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This paper presents the synchronized and integrated two-level lot sizing and scheduling problem (SITLSP). This problem is
found in beverage production, foundry, glass industry, and electrofused grains, where the production processes have usually two
interdependent levels with sequence-dependent setups in each level. For instance, in the first level of soft drink production, raw
materials are stored in tanks flowing to production lines in the second level. The amount and the time the raw materials and
products have to be stored and produced should be determined. A synchronization problem occurs because the production in lines
and the storage in tanks have to be compatible with each other throughout the time horizon. The SITLSP and its mathematical
model are described in detail by this paper. The lack of similar models in the literature has led us to also propose a set of instances
for the SITLSP, based on data provided by a soft drink company. Thus, a set of benchmark results for these problem instances
are established using an exact method available in an optimization package. Moreover, results for two relaxations proved that the
modeling methodology could be useful in real-world applications.

1. Introduction

The problem studied in this paper is motivated by a real situ-
ation found in soft drink companies. In the bottling industry,
production involves two interdependent levels with decisions
about raw material storage in tanks and soft drink bottling in
lines. In the first level, decisions regarding the amount and
time the raw materials have to be stored in each one of the
available tanks should be made. Similarly, in the second level,
the lot size of each demanded item and its corresponding
scheduling in each line should be determined. A capacitated
lot sizing and scheduling problem has to be solved on each
one of these two levels (Figure 1).This problem covers various
issues of lot sizing and scheduling that have beendealtwith on

isolation only in the literature before. The challenging aspect
is the combination of all these issues in one interdependent
two-level problem. Capacitated lot sizing (and scheduling) is
a topic of broad interest and has attracted many researchers.
While capacitated lot sizing (and scheduling) is an NP-hard
optimization problem [1, 2], the problem of finding a feasible
solution isNP-complete already [3], if setup times are present.

One of the few optimal procedures for solving lot sizing
and scheduling problems with sequence-dependent setup
times can be found in Haase and Kimms [4]. Kovács et al.
(2009) presented a more compact model based on the pre-
vious one proposed by Haase and Kimms [4], which allows
solving larger instances within a reasonable computation
time. Luche et al. [5] and Clark et al. [6] presented mixed
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Figure 1: The two-level production process.

integer programming (MIP) models for lot sizing and sched-
uling in the presence of setup times for problems found in
electrofused grain and animal nutrition industries. Concern-
ing multilevel lot sizing problems, several publications exist
(e.g., [7–10]). The present paper deals with a multilevel lot
sizing and scheduling problem, which is difficult to tackle
even if the capacity is unlimited [11, 12], and there are parallel
machines represented by production lines (Figure 1). The
work in de Matta and Guignard [13] deals with rolling prod-
uction schedules for lot sizingwith parallelmachines. A study
on sequence-dependent setup costs with parallel machines
is found in Kang et al. [14]. A lot sizing problem in a semi-
conductor assembly with parallel machines was described by
Kuhn and Quadt [15] and Quadt and Kuhn [16]. A GRASP
heuristic with path-relinking intensification was applied by
Nascimento et al. [17] to solve instances of the capacitated lot
sizing problem with parallel machines.

A. R. Clark and S. J. Clark [18] proposed a MIP formu-
lation for a lot sizing and scheduling problem on parallel
machines with sequence-dependent setup times. Their com-
plex MIP formulation was solved using approximate models
in a rolling horizon basis with a reduced number of binary
variables per period. Model reformulations were also pre-
sented by Wolsey [19] to make standard software applicable.
Clark [20] presented a mathematical model for the planning
of a canning line in a drinks manufacturer. He proposed
approaches using local search integrated with the solution of
approximate MIP models. Gupta and Magnusson [21] pre-
sented a model for the capacitated lot sizing and scheduling
problem with sequence-dependent setup costs and nonzero
setup times.The solver CPLEXwas used to find optimal solu-
tions for small sized instances. The authors also determined
lower bounds for large sized instances using row aggregation
and relaxing the integrality of somemodel variables. Almada-
Lobo et al. [22] proposed models for the same problem tack-
led by Gupta and Magnusson [21], which were solved using
specific-purpose heuristics and the CPLEX solver.

A synchronization problem arises in a two-level problem
reported by Almada-Lobo et al. [23] and Toledo et al. [24].
Their focus is a glass container industry where the first level
deals with the glass color produced in the furnaces and

the second level deals with the color of the containers that are
produced afterwards. MIP formulations are tailored to tackle
this two-level and synchronized production planning prob-
lem where metaheuristic approaches are proposed. Baldo et
al. [25] studied another two-level problem in the brewery
industry: preparing the liquids including fermentation and
maturation inside the fermentation tanks and bottling the
liquids on the filling lines.The problemdiffers from soft drink
problemsmainly due to the relatively long lead times required
for the fermentation and maturation processes and because
the ready liquid can remain in the tanks for some time before
being bottled. The surveys in Drexl and Kimms [26], Karimi
et al. [27], Jans and Degraeve [28, 29], and Ramezanian et al.
[30] can be referred to for complete overviews in lot sizing
problems and industrial modeling for lot sizing problems.

Awork that comes close to our case is the one described in
Meyr [31], which is an extension of Meyr [32]. Meyr [31] con-
sidered a lot sizing and scheduling problemwith nonidentical
parallel machines, inventory costs, production costs, and
sequence-dependent setup times and costs. However, the soft
drink industry problem in the present paper is more complex
in the sense that it has two lot sizing and scheduling problems,
each of them similar to Meyr’s problem, one for lines and
another for tanks. The problem solution should find simulta-
neously the lot sizing and scheduling of rawmaterials in tanks
and soft drinks in the bottling lines, because there is interde-
pendence between these two levels, which is not present in
Meyr’s approach. Thus, new variables and constraints able to
synchronize and integrate these two levels need to be added.
There are studies dealing with supply chain synchronization
or integration applied to decentralized manufacturers [33].
However, the synchronization aspect dealt with by the present
paper is closer to the work of Tempelmeier and Buschkühl
[34].These authors introduced a synchronization problem in
a multi-item multimachine lot sizing and scheduling prob-
lem.This problem is found in the production system of auto-
mobile suppliers. There is a predetermined assignment of
products to machines where a common resource is necessary
for setup processes on all machines.

Bearing in mind the mentioned aspects, the problem
studied by the present paper is called synchronized and inte-
grated two-level lot sizing and scheduling problem (SITLSP).
Someworks relatedwith the specific softdrink industrial situ-
ation considered by the SITLSP have been published recently.
For instance, in Ferreira et al. [35], a simplified formulation
was presented for the SITLSP, where each bottling line has
a dedicated tank and each tank can be filled with all liquid
flavors needed by this line. Single-stage formulations were
presented in Ferreira et al. [36] based on the general lot sizing
and scheduling problem (GLSP) and on the asymmetric trav-
elling salesman problem (ATSP). The solutions found using
these formulations outperformed those found by solving the
formulation described in Ferreira et al. [35]. Toledo et al. [37]
introduced a genetic algorithm/mathematical programming
approach using Ferreira et al.’s [35] model, which reached
competitive or better solutions for the real-world instances
solved in Ferreira et al. [36]. All these recent results assume
the hypotheses of dedicated tanks. In our formulation, there
are no dedicated tanks, as it will be explained later.
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There are no existing modeling approaches to be directly
applicable that include all the issues simultaneously consid-
ered: lot sizing, scheduling, setup (time and cost), parallel
machines, among others. Thus, formulating a specific model
seems to be in order. In Toledo et al. [38] we have already pre-
sented a related formulation of this paper (in Portuguese) in a
very compact form, but nowwe spend a lot of effort to explain
all themodel constraints, providing details about their mean-
ings and interpretations. An effective method to deal with all
the aspects considered by the SITLSP was first proposed by
Toledo et al. [39]. This method based on a multipopulation
genetic algorithm with individuals hierarchically structured
in trees was able to solve instances with several levels of
difficulty based on data provided by a soft drink industry and
the solutions were compared with AMPL/CPLEX solutions
reported on that paper.

To sum up, the main contributions of this paper are to
present in detail a mathematical formulation for the SITLP, to
evaluate its performance solving real-world problem instan-
ces, and to define sets of benchmark instances for the SITLSP.
Amathematicalmodel servesmany purposes as to provide an
unequivocal definition of the problem better than a textual
description can do. The present paper combines ideas from
the general lot sizing and scheduling problem (GLSP) with
the continuous setup lot sizing problem (CSLP) [26] to
describe the SITLSP.Themodel is codednext and sets of small
(artificially created) instances are solved using commercial
software packages to find optimum solutions which can be
used, for example, as benchmark to evaluate heuristics pro-
posed for the same problem. Finally,medium-to-large instan-
ces are created and solved, applying some relaxation over the
formulation when the optimal or even a feasible solution can
be found by the exact method.

In the next section, we describe the industrial problem
in detail with some examples that will help us to explain
many specific problem issues. In the section onMathematical
Models, a MIP model is presented for the SITLSP. In section
on Computational Results, we show some computational
results obtained by solving the model with the modeling lan-
guage AMPL in combination with the CPLEX solver. Finally,
in Conclusions we present concluding remarks and discuss
perspectives for future research.

2. The Industrial Problem

Tomake the explanation easier, the problem is posed as a soft
drink industrial problem. Taking this into account, what it is
referred to as product in the problem is the combination of
the soft drink flavor and the type of container. Each of the
soft drinks is available in one or more bottle types, such as
glass bottles, plastic bottles, cans or bag-in-boxes of different
sizes. In general, only a subset of the bottling lines is capable of
producing a certain product, and products can be produced
using production lines in parallel. Various products share
a common production line, which cannot produce more
than one product at a time. However, whenever the product
switches, a setup time (of up to several hours) is required to
prepare the production line for the next product. Production

lines can maintain the setup state. When the production of
a product is preempted for a while and continued after some
idle time, then no setup is required. Setup times are sequence-
dependent, meaning that the order in which products are
produced affects the required time to perform a setup.

Let us take an example considering a time horizon of
2 periods for a production process with 5 raw materials, 6
products, 3 tanks, and 3 lines. Each time period has 5 time
units of capacity. Suppose the following:

(i) Rm𝐴 (raw material 𝐴) produces 𝑃1 (product 1).
(ii) Rm𝐵 produces 𝑃2 and 𝑃3.
(iii) Rm𝐶 produces 𝑃4.
(iv) Rm𝐷 produces 𝑃5.
(v) Rm𝐸 produces 𝑃6.
(vi) 𝐿1 (line 1) can bottle 𝑃1, 𝑃2, and 𝑃3.
(vii) 𝐿2 can bottle 𝑃1, 𝑃4, and 𝑃5.
(viii) 𝐿3 can bottle 𝑃1 and 𝑃6.
(ix) Tk1 (tank 1) can store Rm𝐴, Rm𝐵, and Rm𝐶.
(x) Tk2 can store Rm𝐴, Rm𝐵, Rm𝐶, and Rm𝐷.
(xi) Tk3 can store Rm𝐸.

