## **UNERSIDADE ESTADUAL PAULISTA** "JÚLIO DE MESQUITA FILHO" CAMPUS DE GUARATINGUETÁ

### JHONATHA RICARDO DOS SANTOS

### DESENVOLVIMENTO DE UM CÓDIGO COMPUTACIONAL PARA SIMULAÇÃO E ANÁLISE DE ESPECTROS ATÔMICOS

Guaratinguetá 2012

### JHONATHA RICARDO DOS SANTOS

# DESENVOLVIMENTO DE UM CÓDIGO COMPUTACIONAL PARA SIMULAÇÃO E ANÁLISE DE ESPECTROS ATÔMICOS

Trabalho de Graduação apresentado ao Conselho de Curso de Graduação em Física da Faculdade de Engenharia do Campus de Guaratinguetá, Universidade Estadual Paulista, como parte dos requisitos para a obtenção do diploma de Graduação em Bacharelado em Física.

Orientadora: Dra. Maria Esther Sbampato Coorientador: Prof. Dr. Maurício Antônio Algatti

Guaratinguetá

2012

### Santos, Jhonatha Ricardo dos

### S237d

Desenvolvimento de um Código Computacional para Simulação e Análise de Espectros Atômicos Trabalho / Jhonatha Ricardo dos Santos – Guaratinguetá : [s.n], 2012.

65 f.: il.

Bibliografia: f. 64-65

Trabalho de Graduação em Bacharelado em Física – Universidade Estadual Paulista, Faculdade de Engenharia de Guaratinguetá, 2012.

> Orientadora: Maria Esther Sbampato Coorientador: Prof. Dr. Maurício Antonio Algatti

 Espectrometria de emissão 2. Espectroscopia de emissão atômica. I. Título

CDU 543.421

## **UNERSIDADE ESTADUAL PAULISTA** "JÚLIO DE MESQUITA FILHO" CAMPUS DE GUARATINGUETÁ

# DESENVOLVIMENTO DE UM CÓDIGO COMPUTACIONAL PARA SIMULAÇÃO E ANÁLISE DE ESPECTROS ATÔMICOS

### JHONATHA RICARDO DOS SANTOS

ESTE TRABALHO DE GRADUAÇÃO FOI JULGADO ADEQUADO COMO PARTE DO REQUISITO PARA A OBTENÇÃO DO DIPLOMA DE GRADUADO EM FÍSICA BACHARELADO

APROVADO EM SUA FORMA FINAL PELO CONSELÍO DE CURSO DE GRADUAÇÃO EM FÍSICA

Prof<sup>a</sup>. Dr<sup>a</sup>. Isabel Cristina de Castro Nogueira Coordenadora

BANCA EXAMINADORA:

Prof<sup>a</sup>. Dr<sup>a</sup>. MARIA ESTHER SBAMPA ТО -DCTA Orientador/IE

Prof. Dr. MAURÍCIO ANTONIO ALGATTI

Coorientador/UNESP - FEG

Prof. Dr. MARCELO GERALDO DESTRO

IEAV - DCTA

Prof. Dr. ROBERTO YZUMI HONDA

**UNESP - FEG** 

Dezembro de 2012

## DADOS CURRICULARES JHONATHA RICARDO DOS SANTOS

NASCIMENTO 06 de maio de 1985.

FILIAÇÃO Otto Ricardo dos Santos e Nadir Claudino dos Santos

Curso de Graduação em Bacharelado em Física - Universidade Estadual Paulista

### Resumos expandidos publicados em anais de congressos

- 2012 SANTOS, J. R.; DESTRO, M. G.; SBAMPATO, M. E.; BUENO, P.; VICTOR A. R.; BARRETA, L. F. N.; Análise do Espectro de Emissão do Disprósio em Lâmpada de Catodo Oco In: 1º Simpósio de Ciência e Tecnologia do IEAv - I SCTI, 2012, São José dos Campos - SP. Anais do Simpósio de Ciência e Tecnologia do Instituto de Estudos Avançados. São José dos Campos - SP: IEAv/DCTA, 2012. p.95 - 100.
- 2012 BUENO P; DESTRO, M. G.; SBAMPATO, M. E.; NERI, J. W.; VICTOR, A. R.; BARRETA, L. F. N.; SANTOS, J. R.; Espectroscopia optogalvânica de dois passos utilizando lâmpada de catodo oco de érbio In: 5º Encontro Nacional Sobre Terras Raras,, 2012, João Pessoa - PB. Resumo. João Pessoa - PB: Universidade Federal da Paraíba - UFPB, 2012.
- 2011 DESTRO M. G.; SBAMPATO, M. E.; NERI, J. W.; SILVEIRA, C. A. B.; VICTOR, A. R.; BARRETA, L. F. N.; BUENO, P.; SANTOS, J. R.; Separação isotópica a lasers de terras-raras In: 5° Encontro Nacional Sobre Terras Raras, 2012, João Pessoa PB. Resumo. João Pessoa PB: Universidade Federal da Paraíba UFPB, 2012.
- 2011 SANTOS, J. R.; BARRETA, L. F. N.; DESTRO, M. G.; SBAMPATO, M. E.; Simulação do Espectro de Disprósio na Região de 570 nm a 650 nm In: V Seminário de Iniciação Científica e Pós-Graduação do IEAv, 2011, São José dos Campos. Anais do Seminário de Iniciação Científica e Pós-Graduação do IEAv. São José dos Campos: Instituto de Estudos Avançados - IEAv, 2011. v.III. p.25 - 30.

### Resumos publicados em anais de congressos e apresentação de pôster

2011 BUENO, P.; SBAMPATO, M. E.; BARRETA, L. F. N.; DESTRO, M. G.; VICTOR, A. R.; SANTOS, J. R.; NERI, J. W.; Espectroscopia Optogalvânica de Érbio I na Região de 582 A 600 nm In: XXXII CBRAVIC - Congresso Brasileiro de Aplicações de Vácuo na Indústria e na Ciência e Latin Display, 2011, Itajubá. Resumo de Trabalhos. Itajubá - MG: SBV, 2011.

- 2011 SBAMPATO, M. E.; SANTOS, J. R.; BARRETA, L. F. N.; VICTOR, A. R, BUENO, P DESTRO, M. G.; Neri, J. N.; Programas e base de dados para análise de espectros atômicos In: XI WAI - Workshop Anual de Pesquisa e Desenvolvimento do IEAv, 2011, São José dos Campos. Atividades de Pesquisas e Desenvolvimento. São José dos Campos: Instituto de Estudos Avançados - IEAv, 2011. v.4. p.146 – 146.
- 2011 SANTOS, J. R.; BARRETA, L. F. N.; DESTRO, M. G.; SBAMPATO, M. E.; Simulação do Espectro de Disprósio na Região de 570 nm a 650 nm In: XXIII Congresso de Iniciação Científica UNESP, 2011, Guaratinguetá. Resumo. Guaratinguetá: UNESP, 2011.
- 2011 SBAMPATO, M. E.; BARRETA, L. F. N.; SANTOS, J. R.; VICTOR, A. R; DESTRO, M. D.; NERI, J. W.; Softwares for Atomic Spectra Analysis In: Encontro de Física, 2011, 2011, Foz do Iguaçu. ENFMC - Matéria Condensada. São Paulo: SBF -Sociedade Brasileira de Física, 2011.

