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Dynamical Elastic Moduli of the Ti-13Nb-13Zr biomaterial alloy were obtained using the 
mechanical spectroscopy technique. The sample with heat treatment at 1170K for 30 minutes and 
water quenched with subsequent aging treatment at 670 K for 3 hours (TNZ + WQ + 670 K/3 h), 
was characterized through decay of free oscillations of the sample in the flexural vibration mode. The 
spectra of anelastic relaxation (internal friction and frequency) in the temperature range from 300 K 
to 625 K not revealed the presence of relaxation process. As shown in the literature, the hcp structure 
usually does not exhibit any relaxation due to the symmetry of the sites in the crystalline lattice, but 
if there is some relaxation, this only occurs in special cases such as low concentration of zirconium 
or saturation of the stoichiometric ratio of oxygen for zirconium. Dynamical elastic modulus obtained 
for TNZ + WQ + 670 K/3 h alloy was 87 GPa at room temperature, which is higher than the value 
for Ti-13Nb-13Zr alloy (64 GPa) of the literature. This increment may be related to the change of 
the proportion of α and β phases. Besides that, the presence of precipitates in the alloy after aging 
treatment hardens the material and reduces its ductility.
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1.	 Introduction
Titanium and titanium alloys have a great clinical 

interest as biomaterials for use as materials for artificial 
implants (orthopedic or dental) for its high biocompatibility, 
excellent corrosion resistance and appropriate mechanical 
properties compared to stainless steels and alloys of Co-Cr. 
This alloys are distinguished by its low modulus of elasticity, 
closed to that of human bone (10-40 GPa), which ensure the 
adequate mechanical stress transfer to the surrounding bone1.

Nowadays the Ti-6Al-4V alloy is the major biomedical 
alloy used on orthopedic implants, but has a disadvantage 
because of its high modulus of elasticity (110 GPa), in 
addition that, recent studies revealed that the presence of Al 
and V ions are harmful to health in the long term implants2-4. 
Thus, among the new research of alloys for biomedical 
applications based in titanium free of toxic elements 
and with appropriate mechanical properties and high 
biocompatibility the Ti-13Nb-13Zr (TNZ) alloy appears as 
an option to be taken into account because the processing 
variables can be controlled to lead selected results4.

Ti-13Nb-13Zr alloy is typically an near-β Ti alloy 
which, when heat treated up the β-transus temperature and 

water-quenched posses a hexagonal α´-phase martensite 
microstructure, but followed by an aging treatment that 
is transformed into a martensite formed by α-phase (hcp 
structure) with precipitates of β−phase (bcc structure)5-7.

In general it is of great interest to know in a metallic 
alloy the behavior of alloying elements and the mechanical 
properties, specifically the elastic modulus in biomaterials, 
therefore the mechanical spectroscopy becomes an 
important tool for characterization because it can provide 
information about the interaction of the matrix with the 
solutes atoms (substitutional and interstitial)8-11, besides 
dynamical elastic modulus (elastic modulus as function 
of temperature)12 parameter of great importance from the 
viewpoint of biocompatibility.

This paper presents results of anelastic relaxation and 
elastic modulus as function of the temperature, obtained 
by mechanical spectroscopy from the flexural vibration 
of the fundamental mode of Ti-13Nb-13Zr alloy samples 
submitted to heat treatment of 1170 K for 30 minutes and 
water quenched with subsequent aging treatment to 670 K 
for 3 hours.
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2.	 Experimental Part
Starting from commercially pure materials Ti, Nb, Zr, 

were obtained ingots of 18 mm diameter Ti-13Nb-13Zr 
alloy by arc melting in an atmosphere of argon. Then the 
ingots were subjected to cold swaging yielding rods of 6 mm 
diameter corresponding to 89% of plastic deformation. 
So, after of annealed at 1170 K for 30 minutes and water 
quenched, an aging treatment for 3 hours at a temperature 
of 670 K was performed in this sample, the sample was 
labeled as TNZ + WQ + 670 K/3 h. Crystalline phases and 
microstructure of the sample were characterized by X-ray 
diffraction (XRD) and scanning electron microscopy (SEM).

The ingots were cut into rectangular bar shape and 
additionally was performed successive etching in an acid 
solution of 2 mL HF + 10 mL HNO 3 + 8 mL H2O until 
get a bar with dimensions of 4.62 × 20.66 × 0.54 mm3 and 
free from impurities on the surface conditions appropriate 
for measurements of mechanical spectroscopy.

Anelastic relaxation spectra (Internal friction and 
frequency as function of the temperature) were obtained by 
the Acoustic Elastomer System (Vibran Technology®, Model 
AE-102)13 in the temperature range of 300 K to 625 K with 
a heating rate of 1 K/min and pressure of about 10–5 Torr.

Mechanical spectroscopy is a characterization technique 
which measures the absorbed energy (internal friction (Q–1)) 
by the solid when it is subjected to a mechanical oscillating 
stress with a certain frequency (ω)14. The internal friction is 
related to the anelastic strain suffered by the solid since the 
atomic rearrangement processes require a relaxation time 
to obtain a new state of equilibrium.

