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In the case of a differential operator containing a gauge field, coefficients of a new heat kernel 
expansion obtained in a preceding paper (A. P. C. Malbouisson, M. A. R. Monteiro, and F. R. 
A. Simao, CBPF-NF-024/88, to be published in J. Math. Phys.) are calculated. The prior 
expansion allows it to be shown that the meromorphic structure of the generalized zeta 
function is much richer than was known previously. Also, an application to anomalies is done, 
resulting in a general formula for the arbitrary dimension D. The special cases D = 2 and 
D = 3 are investigated. 

I. INTRODUCTION 

In a previous paper I an asymptotic expansion was ob
tained for the diagonal part of the heat kernel associated with 
a given elliptic operator H of order m, based on the connec
tion, through a Mellin transform, between the heat kernel 
and the Seeley's kernel K(s;x,y) 2 of the complex sth power 
Jr of the operator H and the meromorphic properties of 
K(s;x,x). We recall that "heat kernel" means the solution of 
the "heat equation" 

a 
- F(t;x,y) = HF(t;x,y), at (1.1 ) 

where t is a "time" or "temperature" parameter and x and y 
are, in the case we are interested in, points of a D-dimension
al compact manifold M. The Seeley's kernel is defined for 
Re(s) < - D 1m such that 

H,/(x) = JM dy K(s;x,y)f(y)· 

The expansion mentioned above is obtained by analytic 
continuation of K in the variable s and reads as 

F(t;x,x) = - f tl(d¢» 
1=0 ds s=1 

- It (j- D)/mr( D,:- j)Rj (x). (1.2) 
J 

The sum overj is such that we takej = 0,1,2, ... exclud
ing the terms such that (j - D)/m = 0,1,2, ... and R j (x) is 
the residue of K(s;x,x) at the pole s = (j - D)/m: 

R.(x) = 1 ( (dA 
) im(21T)D+ I Jilsil = I Jr 

XA (j-DJ/mb_m_/x,S,A), (1.3 ) 

where r is a curve coming from 00 along a ray of minimal 
growth, clockwise on a small circle around the origin, and 
then going back to 00. The quantities b _ m _ j are obtained 
from the coefficients of the symbol of H (see Sec. III) and 
lis II = 1 means that the set of variables {S} is constrained to 

be at the surface of the unit sphere in D-dimensional space. 
The function ¢>(s) is introduced to account for the coinci
dence of the poles of the gamma function r ( - s) and those 
of K(s;x,x) at the positive integers I and is defined by 

r( - s)K(s;x,x) ;::;:,¢>(s)/(s - /)2 (1.4) 

for s;::;:,l. 
As was remarked in Ref. 1, the expansion ( 1.2) is rather 

different from de Witt's ansatz currently used.3 In particular 
( 1.2) contains fractionary powers at even dimension and 
even operator order, coming from the second term in the 
expansion. 

In the rest of the paper we explore some consequences of 
the new expansion ( 1.2). In Sec. II we show that the general
ized zeta function t(s) has an infinity of poles at real values 
of s. In Sec. III we calculate the coefficients of the leading 
and next-to-Ieading terms in (1.2). In Sec. IV we obtain a 
general formula for the anomaly in arbitrary dimension D 
and particularize to the special cases D = 2 and D = 3. 

II. MEROMORPHY OF THE GENERALIZED ZETA 
FUNCTION 

One of the implications of the series ( 1.2) is of a math
ematical character and concerns the meromorphic structure 
of the Hawking's generalized zeta function,4 which is much 
richer than the structure known previously. This may be 
easily seen as follows. 

The generalized zeta function is written as 

t(s) = _1_ t dtlS-1JdDX F(t;x,x) + Q(s), (2.1) 
res) Jo 

where Q(s) converges for all s. 
Let us take D = 4 and consider an operator of order 

m = 2. ReplacingF(t;x,x) in (2.1) by the series (1.2) we see 
that the first term of the expansion gives no poles as a result 
ofthe factor lIr(s) in front of the integral in (2.1). From 
the second term of the expansion we have the sum 
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__ I_ Ir (4-J)R
j
(X) (dttS+ j/2 - 3, (2.2) 

res) j 2 Jo 
which gives poles at s = 2 - JI2 for integer values of J and 
(j - 4)/2#0,1,2, .... 

Thus the poles of the generalized zeta function are not 
situated only at s = 1 (j = 2) and s = 2 (j = 0). We also 
have poles at s = ~ (j = 1) and s =! (j = 3); forj = 5,7, ... 
we have an infinity of poles in s at the negative half-integers. 
There are no poles at negative integers, as a result of the 
vanishing of the residues of K(s;x,x) at those values.2 The 
residues at the poles are given by the corresponding coeffi
cients - [lIre2 - j/2)] r( 4 - j)/2)Rj (x) in (2.2). 