### Prêmio

2012 2º Lugar - Apresentações Orais - Prêmio de Melhor Trabalho de Iniciação Científica, Instituto de Estudos Avançados.

#### AGRADECIMENTOS

Agradeço, primeiramente, aos meus pais pelo apoio e incentivo incondicionais, em todos os passos de minha vida.

À professora e orientadora Dra Maria Esther Sbampato, pela dedicação e paciência durante todo o trabalho.

Ao professor Marcelo Geraldo Destro, pela confiança e oportunidade de ingresso em projetos de pesquisa no IEAv, além da dedicação em projetos paralelos a este trabalho.

Ao professor e coorientador Dr Maurício Antônio Algatti pela dedicação ao trabalho e no decorrer de minha graduação.

Ao professor Dr. Roberto Yzumi Honda, pelo auxílio e presteza em todo período do curso de graduação.

Ao professor Dr. José Wilson Neri pela ajuda no laboratório, ao professor Nicolau pelo ajuda em conceitos teóricos e ao Eng. Carlos Alberto Barbosa pelo desenvolvimento e auxílio no manuseio da descarga de catodo oco utilizada neste trabalho.

Aos meus irmãos Otto Ricardo Júnior, Rita de Cássia e Flávio. Aos meus sobrinhos Arthur, Augusto, Álvaro e Mário.

À Alessandra da Silva Vidal pelo apoio, carinho e dedicação em todos os momentos deste ano.

Aos amigos da UNESP/FEG e IEAv: Júlio César, Douglas Pimentel, Douglas Benndorf, Luís Rodolfo, Pedro William, Luciano, Danilo Almeida, Ana Paula, Ana Elídia, Diogo Moura e, principalmente, a Patrícia Bueno e Alessandro Victor pela ajuda com os equipamentos do laboratório e ao Felipe Barreta pelos conselhos sobre problemas de linguagens de programação.

Aos Professores da FEG: Fernando Luiz, Isabel Cristina, Amorin, José Lourenço Cindra, Denis Dalmazi, Marisa Andreata, Júlio Marny Hoff, Marcelo Hott e Maria Cecília Zanardi pela dediação durante todo período de graduação. E principalmente ao professor Antonio Soares Castro por suas aulas inspiradoras, e ao professor Milton Eiji Kayama pelos conselhos indispensáveis nos últimos anos de minha formação acadêmica.

A Universidade Estadual Paulista, Faculdade de Engenharia de Guaratinguetá -UNESP/FEG por todos os anos de graduação e ao Instituto de Estudos Avançados - IEAv por permitir a realização e proporcionar a infraestrutura necessária para o trabalho.

Ao CNPq pelo suporte financeiro através do programa PIBIC IEAv.

E principalmente ao Pai Celestial por tornar todo o trabalho possível.

## Epigrafe

"Somente um principiante que não sabe nada sobre ciência diria que a ciência descarta a fé. Se você realmente estuda ciência, ela certamente o levará para mais perto de Deus".

James Clerk Maxwell.

SANTOS, J. R., **Desenvolvimento de um Código Computacional para Simulação e Análise de Espectros Atômicos**, 2012. 65 p. Trabalho de Conclusão de Curso (Graduação em Bacharelado em Física) - Faculdade de Engenharia do Campus de Guaratinguetá, Universidade Estadual Paulista. Guaratinguetá, 2012

### RESUMO

Neste trabalho, foi desenvolvido um código computacional para simulação e análise de espectros atômicos, a partir de bases de dados construídas a partir da literatura. Foram criadas quatro rotinas aplicáveis a processos atômicos de separação isotópica a laser. Na primeira rotina, *Possible Transitions*, o programa verifica as possíveis transições eletrônicas a partir de um nível de energia conhecido do átomo presente na base de dados, aplicando as regras de seleção para uma transição de dipolo elétrico. A segunda rotina, *Locator Transitions*, verifica, aplicando as mesmas regras de seleção, as possíveis transições eletrônicas dentro de uma região espectral especificada pelo usuário. A rotina *Spectra Simulator* cria espectros simulados, utilizando o aplicativo gráfico *gnuplot*, através de curvas lorentzianas e, finalmente, a rotina *Eletronic Temperature*, determina a temperatura de excitação eletrônica do átomo, através do Método do Gráfico de Boltzmann.

Para testar a confiabilidade das rotinas do programa, foram obtidos experimentalmente os espectros de emissão de uma descarga de catodo oco de disprósio e argônio como gás tampão. A descarga de catodo oco foi submetida a diferentes valores de correntes de operação e pressão do gás inerte. Os espectros obtidos foram tratados com o auxílio das rotinas do programa desenvolvido (Locator Transition e Spectra Simulator) e as temperaturas de excitação eletrônica dos átomos de disprósio, nas diferentes condições de descarga, foram calculadas (rotina *Eletronic Temperature*). Os resultados obtidos mostraram que a temperatura de excitação eletrônica dos átomos de disprósio neutro na descarga de catodo oco aumenta com o aumento da corrente aplicada ao catodo e, também, com o aumento da pressão do gás tampão. Verificou-se, também, com a rotina Eletronic Temperature, que as retas ajustadas para a determinação de temperatura, através do Método do Gráfico de Boltzmann, apresentam coeficientes de determinação,  $R^2$ , superiores a 0,90. Atualmente, todas as rotinas implementadas estão sendo utilizadas em trabalhos realizados no laboratório do Instituto de Estudos Avançados - IEAv/DCTA, no projeto de desenvolvimento do processo atômico de separação de isótopos a laser dos terras-raras.

**PALAVRA-CHAVE**: Disprósio. Espectroscopia de emissão. Simulação de espectros. Espectroscopia atômica.

SANTOS, J. R., **Development of a Code for Computational Simulation and Analysis of Atomic Spectra**, 2012. 65 p. End of Course Work (Graduate Degree in Physics) - Faculdade de Engenharia do Campus de Guaratinguetá, Universidade Estadual Paulista. Guaratinguetá, 2012

### ABSTRACT

The aim of this work was the development a computer code for simulation and analysis of atomic spectra from databases constructed from the literature. There were created four routines that can be useful for spectroscopic studies in the atomic processes of laser isotope separation. In the first routine, *Possible Transitions*, the program checks the possible electron transitions from an energy level of the atom present in the database considering the selection rules for an electric dipole transition. The second routine, *Locator Transitions*, checks the possible electronic transitions within a user-specified spectral region. The routine *Spectra Simulator* creates simulated spectra using the graphical application *gnuplot* through lorentzian curve and finally, the routine *Electronic Temperature* determines the temperature of electronic excitation of the atom, thought the Boltzmann Plot Method.

To test the reliability of the program there were obtained experimental emission spectra of a hollow cathode discharge of dysprosium and argon as a buffer gas. The hollow cathode discharge has been subjected to different values of operating currents and pressure of inert gas. The spectra obtained were treated with the assistance of program routines developed (*Transition Locator* and *Spectra Simulator*) and temperatures electronic excitation of the atoms of dysprosium in the different discharge conditions were calculated (routine *Electronic Temperature*). The results showed that the electronic excitation temperature of the neutral dysprosium atoms in the hollow cathode discharge increases with increasing current applied to the cathode and also by increasing the gas pressure buffer. The determination coefficients,  $R^2$ , obtained by the *Electronic Temperature* routine using the linear adjust of the Boltzmann Plot Method were greater than 0.90. All implemented routines are being used in studies performed in the laboratory of the Institute of Advanced Studies - IEAv / DCTA, to develop the rare earth Atomic Vapor Laser Isotopes Separation process.