In the first time period, the demands of products are 100
units of 𝑃1, 𝑃4, and 𝑃6 and 50 units of 𝑃5. In the second time
period, the demands are 100 units of 𝑃2 and 𝑃3 and 50 units
of 𝑃4 and 𝑃5. We are mentioning only relevant data for this
example. Figure 2 shows a possible schedule for a production
line level taking into account the line constraints as explained
before.

The processing time for each product to be produced is
shown in Figure 2. The assignments satisfied the set of prod-
ucts allowed to be produced in each line and the demands in
each period. There are also sequence-dependent setup times
from product 𝑃2 to 𝑃3 in 𝐿1 and from 𝑃4 to 𝑃5 in 𝐿2. This
schedule only pays attention to the line constraints, but it does
not take into account the tank constraints discussed next.

The raw material (i.e., the soft drink) that is bottled in
a production line comes from a storage tank with limited
storage capacity. Different soft drinks cannot be put in a tank
simultaneously.Hence, from time to time a tankmust be filled
with a particular soft drink, which might be another drink or
the same as before. Nevertheless, whenever a tank is filled, a
significant (sequence-dependent) setup time occurs to clean
and fill the tank, even if the same soft drink is filled into the
tank as before. For technical reasons, a tank can only be filled
up when it is empty. During the time of filling up a tank,
nothing can be pumped to a production line from that tank.
There is no fixed assignment between tanks and production
lines. Every tank can be connected to every production line
and a tank can feed more than one production line.

In the previous example, let us assume that all tanks have
100 L (liters) of maximum storage capacity. Suppose that 2 L
of Rm𝐴 is necessary to produce 1 u (unit) of 𝑃1, 0.5 L of Rm𝐵

for 1 u of 𝑃2 and 1 u of 𝑃3, 1 L of Rm𝐶 for 𝑃4, 2 L of Rm𝐷 for
𝑃5, and 1 L of Rm𝐸 for 𝑃6. Figure 3 shows a possible schedule
considering the tank constraints.
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Figure 2: Schedule for the production line level.
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Figure 3: Schedule for tank level.

A total of 200 L of Rm𝐴 to produce 100 u of 𝑃1 is
necessary.Therefore, tankTk1must be refilledwith Rm𝐴 and
the setup times are shown in Figure 3. The interdependence
between the two levels of the problems becomes clear now.
The schedule in Figure 3 cannot be created without knowing
the line schedule in Figure 2. For instance, it is necessary
to know when 100 u of 𝑃1 are scheduled on 𝐿1 to fill Tk1

with Rm𝐴. This also happens in Tk2 where it is necessary
to know when 𝑃4 is scheduled on 𝐿2 to fill Tk2 with Rm𝐷.
The schedules proposed in Figures 2 and 3 cannot be executed
without repairs. The same problem would happen, if we had
scheduled the tank level first. Figure 4 illustrates a possible
repair that swapped product 𝑃4 for 𝑃5 from the schedules in
Figures 2 and 3.

Bottling is usually done to meet a given demand (per
week) with a production planning horizon of four weeks in
particular soft drink companies. The decision maker has to
find out howmany units of what product should be produced
when and on what production line. To be able to do so, the
tanks must be filled appropriately. The objective can include
the minimization of the total sum of setups, inventory hold-
ing and production costs. Thus, there is a multilevel (two
level) lot sizing and scheduling problem with parallel proces-
sors (tanks on the first level and lines on the second), capacity
constraints, and sequence-dependent setup times and costs.
The mathematical model proposed by this paper in the next
section has to integrate these two lot sizing and scheduling
problems. The production in lines and the storage in tanks
must be compatible with each other.

3. A Model Formulation

This section introduces the mathematical model formulation
for the SITLSP. First, the basic ideas used by our formulation
are described. Next, the objective function as well as each one
of the model constraints is explained. Finally, an example is
used to show the type of information returned by the model
solution.
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Figure 4: Occupation for tank and line slots.

3.1. Basic Ideas. The underlying idea for modeling our appli-
cation combines issues from the general lot sizing and sched-
uling problem (GLSP) and the so-called continuous setup lot
sizing problem (CSLP) (see [26] for a comparison of these
models). A set of additional variables and constraints are also
included in the model, which can describe the specific issues
of the SITLSP.

From theGLSP,we adopt the idea of defining a fixed num-
ber (𝑆 for the production lines and 𝑆 for the tanks) of slots per
(macro-) period, so that at most one product or raw material
can be scheduled per slot.What needs to be determined is for
what product or raw material, respectively, a particular slot
should be reserved in lines and tanks, and what lot size (a lot
of size zero is possible) should be effectively scheduled, given
a valid slot reservation. Let us take the schedule shown in
Figures 2 and 3. Suppose now 2macro-periods with 𝑆 = 𝑆 = 2

slots per period. Figure 4 shows only the simultaneous slot
reservation for lines and tanks in each period.

The number of products in lines and raw materials in
tanks cannot be greater than the total number of slots (𝑆 = 𝑆 =

2) in each macro-period. There is not a full slot occupation
in Figure 4. For instance, only one slot is effectively occupied
by raw materials and products, respectively, in tank Tk3 and
line 𝐿3 during the first macro-period. In the second macro-
period, there is no slot occupied in Tk3 and 𝐿3. Following
the GLSP idea, these two slots are reserved (𝑃6 in line 𝐿3 and
Rm𝐸 in tank Tk3), but nothing is produced.

The use of slots in the model enables us to describe lines
and tank occupation using variables and constraints indexed
by slots.Therefore, we can define decision variables like 𝑥𝑗𝑙𝑠 =

1, if slot 𝑠 in line 𝑙 can be used to produce product 𝑗, 0, other-
wise; and𝑢𝑙𝑠 = 1, if a positive production amount is effectively
produced in slot 𝑠 in production line 𝑙 (0, otherwise). In the
same way, we have decision variables like 𝑥𝑗𝑘𝑠 = 1, if slot 𝑠 can
be used to fill rawmaterial 𝑗 in tank 𝑘, 0, otherwise; and 𝑢𝑘𝑠 =
1, if slot 𝑠 is used to fill raw material in tank 𝑘, 0, otherwise.
These variables (and others) will define constraints for the
correct line (or tank) occupation, the reservation of only one
product (raw material) per slot, and the effective production
(storage) of products (raw materials) (see model constraints
(2)–(10) and (30)–(39) in the next subsections).

In the SITLSP, the slots scheduled on one level with the
slots scheduled on the other level need to be coordinated.
For instance, a production line level, which must wait for a
setup time on the tank level, requires the tank setup time to
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Table 1: Guideline for line and tank constraints.

Line constraints Tank constraints Meaning
(2) (30) Assignments not allowed for lines and tanks
(3) (31) Assignments of products or raw materials to slots

(4), (16), and (17) (32)–(34) Link between the products or raw material assignments and the respective lot size
produced or stored.

(7) (35) and (36) Products or raw materials changeover.
(8) and (9) (37) and (38) Changeover setup time
(10) (39) Macro-period capacity
(5) and (6) (64) and (65) Inventory balance
(11)–(13) (41)–(43) Available capacity between endings of two consecutive slots.
(14) and (15) (44)–(47) Define only one beginning and only one ending for each slot.
(18)–(21), (23)–(24) (51)–(57), (59)–(61) Define the beginning and the ending for a slot effectively used or not.
(22) (58) Define an order for slot occupation
(25), (28), and (29) (40), (48), (64), and (65) Synchronize when a slot of raw material is taken from tanks and produced by lines.
(26) and (27) — Use of the capacity of the first micro-period of each slot.
— (62), (63), and (65) Refilling of tanks
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Figure 5: Synchronization between slots in lines and tanks.

be ready at least one small time unit before the production
to start in the line level. For that reason, we introduce small
micro-periods in a CSLP-likemanner.Themacro-periods are
divided into a fixed number of small micro-periods with the
same capacity. This capacity can be partially used, but the
same micro-period cannot be occupied by two slots. Let us
illustrate this idea in Figure 5, which synchronizes lines and
tanks from Figure 4.

Each macro-period was divided into 5 micro-periods
with the same length. In the first period, the production
of 𝑃1, 𝑃4, and 𝑃6 must start after the initial setup time of
Rm𝐴, Rm𝐶, and Rm𝐸, respectively.The rawmaterialmust be
previously ready in the tank so that the production begins in
lines. The setup time needed to refill Tk1 with Rm𝐴 and Tk2
with Rm𝐷 leads to an interruption of 𝑃1 and 𝑃5 production
in lines 𝐿1 and 𝐿2, respectively. In the second period, there is
an idle time in𝐿2 after𝑃5. Line𝐿2 is ready to produce𝑃4 after
its setup time, but the production has to wait for the Rm𝐶

setup time in Tk2.
Variables and constraints indexed by slots and micro-

periods will enable us to describe these situations. Binary

variables 𝑥
𝐵
𝑙𝑠𝜏 and 𝑥

𝐸
𝑙𝑠𝜏 indicate the micro-period 𝜏 when

the production of slot 𝑠 begins or when it ends in line 𝑙,
respectively.The analogous variables 𝑥

𝐵
𝑘𝑠𝜏 and 𝑥

𝐸
𝑘𝑠𝜏 are used to

indicate micro-period 𝜏 on slot 𝑠 of tank 𝑘. It is also necessary
to define linking variables 𝑞𝑘𝑗𝑙𝑠𝜏, which determine the amount
of product 𝑗 produced in line 𝑙 in micro-period 𝜏 on slot 𝑠,
using raw material from tank 𝑘. These variables (and others)
establish constraints which link production lines and tanks
and synchronize raw material and product slots (see model
constraints (25)–(27), (40), and (64) in the next subsections).

The model constraints are formally defined in the next
subsections. Table 1 has already separated them according to
the meaning, making it easier to understand.

3.2. Objective Function. Suppose that we have 𝐽 raw mate-
rials and 𝐽 products, 𝐿 production lines, and 𝐿 tanks. The
planning horizon is subdivided into𝑇macro-periods. For the
modeling reasons explained before, we assume that at most 𝑆

slots per macro-period can be scheduled on each production
line, and at most 𝑆 slots per macro-period and per tank
can be scheduled. These slot values can be set to sufficiently
large numbers so that this assumption is not restrictive
for practical purposes. Furthermore, for the same modeling
reasons explained before, we assume that each macro-period
is subdivided into𝑇

𝑚micro-periods.Thenotation being used
in the model description is summarized in the appendix.

