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ABSTRACT. A simple mathematical model, developed to
simulate the chemotherapy response to tumour growth with
stabilized vascularization, is presented as a system of three
differential equations associated with the normal cells, cancer
cells and chemotherapy agent. Cancer cells and normal cells
compete by available resources. The response to chemotherapy
killing action on both normal and cancer cells obey Michaelis-
Menten saturation function on the chemotherapy agent. Our

aim is to investigate the efficiency of the chemotherapy in or-
der to eliminate the cancer cells. For that, we analyse the local
stability of the equilibria and the global stability of the cure
equilibrium for which there is no cancer cells. We show that
there is a region of parameter space that the chemotherapy
may eliminate the tumour for any initial conditions. Based on
numerical simulations, we present the bifurcation diagram in
terms of the infusion rate and the killing action on cancer cells,
that exhibit, for which infusion conditions, the system evolves
to the cure state.

1 Introduction Neoplastic diseases are considered a very severe
health problem worldwide. Understanding the dynamics of cancer in
the cell level is very important mainly when it is taken into account
their interaction with therapy agents. Due to its complexity, building
mathematical models is thought as a great challenge.

One of the most relevant phenomena for tumour growth is tumour an-
giogenesis that corresponds to the formation of new blood vessels (from
a previous vascularization) due to the proliferation of endothelial cells
that revest the blood vessels [1]. After the pre-vascular stage, the tu-
mour cells induce a synthesis of several substances, generally called Tu-
mour Angiogenic Factors (TAF) that stimulate the proliferation of new
endothelial cells [4]; they also produce smaller amounts of inhibitors
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(TIF—Tumor Inhibitor Factors) that can regulate the density of en-
dothelial cells. During the vascular stage, TAF dominates TIF and the
quantity of endothelial cells increases as well as the vascularization. Af-
ter the stabilization of that process, the tumour grows depending on its
fixed carrying capacity [6].

In this paper, we intend to describe the tumour growth after the
stabilization of vascularization. For that purpose, we analyse a simple
mathematical model taking into account the cancer cells (CCs), the nor-
mal cells (NCs) and the chemotherapy agent (CA). The model is inspired
by some previous works of Prof. Freedman and collaborators [11, 15]
about mathematical modelling of tumour treatment by chemotherapy.
Our focus is to investigate the response to a continuous chemotherapy
infusion in terms of the the agent capacity in killing CCs (efficiency of
CA) and the infusion rate.

The paper is organized as follows. In Section 1 we introduce our model
as a special case of a general chemotherapy model of tumour growth. In
Section 2, the local stability of equilibria is analysed. Section 3 contains
some numerical examples. In Section 4, the global stability of cure state
is developed. The discussion and concluding remarks are presented in
Section 5.

2 The model Similar to what was done by Nani and Freedman
[13], we model our system by means of three ordinary differential equa-
tions altogether simulating the interactions between the normal cells,
cancer cells and chemotherapy agent. For t ≥ 0, let Ni(t), i = 1, 2,
be the number of CCs and NCs, respectively; Q(t), be the dose of CA.
From a general point of view, we assume that:

• Both N1(t) and N2(t) exhibit saturated growth rates defined by func-
tions G1(N1(t)) and G2(N2(t)), respectively, and compete for avail-
able resources (nutrients and oxygen) according to functions Ci(N1(t),
N2(t)), i = 1, 2.

• Q(t) increases due to its time-dependent infusion rate given by q(t)
and decrease due to the washout function R(Q(t)).

• Q(t) acts killing N1(t) and N2(t) with different intensities according
to the killing functions Pi(Ni(t), Q(t)), i = 1, 2, with two terms: one
term saturated on Nj(t), j = 1, 2 and another one saturated on Q(t).