**KEYWORDS**: Disprosium. Emission Spectroscopy. Spectra Simulation. Atomic Spectroscopy.

## LISTA DE FIGURAS

| Figura 2.1: Representação do diagrama de níveis para a emissão espontânea25             |
|-----------------------------------------------------------------------------------------|
| Figura 2.2: Representação do diagrama de níveis para a emissão estimulada               |
| Figura 2.3: Representação do diagrama de níveis para a absorção                         |
| Figura 2.4: Representação do perfil de uma linha espectral                              |
| Figura 3.1: Tela do Programa ASAS. Rotina Possible Transitons: 1) Descrição; 2)         |
| Parâmetros de entrada; 3) Região do espectro; 4) Transição de passo superior            |
| sequencial; 5) Filtro de Dados;6) Tipos de espectros                                    |
| Figura 3.2: Tela do Programa ASAS. (à esquerda) Resultados da rotina Possible           |
| Transitons: 1A) Tabela de dados; 2A) Salvar dados.(à direita) Diagrama de setas das     |
| possíveis transições                                                                    |
| Figura 3.3: Tela do ProgramaASAS. Rotina Locator Transitons: 1) Descrição; 2)           |
| Parâmetro de entrada; 3) Região do espectro; 4) Transição de passo superior sequencial; |
| 5) Filtro de Dados;6) Tipos de espectros                                                |
| Figura 3.4: Tela do Programa ASAS. (à esquerda) Resultados da rotina Locator            |
| Transitons: 1A) Tabela de dados; 2A) Salvar dados                                       |
| Figura 3.5: Tela do Programa ASAS. Resultados da rotina Spectra Simulation: 1)          |
| Descrição da rotina; 2) Parâmetros de entrada; 3) Região do espectro; 4) Importar       |
| arquivos; 5) Cor do espectro simulado                                                   |
| Figura 3.6: Tela do Programa ASAS. Resultado obtido pela rotina Spectra Simulation:     |
| Espectro simulado e opções de armazenamento de dados                                    |
| Figura 3.7: Tela do Programa ASAS. Entrada de dados rotina Eletronic Temperature :      |
| 1) Descrição da rotina; 2) Parâmetros de entrada; 3) Região do espectro; 4) Seleção de  |
| linhas                                                                                  |
| Figura 3.8: Tela do Programa ASAS. Inserir intensidades na rotina Eletronic             |
| <i>Temperature :</i> 5) Tabela de dados; 6) Incluir Intensidades; 7) Tipo de espectro   |
| Figura 3.9 Exemplo de arquivo formatado de intensidades de linhas                       |
| Figura 3.10: Tela do Programa ASAS. Resultado obtido pela rotina Eletronic              |
| Temperature: gráfico de Boltzmann para o cálculo da temperatura; valores obtidos de     |
| temperatura e coeficiente $R^2$ da reta ajustada; opções de armazenamento de dados 45   |
| Figura 3.11: Formatação do arquivo de linhas do espectro para a base de dados do        |
| programa                                                                                |

| Figura 3.12: Formatação do arquivo de níveis de energia para a base de dados do       |
|---------------------------------------------------------------------------------------|
| programa                                                                              |
| Figura 3.13: Esquema de armazenamento dos arquivos da base de dados                   |
| Figura 3.14: Tela do Programa ASAS. Rotina Database: 1) Abrir arquivo; 2) Tipo de     |
| arquivo; 3) Tabela de dados; 4) Alterar/Excluir dados 49                              |
| Figura 4.1: Arranjo Experimental utilizado na espectrospia de emissão. LCO: Lámpade   |
| de catodo oco de disprósio e argônio; M: monocromador                                 |
| Figura 4.2: Descarga de catodo oco desenvolvida no IEAv                               |
| Figura 4.3: Elementos e montagem da descarga de catodo oco                            |
| Figura 4.4: Identificação das linhas espectrais na região de 398 a 418 nm: (acima)    |
| espectro experimental; (abaixo) espectros simulados de Dy I, Ar I e Ar II 56          |
| Figura 4.5: Determinação da temperatura eletrônica dos átomos de Dy I, na descarga de |
| catodo oco. Gás sob pressão de 1 mbar e corrente de operação de 10 mA 58              |
| Figura 4.6: Determinação da temperatura eletrônica dos átomos de Dy I, na descarga de |
| catodo oco. Gás sob pressão de 1 mbar e corrente de operação de 40 mA 59              |
| Figura 4.7: Determinação da temperatura eletrônica dos átomos de Dy I, na descarga de |
| catodo oco. Gás sob pressão de 10 mbar e corrente de operação de 10 mA 59             |
| Figura 4.8: Determinação da temperatura eletrônica dos átomos de Dy I, na descarga de |
| catodo oco. Gás sob pressão de 10 mbar e corrente de operação de 40 mA60              |

## LISTA DE TABELAS

| Tabela 4.1: Dados das linhas espectrais de Dy I utilizadas para o cálculo da temperatura |
|------------------------------------------------------------------------------------------|
| de excitação eletrônica, nas quatro condições de operação da lâmpada de catodo oco       |
| (gás tampão: argônio)                                                                    |
| Tabela 4.2: Resumo dos resultados obtidos para a temperatura de excitação eletrônica     |
| da LCO de disprósio, para as diversas condições de operação 60                           |

## LISTA DE ABREVIATURAS E SIGLAS

| IEAv  | = | Instituto de Estudos Avançados                    |
|-------|---|---------------------------------------------------|
| DCTA  | = | Departamento de Ciência e Tecnologia Aeroespacial |
| EFO   | = | Divisão de Fotônica                               |
| PASIL | = | Processo Atômico de Separação Isotópica a Laser   |
| UNESP | = | Universidade Estadual Paulista                    |
| FEG   | = | Faculdade de Engenharia de Guaratinguetá          |
| ASAS  | = | Analysis and Simulation of Atomic Spectra         |
| MMQ   | = | Método dos Mínimos Quadrados                      |

## LISTA DE SÍMBOLOS

- i = índice que indica o estado eletrônico de energia mais baixa
- s = índice que indica o estado eletrônico de energia mais alta
- *A* = coeficiente de emissão espontânea de Einstein
- J = número quântico de momento angular total
- C = constante de proporcionalidade de um sistema gráfico
- E = energia do nível eletrônico
- $\lambda$  = comprimento de onda
- h = constante de Planck
- $k_{\rm B}$  = constante de Boltzmann
- c = velocidade da luz
- $\tau$  = tempo de vida