As usual in lot sizing models, the objective is to minimize
the total sum of setup costs, inventory holding costs and pro-
duction costs.The first three terms in expression (1) represent
setup, holding, and production costs for production lines and
the next three the same costs for tanks. Notice that a feasible
solution, which fulfills all the demand right in time without
violating all constraints to be described,may not exist. Hence,
we allow that 𝑞

0
𝑗 units of the demand for product 𝑗may not be

produced to ensure that the model can always be solved (last
term in (1)). Of course, a very high penalty 𝑀 is attached to
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such shortages so that whenever there is a feasible solution
that fulfills all the demands, we would prefer this one:

𝐽

∑

𝑖=1

𝐽

∑

𝑗=1

𝐿

∑

𝑙=1

𝑇⋅𝑆

∑

𝑠=1
𝑠𝑖𝑗𝑙𝑧𝑖𝑗𝑙𝑠 +

𝐽

∑

𝑗=1

𝑇

∑

𝑡=1
ℎ𝑗𝐼𝑗𝑡 +

𝐽

∑

𝑗=1

𝐿

∑

𝑙=1

𝑇⋅𝑆

∑

𝑠=1
V𝑗𝑙𝑞𝑗𝑙𝑠

+

𝐽

∑

𝑖=1

𝐽

∑

𝑗=1

𝐿

∑

𝑘=1

𝑇⋅𝑆

∑

𝑠=1
𝑠𝑖𝑗𝑙𝑧𝑖𝑗𝑙𝑠 +

𝐽

∑

𝑗=1

𝐿

∑

𝑘=1

𝑇

∑

𝑡=1
ℎ𝑗𝐼𝑗𝑘,𝑡⋅𝑇𝑚

+

𝐽

∑

𝑗=1

𝐿

∑

𝑘=1

𝑇⋅𝑆

∑

𝑠=1
V𝑗𝑙𝑞𝑗𝑘𝑠 + 𝑀

𝐽

∑

𝑗=1
𝑞
0
𝑗 .

(1)

3.3. Production Line: Usual Constraints. First, constraints for
the production line level are presented which are usually
found in lot sizing and scheduling problems:

𝑥𝑗𝑙𝑠 = 0

𝑗 = 1, . . . , 𝐽; 𝑙 ∈ {1, . . . , 𝐿} \ 𝐿𝑗; 𝑠 = 1, . . . , 𝑇 ⋅ 𝑆,

(2)

𝐽

∑

𝑗=1
𝑥𝑗𝑙𝑠 = 1 𝑙 = 1, . . . , 𝐿; 𝑠 = 1, . . . , 𝑇 ⋅ 𝑆, (3)

𝑝𝑗𝑙𝑞𝑗𝑙𝑠 ≤ 𝐶𝑥𝑗𝑙𝑠

𝑗 = 1, . . . , 𝐽; 𝑙 = 1, . . . , 𝐿; 𝑠 = 1, . . . , 𝑇 ⋅ 𝑆,

(4)

𝐼𝑗1 = 𝐼𝑗0 + 𝑞
0
𝑗 +

𝐿

∑

𝑙=1

𝑆

∑

𝑠=1
𝑞𝑗𝑙𝑠 − 𝑑𝑗1 𝑗 = 1, . . . , 𝐽; (5)

𝐼𝑗𝑡 = 𝐼𝑗,𝑡−1 +

𝐿

∑

𝑙=1

𝑡⋅𝑆

∑

𝑠=(𝑡−1)𝑆+1
𝑞𝑗𝑙𝑠 − 𝑑𝑗𝑡

𝑗 = 1, . . . , 𝐽; 𝑡 = 2, . . . , 𝑇,

(6)

𝑧𝑖𝑗𝑙𝑠 ≥ 𝑥𝑗𝑙𝑠 + 𝑥𝑖𝑙,𝑠−1 − 1

𝑖, 𝑗 = 1, . . . , 𝐽; 𝑙 = 1, . . . , 𝐿; 𝑠 = 1, . . . , 𝑇 ⋅ 𝑆,

(7)

𝜎𝑙𝑠 =

𝐽

∑

𝑖=1

𝐽

∑

𝑗=1
𝜎
󸀠
𝑖𝑗𝑙𝑧𝑖𝑗𝑙𝑠

𝑖, 𝑗 = 1, . . . , 𝐽; 𝑙 = 1, . . . , 𝐿; 𝑠 = 1, . . . , 𝑇 ⋅ 𝑆,

(8)

𝜔𝑙𝑡 ≤ 𝜎𝑙,(𝑡−1)𝑆+1 𝑙 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; (9)

𝑡⋅𝑆

∑

𝑠=(𝑡−1)𝑆+1
(𝜎𝑙𝑠 +

𝐽

∑

𝑗=1
𝑝𝑗𝑙𝑞𝑗𝑙𝑠) ≤ 𝐶 + 𝜔𝑙𝑡

𝑙 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇.

(10)

A particular product can be produced on some lines, but
not on all in general (2) and only one product 𝑗 is produced in
each slot 𝑠 of line 𝑙 (3).The available time permacro-period is
an upper bound on the time for production (4).The inventory
balancing constraints (5) and (6) ensure that all demands are
met taking into account the dummy variable 𝑞

0
𝑗 . Constraint

(7) defines the setup times (𝑧𝑖𝑗𝑙𝑠 indicates this) based on slot
reservations (𝑥𝑗𝑙𝑠). Thus, it is possible to determine the setup
time 𝜎𝑙𝑠 to be included just in front of a certain slot (8). As a
result, overlapping setup can happen and, for the first slot of
a macro-period 𝑡, some setup time 𝜔𝑙𝑡 may be at the end of
the previous macro-period (9). The capacity 𝐶 in constraint
(10) has to be incremented by 𝜔𝑙𝑡. Thus, the total sum of pro-
duction and setup times in a certain macro-period must not
exceed the macro-period capacity 𝐶 by constraint (10).

3.4. Production Line: Time Slot Constraints. The constraints
showed next describe how to integrate the micro-period idea
from CLSP and the slot idea from GLSP.Themain point here
is to define specific constraints for the SITLSPwhich describe
when some slots in lines will be used throughout the time
horizon

𝑡 ⋅ 𝐶 −

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝐶
𝑚

𝜏𝑥
𝐸
𝑙,𝑡⋅𝑆,𝜏 ≥ 𝜔𝑙,𝑡+1

𝑙 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇 − 1,

(11)

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝐶
𝑚

𝜏𝑥
𝐸
𝑙𝑠𝜏 −

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝐶
𝑚

𝜏𝑥
𝐸
𝑙,𝑠−1,𝜏 ≥ 𝜎𝑙𝑠

+

𝐽

∑

𝑗=1
𝑝𝑗𝑙𝑞𝑗𝑙𝑠

𝑙 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1) 𝑆 + 1, . . . , 𝑇 ⋅ 𝑆,

(12)

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝐶
𝑚

𝜏𝑥
𝐸
𝑙,(𝑡−1)𝑆+1,𝜏 ≥ (𝑡 − 1) 𝐶 + 𝜎𝑙,(𝑡−1)𝑆+1 − 𝜔𝑙𝑡

+

𝐽

∑

𝑗=1
𝑝𝑗𝑙𝑞𝑗𝑙,(𝑡−1)𝑆+1

𝑙 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = 1, . . . , 𝑇 ⋅ 𝑆,

(13)

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝑥
𝐸
𝑙𝑠𝜏 = 1

𝑙 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1) 𝑆 + 1, . . . , 𝑇 ⋅ 𝑆,

(14)

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝑥
𝐵
𝑙𝑠𝜏 = 1

𝑙 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1) 𝑆 + 1, . . . , 𝑇 ⋅ 𝑆,

(15)

𝐽

∑

𝑗=1
𝑝𝑗𝑙𝑞𝑗𝑙𝑠 ≤ 𝐶𝑢𝑙𝑠 𝑙 = 1, . . . , 𝐿; 𝑠 = 1, . . . , 𝑇 ⋅ 𝑆, (16)

𝜀𝑢𝑙𝑠 ≤

𝐽

∑

𝑗=1
𝑞𝑗𝑙𝑠 𝑙 = 1, . . . , 𝐿; 𝑠 = 1, . . . , 𝑇 ⋅ 𝑆, (17)

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝜏𝑥
𝐸
𝑙𝑠𝜏 −

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝜏𝑥
𝐵
𝑙𝑠𝜏 ≤ 𝑇

𝑚
𝑢𝑙𝑠

𝑙 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1) 𝑆 + 1, . . . , 𝑇 ⋅ 𝑆,

(18)
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Macro-period 1 Macro-period 2

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Time

Time

L1

L1
s1 s2 s3 s4

P1 P1 P2 P3

P1 P1 P2 P3

xEL1,s3,8

xEL1,s3,8

xEL1,s4,10
𝜎12

𝜎L1,s3
𝜔L1,2

Constraint (12)

Constraint (13)

10xEL1,s4,10 − 8xEL1,s3,8 ≥ 𝜎L1,s4 + pP3,L1qP3,L1

8xEL1,s3,8 ≥ (2 − 1) . 5 + 𝜎L1,s3 − 𝜔L1,2 +

,s4

pP2,L1qP2,L1,s3

Figure 6: Keeping enough time between slots.

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝜏𝑥
𝐵
𝑙𝑠𝜏 −

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝜏𝑥
𝐸
𝑙𝑠𝜏 ≤ 𝑢𝑙𝑠

𝑙 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1) 𝑆 + 1, . . . , 𝑇 ⋅ 𝑆,

(19)

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝜏𝑥
𝐵
𝑙𝑠𝜏 −

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝜏𝑥
𝐸
𝑙,𝑠−1,𝜏 ≤ 𝑇

𝑚
𝑢𝑙𝑠

𝑙 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1) 𝑆 + 2, . . . , 𝑇 ⋅ 𝑆,

(20)

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝜏𝑥
𝐵
𝑙,(𝑡−1)𝑆+1,𝜏 − ((𝑡 − 1) 𝑇

𝑚
+ 1) ≤ 𝑇

𝑚
𝑢𝑙,(𝑡−1)𝑆+1

𝑙 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇,

(21)

𝑢𝑙𝑠 ≥ 𝑢𝑙,𝑠+1

𝑙 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1) 𝑆 + 1, . . . , 𝑇 ⋅ 𝑆 − 1,

(22)

𝜀𝑢𝑙𝑠 +

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝐶
𝑚

𝜏𝑥
𝐸
𝑙𝑠𝜏

−

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝐶
𝑚

𝜏𝑥
𝐵
𝑙𝑠𝜏 ≤

𝐽

∑

𝑗=1
𝑝𝑗𝑙𝑞𝑗𝑙𝑠

𝑙 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1) 𝑆 + 1, . . . , 𝑇 ⋅ 𝑆,

(23)

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝐶
𝑚

𝜏𝑥
𝐸
𝑙𝑠𝜏 −

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝐶
𝑚

𝜏𝑥
𝐵
𝑙𝑠𝜏 ≥

𝐽

∑

𝑗=1
𝑝𝑗𝑙𝑞𝑗𝑙𝑠

− 𝐶
𝑚

𝑙 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1) 𝑆 + 1, . . . , 𝑇 ⋅ 𝑆.