• Q(t) may also decrease due to its action on the cells according to
similar functions Fi(Ni(t), Q(t)), i = 1, 2, respectively.

https://www.researchgate.net/publication/11543689_The_role_of_vascular_endothelial_growth_factor_in_angiogenesis?el=1_x_8&enrichId=rgreq-b7dd47f8579ecdb1a1e582053610ac48-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NTIyMDtBUzoyMDg1MDQ3MzMzNDM3NDRAMTQyNjcyMjgxMDc4NA==
https://www.researchgate.net/publication/223008450_A_mathematical_model_of_vascular_tumor_treatment_by_chemotherapy?el=1_x_8&enrichId=rgreq-b7dd47f8579ecdb1a1e582053610ac48-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NTIyMDtBUzoyMDg1MDQ3MzMzNDM3NDRAMTQyNjcyMjgxMDc4NA==
https://www.researchgate.net/publication/223387174_A_chemotherapy_model_for_the_treatment_of_cancer_with_metastasis?el=1_x_8&enrichId=rgreq-b7dd47f8579ecdb1a1e582053610ac48-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NTIyMDtBUzoyMDg1MDQ3MzMzNDM3NDRAMTQyNjcyMjgxMDc4NA==


CHEMOTHERAPY RESPONSE FOR TUMOR GROWTH 371

This leads to a general model

(1)
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Ṅ1(t) = r1N1(t)G1(N1(t))

−C1(N1(t), N2(t)) −P1(N1(t), Q(t)),

Ṅ2(t) = r2N2(t)G2(N2(t))

−C2(N1(t), N2(t)) −P2(N2(t), Q(t)),

Q̇(t) = A(t) −R(Q(t)) −F1(N1(t), Q(t)) −F2(N2(t), Q(t)),

with · = d/dt.
As in our previous work [16], we assume the following specific func-

tions of the general model (1):

a) Logistic growth functions: Gi(Ni) = ri (1 − Ni/Ki) , i = 1, 2;
b) Competition functions: Ci(N1, N2) = riαiN1N2/Ki, i = 1, 2;

c) Holling type 2 killing functions: Pi(Ni, Q) = NiQ
(

pi

di+Q + si

ci+Ni

)

,

i = 1, 2, with s1 = s2 = 0, p1 = µ, p2 = ν, d1 = a, d2 = b;
d) Linear life-time drug function: R(Q) = λQ;
e) Negligible consumption of drug: Fi(Ni, Q) = 0, i = 1, 2;
f) Continuous infusion functions: A(t) = q, ∀ t ≥ 0.

Summarizing the meaning of parameters:

• ri and Ki are the proliferation rates and carrying capacities of Ni,
i = 1, 2;

• αi, i = 1, 2, are the competition coefficients between N1 and N2;
• µ and ν are the killing rate of CA on Ni, i = 1, 2, respectively.
• a and b are the Holling type 2 constant for P1 and P2, respectively;
• q is the infusion rate of CA;
• λ is the per unit washout rate of CA from the system.

For t ≥ 0, let Ni(t), i = 1, 2 be the number of NCs, CCs, respectively;
Q(t) the concentration of CA. Therefore, we have the following model
[16]:

(2)
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

















Ṅ1(t) = r1N1(t)

[

1 −
N1(t)

K1
−

α1N2(t)

K1

]

−
µN1(t)Q(t)

a + Q(t)
,

Ṅ2(t) = r2N2(t)

[

1 − N2(t)
K2

−
α2N1(t)

K2

]

−
νN2(t)Q(t)

b + Q(t)
,

Q̇(t) = q − λQ(t),
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with Ni(t = 0) = Ni0 ≥ 0, i = 1, 2, Q(t = 0) = Q0 ≥ 0. We assume
positive values for all parameters.

Beside the fact that we are taking into account only one site (no
metastasis), the main differences of some previous model developed by
Freedman, Nani and Pinho [15] are:

i) Based on pharmacodynamics arguments, Michaelis-Menten satura-
tion of killing functions is applied on the agent as in [9]. Therefore
we neglect the saturation on the cells in comparison with the satura-
tion on the agent assuming Pi(Ni, Q) = piNiQ/(di + Q); meanwhile
in [15], Pi(Ni, Q) = piNiQ/(ci + Ni) due to the saturation on the
cells.

ii) The reduction of the agent due to consumption is neglected in rela-
tion to its natural elimination: Fi(Ni, Q) = 0, i = 1, 2. We consider
the chemotherapy as a forcing action on the cells in order to anal-
yse their response to the treatment. Its time evolution, for a fixed
infusion q, is given by

Q(t) =
q

λ
+

[

Q0 −
q

λ

]

exp(−λ t).

Let us establish two important properties of the system (2): invari-
ance and dissipativity.

1. Invariance: all solutions with positive values remain positive.
By uniqueness of solutions, since N1 ≡ 0 is a solution of the first

equation of (2), no solution with N1(t) > 0 at any time t ≥ 0 can
become zero in finite time. Similarly, the same is true for N2(t). Since
Q̇(0) = q−λQ0, no solution Q(t) of (2) with Q(t) > 0 can become zero.