# SUMÁRIO

| Lista de Fi | guras13                                                   |
|-------------|-----------------------------------------------------------|
| Lista de Ta | abelas15                                                  |
| Lista de A  | breviaturas e Siglas16                                    |
| Lista de Sí | mbolos17                                                  |
| 1.          | INTRODUÇÃO20                                              |
| 2.          | FUNDAMENTOS DE ESPECTROSCOPIA ATÔMICA22                   |
| 2.1.        | Números Quânticos22                                       |
| 2.2.        | Termos Espectrais e Regras de Seleção23                   |
| 2.3.        | Interação Radiação-Matéria24                              |
| 2.3.1.      | Emissão Espontânea:25                                     |
| 2.3.2.      | Emissão Estimulada26                                      |
| 2.3.3.      | Absorção27                                                |
| 2.4.        | Temperatura de Excitação Eletrônica27                     |
| 2.5.        | Perfis de Linhas Espectrais e Alargamentos                |
| 3.          | PROGRAMA DE ANÁLISE E SIMULAÇÃO DE ESPECTROS              |
| ATÔMIC      | OS                                                        |
| 3.1.        | Rotinas do Programa de Análise e Simulação de Espectros33 |
| 3.1.1.      | Rotina: Possible Transitions                              |
| 3.1.2.      | Rotina: Locator Transitions                               |
| 3.1.3.      | Rotina: Spectra Simulation                                |
| 3.1.4.      | Rotina: Electronic Temperature41                          |
| 3.2.        | Base de Dados45                                           |
| 3.2.1.      | Formatação de Arquivo: Linhas do Espectro45               |
| 3.2.2.      | Formatação de Arquivo: Níveis de Energia47                |

| 3.2.3.     | Armazenamento de Arquivos4                                      | 8  |
|------------|-----------------------------------------------------------------|----|
| 3.2.4.     | Acesso a Base de Dados4                                         | 9  |
| 4.         | ESPECTRO DE EMISSÃO DO DISPRÓSIO5                               | 1  |
| 4.1.       | Técnica da Espectroscopia de Emissão5                           | 1  |
| 4.2.       | Procedimento Experimental5                                      | 1  |
| 4.3.       | Lâmpada de Catodo Oco5                                          | 3  |
| 4.4.       | Resultados e Discussão5                                         | 5  |
| 4.4.1.     | Análise dos Espectros de Emissão5                               | 5  |
| 4.4.2.     | Determinação da Temperatura Eletrônica de Excitação5            | 6  |
| 5. CONCI   | LUSÕES6                                                         | 1  |
| TRABAL     | HOS FUTUROS6                                                    | 3  |
| REFERÊ     | NCIAS6                                                          | 4  |
| APÊNDIC    | CE A: Base de Dados Espectroscópicos do Dy I construída a parti | r  |
| de [2,20]  | 6                                                               | 5  |
| A1 Níveis  | de Energia6                                                     | 5  |
| A2 Linhas  | s Espectrais7                                                   | 2  |
| APÊNDIC    | CE B: Tratamento dos Espectros de Emissão8                      | 6  |
| B1 Calibra | ação de Intensidade8                                            | 6  |
| B2 Calibra | ação do Comprimento de Onda8                                    | 7  |
| B3 Gráfic  | os dos Espectros de Emissão8                                    | 9  |
| APÊNDIC    | CE C: Tratamento para Determinação da Intensidade Relativa da   | IS |
| Linhas do  | Espectro9                                                       | 3  |
| ANEXO      | A: Método dos Mínimos Quadrados e o Coeficiente d               | e  |
| Determina  | ação9                                                           | 4  |

### 1. INTRODUÇÃO

A espectroscopia é uma importante área da ciência, com aplicações nos mais diversos campos de pesquisa. Particularmente, o conhecimento do espectro de um átomo permite sua identificação e medição de sua concentração em amostras. Através da intensidade relativa de linhas de emissão e absorção, é possível o conhecimento da proporção de átomos presentes em cada um dos níveis de energia do mesmo, conhecimento este de importância em vários experimentos, como na separação isotópica a laser. Neste contexto, se torna bastante importante uma ferramenta de simulação de espectros que facilite o planejamento de experimentos e a análise de dados experimentais.

Este trabalho foi desenvolvido, primeiramente, com foco na simulação de espectros de terras-raras, para serem utilizados em experimentos de fotoionização seletiva de isótopos, no Instituto de Estudos Avançados – IEAv – DCTA. O interesse na fotoionização seletiva de isótopos de terras-raras tem crescido muito nos últimos anos devido às suas muitas aplicações industriais, médicas, e aplicações envolvendo segurança nacional, juntamente com o seu uso como novas tecnologias de fontes de energia. O IEAv iniciou, em 2005, um trabalho para estender a capacitação obtida no processo atômico de separação isotópica via lasers do urânio a outros materiais de interesse aeroespacial como, por exemplo, nos elementos das terras-raras e isótopos estáveis de refratários, através do Projeto PASIL, acronimo de Processo Atômico de Separação Isotópica a Laser. Entre todas as aplicações dos elementos de terras-raras e seus isótopos, o IEAv tem especial interesse nos isótopos do Nd, do Yb, do Dy e do Er. Estes foram escolhidos considerando suas aplicações específicas [1,2].

O objetivo deste trabalho foi desenvolver um código computacional para simulação e análise de espectros atômicos, a partir de bases de dados construídas a partir de dados da literatura, com rotinas aplicáveis ao processo atômico de separação isotópica a laser.

O programa foi, inicialmente, desenvolvido em linguagem C [3] e compreendia duas funções específicas: i) calcular as possíveis transições energéticas para determinado átomo, a partir de certo nível de energia aplicando a regra de seleção ( $\Delta J = 0, \pm 1$ ); ii) verificar todas as possíveis transições dentro de uma região espectral, partindo de todos os níveis definidos pela base de dados criada. Além das funções prédeterminadas, o programa foi aprimorado com mais uma rotina que simula espectros a partir da base de dados utilizando como recurso gráfico o programa gratuito *gnuplot*.

Posteriormente, o programa original em linguagem C foi otimizado, com o auxilio da linguagem de programação *Visual Basic* [4]. Por ser uma linguagem orientada a objetos, os programas desenvolvidos em *Visual Basic* possibilitam uma maior interatividade entre os seus usuários.

Com base nos projetos iniciais [3, 4], finalizou-se o *Programa de Análise e Simulação de Espectros Atômicos (Software of Analysis and Simulation of Atomic Spectra - ASAS)* com quatro rotinas: i) Possíveis Transições: define as possíveis transições energéticas partindo de um nível aplicando, além das regras de seleção do momento angular, a regra de paridade da função de onda que descreve o elétron em determinado nível de energia; ii) Localizador de Transições: define todas as transições possíveis entre todos os níveis de energia de uma determina região, aplicando as mesmas regras da rotina anterior; iii) Simulador de Espectro: utiliza a base de dados e o aplicativo *gnuplot* para construir espectros atômicos através de curvas lorentzianas; iv) Determinação de Temperatura: calcula a temperatura eletrônica de átomos através do conceito de distribuição de Boltzmann e com o auxílio gráfico do *gnuplot*.

No Capítulo 2 do presente trabalho, são apresentados os fundamentos teóricos mais relevantes da espectroscopia eletrônica de átomos polieletrônicos. No Capítulo 3, é descrito o programa ASAS, com detalhes de sua utilização e da construção das bases de dados. O Capítulo 4 apresenta um exemplo de aplicação do programa, em experimentos de espectroscopia de emissão no plasma da descarga de catodo oco de disprósio neutro (Dy I), tendo o argônio como gás tampão. Com a utilização do programa, realizou-se a análise dos espectros obtidos em laboratório, bem como a determinação da temperatura de excitação eletrônica para diferentes valores de corrente de operação e pressão do gás inerte (argônio). No Capítulo 6, é apresentada a conclusão do trabalho e sugestões para trabalhos futuros.

### 2. FUNDAMENTOS DE ESPECTROSCOPIA ATÔMICA

Neste capítulo, é feita uma rápida discussão sobre os aspectos teóricos da emissão e absorção, os coeficientes e emissão e absorção de Einstein, as regras de seleção e os acoplamentos de momentos angulares, conceitos de espectroscopia atômica utilizados neste trabalho.