(24)

The end of the last lot in some previous macro-period 𝑡

must leave sufficient time for the setup time 𝜔𝑙𝑡+1 (11). The
same time slot control enables us to constrain that the finish-
ing time of one slot, minus the finishing time of the previous
slot, must be at least as large as the production time in the
corresponding slot, plus the required setup time in advance
(12)-(13). Figure 6 illustrates the situation described by these
constraints with 𝑆 = 2 and 𝑠 = 𝑠1, 𝑠2, 𝑠3, 𝑠4; 𝜏 = 1, 2, . . . , 10;
𝑡 = 1, 2; 𝐶𝑚 = 1 and 𝐶 = 5.

There is only one possible beginning and end for each slot
in the time horizon (14)-(15). While 𝑥𝑗𝑙𝑠 indicates whether or
not a certain slot is reserved to produce a particular product,
𝑢𝑙𝑠 indicates whether or not that slot is indeed used to sched-
ule a lot. If the slot is not used, then the lot size must be zero
(16); otherwise, at least a small amount 𝜀 must be produced
(17). Time cannot be allocated for slots not effectively used
(𝑢𝑙𝑠 = 0), so 𝑥

𝐵
𝑙𝑠𝜏 = 𝑥

𝐸
𝑙𝑠𝜏must occur for the samemicro-period

𝜏 (18)-(19). To avoid redundancy in the model, whenever a
slot is not used, it should start as soon as the previous slot
ends (20)-(21). The possibly empty slots in a macro-period
will be the last ones in that macro-period (22). The start and
end of a slot are chosen in such a way that the start indicates
the first micro-period in which the lot is produced, if there is
a real lot for that slot, and the end indicates the last micro-
period (23)-(24). Figure 7 illustrates the situation described
by these two constraints.

The term 𝜀 ⋅ 𝑢𝑙𝑠 in constraint (23) and the term
∑
𝐽
𝑗=1 𝑝𝑗𝑙𝑞𝑗𝑙𝑠 − 𝐶

𝑚 in constraint (24) only matter for the case
when the first and last micro-periods of a slot are the same.
Notice that the processing time of 𝑃3 in Figure 7 is smaller
than the micro-period capacity in constraint (24). However,
constraint (23) ensures that a positive amount will be pro-
duced because we must have 𝑢𝐿1,𝑃3 = 1 by constraint (16).

3.5. Production Line: Synchronization Constraints. Themodel
must describe how the raw materials in tanks are handled by
production lines

𝑞𝑗𝑙𝑠 =

𝐿

∑

𝑘=1

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝑞𝑘𝑗𝑙𝑠𝜏, (25)

𝑙 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1)𝑆 + 1, . . . , 𝑇 ⋅ 𝑆, 𝜏 =

(𝑡 − 1)𝑇
𝑚

+ 1, . . . , 𝑡 ⋅ 𝑇
𝑚,

𝛿𝑙𝑠 = (

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝜏𝑥
𝐸
𝑙𝑠𝜏 −

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝜏𝑥
𝐵
𝑙,𝑠−1,𝜏 + 1) 𝐶

𝑚

−

𝐽

∑

𝑗=1
𝑝𝑗𝑙𝑞𝑗𝑙𝑠,

(26)
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xBL1,s3,7 xEL1,s3,8

xBL1,s4,9 xEL1,s4,9

𝜎L1s2
s3 s4

𝜀 ∗ uL1,s3 + 8xEL1,s3,8 − 7xBL1,s3,7 ≤ pP2,L1qP2,L1,s3

𝜀 ∗ uL1,s4 + 9xEL1,s4,9 − 9xBL1,s4,9 ≤ pP3,L1qP3,L1,s4

8xEL1,s3,8 − 7xBL1,s3,7 ≥ pP2,L1qP2,L1,s3

9xEL1,s4,9 − 9

− 1

− 1xBL1,s4,9 ≥ pP3,L1qP3,L1,s4

Macro-period 2

Constraint (23)

Constraint (24)

L1 P2 P3

6 7 8 9 10

Time

Figure 7: Time window for production.

Macro-period 2 Constraint (28)

Constraint (29)

Tk1

L1

L2

s3

s3

s3

RmA

P2

P3

xBL2,s3,7

xEL1,s3,7

xBL1,s3,7

xEL2,s3,8

pP2,L1qTk1,P2,L1,s3,7 ≤ xEL1,s3,7

pP3,L2qTk1,P3,L2,s3,7 ≤ xEL2,s3,8

pP3,L2qTk1,P3,L1,s3,8 ≤ xEL2,s3,8

pP2,L1qTk1,P2,L1,s3,7 ≤ xBL1,s3,7

pP3,L2qTk1,P3,L2,s3,7 ≤ xBL2,s3,7

pP3,L2qTk1,P2,L1,s3,8 ≤ xBL2,s3,7
6 7 8 9 10

Time

Figure 8: Synchronization of line productions with tank storage.

𝑙 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1)𝑆 + 2, . . . , 𝑇 ⋅ 𝑆, 𝜏 =

(𝑡 − 1)𝑇
𝑚

+ 1, . . . , 𝑡 ⋅ 𝑇
𝑚,

𝐿

∑

𝑘=1

𝐽

∑

𝑗=1
𝑝𝑗𝑙𝑞𝑘𝑗𝑙𝑠𝜏 ≤ 𝐶

𝑚
− 𝛿𝑙𝑠 + (1− 𝑥

𝐵
𝑙𝑠𝜏) 𝐶
𝑚

, (27)

𝑙 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1)𝑆 + 1, . . . , 𝑇 ⋅ 𝑆, 𝜏 =

(𝑡 − 1)𝑇
𝑚

+ 1, . . . , 𝑡 ⋅ 𝑇
𝑚,

𝐿

∑

𝑘=1

𝐽

∑

𝑗=1
𝑝𝑗𝑙𝑞𝑘𝑗𝑙𝑠𝜏 ≤

𝑡⋅𝑇𝑚

∑

𝜏󸀠=(𝑡−1)𝑇𝑚+1
𝐶
𝑚

𝑥
𝐸
𝑙𝑠𝜏󸀠 , (28)

𝑙 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1)𝑆 + 1, . . . , 𝑇 ⋅ 𝑆, 𝜏 =

(𝑡 − 1)𝑇
𝑚

+ 1, . . . , 𝑡 ⋅ 𝑇
𝑚,

𝐿

∑

𝑘=1

𝐽

∑

𝑗=1
𝑝𝑗𝑙𝑞𝑘𝑗𝑙𝑠𝜏 ≤

𝑡⋅𝑇𝑚

∑

𝜏󸀠=(𝑡−1)𝑇𝑚+1
𝐶
𝑚

𝑥
𝐵
𝑙𝑠𝜏󸀠 , (29)

𝑙 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1)𝑆 + 1, . . . , 𝑇 ⋅ 𝑆, 𝜏 =

(𝑡 − 1)𝑇
𝑚

+ 1, . . . , 𝑡 ⋅ 𝑇
𝑚.

To link production lines and tanks, we figure out which
amount of soft drink being bottled on a line comes from
which tank (25). In the first micro-period of a lot, sometimes
𝛿𝑙𝑠 are reserved for setup or idle time, while the remaining
time is production time (26) and (27). Of course, the soft
drink taken from a tank must be taken during the time win-
dow in which the soft drink is filled into bottles (28)-(29).
Figure 8 illustrates the situation described by these con-
straints with 𝐶

𝑚
= 1. Let us suppose that Rm𝐴 is used to

produce 𝑃2 and 𝑃3.
Notice that the processing time of 𝑃3 takes from 𝜏 = 7 to

𝜏 = 8. This is considered by constraints (28) and (29).

3.6. Tanks: Usual Constraints. Now let us focus on usual lot
sizing constraints for the tank level

𝑥𝑗𝑘𝑠 = 0

𝑗 = 1, . . . , 𝐽; 𝑘 ∈ {1, . . . , 𝐿} \ 𝐿𝑗; 𝑠 = 1, . . . , 𝑇 ⋅ 𝑆,

(30)

𝐽

∑

𝑗=1
𝑥𝑗𝑘𝑠 = 1 𝑘 = 1, . . . , 𝐿; 𝑠 = 1, . . . , 𝑇 ⋅ 𝑆, (31)

𝑞𝑗𝑘𝑠 ≤ 𝑄𝑘𝑥𝑗𝑘𝑠

𝑗 = 1, . . . , 𝐽, 𝑘 = 1, . . . , 𝐿; 𝑠 = 1, . . . , 𝑇 ⋅ 𝑆,

(32)

𝑞𝑗𝑘𝑠 ≤ 𝑄𝑘𝑢𝑘𝑠

𝑗 = 1, . . . , 𝐽, 𝑘 = 1, . . . , 𝐿; 𝑠 = 1, . . . , 𝑇 ⋅ 𝑆,

(33)

𝐽

∑

𝑗=1
𝑞𝑗𝑘𝑠 ≥ 𝑄

𝑘
𝑢𝑘𝑠

𝑗 = 1, . . . , 𝐽, 𝑘 = 1, . . . , 𝐿; 𝑠 = 1, . . . , 𝑇 ⋅ 𝑆,

(34)

𝑧𝑖𝑗𝑘𝑠 ≥ 𝑥𝑗𝑘𝑠 + 𝑥𝑖𝑘,𝑠−1 − 2+ 𝑢𝑘𝑠

𝑖, 𝑗 = 1, . . . , 𝐽, 𝑘 = 1, . . . , 𝐿; 𝑠 = 1, . . . , 𝑇 ⋅ 𝑆,

(35)

𝑥𝑗𝑘𝑠 − 𝑥𝑗𝑘,𝑠−1 ≤ 𝑢𝑘𝑠

𝑗 = 1, . . . , 𝐽, 𝑘 = 1, . . . , 𝐿; 𝑠 = 1, . . . , 𝑇 ⋅ 𝑆,

(36)
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Tk1

Tk2

RmC

RmB RmB

RmD
s3 s4

6 7 8 9 10

Time

From constraints (31)–(34)

Constraint (35)

Constraint (36)

Macro-period 2

xRmB,Tk2,s4 = xRmB,Tk2,s3 = uTk2,s3 = 1

xRmD,Tk1,s4 = xRmD,Tk1,s3 = uTk1,s4 = 1

zRmC,RmD,Tk1,s4 ≥ xRmD,Tk1,s4 + xRmC ,Tk1,s3 − 2 + uTk1,s4

xRmD,Tk1,s4 − xRmD,Tk1,s3 ≤ uTk1,s4 󳨐⇒ 1 − 0 ≤ 1 xRmB,Tk2,s4 − xRmB ,Tk2,s3 ≤ uTk2,s4 󳨐⇒ 1 − 1 ≤ 1

xRmC,Tk1,s4 − xRmC ,Tk1,s3 ≤ uTk1,s4 󳨐⇒ 0 − 1 ≤ 1

zRmC,RmD,Tk1,s4 ≥ 1 + 1 − 2 + 1

zRmB,RmB ,Tk2,s4 ≥ xRmB,Tk2,s4 + xRmB,Tk2,s3 − 2 + uTk2,s4
zRmB,RmB ,Tk2,s4 ≥ 1 + 1 − 2 + 1

Figure 9: Raw material changeover.