2. Dissipativity: the trajectories evolve to an attracting region of R3
+.

Since the initial conditions are nonnegative, so are the solutions. From
(2),

Ṅ1(t) ≤ r1N1(t)

[

1 −
N1(t)

K1

]

.

From standard comparison theory, we get

lim sup
t→∞

N1(t) ≤ K1.

Similarly,

lim sup
t→∞

N2(t) ≤ K2.
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We also have Q̇(t) ≤ q − λQ(t) giving

lim sup
t→∞

Q(t) ≤ λ−1q.

Hence, the region R = {(N1, N2, Q) ∈ R3
+ | 0 ≤ N1 ≤ K1, 0 ≤

N2 ≤ K2, 0 ≤ Q ≤ λ−1q} is an attracting invariant region proving the
property.

The last, but not least, important property was introduced in [14]
but also used in [15]:

3. Cancer Hypothesis: In the absence of any treatment, CCs always

win the competition with NCs.

In this case, the system (2) is simplified as

(3)



















Ṅ1(t) = r1N1(t)

[

1 −
N1(t)

K1
− α1

N2(t)

K1

]

,

Ṅ1(t) = r2N2(t)

[

1 −
N2(t)

K2
− α2

N1(t)

K2

]

,

in which we must have, if N2(0) > 0, N1(0) ≥ 0, then

lim
t→∞

(N1(t), N2(t)) = (K1, 0).

From [7] this implies that

(4) α1 <
K1

K2
and α2 >

K2

K1
,

which we assume throughout this paper. The no-treated particular
model given by (3) was discussed in [8].

3 Existence and local stability of equilibria We denote the
equilibria of system (2) by G(N∗

1 , N∗

2 , Q∗). The equilibria are given by

• G1(0, 0, q/λ) (no cells state);
• G2(0, N̆2, q/λ) (cure state - no CCs);
• G3(N̆1, 0, q/λ) (cancer state - no NCs);
• G4(N1, N2, q/λ) (interior state);
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where

N̆1 =
K1 [r1 aλ − q(µ − r1)]

r1 (a λ + q)
, N̆2 =

K2 [r2 b λ − q(ν − r2)]

r2 (b λ + q)
,

(5)

N 1 =
(q + bλ)K1r2 [qµ − (q + aλ)r1] − (q + aλ)K2r1 [qν − (q + bλ)r2] α1

(q + aλ)(q + bλ)r1r2 (α1α2 − 1)
,

and
(6)

N 2 =
(q + aλ)K2r1 [qν − (q + bλ)r2] − (q + bλ)K1r2 [qµ − (q + aλ)r1] α2

(q + aλ)(q + bλ)r1r2 (α1α2 − 1)
.

In order to analyse the local stability of equilibria, the Jacobian ma-
trix J(N1, N2, Q) of system (2) is given by

(7) J(N1, N2, Q) =





j11 j12 j13
j21 j22 j23
0 0 −λ



 ,

where

j11 =
r1(K1 − 2N1 − α1N2)

K1
−

µQ

a + Q
,

j22 =
r2(K2 − 2N2 − α2N1)

K2
−

νQ

b + Q
,

j12 = −
r1N1α1

K1
, j21 = −

r2N2α2

K2
,

j13 = −
µN1

a + Q
+

µN1Q

(a + Q)2
, j23 = −

νN2

b + Q
+

νN2Q

(b + Q)2
.

The no cells state G1 always exists in R3
+. Based on (7), its eigenvalues

are

(8) Θ1 =
r1 a λ − q(µ − r1)

a λ + q
, Θ2 =

r2 bλ − q(ν − r2)

b λ + q
, Θ3 = −λ.

Since λ > 0, Θ3 < 0. However, G1 must be unstable because there is
no biological meaning for no cells state. Therefore, we have to impose
Θ1 > 0 or Θ2 > 0, that correspond to the conditions for which G2 and
G3, respectively, exist in the positive cone.
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Lemma 1. Assuming ν > r2, G2 exists in R3
+ and G1 is locally unsta-

ble when ν < r2 (q + b λ)/q.

Lemma 2. Assuming µ > r1, G3 exists in R3
+ and G1 is locally unsta-

ble when µ < r1 (q + a λ)/q.