III. APPLICATION TO A DIFFERENTIAL OPERATOR 

Let us consider a differential operator H of order m = 2, 

H= - [gI'1'(x)(alL + BIL(x»)(a1' +B,,(x») +P(x)], 
(3.1 ) 

acting on a D-dimensional compact manifold M and en
dowed with a metricgIL1' (x) (/-L,v = 1,2, ... ,D). In (3.1) P(x) 
is a nondifferential operator and 

(3.2) 

where AIL (x) and g are, respectively, the gauge field and a 
coupling constant (not to be confused with the metric tensor 
or its determinant). The quantity 1/

IL 
(x) contains informa

tion about curvature and torsion. The usual convention of 
summation over repeated indices will be adopted. 

In Seeley's notation2 the operator H must be written in 
the form 

alai 
H = J; (- i)laIH!,"I"'a (x) ,(3.3) 

, D a 
{a lal<2 axf'" ·axD

D 

where lal = al + ... + aD' 

Expanding (3.1) and comparing with (3.3) we obtain 
the set of coefficients H !;,I, 'aD (X): 

H ~~~ 'aD (X) = H 6~)'01(IL)0" '01(1')0' "0 (X) = gIL1' (X), 
(3.4a) 

H~:) .. ao(X) =H6
1
)'OI(1')"'0 = -2igIL,,(x)BIL(X), 

(3.4b) 

- gIL" (X) (2a ILB v + BILB V) - P(X). 
(3.4c ) 

Now, to calculate the coefficients of the second term of 
expansion (1.2) we need the quantities b _ 2 _ j [see Eq. 
( 1.3)], which are expressed in terms of the coefficients 
a2 _ k (x,s) of the symbol of H2, 

a (x r) - ~ H12-k l r a , ••• r ao 
2 - k ,~- L a L •• ·aD~ 1 ~ D , 

lal = 2 - k 

by the following set of equations: 

1=0: 

b _ z[a2 (x,S) - A] = 1, 
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(3.5) 

(3.6a) 

withj<i, j + k + lal = I. (3.6b) 

The coefficients a2 _ k are easily obtained from Eqs. 
(3.4): 

az(x,s) = gIL1' (X)SILS
1'= lis 11 2

, 

al(x,s) = - 2igIL1' (x)BIL(X)sV, 

(3.7a) 

(3.7b) 

ao(x,s) = -gIL1'(x)(aILB1'-BILB1') -P(x). (3.7c) 

Then the first two quantities b _ 2 _ j that we need for 
calculating the leading and next-to-leading contributions in 
the second term of expansion (1.2) are given by 

b_z(x,s,A.) = (1Isllz-A)-I, (3.8) 

2is·a lis 112 
(11s112 _A)3' 

(3.9) 

where the scalar product is defined with the metric gIL1' (x). 
From (1.2), (1.3), (3.8), and (3.9), the contributions 

that are coefficients of the powers t - D IZ and t( I - D)12 , are 
given, respectively, by 

(3.11 ) 

where we take the integration path r as the curve coming 
from - 00 along the negative real axis, then clockwise along 
the unit circle around the origin, and then backward to - 00 

along the negative real axis. Since we must restrict the S's to 
the surface of the unit D-dimensional sphere, the last integral 
in (3.11) vanishes; to avoid the singularity at..t = 1, we in
troduce a regulatorp> 1.z Then (3.10) and (3.11) become 

X 2S1 -[ 'n(1TD)f - 00 dAIAI- D12 

2 -I p-..t 

_ i f -". dfJei(i - DI2)()], 
J". p-e'() 

(3.12) 
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(D-l) -r -2- R1(x) 

- - r(D - 1) 1 J dg 
2 (211")D+I 

[ "0( 11"(1 - D) )f -00 dl{ II{ 1(1 - D)/2 
XB·g - 21S1 

2 -I (p_l{)z 

(3.13 ) 

In (3.12), (3.13), and the subsequent formulas, the integra
tions over the g's are constrained to the unit sphere 

IIg 1I=~g,uv(x)g,ugv = 1. 
In dimension D = 4, making the change of variables 

p - IIZei()IZ = ei4>, the integrations over I{ and ° may be per
formed. The results, after suppression of the regularization, 
are 

and 

- r(2)Ro(x) = _1-4 J dg 
2(211") 

- r(~)RI(X) = - r(~)~Jdg B·g. 
2 2 2(211") 

(3.14) 

(3.15 ) 

Analogously, in dimension D = 2, the coefficients of the 
two first powers of the second term in ( 1.2) (powers t - 1 and 
t -1/2, respectively) are obtained from (3.12) and (3.13): 

- r(1 )Ro(x) = _1_2 J dg, 
2(211") 

(3.16) 

- r(l..)RI(X) = - r(l..)-I-· Idg B·g. (3.17) 
2 2 2(211")2 

As an example, we calculate the coefficients (3.16) and 
(3.17) in the Penrose compactified two-dimensional Min
kowski space,5 which has the metric 

g,uv =!G ~). 
In this case the unit sphere Ilg II = 1 is the section ofhyperbo
la depicted in Fig. 1. Using polar coordinates (r,O) and the 
well-known formula for the induced metric on a (D - 1)
dimensional surface embedded in D-dimensional metric 
space, it is easy to see that the integration on the "surface" 
IIg II = 1 reduces simply to integration over ° between the 
limits °1, 0z and 0 1 + 11", 0z + 11": 

i i
()2 i()2+7r 

dg = dO + dO, 
11';-11=1 (), (),+7r 

with 

01 = arctan (1!r), 

0z = arctan r. 
We obtain 

- r(1)Ro(x) = [1!(211")2](OZ - ( 1 ), 
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(3.18a) 

(3.18b) 

(3.19) 

~I 

FIG. 1. We show svariablessubmitted to the constraint g"vS "5 v = I in the 
Penrose compactified two-dimensional Minkowski space.' 