𝜎𝑘𝑠 =

𝐽

∑

𝑖=1

𝐽

∑

𝑗=1
𝜎
󸀠
𝑖𝑗𝑘𝑧𝑖𝑗𝑘𝑠

𝑖, 𝑗 = 1, . . . , 𝐽, 𝑘 = 1, . . . , 𝐿; 𝑠 = 1, . . . , 𝑇 ⋅ 𝑆,

(37)

𝜔𝑘𝑡𝑠 ≤ 𝜎𝑘,(𝑡−1)𝑆+1

𝑖, 𝑗 = 1, . . . , 𝐽, 𝑘 = 1, . . . , 𝐿; 𝑠 = 1, . . . , 𝑇 ⋅ 𝑆,

(38)

𝑡⋅𝑆

∑

𝑠=(𝑡−1)𝑆+1
𝜎𝑘𝑠 ≤ 𝐶 + 𝜛𝑘𝑡

𝑖, 𝑗 = 1, . . . , 𝐽, 𝑘 = 1, . . . , 𝐿; 𝑠 = 1, . . . , 𝑇 ⋅ 𝑆.

(39)

A particular rawmaterial can be stored in some tanks (30)
and tanks can store one raw material at a time (31). The tanks
have a maximum capacity (32) and nothing can be stored,
whenever the tank slot is not effectively used (33). However,
a minimum lot size must be stored if a tank slot is used for
some rawmaterial (34).The setup state is not preserved in the
tanks, that is, a tank must be setup again (cleaned and filled),
even if the same soft drink has been in the tank just before.
Care must be taken when setups occur in the model only if
the tank is really used, because changing the reservation for a
tank does not necessarily mean that a setup takes place (35)-
(36). Figure 9 illustrates these constraints.

From the schedule in Figure 9, constraints (31)–(34)
define 𝑥Rm𝐵,⋅Tk2,𝑠4 = 𝑥Rm𝐵,Tk2,𝑠3 = 𝑢Tk2,𝑠3 = 1 and
𝑥Rm𝐷,Tk1,𝑠4 = 𝑥Rm𝐷,Tk1,𝑠3 = 𝑢Tk1,𝑠4 = 1. Moreover, the raw
materials scheduled will satisfy constraints (35)-(36). As in
the production lines, it is also possible to determine the tank
slot setup time (37) and the setup time that may be at the
end of the previous macro-period (38)-(39). Thus, the setup
time in front of lot 𝑠, at the beginning of some period, is the
setup time value minus the fraction of setup time spent in the
previous periods.This value cannot exceed the macro-period
capacity 𝐶.

3.7. Tanks: Time Slot Constraints. The main point here is to
keep control when the tank slots are used throughout the time

horizon by production lines. This will help to know when a
setup time in tanks will interfere with some production line
or from which tanks the lines are taking the raw materials:

𝑞𝑗𝑘𝑠 =

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝑞𝑗𝑘𝑠𝜏, (40)

𝑗 = 1, . . . , 𝐽, 𝑘 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = 1, . . . , 𝑇 ⋅ 𝑆,

𝑡 ⋅ 𝐶 −

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝐶
𝑚

𝜏𝑥
𝐸

𝑘,𝑡⋅𝑆,𝜏
≥ 𝜛𝑘,𝑡+1, (41)

𝑘 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇 − 1;
𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝐶
𝑚

𝜏𝑥
𝐸
𝑘𝑠𝜏 −

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝐶
𝑚

𝜏𝑥
𝐸
𝑘,𝑠−1,𝜏 ≥ 𝜎𝑘𝑠, (42)

𝑘 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1)𝑆 + 1, . . . , 𝑡 ⋅ 𝑆,
𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝐶
𝑚

𝜏𝑥
𝐸

𝑘,(𝑡−1)𝑆+1,𝜏

≥ (𝑡 − 1) 𝐶 + 𝜎𝑘,(𝑡−1)⋅𝑆+1 − 𝜛𝑘𝑡,

(43)

𝑘 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇,
𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝑥
𝐸
𝑘𝑠𝜏 = 1, (44)

𝑘 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1)𝑆 + 1, . . . , 𝑡 ⋅ 𝑆; 𝜏 =

(𝑡 − 1)𝑇
𝑚

+ 1, . . . , 𝑡 ⋅ 𝑇
𝑚,
𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝑥
𝐵
𝑘𝑠𝜏 = 1, (45)

𝑘 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1)𝑆 + 2, . . . , 𝑡 ⋅ 𝑆;
𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−2)𝑇𝑚+1
𝑥
𝐵

𝑘,(𝑡−1)𝑆+1,𝜏 = 1, (46)

𝑘 = 1, . . . , 𝐿; 𝑡 = 2, . . . , 𝑇,
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𝑇𝑚

∑

𝜏=1
𝑥
𝐵
𝑘1𝜏 = 1, (47)

𝑘 = 1, . . . , 𝐿; 𝑡 = 2, . . . , 𝑇,

𝐽

∑

𝑗=1
𝑞𝑗𝑘𝑠𝜏 ≤ 𝑄𝑘𝑥

𝐸
𝑘𝑠𝜏, (48)

𝑘 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1)𝑆 + 1, . . . , 𝑡 ⋅ 𝑆; 𝜏 =

(𝑡 − 1)𝑇
𝑚

+ 1, . . . , 𝑡 ⋅ 𝑇
𝑚,

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝜏𝑥
𝐸
𝑘𝑠𝜏 −

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝜏𝑥
𝐵
𝑘𝑠𝜏 ≤ 𝑇

𝑚
𝑢𝑘𝑠, (49)

𝑘 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1)𝑆 + 2, . . . , 𝑡 ⋅ 𝑆;

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝜏𝑥
𝐸

𝑘,(𝑡−1)𝑆+1,𝜏 −
𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−2)𝑇𝑚+1
𝜏𝑥
𝐵

𝑘,(𝑡−1)𝑆+1,𝜏

≤ 𝑇
𝑚

𝑢𝑘,(𝑡−1)𝑆+1,

(50)

𝑘 = 1, . . . , 𝐿; 𝑡 = 2, . . . , 𝑇;

𝑇𝑚

∑

𝜏=1
𝜏𝑥
𝐸
𝑘1𝜏 −
𝑇𝑚

∑

𝜏=1
𝜏𝑥
𝐵
𝑘1𝜏 ≤ 𝑇

𝑚
𝑢𝑘1, (51)

𝑘 = 1, . . . , 𝐿,

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝜏𝑥
𝐵
𝑘𝑠𝜏 −

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝜏𝑥
𝐸
𝑘𝑠𝜏 ≤ 𝑢𝑘𝑠, (52)

𝑘 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1)𝑆 + 2, . . . , 𝑡 ⋅ 𝑆;

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−2)𝑇𝑚+1
𝜏𝑥
𝐵

𝑘,(𝑡−1)𝑆+1,𝜏 −
𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝜏𝑥
𝐸

𝑘,(𝑡−1)𝑆+1,𝜏

≤ 𝑢𝑘,(𝑡−1)𝑆+1,

(53)

𝑘 = 1, . . . , 𝐿; 𝑡 = 2, . . . , 𝑇;

𝑇𝑚

∑

𝜏=1
𝜏𝑥
𝐵
𝑘1𝜏 −
𝑇𝑚

∑

𝜏=1
𝜏𝑥
𝐸
𝑘1𝜏 ≤ 𝑢𝑘1, (54)

𝑘 = 1, . . . , 𝐿;

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝜏𝑥
𝐵
𝑘𝑠𝜏 −

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝜏𝑥
𝐸
𝑘,𝑠−1,𝜏 ≤ 𝑇

𝑚
𝑢𝑘𝑠, (55)

𝑘 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1)𝑆 + 2, . . . , 𝑡 ⋅ 𝑆;

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝜏𝑥
𝐵

𝑘,(𝑡−1)𝑆+1,𝜏 − ((𝑡 − 1) 𝑇
𝑚

+ 1)

≤ 𝑇
𝑚

𝑢𝑘,(𝑡−1)𝑆+1,

(56)

𝑘 = 1, . . . , 𝐿; 𝑡 = 2, . . . , 𝑇;

𝑇𝑚

∑

𝜏=1
𝜏𝑥
𝐵
𝑘1𝜏 − 1 ≤ 𝑇

𝑚
𝑢𝑘1, (57)

𝑘 = 1, . . . , 𝐿;

𝑢𝑘𝑠 ≥ 𝑢𝑘,𝑠+1, (58)

𝑘 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1)𝑆 + 1, . . . , 𝑡 ⋅ 𝑆 − 1;

𝐶
𝑚

𝑢𝑘𝑠 +

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝐶
𝑚

𝜏𝑥
𝐸
𝑘𝑠𝜏 −

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝐶
𝑚

𝜏𝑥
𝐵
𝑘𝑠𝜏

= 𝜎𝑘𝑠,

(59)

𝑘 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝑠 = (𝑡 − 1)𝑆 + 2, . . . , 𝑡 ⋅ 𝑆;

𝐶
𝑚

𝑢𝑘,(𝑡−1)𝑆+1 +

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−1)𝑇𝑚+1
𝐶
𝑚

𝜏𝑥
𝐸

𝑘,(𝑡−1)𝑆+1,𝜏

−

𝑡⋅𝑇𝑚

∑

𝜏=(𝑡−2)𝑇𝑚+1
𝐶
𝑚

𝜏𝑥
𝐵

𝑘,(𝑡−1)𝑆+1,𝜏 = 𝜎𝑘,(𝑡−1)𝑆+1,

(60)

𝑘 = 1, . . . , 𝐿; 𝑡 = 2, . . . , 𝑇;

𝐶
𝑚

𝑢𝑘1 +

𝑇𝑚

∑

𝜏=1
𝐶
𝑚

𝜏𝑥
𝐸
𝑘1𝜏 −
𝑇𝑚

∑

𝜏=1
𝐶
𝑚

𝜏𝑥
𝐵
𝑘1𝜏 = 𝜎𝑘1 − 𝜔𝑘1, (61)

𝑘 = 1, . . . , 𝐿,

𝐽

∑

𝑗=1
𝐼𝑗𝑘,𝜏−1 ≤ 𝑄𝑘 ((1− 𝑥

𝐵
𝑘𝑠𝜏) + (1− 𝑢𝑘𝑠)) , (62)

𝑘 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇 − 1; 𝑠 = (𝑡 − 1)𝑆 + 1, . . . , 𝑡 ⋅ 𝑆 + 1;
𝜏 = (𝑡 − 1)𝑇

𝑚
+ 1, . . . , 𝑡 ⋅ 𝑇

𝑚,

𝐽

∑

𝑗=1
𝐼𝑗𝑘,𝜏−1 ≤ 𝑄𝑘 ((1− 𝑥

𝐵
𝑘𝑠𝜏) + (1− 𝑢𝑘𝑠)) , (63)

𝑘 = 1, . . . , 𝐿; 𝑠 = (𝑇 − 1)𝑆 + 1, . . . , 𝑇 ⋅ 𝑆 + 1; 𝜏 = (𝑇 − 1)𝑇
𝑚

+

1, . . . , 𝑇 ⋅ 𝑇
𝑚.