The eigenvalues of cure state G2 are:

(9)

Γ1 = −
[r2bλ − q(ν − r2)]

q + bλ
, Γ3 = −λ,

Γ2 = r1

{

1 − K2α1 [r2bλ − q(ν − r2)]

(q + bλ)K1r2

}

−
qµ

q + aλ
.

According to Lemma 2, which sets up the condition for existence of
G2, we have Γ1 < 0. Therefore, since Γ3 < 0, that is enough Γ2 < 0 to
guarantee asymptotical stability of G2. Using the condition Γ2 < 0 we
can enunciate the following theorem.

Theorem 1. Suppose that r2 < ν < r2 (q + b λ)/q. Then G2 is locally

asymptotically stable if and only if

(10) µ > r1
(q + aλ)

q

{

1 −
α1K2

K1

[

1 −
qν

(q + bλ)r2

]}

.

Otherwise it is a hyperbolic saddle point.

Since µ represents how much efficient the chemotherapy agent is to
kill CCs, Theorem 1 sets up the threshold condition to guarantee the
elimination of CCs when the chemotherapy acts, for initial conditions,
such that the tumour is not too large. Using one of the conditions
(K2 < K1α2) of cancer hypothesis (4), Theorem 1 leads to the following
corollary.

Corollary 1. Suppose that r2 < ν < r2 (q + b λ)/q. Then G2 is a

hyperbolic saddle point when

µ < r1
(q + aλ)

q

{

1 − α1α2

[

1 −
qν

(q + bλ)r2

]}

.

Note that the above condition does not depend on the carrying capacities
of the cells.
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Analogously, the eigenvalues of cancer state G3 are

(11)

Ψ2 = −
[r1aλ − q(µ − r1)]

q + aλ
, Ψ3 = −λ,

Ψ1 = r2

{

1 − K1α2 [r1aλ − q(µ − r1)]

(q + aλ)K2r1

}

−
qν

q + bλ
.

According to Lemma 1, which sets up the condition for existence of
G3, we have Ψ2 < 0. Since the cancer state G3 has no biological meaning,
if it exists, we have to impose Ψ1 > 0; in this case, we enunciate the
following theorem.

Theorem 2. Suppose that r1 < µ < r1(q + a λ)/q. G3 is a hyperbolic

saddle point if and only if

(12) µ > r1
(q + aλ)

q

{

1 −
K2

K1α2

[

1 −
qν

(q + bλ)r2

]}

.

Otherwise it is locally asymptotically stable.

The existence of the interior equilibrium G4 is related to the unstable
character of G2 and G3. Comparing the expressions (5) and (6) with
Theorems 1 and 2, we obtain the following theorem.

Theorem 3. Suppose that r1 < µ < r1 (q + a λ)/q, r2 < ν < r2 (q +
b λ)/q and α1α2 < 1. G4 exists when G2 and G3 are hyperbolic saddle

points.

The characteristic polynomial of the interior state G4 is given by

(13) (−λ − Θ)(Θ2 + A1Θ + A0) = 0,

with

A1 = −
K2 [qν − (q + bλ)r2]α1r1

K1r2(q + bλ) (α1α2 − 1)
−

K1 [qµ − (q + aλ)r1] α2r2

K2r1(q + aλ) (α1α2 − 1)

−
(r1 + r2)

(α1α2 − 1)
+

[q(q(µ + ν) + λ(bµ + aν))]

(q + aλ)(q + bλ) (α1α2 − 1)
,

A0 =
[qµ − (q + aλ)r1] (1 + α2)

(q + aλ)2(q + bλ)K2r1 (α1α2 − 1)

−
[qν − (q + bλ)r2] (1 − α1)

(q + aλ)(q + bλ)2K1r2 (α1α2 − 1)
.
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The local stability of G4 depends on the signals of A0 and A1. If A0 > 0
and A1 > 0, then G4 is locally asymptotically stable.

Note that the above analytical results were presented in terms of the
threshold of µ and ν for fixed value of q. A similar analysis can be
performed, based on the eigenvalues, for fixed values of µ and ν, varying
the value of q, leading to more complicated inequalities.

4 Numerical simulations In this section, we present some nu-
merical simulations of the model (2) such that the system may evolve
to the cure state G2 or to the interior state G4.

The parameter values, presented on Table 1, are based on some bi-
ological information and on the conditions imposed by Lemmas 1 and
2. Moreover, we assume G3 is a hyperbolic saddle point according to
Theorem 2.