No final deste capítulo será feita a síntese do Princípio de Distribuição de Boltzmann e do método de determinação de temperatura eletrônica através do método Gráfico de Boltzmann.

### 2.1. Números Quânticos

Muitos princípios fundamentais da mecânica quântica se devem aos estudos de Erwin Schroedinger e Werner Heisenberg. A teoria de Heisenberg baseia-se em quantidades físicas passíveis de serem observadas experimentalmente e, segundo o *Princípio da Incerteza de Heisenberg*: "é impossível determinar, simultaneamente, com absoluta precisão, a velocidade e a posição de um elétron em um átomo".

A formulação da teoria quântica de Schröedinger foi elaborada em termos das propriedades das ondas materiais com base na *Hipótese de De Broglie*: "O elétron apresenta característica dual, ou seja, comporta-se como matéria e energia, sendo uma partícula-onda". No tratamento apresentado por Schroedinger foi proposto que o comportamento das ondas de De Broglie fosse descrito por uma função de onda  $\Psi$  e forneceu ainda uma função diferencial que descreve o comportamento de qualquer sistema de partículas. As soluções deste tratamento fornecem os números quânticos e, foram encontradas por Paul Dirac após desenvolver outra equação de onda que satisfaz a teoria da relatividade restrita [5,6].

Para um átomo com um elétron, a descrição atômica é dada por cinco grandezas quânticas: (i) *número quântico principal*, *n*, que representa o nível ou camada principal de energia do átomo; (ii) *número quântico azimutal* (ou *orbital de momento angular*), *l*, determina a forma dos orbitais atômicos (s,p,d,f...), e representa o momento angular do elétron em torno do núcleo atômico; (iii) *número quântico orbital magnético*,  $m_b$ , especifica a orientação permitida a uma nuvem eletrônica no espaço quando sujeita a um campo magnético externo, sendo que o número destas orientações permitidas está relacionada à forma desta nuvem eletrônica; (iv) *número quântico de spin eletrônico*, *s*,

*que tem o valor \frac{1}{2} para um elétron* e (v) *número quântico de spin magnético*, *m<sub>s</sub>*, que dá a orientação do spin eletrônico quando sujeito a um campo externo, assumindo valores de  $-\frac{1}{2}$  ou  $+\frac{1}{2}$ . Os três primeiros números quânticos são usados na determinação da órbita atômica e os outros indicam a orientação do elétron em torno do seu próprio eixo.

Os números quânticos nos permitem fazer uma descrição completa dos elétrons nos átomos, sendo que a combinação dessas grandezas é única para cada elétron (*Princípio de Exclusão de Pauli*).

Para átomos multieletrônicos, o conjunto de números atômicos para o átomo de um elétron, não tem significado físico [7]. Um átomo existe num determinado estado real, cada estado com uma autofunção e energia definida. Estados resultam da combinação das interações magnéticas e eletrostáticas envolvendo o núcleo e todos os elétrons do átomo. No modelo vetorial atômico estes estados podem ser descritos pelo uso de certos números atômicos que coletivamente, incluem todos os elétrons presentes no átomo, conhecidos como números quânticos de momento angular total: L (momento angular eletrônico),  $M_L$  (momento magnético relacionado a L), S (momento angular de spin),  $M_S$  (momento magnético relacionado a S), J (momento angular total, inclui os acoplamento L e S) e  $M_J$  (momento magnético relacionado a J). São os diferentes conjuntos de números quânticos de momento angular total que caracterizam o estado do átomo nos diferentes níveis de aproximação. Na ausência de um campo externo, um termo com momento angular total tem grau de degenerescência dado por 2J + 1, que corresponde às possíveis orientações de J em relação à direção do campo (dadas por  $M_J$ ).

### 2.2. Termos Espectrais e Regras de Seleção

Uma vez que os estados eletrônicos permitidos de um átomo podem ser descritos pelos números atômicos de momento angular total, estes podem ser usados para interpretar os espectros de átomos. O modelo vetorial atômico [8] é adequado para este trabalho. As combinações resultantes de todas as interações entre os elétrons exigem um estudo espectroscópio detalhado para o átomo multieletrônico sob investigação [9]. Dois casos extremos de acoplamento podem ser destacados - o acoplamento *L-S* (também denominado como *aproximação de Russel-Saunders*) e o acoplamento *j-j*. No acoplamento *L-S*, as interações intereletrônicas são mais acentuadas do que as

interações spin-órbita dos elétrons individuais, sendo este acoplamento o método mais adequado para átomos com número atômico, *Z*, baixo. Para átomos com valores de *Z* elevados, onde a interação spin-órbita do elétron individual é mais acentuada do que as interações intereletrônicas [5, 7], o acoplamento *j-j* deve ser usado.

No modelo vetorial do átomo, um nível eletrônico é, comumente, indicado por uma nomenclatura baseada no acoplamento *L-S*:

$${}^{2S+1}L_{f}$$

onde os termos correspondentes a L=0,1,2,3... são denotados pelas letras S, P, D, F...(é importante não confundir a letra S para L=0 com o número quântico S). O Número de níveis associados com certo termo é dado por (2S + 1) se L>S ou por (2L + 1) se L<S. Cada nível é caracterizado por um J e inclui (2J + 1) estados degenerados na ausência de campo magnético externo. Uma simplificação que vem do modelo vetorial do átomo é que uma camada ou subcamada completa não contribui para o momento angular total (L=S=J=0) e pode, portanto, ser ignorada na aplicação do modelo [8].

As transições dos elétrons entre distintos níveis de energia eletrônicos do átomo devem obedecer a certas regras de seleção. Estas regras de seleção são resultados diretos do estudo quântico da interação radiação-matéria e dependem do tipo de acoplamento [10]. As regras de seleção a seguir, são válidas para qualquer acoplamento:

$$\begin{cases} \Delta J = 0, \pm 1; \ J \neq 0 \\ \Delta J = +1; \ J = 0 \end{cases}$$

Outra regra de seleção geral para transições eletrônicas que envolvem momento de dipolo (emissão e absorção de radiação magnética) está ligada à paridade da função de onda  $\Psi$  que descreve cada nível de energia. As funções de onda podem ser funções pare e ímpares. Transições de dipolo elétrico são permitidas apenas entre níveis de paridades diferentes, i.e., entre níveis de energia de funções pares para níveis de energia de funções ímpares e vice-versa.

#### 2.3. Interação Radiação-Matéria

Antes de descrever os processos envolvidos na interação de fótons com átomos considera-se um átomo com níveis de energia  $E_n$ , com n= 1, 2, 3... e  $E_n > E_{n-1}$ , em 'equilíbrio térmico, ou seja, com a distribuição de população entre os níveis de energia

obedecendo o Princípio de distribuição de Boltzmann [11]. A síntese destes processos de interação pode ser verificada em [12] e é discutida em seguida.

#### 2.3.1. Emissão Espontânea:

Ocorre quando o átomo encontra-se no estado de energia superior  $E_2$  (ou estado excitado<sup>†</sup>). Tal átomo excitado tende a decair espontaneamente para o nível de energia mais baixa  $E_1$ , liberando a diferença de energia ( $E_2 - E_1$ ) entre estes níveis na forma de onda eletromagnética (o fóton). Este processo é denominado de emissão espontânea e está representado na Figura 2.1. A frequência da onda eletromagnética pode ser calculada a partir da equação de Planck:



Figura 2.1: Representação do diagrama de níveis para a emissão espontânea.