Most of these constraints are similar to those presented
for the production line level. The amount that is filled into
a tank must be scheduled, so that the micro-period in which
the rawmaterial comes into the tank is known (40). Tank slots
must be scheduled in such a way that the setup time that cor-
responds to a slot fits into the timewindowbetween the end of
the previous slot and the end of the slot under consideration
(41)-(42). The setup for the first slot in a macro-period may
overlap the macro-period border to the previous macro-
period (43). This is the same idea presented by Figure 6 for
lines.Thefinishing time of a scheduled slotmust be unique, as
must its starting time (44)–(47).The rawmaterial is available
for bottling just when the tank setup is done (48). Therefore,
we must have 𝑥

𝐸
Tk2,𝑠3,7 = 𝑥

𝐸
Tk2,𝑠4,9 = 1 in constraint (48) for

the example shown in Figure 10.
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Tk 2

6 7 8 9 10

Time

Macro-period 2

RmC RmB

xETk2,s3,7
xETk2,s4,9

Constraint (48) QTk2 = 100l

qRmC,Tk2,s3,6 ≤ 100 · xTk2,s3,7
E

qRmC,Tk2,s3,7 ≤ 100 · xTk2,s3,7
E

Figure 10: Tank refill before the end of the setup time.

The time window in which a slot is scheduled must be
positive if and only if that slot is used to set up the tank
(49)–(54). Redundancy can be avoided if empty slots are
scheduled right after the end of previous slots (55)–(57).
More redundancy can be avoided if we enforce that, within
a macro-period, the unused slots are the last ones (58).

Without loss of generality, we can assume that the time
needed to set up a tank is an integer multiple of the micro-
period. Hence, the beginning and end of a slot must be
scheduled so that this window equals exactly the time needed
to set the tank up (59)–(61). Constraint (61) adds up micro-
periods 𝜏 = 1, . . . , 𝑇

𝑚 seeking the beginning and end of the
tank setup in slot 𝑠 = 1. Finally, a tank can only be set up again
if it is empty (62)-(63). Notice that a tank slot reservation
(𝑥𝐵𝑘𝑠𝜏 = 1) does not mean that the tank should be previously
empty (𝐼𝑗𝑘𝜏−1 = 0).The tank slot also has to be effectively used
(𝑢𝑘𝑠 = 1 and 𝑥

𝐵
𝑘𝑠𝜏 = 1) in (62)-(63). Constraint (63) describes

this situation for the last macro-period 𝑇 where the first slot
of the next macro-period is not taken into account.

Finally, notice that there are group of equations, as for
example, (45)–(47), (49)–(51), (52)–(57), (55)–(57), and (59)–
(61), that are derived from the same equations, respectively,
(45), (49), (52), (55), and (59). These derived equations are
necessary to deal with the first slot and sometimes with the
last slot in each macro-period.

3.8. Tanks: Synchronization Constraints. The model must
describe how the products in production lines are handled by
tanks:

𝐼𝑗𝑘𝜏 = 𝐼𝑗𝑘,𝜏−1 +

𝑡⋅𝑆

∑

𝑠=(𝑡−1)𝑆+1
𝑞𝑗𝑘𝑠𝜏

−

𝐽

∑

𝑖=1

𝐿

∑

𝑙=1

𝑡⋅𝑆

∑

𝑠=(𝑡−1)𝑆+1
𝑟𝑗𝑖𝑞𝑘𝑖𝑙𝑠𝜏,

(64)

𝑗 = 1, . . . , 𝐽, 𝑘 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝜏 = (𝑡−1)𝑇
𝑚

+1, . . . , 𝑡 ⋅

𝑇
𝑚,

𝐼𝑗𝑘𝜏 ≥

𝐽

∑

𝑖=1

𝐿

∑

𝑙=1

𝑡⋅𝑆

∑

𝑠=(𝑡−1)𝑆+1
𝑟𝑗𝑖𝑞𝑘𝑖𝑙𝑠,𝜏+1, (65)

𝑗 = 1, . . . , 𝐽, 𝑘 = 1, . . . , 𝐿; 𝑡 = 1, . . . , 𝑇; 𝜏 = (𝑡−1)𝑇
𝑚

+1, . . . , 𝑡 ⋅

𝑇
𝑚

− 1.
What is in the tank at the end of a micro-period must be

what was in the tank at the beginning of that micro-period,
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Figure 11: Possible solution for SITLSP.
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Figure 12: Possible solution provided by the model.

plus what comes into the tank in that micro-period, minus
what is taken from that tank for being bottled in production
lines (64). To coordinate the production lines and the tanks,
it is required that what is taken out of a tank must have been
filled into the tank at least one micro-period ahead (65).

3.9. Example. This subsection will present an example to
illustrate what kind of information is returned by a model
solution. Let us start by the solution illustrated in Figure 5.
This solution is shown again in Figure 11. Figure 12 presents
the same solution considering the model assumptions.

According to the model, the setup times of the tanks are
considered as an integer multiple of the time of a micro-
period. For example, the setup time of Rm𝐶 in Figure 11 goes
from the entire 𝜏 = 1 (micro-period 1) until part of 𝜏 = 2 and
from the entire 𝜏 = 8 until part of 𝜏 = 9. These setup times fit
into two completemicro-periods in Figure 12 (see constraints
(59)–(61)). The same happens with the setup time of Rm𝐵
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Table 2: Parameter values.

Param. Values Param. Values Param. Values Param. Values
𝐿 2; 3; 4 𝐿 2; 3 ℎ𝑗 1 ($/u) ℎ𝑗 1 ($/u)
𝐽 2; 3; 4 𝐽 1; 2 ℎ𝑗 1 ($/u) ℎ𝑗 1 ($/u)
𝑆 2; 3 𝑆 2 V𝑗𝑙 1 ($/u) V𝑗𝑘 1 ($/u)
𝑇 1; 2; 3; 4 𝑇

𝑚 5 𝑄
𝑘

1000 l 𝑄𝑘 5000 l
𝐶 5 t.u. 𝐶

𝑚 1 t.u. min𝐷𝑒𝑚 500 u max𝐷𝑒𝑚 10000 u

Table 3: Parameter combination for each set of instances.

Comb. 𝐿/𝐿/𝐽/𝐽 Comb. 𝐿/𝐿/𝐽/𝐽 Comb. 𝐿/𝐿/𝐽/𝐽

𝑆1 2/2/2/1 𝑆4 3/3/2/1 𝑆7 4/3/2/1
𝑆2 2/2/3/2 𝑆5 3/3/3/2 𝑆8 4/3/3/2
𝑆3 2/2/4/2 𝑆6 3/3/4/2 𝑆9 4/3/4/2

(macro-period 2). The setup time of products in lines 𝐿1 and
𝐿2 are positioned in front of the next slot as required by
constraints (8)–(13), and all the productions in the lines start
after the tank setup time is finished (constraints (25), (28)-
(29), (40), and (48)).

The satisfaction of the model constraints imposes that
binary variables 𝑥𝑗𝑙𝑠, 𝑥𝑗𝑘𝑠, 𝑢𝑙𝑠, 𝑢𝑘𝑠, 𝑥

𝐵
𝑙𝑠𝜏, 𝑥
𝐸
𝑙𝑠𝜏, 𝑥
𝐵
𝑘𝑠𝜏, and 𝑥

𝐸
𝑘𝑠𝜏

must be necessarily active (value 1) for lines, tanks, products,
and raw materials in the slots and micro-periods shown in
Figure 12.These active variables provide enough information
about what and when the products and raw materials are
scheduled throughout the time horizon. Moreover, the con-
tinuous variables 𝑞𝑗𝑙𝑠, 𝑞𝑘𝑗𝑙𝑠𝜏 𝑞𝑗𝑘𝑠𝜏, 𝑞𝑗𝑘𝑠 must be positive for
lines, tanks, products, and rawmaterials in the same slots and
micro-periods.

For example, based on Figure 12, the model solution has
positive variables 𝑞Rm𝐶,Tk2,𝑠4,8 and 𝑞Rm𝐶,Tk2,𝑠4,9 and returns
the amount of Rm𝐶 filled in Tk2 during micro-periods 𝜏 =

8 and 𝜏 = 9. The total filled in this slot (𝑠4) is provided
by 𝑞Rm𝐶,Tk2,𝑠4. The model variable 𝑞Tk2,𝑃4,𝐿2,10 returns the
amount used by 𝑃4 in 𝐿2 which is taken from 𝑞Rm𝐶,Tk2,𝑠4. In
the sameway, 𝑞Tk1,𝑃3,𝐿1,𝑠4,9 and 𝑞Tk1,𝑃3,𝐿1,𝑠4,10 have the lot sizes
of 𝑃3 taken from slot 𝑠3 in variable 𝑞Rm𝐵,Tk1,𝑠3. In this case,
the total lot size 𝑃3 is provided by 𝑞𝑃3,𝐿1,𝑠4. All these variables
returned by the model will provide enough information to
build an integrated and synchronized schedule for lines and
tanks.

4. Computational Results for
Small-to-Moderate Size Instances

The main objectives in this section are to provide a set of
benchmark results for the problem and to give an idea about
the complexity of the model resolution. The lack of similar
models in the literature has led us to create a set of instances
for the SITLSP. An exact method available in an optimiza-
tion package was used as the first approach to solve these
instances. Table 2 shows the parameter values adopted.

