**, v. 6, n. 1, p. 62–73, jan. 2020. DOI: http://doi.org/10.1016/j.trecan.2019.11.004
- THUN, M. J. et al. The global burden of cancer: priorities for prevention. **Carcinogenesis**, v. 31, n. 1, p. 100–110, jan. 2010. DOI: http://doi.org/10.1093/carcin/bgp263
- TSAI, M.-H. et al. Spontaneous Lytic Replication and Epitheliotropism Define an Epstein-Barr Virus Strain Found in Carcinomas. **Cell reports**, out. 2013. DOI: http://doi.org/10.1016/j.celrep.2013.09.012

- TSANG, C. M. et al. Translational genomics of nasopharyngeal cancer. Seminars in Cancer Biology, Translational Genomics for Rare Cancers: Challenges and Opportunity. v. 61, p. 84–100, abr. 2020. DOI: http://doi.org/10.1016/j.semcancer.2019.09.006
- UJIHIRA, T. et al. MicroRNA-574-3p, identified by microRNA library-based functional screening, modulates tamoxifen response in breast cancer. **Scientific Reports**, v. 5, jan. 2015. DOI: http://doi.org/10.1038/srep07641
- WACLAWICZEK, A. et al. Mesenchymal niche remodeling impairs hematopoiesis via stanniocalcin 1 in acute myeloid leukemia. The Journal of Clinical Investigation, v. 130, n. 6, p. 3038–3050, 2020. DOI: http://doi.org/10.1172/JCI133187
- WANG, J. et al. Prognostic significance of microRNA-100 in solid tumors: an updated meta-analysis. **OncoTargets and therapy**, v. 10, p. 493–502, jan. 2017. DOI: http://doi.org/10.2147/OTT.S122774
- WARNECKE-EBERZ, U. et al. Exosomal onco-miRs from serum of patients with adenocarcinoma of the esophagus: comparison of miRNA profiles of exosomes and matching tumor. **Tumor Biology**, v. 36, n. 6, p. 4643–4653, jun. 2015. DOI: http://doi.org/10.1007/s13277-015-3112-0
- WEN, Y. et al. Plasma miRNAs as early biomarkers for detecting hepatocellular carcinoma: Plasma miRNAs and hepatocellular carcinoma. International Journal of Cancer, v. 137, n. 7, p. 1679–1690, out. 2015. DOI: http://doi.org/10.1002/ijc.29544
- XU, H. et al. miR-574-3p acts as a tumor promoter in osteosarcoma by targeting SMAD4 signaling pathway. **Oncology Letters**, v. 12, n. 6, p. 5247–5253, dez. 2016. DOI: http://doi.org/10.3892/ol.2016.5355
- YAN-CHUN, L. et al. MicroRNA-192-5p Promote the Proliferation and Metastasis of Hepatocellular Carcinoma Cell by Targeting SEMA3A. Applied immunohistochemistry & molecular morphology: AIMM / official publication of the Society for Applied Immunohistochemistry, nov. 2015. DOI: http://doi.org/10.1097/PAI.00000000000296
- YANG, Q. et al. Frizzled 8 promotes the cell proliferation and metastasis of renal cell carcinoma. **Oncotarget**, v. 8, n. 45, p. 78989–79002, set. 2017. DOI: http://doi.org/10.18632/oncotarget.20742
- YAO, P. et al. Interplay between miR-574-3p and hnRNP L regulates VEGFA mRNA translation and tumorigenesis. Nucleic Acids Research, v. 45, n. 13, p. 7950–7964, jul. 2017. DOI: http://doi.org/10.1093/nar/gkx440
- YUAN, L. et al. Recurrent FGFR3-TACC3 fusion gene in nasopharyngeal carcinoma. Cancer Biology & Therapy, v. 15, n. 12, p. 1613–1621, dez. 2014. DOI: http://doi.org/10.4161/15384047.2014.961874
- ZHENG, X.-F. et al. MicroRNA-192 acts as a tumor suppressor in colon cancer and simvastatin activates miR-192 to inhibit cancer cell growth. **Molecular Medicine Reports**, v. 19, n. 3, p. 1753–1760, mar. 2019. DOI: http://doi.org/10.3892/mmr.2019.9808
- ZHOU, H.-C. et al. Downregulation of microRNA-100 enhances the ICMT-Rac1 signaling and promotes metastasis of hepatocellular carcinoma cells. **Oncotarget**, v. 5, n. 23, p. 12177–12188, out. 2014.
- ZHOU, R. et al. Tumor invasion and metastasis regulated by microRNA-184 and microRNA-574-5p in smallcell lung cancer. **Oncotarget**, v. 6, n. 42, p. 44609–44622, nov. 2015.
- ZHOU, R. et al. MicroRNA-574-5p promotes metastasis of non-small cell lung cancer by targeting PTPRU. **Scientific Reports**, v. 6, out. 2016. DOI: http://doi.org/10.1038/srep35714