O parâmetro que descreve o processo de emissão é o coeficiente de emissão espontânea de Einstein ( $A_{21}$ ), que fornece o número de fótons com energia hv emitidos espontaneamente por unidade de tempo. Esse coeficiente depende da estrutura do átomo e da transição considerada  $|2\rangle \rightarrow |1\rangle$  e é dado por:

$$A_{21} = \frac{d}{dt} \left( P_{21}^{espont} \right), \tag{2.2}$$

onde  $P_{21}^{espont}$  é a probabilidade de emissão espontânea.

Outro parâmetro importante no estudo da emissão espontânea é o denominado tempo de vida de um estado excitado  $\tau$ . Considere-se que, por colisões entre os átomos de um sistema, um grande número destes (*N*) sejam promovidos a um estado excitado,  $E_2$ . Como resultado da emissão espontânea, esse número de átomos diminuirá com o passar do tempo. Em um intervalo de tempo *dt*, especificamente, uma fração  $A_{21}dt$ desses átomos emitirá radiação:

<sup>&</sup>lt;sup>†</sup> Um átomo encontra-se no estado excitado, quanto um de seus elétrons, geralmente o de valência, recebe energia e é excitado para um nível de energia mais alto que o estado fundamental (nível de menor energia  $E_1$ ).

$$dN = -ANdt \tag{2.3}$$

Resolvendo a equação acima para N(t), encontra-se:

$$N(t) = N(0)e^{-At} (2.4)$$

Evidentemente, o número restante de átomos no estado excitado diminui espontaneamente com uma constante de tempo [10]:

$$\tau = \frac{1}{A_{21}} \tag{2.5}$$

Tecnicamente o tempo de vida  $\tau$ , é o tempo que N(t) leva para atingir 1/*e* de seu valor inicial.

#### 2.3.2. Emissão Estimulada

Ocorre quando o átomo encontra-se no nível de energia superior  $E_2$  (estado excitado) e há a incidência de um fóton de frequência v no átomo. Se a energia do fóton incidente for igual à diferença entre os níveis ( $hv = E_2 - E_1$ ), há uma probabilidade finita de um segundo fóton ser emitido pelo átomo, causando a transição para o nível inferior (de menor energia). Em outras palavras, existe uma probabilidade finita do fóton incidente estimular o decaimento do nível  $E_2$  para o nível  $E_1$ , sendo emitidos dois fótons. O segundo fóton terá a mesma energia, direção e fase do primeiro. O processo de emissão estimulada está representado na Figura 2.2.



Figura 2.2: Representação do diagrama de níveis para a emissão estimulada.

A probabilidade de um átomo emitir um fóton induzido de energia hv por unidade de tempo  $(dP_{21}/dt)$  pode ser expressa em termos da densidade de energia espectral da radiação  $\rho(v)$ , como:

$$B_{21}\rho(\nu) = \frac{dP_{21}}{dt}$$
(2.6)

onde  $B_{21}$  é o coeficiente de Einstein para a emissão estimulada.

#### 2.3.3. Absorção

Ocorre quando o átomo encontra-se em um nível de energia inferior, como, por exemplo, o estado fundamental, e um fóton com energia *hv* incide sobre este átomo. Se a energia do fóton for igual à diferença de energia entre os dois níveis, ou seja, sejam ressonantes, existe a probabilidade finita do fóton ser absorvido pelo átomo e este sofrer uma transição para um nível de maior energia. A Figura 2.3 representa o processo de absorção de radiação de um átomo.



Figura 2.3: Representação do diagrama de níveis para a absorção.

A probabilidade por unidade de tempo  $(dP_{21}/dt)$  para o átomo absorva um fóton é proporcional à densidade de fótons de energia hv por unidade de volume, expressa por:

$$B_{12}\rho(\nu) = \frac{dP_{12}}{dt}$$
(2.7)

onde  $B_{12}$  é o coeficiente de Einstein para a absorção induzida.

### 2.4. Temperatura de Excitação Eletrônica

A temperatura de excitação eletrônica é uma importante propriedade de uma fonte de excitação. O conhecimento da temperatura de uma fonte de excitação é essencial para o entendimento de processos de dissociação, vaporização e excitação que ocorrem na fonte de radiação. A excitação por impacto de elétrons promove uma pequena fração de átomos para seus estados excitados, que decaem emitindo fótons com comprimento de onda característico, que podem ser detectados e analisados de acordo com seu espectro. O método mais utilizado para o cálculo da temperatura eletrônica é o Método do Gráfico de Boltzmann. Se o plasma está em equilíbrio térmico local, na temperatura eletrônica T<sub>e</sub>, de acordo com a lei de Boltzmann tem-se [11, 13]:

$$N_s = \frac{N_0 g_s}{Z} exp\left(-\frac{E_s}{k_B T_e}\right)$$
(2.8)

onde  $E_s$  é o nível de energia considerado,  $g_s$  é o seu peso estatístico,  $N_0$  é a densidade total de átomos,  $N_s$  é a densidade de partículas no estado de energia n, e Z(T), a função de partição total na temperatura T<sub>e</sub>, dada pela somatória:

$$Z = \sum_{j} g_{j} exp\left(-\frac{E_{s}}{k_{B}T_{e}}\right)$$
(2.9)

sendo a somatória feita sobre tosos os níveis de energia do átomo.

A intensidade da linha espectral de emissão é proporcional à população do nível superior da transição [11], então:

$$I_{si} = N_s A_{si} h \nu_{si} \tag{2.10}$$

onde  $N_s$  é a densidade de átomos no nível de energia superior,  $A_{si}$  é a probabilidade de transição (coeficiente de emissão espontânea de Einstein) do nível superior *s* para o nível inferior *i*,  $v_{si}$  é a frequência de transição, e *h* é a constante de Planck. A partir da distribuição de Boltzmann, Equação (2.8), e desprezando a auto-absorção, a intensidade da linha é relacionada com a temperatura eletrônica ( $T_e$ ) [11]:

$$I_{si} = \frac{hc}{\lambda_{si}} N_0 \frac{g_j}{Z} A_{si} exp\left(-\frac{E_s}{k_B T_e}\right)$$
(2.11)

A espectroscopia atômica de emissão pode ser utilizada para calcular a temperatura eletrônica de determinados elementos em um plasma, sendo que o gráfico da função de Boltzmann utilizando várias linhas de emissão é considerado o melhor método de diagnóstico dessa temperatura. Da teoria da espectroscopia de emissão atômica, a relação entre a temperatura do plasma e a intensidade relativa entre as linhas espectrais, é obtida a partir da Equação (2.11), e é dada por [11, 13, 14]:

$$ln\left(\frac{I_{si}\lambda_{si}}{g_sA_{si}}\right) = C - \frac{E_s}{k_BT}$$
(2.12)

Todo o cálculo envolvido na temperatura eletrônica é realizado com o auxílio da rotina *Electronic Temperature* do programa *Spectra Simulator*, desenvolvido neste trabalho. Os parâmetros  $g_s$ ,  $A_{si} \in E_n$  são obtidos através da base de dados de cada átomo de interesse e são característicos de cada linha. Com o número de linhas adequado, é construído um gráfico fazendo-se a função logarítmica,  $ln(I\lambda/Ag)$ , versus a energia do nível superior. Utilizando o método dos mínimos quadrados (Anexo A) é feito o ajuste linear entre os valores do gráfico, obtendo-se uma reta cujo coeficiente angular a própria temperatura eletrônica.