A combination of parameters 𝐿, 𝐿, 𝐽, and 𝐽 defines a
set of instances. These instances are considered of small-
to-moderate sizes if compared to the industrial instances

found in softdrink companies. Table 3 presents the parameter
values that define each combination 𝑆1–𝑆9. There are 9
possible combinations for macro-period 𝑇 = 1, 2, 3, and
4. For each one of these sets, 10 replications are randomly
generated, resulting in 4 × 9 × 10 = 360 instances in total.
The other parameters of the model are randomly generated
from a uniform distribution in the interval [𝑎, 𝑏], as shown
in Table 4. Most of these parameters were defined following
suggestions provided by the decision maker of a real-world
soft drink company.The setup costs are proportional to setup
times with parameter 𝑓 set to 1000. This provides a suitable
tradeoff between the different terms of the objective function.

The computational tests ran in a core 2 Duo, 2.66GHz,
and 1.95GB RAM.The instances were coded using the mod-
eling language AMPL and solved by the branch & cut exact
algorithm available in the solver CPLEX 11.0. The optimiza-
tion package AMPL/CPLEX ran over each instance once dur-
ing the time limit of one hour. Two kinds of problem solu-
tions were returned: the optimal solution or the best feasible
solution achieved up to the time limit. The following gap
value was used:

Gap(%) = 100(
𝑍 − 𝑍

𝑍

) , (66)

where 𝑍 is the solution value and 𝑍 is the lower bound value
returned by AMPL/CPLEX. Table 5 presents the computa-
tional results for 𝑇 = 1, 2. Column Opt. has the number of
optimal solutions found in each combination.

Column Gap(%) shows the average gap of the final solu-
tions returned by AMPL/CPLEX from the lower bound
found. The CPU values are the average time spent (in sec-
onds) to return these solutions. Table 6 shows the model
figures for each combination. In Table 5 notice that the
AMPL/CPLEX had no major problems to find solutions for
𝑇 = 1 and𝑇 = 2.The solverwas able to optimally solve all ins-
tances for𝑇 = 1 (90 in 90) and found several optimal solution
for 𝑇 = 2 (72 in 90) within the time limit. The required
average CPU running times increased from 𝑇 = 1 to 𝑇 = 2,
which is expected, based on the number of constraints and
variables of the model for each instance (see Table 6).
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Table 4: Parameter ranges.

Par. Ranges Meaning
𝜎
󸀠
𝑖𝑗𝑙 𝑈[0.5; 1] Setup time (hours) from product 𝑖 to 𝑗 in line 𝑙

𝜎
󸀠

𝑖𝑗𝑘 𝑈[1; 2] Setup time (hours) from raw material 𝑖 to 𝑗 in tank 𝑘

𝑠𝑖𝑗𝑙 𝑠𝑖𝑗𝑙 = 𝑓 ⋅ 𝜎
󸀠
𝑖𝑗𝑙 Line setup cost

𝑠𝑖𝑗𝑘 𝑠𝑖𝑗𝑘 = 𝑓 ⋅ 𝜎
󸀠

𝑖𝑗𝑘 Tank setup cost
𝑝𝑗𝑙 𝑈[1000; 2000] Processing time (units/hour) of product 𝑖 in line 𝑙

𝑟𝑗𝑖 𝑈[0.3; 3] Liters of raw material 𝑖 used to produce one unit of product 𝑗

Table 5: AMPL/CPLEX results for the set of instances with 𝑇 = 1, 2.

Comb. 𝑇 = 1 𝑇 = 2

Opt. Gap(%) CPU Opt. Gap(%) CPU
𝑆1 10 0 0.22 10 0.51 1.90
𝑆2 10 0 0.48 9 0.85 585.87
𝑆3 10 0 0.60 8 0.61 1271.04
𝑆4 10 0 0.66 10 0.32 15.49
𝑆5 10 0 1.46 8 1.52 1414.51
𝑆6 10 0 12.30 6 3.77 1519.31
𝑆7 10 0 0.96 10 0.08 525.46
𝑆8 10 0 4.37 6 0.79 2052.72
𝑆9 10 0 7.83 5 1.38 1821.96

Table 6: Model figures for the set of instances with 𝑇 = 1, 2.

Comb.
𝑇 = 1 𝑇 = 2

Var. Const. Var. Const.
Bin. Cont. Bin. Cont.

𝑆1 100 263 281 210 533 575
𝑆2 136 499 454 282 1004 919
𝑆3 142 615 512 294 1235 1039
𝑆4 150 452 419 315 916 862
𝑆5 204 880 673 423 1771 1368
𝑆6 213 1098 764 441 2206 1552
𝑆7 176 555 498 367 1122 1013
𝑆8 246 1100 821 507 2211 1641
𝑆9 258 1390 924 531 2790 1865

TheAMPL/CPLEXwas also able to find optimal solutions
for 𝑇 = 3 (43 in 90) and 𝑇 = 4 (26 in 90) within one hour,
but this value decreased as shown in Table 7 when compared
with those in Table 6. The complexity of the model proposed
here, caused by the high number of binary/continuous
variables and constraints, as shown in Table 8, explains the
hardness faced by the branch and cut algorithm to achieve
optimal solutions. Nevertheless, around 64% of the small-
to-moderate size instances were optimally solved with 129
nonoptimal (feasible) solutions returned. The average gap
from lower bounds, Gap(%), has increased following the
complexity of each set of instances. However, gap values are
below 7% in all set of instances.

These small-to-moderate size instances were already used
by Toledo et al. [39] where the authors proposed a mul-
tipopulation genetic algorithm to solve the SITLSP. These

instances were solved and these solutions were helpful to
adjust and evaluate the evolutionary method performance.
The insights provided by this evaluation were also useful to
set the evolutionary method to solve real-world instances of
the problem.

5. Computational Results for
Moderate-to-Large Size Instances

The previous experiments with the AMPL/CPLEX have
shown how difficult it can be to find proven optimal solutions
for the SITLSP within one hour of execution time, even for
small-to-moderate size instances. However, they also showed
that it is possible to find reasonably good feasible solutions
under this computational time. In practical settings, decision
makers are usually more interested in obtaining approximate



14 Mathematical Problems in Engineering

Table 7: AMPL/CPLEX results for the set of instances with 𝑇 = 3, 4.

Comb. 𝑇 = 3 𝑇 = 4

Opt. Gap(%) CPU Opt. Gap(%) CPU
𝑆1 10 0.72 10.64 9 0.13 535.17
𝑆2 4 3.38 2177.73 3 5.00 2814.48
𝑆3 5 1.84 2249.24 2 4.55 3159.17
𝑆4 9 0.20 461.35 7 0.15 1808.17
𝑆5 3 4.72 3076.43 1 3.88 3276.78
𝑆6 2 3.31 3208.99 0 6.52 3600.45
𝑆7 7 0.33 1150.23 4 0.57 2922.49
𝑆8 1 4.70 3257.73 0 4.97 3600.33
𝑆9 2 5.55 2963.03 0 5.06 3600.32

Table 8: Model figures for the set of instances with 𝑇 = 3, 4.

Comb. 𝑇 = 3 𝑇 = 4

Bin. Var. Cont. Var. Const. Bin. Var. Cont. Var. Const.
𝑆1 320 803 863 430 1073 1163
𝑆2 574 2014 1835 574 2014 1827
𝑆3 598 2475 2075 598 2475 2075
𝑆4 480 1380 1303 645 1844 1752
𝑆5 642 2662 2071 861 3553 2764
𝑆6 669 3314 2350 897 4422 3140
𝑆7 558 1689 1536 749 2256 2039
𝑆8 768 3322 2466 1029 4433 3335
𝑆9 804 4190 2799 1077 5590 3735

Table 9: Parameter combination for each set of instances.

Comb. 𝐿/𝐿/𝐽/𝐽/𝑇 Comb. 𝐿/𝐿/𝐽/𝐽/𝑇

𝐿1 5/5/10/5/4 𝐿6 5/6/15/8/8
𝐿2 5/6/15/8/4 𝐿7 8/5/10/5/8
𝐿3 8/5/10/5/4 𝐿8 8/6/15/8/8
𝐿4 8/6/15/8/4 𝐿9 5/5/10/5/12
𝐿5 5/5/10/5/8 𝐿10 5/6/15/8/12

solutions found in shorter times than optimal solutionswhich
require much longer runtimes.

For this reason, instead of spending longer time looking
for optimal solutions, this section evaluates some alternatives
to find reasonably good approximate solutions for moderate-
to-large size instances. For this, another combination of
parameters 𝐿/𝐿/𝐽/𝐽/𝑇 is considered, which defines a more
complex and realistic set of instances, namely, 𝐿1–𝐿10.
Table 9 shows the corresponding parameter values.

While the model parameters were changed to 𝐶 = 10 t.u,
𝑇
𝑚

= 10, 𝑆 = 5, 8, and 𝑆 = 3, 4, the remaining parameters
kept the same values of the ones shown in Tables 2 and 4.
For each one of the 10 possible combinations in Table 9, a
total of 10 replications was randomly generated resulting in
100 instances. Preliminary experiments with some of these
instances showed that even feasible solutions are difficult to
find after executing AMPL/CPLEX for one hour. Therefore,
two relaxations of the model were investigated: the first

Table 10: Relaxation approaches results.

Comb. 𝑅1 𝑅2

Opt. Feas. Penal Opt. Feas. Penal
𝐿1 10 — — — 10 —
𝐿2 10 — — — 9 1
𝐿3 9 1 — — 9 1
𝐿4 4 6 — — 2 8
𝐿5 8 2 — — 8 2
𝐿6 4 6 — — 3 7
𝐿7 6 4 — — 3 7
𝐿8 5 5 — — — 10
𝐿9 7 3 — — 7 3
𝐿10 — 5 5 — 4 6

relaxation, 𝑅1, keeps as binary variable only the model
variables 𝑢𝑙𝑠 and 𝑢𝑘𝑠, whereas the other binary variables are
set continuous in the range [0, 1]. The second relaxation, 𝑅2,
keeps 𝑢𝑙𝑠 and 𝑢𝑘𝑠 as binary as well as 𝑥𝑗𝑙𝑠 and 𝑥𝑗𝑘𝑠. A similar
idea was used by Gupta &Magnusson [21] to deal with a one-
level capacitated lot sizing and scheduling problem.