Parameter Value Unit Reference/Comment

r1 10−2 day−1 [17]

r2 10−3 day−1 r2 < r1

K1 1012 cells [17]

K2 1012 cells K2 ∼ K1

α1 9 × 10−2 - α1 < K1/K2 (cancer hypothesis)

α2 1.5 - α2 > K1/K2 (cancer hypothesis)

µ 8 day−1 µ > r1 (Lemma 2)

ν 8 × 10−2 day−1 ν > r2 (Lemma 1) and ν � µ [3]

q 5 mg day−1 continuous infusion [5]

λ 4.16 day−1 [12]

a 2 × 103 mg assumed value

b 5 × 106 mg assumed value

TABLE 1: A list of parameter values for the model (2).

In relation to the biological restrictions, it is important to emphasize
that

i) r1 > r2 means that CCs grows faster than NCs due to the fact that
CCs postpone apoptosis;
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ii) µ � ν because the chemotherapy action on CCs is more intense than
on NCs [3].

Concerning the chemotherapy infusion, we assume a situation for
which the CA is applied continuously [5] or as a limit case of the pe-
riodic infusion such that the time interval between the infusions goes
to zero [2]. As a chemotherapy agent, we consider, for example, cy-
clophosphamide whose elimination half-life t1/2 of 4 hours [12] leads to
λ = ln 2/t1/2 ≈ 4.16 day−1.

In Figure 1, we illustrate the effect of infusion rate q of CA on the
steady state, for fixed value of killing rate µ of CA on CCs in case of a
detectable tumour at t = 0. In Figure 1(a), the model (2) evolves to the
cure state. Meanwhile in Figure 1(b), for smaller value of q, it evolves
to the interior equilibrium.

0 5 000 10000 15 000 20000
t

0

2×10
11

4×10
11

6×10
11

8×10
11

1×10
12

N

(a)

0 5000 10000 15000 20000
t

0

2×1011

4×1011

6×1011

8×1011

1×1012

N

(b)

FIGURE 1: Constant infusion of CA (N1 (CCs): solid line and N2

(NCs): dashed line). Initial conditions: N1(0) = 2 × 1010 cells,
N2(0) = 1012 cells and Q(0) = 0; parameter values are listed on Table
4, except for q. (a) Cure state is reached for q = 15 mg day−1; (b)
interior equilibrium, for q = 5 mg day−1.

Figure 2 shows the effect of CA efficiency in killing CCs (µ) assuming
fixed value of infusion rate q in case of a detectable tumour at t = 0.
It illustrates the conditions of Theorems 1 and 2. In Figure 2(a), when
CA is more efficient in killing CCs, the model (2) evolves to the cure
state that is asymptotically stable according to Theorem 1. For smaller
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t
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8×1011
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N
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4×1011

6×1011

8×1011

1×1012

N
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FIGURE 2: Constant infusion of CA (N1 (CCs): solid line and N2

(NCs): dashed line). Initial conditions: N1(0) = 2× 1010 cells, N2(0) =
1012 cells and Q(0) = 0. Parameter values are listed on Table 4, except
for µ and q (q = 10 mg day−1 in both cases). (a) Cure equilibrium is
reached for µ = 10 day−1. (b) Interior equilibrium, for µ = 5 day−1.

value of µ, shown in Figure 2(b), it evolves to the equilibrium state when
G2 is a hyperbolic saddle point according to Theorem 1. In both cases,
condition (12) of Theorem 2 holds and G3 is a hyperbolic saddle point.

Finally, the bifurcation diagrams in relation to q and to µ are shown,
respectively, in Figures 3(a) and 3(b). They show the transitions be-
tween the cancer state G3 and the interior equilibrium G4 as well as
between G4 and the cure state G2. We can observe that both the infu-
sion rate of CA and the efficiency of CA in killing CCs are relevant to
reach the cure state. The transitions values of µ shown in Figure 3(b),
µt1 and µt2, correspond, respectively, to the threshold values of µ that
result from Ψ1 > 0 and Γ2 < 0, leading to Theorems 1 and 2. There-
fore, the threshold values are also consistent with Corollary 1 presented
in Section 3.

In the next section, we will show that, for some region of parameter
space, the cure state is globally stable for any initial size of tumour.