O coeficiente de determinação do ajuste linear,  $R^2$ , pode assumir valores entre 0 e 1, e determina a qualidade do ajuste linear. Quando  $R^2 = 1$ , cada uma das variáveis de  $ln(l\lambda/Ag)$  torna-se uma função linear das variáveis  $E_j$ , ou seja, todos os pontos da função logarítmica estão sobre a reta (ajuste com qualidade de 100%). Quando  $R^2 = 0$ , não existe uma relação linear entre a função logarítmica e a energia do nível superior. Considera-se que há uma boa correlação quando  $R^2 > 0,90$  [14]. Todos os passos para o cálculo do coeficiente de correlação do ajuste linear estão descritos no Anexo A.

O erro para o cálculo da temperatura obtida através do Gráfico de Boltzmann é obtido através da Equação (2.13) [15]:

$$\frac{\Delta T}{T} = \frac{k_B T}{\left[\sum_{l=1}^n E_l^2 - \frac{1}{n} (\sum_{l=1}^n E_l)^2\right]^{1/2}} \times \left(\frac{\Delta I}{I} + \frac{\Delta A}{A}\right)$$
(2.13)

onde  $\Delta I/I$  é o desvio médio das intensidades obtidas experimentalmente e  $\Delta A/A$  é o desvio médio dos coeficientes de emissão espontânea de Einstein, *A*, de cada transição envolvida no cálculo da temperatura eletrônica.

#### 2.5. Perfis de Linhas Espectrais e Alargamentos

A absorção ou emissão de radiação em uma transição atômica  $(E_2 - E_1 = hv_{21})$ não resulta em uma linha espectral estritamente monocromática, mas sim em uma distribuição de frequência em torno da frequência central. Isso fornece o perfil de linha  $I(v - v_0)$ , com uma largura de linha à meia altura (FWHM - full-width at halfmaximum),  $\delta v$ , a qual se encontra representada na Figura 2.4. Esta largura não depende somente da resolução espectral do equipamento, mas também do tempo de vida dos estados atômicos envolvidos na transição, da distribuição de velocidade dos átomos e da pressão da amostra gasosa. A largura de linha em unidades de frequência é definida como o intervalo  $\delta v = |v_2 - v_1|$  entre as frequências  $v_1 < v_0$  e  $v_2 > v_0$ , onde  $v_0$ é a frequência central dada por  $v_0 = (E_s - E_i) /h$ , cuja intensidade é  $I(v_1) = I(v_2) =$  $I(v_0)/2$ . A largura de linha tanbém pode ser escrita em termos de frequência angular  $\omega$ e de unidades de comprimento de onda  $\lambda$  [12, 16]. A relação para essas notações é dada por:

$$\left|\frac{\delta\lambda}{\lambda}\right| = \left|\frac{\delta\nu}{\nu}\right| = \left|\frac{\delta\omega}{\omega}\right|$$

~ ~



Figura 2.4: Representação do perfil de uma linha espectral.

Os principais processos de alargamento de linhas espectrais são [12, 16]:

- i. Alargamento natural: é relacionado com o tempo de vida médio  $\tau$ , de um átomo no nível  $E_s$ , o qual decai exponencialmente divido a emissão espontânea. Apresenta um perfil lorentziano e fornece uma pequena contribuição para o alargamento de uma linha quando outros tipos de alargamentos são predominantes.
- ii. Alargamento por pressão: Todo átomo em um gás interage com outros átomos vizinhos, íons e elétrons. Dependendo das condições de pressão, os átomos excitados podem sofrer um número variável de interações antes de decaírem, ocasionando o alargamento da sua linha espectral. As linhas emitidas em uma descarga gasosa são menos alargadas quando a pressão do gás e a densidade da corrente de operação da descarga são reduzidas. Este alargamento é função da densidade das espécies perturbadas constituintes do gás e também é conhecido como alargamento colisional. A determinação do alargamento por pressão requer trabalhos experimentais específicos para cada transição e meio considerados, entretanto, uma boa estimativa pode ser dada por:

$$\Delta \omega = 2N \langle \mathbf{v} \rangle \sigma_b \tag{2.14}$$

onde *N* é a densidade de partículas,  $\langle v \rangle$  é a velocidade relativa e  $\sigma_b$  é a seção de choque de colisão.

iii. Alargamento Doppler: é causado pelo movimento térmico dos átomos (ou moléculas) emissores do meio, que se deslocam a frequência aparente dos átomos que estão absorvendo ou emitindo radiação eletromagnética. A distribuição maxwelliana de velocidades das partículas resulta em vários deslocamentos, gerando o alargamento da linha. Em outras palavras, tal alargamento é causado pelo efeito Doppler, que pode ser explicado considerando um átomo excitado com velocidade  $\vec{v}$ . Com relação a um sistema de referência ao observador, a frequência angular  $\omega_0$  no sistema de coordenadas desse átomo é deslocada pelo efeito Doppler por:

$$\omega_e = \omega_0 + \vec{k}.\vec{v} \tag{2.15}$$

para um observador olhando na direção da partícula emissora. A frequência de emissão aparente  $\omega_e$  aumenta caso à partícula se mova em direção ao observador ( $\vec{k}$ .  $\vec{v} > 0$ ) e diminui em caso contrário ( $\vec{k}$ .  $\vec{v} < 0$ ). No equilíbrio térmico os átomos seguem a distribuição de velocidades de Maxwell-Boltzmann e o perfil de intensidade da linha espectral é descrito por uma função gaussiana, dada por:

$$I(\omega) = I_0 \exp\left\{-\left[c\frac{(\omega-\omega_0)}{\omega_0 v_p}\right]^2\right\},\qquad(2.16)$$

onde  $v_p$  é a velocidade mais provável.

A largura de linha Doppler (ou largura à meia altura), é obtida por:

$$\Delta \nu_D = \nu_2 - \nu_1 = 2 \frac{\nu_0}{c} \sqrt{\frac{2RT}{M}} \ln 2 , \qquad (2.17)$$

Substituindo os valores das constantes e expressando a equação em termos de comprimento de onda, chega-se:

$$\Delta \lambda_D = 7,17.\,10^{-7} \lambda_0 \sqrt{\frac{T}{M}}\,, \tag{2.18}$$

onde a temperatura T é dada em Kelvin e a massa molar M é dada em g/mol.

Para um átomo confinado em baixa pressão numa lâmpada de catodo oco comercial, o alargamento por pressão pode ser considerado desprezível frente ao alargamento Doppler [17, 1, 2].

Nos experimentos realizados neste trabalho, utilizou-se uma descarga de catodo oco desenvolvida no IEAv (descrita no próximo capítulo), onde foi possível variar a pressão do gás no interior da câmara de confinamento da descarga e a corrente aplicada ao catodo.

# 3. PROGRAMA DE ANÁLISE E SIMULAÇÃO DE ESPECTROS ATÔMICOS

O programa de Análise e Simulação de Espectros Atômicos (ASAS) visa facilitar e agilizar o estudo dos espectros atômicos, com rotinas para aplicação na separação isotópica de átomos com lasers [3, 4]. Os textos no programa foram escritos em inglês, pois se pretende disponibilizar o mesmo para a comunidade científica.