(3.20) 

where nand E are the elliptic integrals of the third and 
second kinds, respectively; Fis the generalized hypergeome
tric series. 

IV. ANOMALIES 

In this section we apply expansion ( 1.2) to study anom
alies using the heat kernel method.6 We borrow some of the 
notation and methods employed in a recent work by Cognola 
and ZerbinC since they are suitable for our purposes. Using 
the generalized zeta-function regularization, the anomaly 
may be written in the form 

. { 1 il 

A= -qhmTr (X+ Y)-- dtt s
-

I 

s-o res) 0 

X kU;X,X) - Po(x,x) n, (4.1) 

where q = - 1, !, or 1 for fermions, neutral or charged bo
sons, respectively; X = XI + X z and Y = Y1 + Yz are opera
tors satisfying the relation 8K(J) = (8JXI + YI8J)K 
+ K( Yz8J + 8JXz ) and K(J) is such that H(J) ex: K(J) for 

bosons and H(J) = K2(J) for fermions, whereJis a classi
cal source. Here Po is the projector onto the zero modes. For 
the axial anomaly, X = Y = ir5' 

In (4.1) we replace F( t;x,x) by ( 1.2); after some simple 
manipulations we see that the sole contribution to the anom-
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aly comes from the coefficient of the power to, giving, for 
arbitrary dimension D, 

A= -qTr{(x+ n[ -(:)Is=o -Po(X,X)]). 

(4.2) 

Now, from (1.4) and the formula 

r(z) = r(z + 1+ 1) IT 1 
z+l n=(z+l-n 

we have, for integer /"~O, 

dt/J 1 ( - 1)1 - = - 2---K(l;x,x) , 
ds s=1 I! 

(4.3) 

where the Seeley's kernel for integer I is2 

K(l;x,x) = } fds roo dt 
( - I) 2(21T)D Jo 
X t Ib _ 2 _ 2/- D (x,s,tei

/}). (4.4) 

Thus taking arg A. = () = 1T in (4.4) the anomaly may be 
obtained for arbitrary dimension D from (4.2), with 

dt/J 1 - 1 f loo - =-- ds dtb_ 2 _ D (x,S, - t). 
ds s=O (21T)D ° 

(4.5) 

Next we apply (4.2) to the cases D = 2 and D = 3. The 
case D = 3 is particularly interesting since, in spite of the 
well-known difficulties in defining the matrix Y5 in odd di
mension,8 certain aspects of even-dimensional axial anomaly 

could appear in odd-dimensional field theories (see Niemi 
and Semenoff 9 and the references therein). This results 
from the fact that the connection between zero modes of 
Dirac operators and non triviality of the background field 
topology is valid for any value of D, as shown by Callias.1O 

Moreover, there is a technical difficulty to (formally) 
calculating anomalies in odd dimension using the de Witt 
ansatz in the heat kernel method which is not present with 
our expansion: When one uses the de Witt ansatz for expand
ing F(t), the anomaly depends on the coefficient of the pow
er ~/2, which does not exist for odd values of D, while with 
our expansion the anomaly depends directly on the coeffi
cient of the zeroth power of t, given by (4.5), for any even or 
odd dimension. 

Calculations for a general coordinate-dependent metric 
are extremely involved. Here, we restrict ourselves to the 
simpler situation of a symmetric, coordinate-independent 
metric tensor gllv' In this case we obtain 

for D= 2: 

A2 = ~ Tr{(X + nf dS [4s ll (aIl B v )sV 
(21T) 

+ igllv (ailB v _ BIlB V) 

+P(x) +2(B'S)2]}, 

for D= 3: 

(4.6) 

A3 = ~ Tr{(X + nfds [ - gl'V(all avB (7)S(7 + 2i(B's)(gllv(a IlB v - BIlB V) 
(21T) 

+ P(x») - 2iBIl{aIl B V)Sv + iSPgpu(ap a
p B (7 + BP all B (7 + (ap- BP)B '1 

+ispaIlP(x)- ~(B'S)3- ~sIlSu(B's)(apB(7)- 136iSIlSvS(7(apavBU)]}. (4.7) 

In the Penrose compactified two-dimensional Minkow
ski space,5 (4.6) gives the result 

where the angles ()(' ()2 are given by (3.18a) and (3.18b) and 
Bo, B( are the components of Bp (x) given by (3.2). 
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