These two relaxation approaches were applied to solve
the set of instances 𝐿1–𝐿10 within one hour. The results
are shown in Table 10, where Opt. is the number of optimal
solutions found by 𝑅1 and 𝑅2, respectively, Feas. is the num-
ber of feasible solutions without penalties, and Penal is the
number of feasible solutions with penalties. Remember that
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Figure 13: Average CPU time to find solutions.

nonsatisfied demands are penalized in the objective function
of the model (see (1)).

Indeed for moderate-to-large size instances, approach
𝑅1 succeeded in finding optimal solutions for a total of 63
out of 100 instances. Approach 𝑅2 returned only feasible
solutions with some of them penalized. A total of 55 out of
100 solutions without penalties were found by 𝑅2.

Figure 13 shows the average CPU time spent by 𝑅1 to
solve 10 instances on each set 𝐿1–𝐿9. This average time was
calculated for the whole set of instances, as well as for only
that subset of instances with optimal solutions found. All
solutions were returned in less than 3000 sec. on average, and
optimal solutions took less than 2000 sec. Thus, 𝑅1 and 𝑅2

approaches returned approximate solutions within a reason-
able computational time for these sets of large size instances.

6. Conclusions

A great deal of scientific work has been done for decades
to study lot sizing problems and combined lot sizing and
scheduling problems, respectively. A whole bunch of stylized
model formulations has been published under all kinds of
assumptions to investigate this class of planning problems.
It is well understood that certain aspects make planning
become a hard task not only in theory. Among these issues
are capacity constraints, setup times, sequence dependencies,
andmultilevel production processes, just to name a few.Many
researchers including ourselves have focused on such stylized
models and spent a lot of effort on solving artificially created
instances with tailor-made procedures knowing that even
small changes of themodel would require the development of
a new solution procedure. But very often, it remains unclear
whether or not the stylized model represents a practical
problem.Hence, we feel that it is necessary tomove a bitmore
towards real applications and start to motivate the models
being used stronger than before.

An attempt to follow this paradigm is presented in this
paper. We were in contact with a company that bottles very

well-known soft drinks and closely observed the main pro-
duction process where different flavors are produced and
filled into bottles of different sizes. The production planning
problem is a lot sizing and scheduling problem with several
thorny issues that have been discussed in the literature before,
for example, capacity constraints, setup times, sequence
dependencies, and multilevel production processes. But in
addition to the issues described in existing literature, many
specific aspects make this planning problem different from
what we know from the literature. Hence, we contributed to
the field by describing in detail what the practical problem is
so that future researchers may use this problem instead of a
stylized one to motivate their research.

Furthermore, we succeeded in putting together a model
for the practical problembymaking use of existing ideas from
the literature, that is, we combined two stylized model for-
mulations, the GLSP and the CSLP, to formulate a model for
the practical situation. In this manner, this paper contributes
to the field, because it proves a posteriori that the stylized
models studied before are indeed relevant if used in a proper
way which is not obvious. As the focus of this paper is not
on sophisticated solution procedures, we used commercial
software to solve small and medium sized instances to give
the reader a practical grasp on the complexity of the problem.
A next step could be to work on model reformulations given
that nowadays commercial software is quite strong if pro-
vided with a strongmodel formulation. Future workmay also
focus on tailor-made algorithms, of course. We believe that
heuristics are most appropriate for such real-world problems,
but work on optimum solution procedures or lower bounds
is relevant, too, because benchmark results will be needed.

Appendix

Symbols for Parameters and
Decision Variables

General Parameters

𝑇: number of macro-periods,
𝐶: capacity (in time units) within a macro-period,
𝑇
𝑚: number of micro-periods per macro-period,

𝐶
𝑚: capacity (in time units) within a micro-period

(𝐶 = 𝑇
𝑚

× 𝐶
𝑚),

𝜀: a very small positive, real-valued number,
𝑀: a very large number.

Parameters for Linking Production Lines and Tanks

𝑟𝑗𝑖: amount of raw material 𝑗 to produce one unit of
product 𝑖.

Decision Variables for Linking Production Lines and Tanks

𝑞𝑘𝑗𝑙𝑠𝜏: amount of product 𝑗, which is produced in line 𝑙

in micro-period 𝜏 and which belongs to lot 𝑠 that uses
raw material from tank 𝑘.
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Parameters for the Production Lines

𝐽: number of products,
𝐿: number of parallel lines,
𝐿𝑗: set of lines on which product 𝑗 can be produced,
𝑆: upper bound on the number of lots per macro-
period, that is, the number of slots in production lines,
𝑑𝑗𝑡: demand for product 𝑗 at the end of macro-period
𝑡,
𝑠𝑖𝑗𝑙: sequence-dependent setup cost coefficient for a
setup from product 𝑖 to 𝑗 in line 𝑙 (𝑠𝑗𝑗𝑙 = 0),
ℎ𝑗: holding cost coefficient for having one unit of
product 𝑗 in inventory at the end of a macro-period,
V𝑗𝑙: production cost coefficient for producing one unit
of product 𝑗 in line 𝑙,
𝑝𝑗𝑙: production time needed to produce one unit of
product 𝑗 in line 𝑙 (assumption: 𝑝𝑗𝑙 ≤ 𝐶

𝑚),
𝑥𝑗𝑙0 = 1, if line 𝑙 is set up for product 𝑗 at the beginning
of the planning horizon,
𝜎
󸀠
𝑖𝑗𝑙: setup time for setting line 𝑙 up from product 𝑖 to

product 𝑗 (𝜎󸀠𝑖𝑗𝑙 ≤ 𝐶 and 𝜎
󸀠
𝑖𝑗𝑙 = 0),

𝜔𝑙1: setup time for the first slot in line 𝑙 in macro-
period 1 that has already been performed before
macro-period 1 starts (note: if 𝜔𝑙1 > 0, then values
𝑥𝑗𝑙1 are already known and these variables should be
set accordingly),
𝐼𝑗0: initial inventory of product 𝑗.

Decision Variables for the Production Lines

𝑧𝑖𝑗𝑙𝑠: if line 𝑙 is set up from product 𝑖 to 𝑗 at the
beginning of slot 𝑠, 0, otherwise (𝑧𝑖𝑗𝑙𝑠 ≥ 0 is sufficient),
𝐼𝑗𝑡: amount of product 𝑗 in inventory at the end of
macro-period 𝑡,
𝑞𝑗𝑙𝑠: number of products 𝑗 being produced in line 𝑙 in
slot 𝑠,
𝑥𝑗𝑙𝑠 = 1, if slot 𝑠 in line 𝑙 can be used to produce
product 𝑗, 0, otherwise,
𝑢𝑙𝑠 = 1, if a positive production amount is produced
in slot 𝑠 in production line 𝑙 (0, otherwise),
𝜎𝑙𝑠: setup time at line 𝑙 at the beginning of slot 𝑠,
𝜔𝑙𝑡: setup time for the first slot on production line 𝑙 in
macro-period 𝑡 that is scheduled at the end of macro-
period 𝑡 − 1,
𝑥
𝐸
𝑙𝑠𝜏 = 1, if lot 𝑠 (which belongs to a single macro-

period 𝑡) in line 𝑙 ends in micro-period 𝜏,
𝑥
𝐵
𝑙𝑠𝜏 = 1, if lot 𝑠 (which belongs to a single macro-

period 𝑡) in line 𝑙 begins in micro-period 𝜏,
𝛿𝑙𝑠: time in the first micro-period of a lot which is
reserved for setup time and idle time,
𝑞
0
𝑗 : shortage of product 𝑗.

Parameters for the Tanks

𝐽: number of raw materials,
𝐿: number of parallel tanks,
𝐿𝑗: set of tanks in which raw material 𝑗 can be stored,

𝑆: upper bound on the number of lots per macro-
period, that is, the number of slots in tanks,
𝑠𝑖𝑗𝑘: sequence-dependent setup cost coefficient for a
setup from raw material 𝑖 to 𝑗 in tank 𝑙, 𝑙 (𝑠𝑗𝑗𝑘 may be
positive),
ℎ𝑗: holding cost coefficient for having one unit of raw
material 𝑗 in inventory at the end of a macro-period,
V𝑗𝑘: production cost coefficient for filling one unit of
raw material 𝑗 in tank 𝑘,
𝑥𝑗𝑘0 = 1, if tank 𝑘 is set up for raw material 𝑗 at the
beginning of the planning horizon,
𝜎
󸀠
𝑖𝑗𝑘: setup time for setting tank 𝑘up from rawmaterial

𝑖 to rawmaterial 𝑗 (𝜎󸀠𝑖𝑗𝑘 ≤ 𝐶) (w.l.o.g. 𝜎󸀠𝑖𝑗𝑘 is an integer
multiple of 𝐶

𝑚),
𝜔𝑘1: setup time for the first slot in tank 𝑘 in macro-
period 1 that has already been performed before
macro-period 1 starts (note: if 𝜔𝑘1 > 0 then values
𝑥𝑗𝑘1 are already known and these variables should be
set accordingly),
𝐼𝑗𝑘0: initial inventory of raw material 𝑗 in tank 𝑘,

𝑄𝑘: maximum amount to be filled in tank 𝑘,
𝑄
𝑘
: minimum amount to be filled in tank 𝑘.

Decision Variables for the Tanks

𝑧𝑖𝑗𝑘𝑠 = 1, if tank 𝑘 is set up from raw material 𝑖 to 𝑗

at the beginning of slot 𝑠, 0, otherwise (𝑧𝑖𝑗𝑘𝑠 ≥ 0 is
sufficient),
𝐼𝑗𝑘𝜏: amount of raw material 𝑗 in tank 𝑘 at the end of
micro-period 𝜏,
𝑞𝑗𝑘𝑠: amount of rawmaterial 𝑗 being filled in tank 𝑘 in
slot 𝑠,
𝑞𝑗𝑘𝑠𝜏: amount of raw material 𝑗 being filled in tank 𝑘

in slot 𝑠 in micro-period 𝜏,
𝑥𝑗𝑘𝑠 = 1, if slot 𝑠 can be used to fill raw material 𝑗 in
tank 𝑘, 0, otherwise,
𝑢𝑘𝑠 = 1, if slot 𝑠 is used to fill raw material in tank 𝑘,
0, otherwise,
𝜎𝑘𝑠: setup time, that is, the time for cleaning and filling
the tank up, at tank 𝑘 at the beginning of slot 𝑠,
𝜔𝑘𝑡: setup time, that is, the time for cleaning andfilling
the tank up, for the first slot in tank 𝑘 inmacro-period
𝑡 that is scheduled at the end of macro-period 𝑡 − 1,
𝑥
𝐸
𝑘𝑠𝜏 = 1, if lot 𝑠 at tank 𝑘 ends in micro-period 𝜏,

𝑥
𝐵
𝑘𝑠𝜏 = 1, if lot 𝑠 at tank 𝑘 begins in micro-period 𝜏.
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