5 Global stability of cure state In this section, we find a suitable
Liapunov function [10] for the cure state G2(0, N̆2, q/λ). We set up a
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FIGURE 3: Bifurcation diagram of parameters q and µ: N1 (CCs): solid
line and N2 (NCs): dashed line. Parameter values (except µ and q) are
listed on Table 4; initial conditions: N1(0) = 2×1010 cells, N2(0) = 1012

cells and Q(0) = 0. (a) q is the control parameter (µ = 8 day−1). (b) µ
is the control parameter (q = 10 mg day−1). The threshold values of µ
are µt1 = 2.77 day−1 and µt2 = 7.58 day−1.

positive definite functional V : F([0,∞], R3
+) → R of the form

(14) V [N1(t), N2(t), Q(t)]

= N2(t) − N̆2 − N̆2 ln
N2(t)

N̆2

+ AN1(t) +
B

2

[

Q(t) −
q

λ

]2

,

for which the arbitrary constants A and B are positive. Then the deriva-
tive of V (V̇ = dV/dt) can be written as

V̇ =
Ṅ2

N2
(N2 − N̆)2 + AṄ1 + B

(

Q −
q

λ

)

Q̇

that leads to

V̇ [N1(t),N2(t), Q(t)]

= (N2 − N̆2)r2

(

1 −
N2

K2
− α2

N1

K2

)

−
νQ

b + Q
(N2 − N̆2)

+ Ar1N1

(

1 −
N1

K1
−

α1N2

K1

)

−
AµN1Q

a + Q
+ B

(

Q −
q

λ

)

.
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After some further calculations, we obtain

V̇ = r2(N2 − N̆2)

[

−
(N2 − N̆2)

K2
+

(K2 − N̆2)

K2

]

−
r2α2

K2
N1(N2 − N̆2) −

Ar1

K1
N2

1

+
Ar1

K1
N1

[

K1 − α1N̆2 − α1(N2 − N̆2)
]

−
ν

b + Q
Q(N2 − N̆2) −

Aµ

a + Q
N1Q −

B

λ
(q − λQ)2.

(15)

Since G2(0, N̆2, q/λ) is a steady state, we have

(16)
µq

aλ + q
=

r2

K1
(K1 − α1N̆2) and

νq

bλ + q
=

r2

K2
(N2 − N̆2).

Replacing (16) in (15) leads to

dV

dt
[N1,N2, Q]

= −
r2

K2
(N2 − N̆2)

2 +
νq

bλ + q
(N2 − N̆2)

−
r2α2

K2
N1(N2 − N̆2) −

Aµ

a + Q
N1Q

−
Ar1α1

K1
N1(N2 − N̆2) +

Aµq

aλ + q
N1

−
Ar1

K1
N2

1 −
ν

b + Q
Q(N2 − N̆2) −

B

λ
(q − λQ)2.

(17)

Finally, we obtain that, for any value of t > 0, the derivative of the
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Liapunov function is negative according to the following expression:

dV

dt
[N1,N2, Q]

= −
r2

K2
(N2 − N̆2)

2 −
bν

(bλ + q)(b + Q)

× (N2 − N̆2)(λQ − q) −
Ar1

K1
N2

1

−

(

r2α2

K2
+

Ar1α1

K1

)

N1(N2 − N̆2)

−
Aaµ

(aλ + q)(b + Q)
N1(λQ − q) −

B

λ
(q − λQ)2.

(18)

Therefore, there is a region of parameter space for which the cure
state G2 is globally stable, i.e., G2 is an attractor of the system for any
initial conditions.

6 Concluding remarks Inspired by some previous works of Prof.
Freedman and collaborators, we present, in this work, a simple mathe-
matical model to simulate the chemotherapy response to tumour growth
in the case that the vascularization has stabilized. Considering the in-
teraction between the CCs, NCs and CA, we obtain the local stability
conditions of cure state, cancer state and interior equilibrium.

The threshold conditions for infusion rate and efficiency of CA are set
up in order to reach the cure state and some numerical simulations are
performed. The diagram bifurcations, associated to infusion rate and
efficiency of CA, exhibit the transitions between cancer state, interior
equilibrium and cure state. Moreover, we obtain a Liapunov function
for the cure state showing its the global stability. It is important to call
the attention of the relevance of cancer hypothesis in our analysis.

In our future work, we intend to take into account the endothelial cells
in order to consider the tumour angiogenesis as a dynamical process.
Besides we analyse the periodic infusion of chemotherapy agent.
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