Since the stress and strain have a temporal dependence 
for real solid, from Hooke’s Law the dynamical elastic 
modulus (E) to an oscillating mechanics wave, can be 
written12,14,15:
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where E’ and E” represent the storage and loss dynamical 
elastic modulus. Thus from the tangent angle of lag (φ), 
corresponding to the difference between the imaginary 
and real parts of the dynamical elastic modulus, is possible 
determine the energy absorbed by the solid, or internal 
friction (Q–1), besides, to flexural vibrations the internal 
friction (Q–1) can be obtained from the logarithmic 
decrement (γ) of the free oscillations of the sample
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where logarithmic decrement (γ).
In clamped free geometry, such as Acoustic Elastomer 

System the relation between resonant frequency of 
fundamental tone (f

1
) and dynamical elastic modulus (E), 

can be written12:

=
ρ1 2 0.1615 h Ef

l 	
(3)

where h is thickness l is the length and ρ is the density of 
the sample.

3.	 Results and Discussion
Figure  1a shows the X ray diffraction pattern of the 

sample TNZ + WQ + 670 K/3 h, where can be observed 
the presence of α and β phases with structure hcp and bcc 
respectively, which are in agreement with the observed in 
the literature2,5,7 for this titanium alloy when submitted to 
aging treatment.

In the Figure  1b, the micrograph obtained by SEM 
revealed the presence of a matrix of α-phase with a 
dispersion of β-phase precipitated, which is in agreement 
with XRD results.

Figure  2 shows the anelastic relaxation spectra, 
internal friction and oscillation frequency, as function of 
temperature for TNZ + WQ + 670 K/3 h sample, where for 
the temperature range studied were not observed relaxation 
processes.

Figure 1. (a) DRX patterns and (b) SEM micrographs for TNZ + WQ + 670 K/3 h sample.
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The absence of relaxation processes can be associated 
in first instance, with the hcp structure presented by this 
alloy, since the interstitial sites, octahedral and tetrahedral, 
have tetragonal symmetry equal to those atoms in the 
lattice, so simple interstitial atoms do not produce 
anelastic relaxation11,16,17. Moreover in titanium alloys, like 
Ti‑O‑Me (Me being a metal such as Zr or Nb), relaxation 
processes were found only from the individual atoms of 
oxygen trapped in the vicinity of substitutional atoms by 
the distortion that these last produce in the lattice. But in 
this case as the atomic radius of Nb and Ti are close the 
contribution to distortion of Nb element can be neglected. 
Concerning to  Zr, this contributes to the distortion of 
octahedral sites, but the increase of its contribution decreases 
the solubility of O, so studies will revealed that only one 
relaxation peak is observed to a maximum concentration of 
0.06% at. Zr, then the peak intensity decreases18. Besides, 
it was observed by other researchers in alloys containing 
Zr as substitutional element and O as interstitial atom, that 

the presence of substitutional elements affect the random 
distribution of the interstitial solute atoms in free solid 
solution and the anelastic relaxation process is observed only 
after the saturation of the stoichiometric ratio of O to Zr9,19,20.

The dynamical elastic modulus for TNZ + WQ + 670 K/3 h 
sample was determined from flexural resonance frequency 
of fundamental tone of bar in clamped-free geometry using 
the Equation  3. The value of density of the alloy used 
in the equation was 4,767 ± 0.006 g.m–3 obtained by the 
Arquimedes experimental method. Was observed a decrease 
in elastic modulus value for high temperature, as is typical in 
this kind of alloys. The value of dynamical elastic modulus at 
room temperature of TNZ + WQ + 670 K/3 h alloys obtained 
by flexural vibrations is 87 GPa. The difference between the 
values of dynamical elastic modulus observed in this work 
for Ti-13Nb-13Zr with aging treatment and literature data 
for Ti-13Nb-13Zr without aging treatment (61.9 GPa)21, can 
be associated with the change of the proportion of α and 
β phases which contributes atypically for elastic modulus 
value of the material, besides that, the presence precipitates 
in the alloy after aging treatment harden the material and 
reduce its ductility22,23.

4.	 Conclusions
Ti-13Nb-13Zr alloy subjected to heat treatment of the 

aging 670 K/3 h, shows no anelastic relaxation process due 
to interstitial or substitutional solutes. As was mentioned 
above, the hcp structure difficultly relaxes due to the 
symmetry of the sites in the lattice, besides, the relaxation 
that occurs will be only for special cases: low concentration 
of Zr (<0.06% at.) and saturation of the stoichiometric ratio 
of O for Zr. Moreover, the module of elasticity is sensitive 
to aging treatment compared with data of the literature for 
this same alloy without aging treatment.
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Figure  2. Anelastic relaxation spectra and dynamical elastic 
modulus for TNZ + WQ + 670 K/3 h alloy.
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