O programa ASAS foi desenvolvido em *Visual Basic* com a utilização do editor  $Microsoft^{@}$  Visual Studio  $2010^{@~\ddagger}$ . O programa desenvolvido visa maior interatividade entre os usuários e os dados obtidos através de suas rotinas. Todos os gráficos construídos pelo programa utilizam o programa gráfico gnuplot [18].

A versão atual do programa ASAS apresenta quatro rotinas auxiliares. Estas rotinas possibilitam: a verificação de possíveis transições entre os níveis de energia; a simulação de espectros; a identificação das linhas obtidas experimentalmente e o cálculo da temperatura eletrônica a partir de dados experimentais de intensidade de linhas atribuídas. O programa ASAS conta, também, com uma base de dados construída a partir de dados de literatura contendo as informações dos espectros de cada átomo que se deseja estudar. O usuário pode criar a base de dados para o átomo de interesse, de acordo com a formatação adequada ao programa. Dados espectroscópicos para grande número de átomos pode ser encontrados na base de dados do NIST [19].

Nas próximas seções deste capítulo, as informações necessárias sobre cada rotina do programa ASAS, e a formatação da base de dados serão detalhadas.

### 3.1. Rotinas do Programa de Análise e Simulação de Espectros

Cada uma das rotinas desenvolvidas para o programa ASAS possui funções específicas e é necessário que o usuário as conheça para melhor utilização destas ferramentas.

<sup>&</sup>lt;sup>‡</sup> O Editor *Microsoft<sup>®</sup> Visual Studio 2010<sup>®</sup>* foi fornecido pela *DreamSpark Microsoft* e licenciado sob número de contrato: 700612353.

### 3.1.1. Rotina: Possible Transitions

Para melhor entendimento do usuário dividiu-se cada uma das sub-rotinas desta rotina em quadros (Figura 3.1).

| SIBLE TRANSITIO      | NS                          |                                     |
|----------------------|-----------------------------|-------------------------------------|
| meters               |                             | Filters                             |
| tom                  | Spectral limits             | 📝 Wavelength in vacuum (λο)         |
| Dyl                  | Lower limits:<br>400 (nm)   | Wavelength in air (λair)            |
| Ex.: Dyl; Ndll; Erl) | Upper limits:               | Relative intensity (R L)            |
| nergy Level (1/cm)   | 570 (nm)                    |                                     |
| J                    | Vacuum O Air                | Einstein emission coefficient (Aif) |
|                      | I Second photon             | Lower energy level (Ei)             |
|                      | Levels of the second photon | ☑ Lower angular momentum (Ji)       |
|                      | 23877.75 (1/cm)             | ☑ Upper angular momentum (Jf)       |
|                      | (1/cm)                      | Upper energy level (Ef)             |
|                      | ( 1/cm)                     | TurnetEnnet                         |
|                      |                             | Absorption                          |
|                      |                             | © Emission                          |
|                      | Set Parameters              | Absorption and Emission             |

Figura 3.1: Tela do Programa ASAS. Rotina *Possible Transitons*: 1) Descrição; 2) Parâmetros de entrada;
3) Região do espectro; 4) Transição de passo superior sequencial; 5) Filtro de Dados;6) Tipos de espectros.

- Quadro 1: Descrição resumida da rotina utilizada.
- Quadro 2: Parâmetros de entrada. Neste quadro o usuário insere a sigla do átomo que se deseja estudar e o nível de energia inicial das possíveis transições.

A sigla do átomo pode conter letras maiúsculas, minúsculas e espaço entre as letras (Ex.: Dy I, nd ii, eri, etc.). Caso o usuário insira a sigla de um átomo que não exista na base de dados, o sistema informa ao usuário e o processamento de dados é cancelado.

O nível de energia fornecido pelo usuário pode ser inserido tanto com vírgulas (",") ou pontos ("."), em unidades de cm<sup>-1</sup>. Entretanto, o usuário deve conhecer os níveis do átomo em estudo, pois se for inserido um nível de energia que não consta na base de dados, o sistema informará ao usuário e o processamento de dados será cancelado.

 Quadro 3: Região do espectro. Neste quadro, o usuário limita sua pesquisa em uma região do espectro cujo meio de propagação (ar ou vácuo) pode ser definido. Os comprimentos de onda no ar são calculados utilizando a Equação de Ciddor<sup>§</sup>. Os limites, inferior e superior, do espectro são dados em nanômetros, podendo ser escritos tanto com vírgulas (",") ou pontos (".")

- Quadro 4: Transição de passo superior sequencial. Estes são parâmetros opcionais do usuário, e são utilizados quando o usuário deseja verificar as transições que de dois ou mais níveis de energia sequenciais (em unidades de cm<sup>-1</sup>).
- Quadro 5: Filtros de dados. Os filtros são usados para restringir quais as informações das possíveis transições serão necessárias em sua coleta de dados.
- Quadro 6: Tipos de espectro. Neste quadro, o usuário define qual o espectro que se deseja estudar absorção ou/e emissão. Para maiores informações sobre tipos de espectro verifique a seção 2.3.

Após inserir os parâmetros iniciais, o usuário deve fixar os parâmetros utilizando o botão *Set Parameters*. Este botão verifica se todas as informações fornecidas pelo usuário estão corretas, e libera então o botão de execução da rotina *Execute*. Se existir algum dado incorreto, o sistema interrompe o processamento de dados e solicita ao usuário a correção dos possíveis erros.

O usuário pode também interromper o processamento quando necessário utilizando simplesmente o botão *Cancel*.

Verificada as informações iniciais, o programa faz uma varredura em toda base de dados e, a partir do nível de energia fornecido pelo usuário, determina quais são as possíveis transições eletrônicas aplicando as regras de seleção (vide seção 2.2).

Em seguida, uma nova janela do programa, com as informações das possíveis transições, é aberta. Esta janela disponibiliza ao usuário algumas funções específicas da rotina *Possible Transistion*, como pode ser visto nos quadros da Figura 3.2 (à esquerda):

<sup>&</sup>lt;sup>§</sup> Para realizar a transformação do comprimento de onda no vácuo para o comprimento de onda no ar  $(\lambda_{ar} = \lambda_{v\acute{a}cuo}/n)$  utiliza se a equação de Ciddor:  $n = 1,00035396 - 4,19823 \times 10^{-7}\lambda + 8,38492 \times 10^{-10}\lambda^2 - 7,77411 \times 10^{-13}\lambda^3 + 2,76285 \times 10^{-16}\lambda^4$ ,

 $n = 1,00035396 - 4,19823 \times 10^{-7}\lambda + 8,38492 \times 10^{-10}\lambda^2 - 7,77411 \times 10^{-13}\lambda^3 + 2,76285 \times 10^{-16}\lambda^4,$ válida na região do visível ao infravermelho próximo [1].



Figura 3.2: Tela do Programa ASAS. (à esquerda) Resultados da rotina Possible Transitons: 1A) Tabela de dados; 2A) Salvar dados.(à direita) Diagrama de setas das possíveis transições.

- Quadro 1A: Tabela de dados. Neste quadro, o usuário tem acesso a tabela de dados com as informações pré-definidas pelo uso dos filtros de dados (Figura 3.1- Quadro 5) e a opção imprimir esta tabela (botão *Print*).
- Quadro 2A: Salvar dados e construção do diagrama de setas. Com o botão *Plot Diagram Arrows* o usuário tem a opção de visualizar as possíveis transições através do gráfico de setas (Figura 3.2 (à direita)). Os gráficos salvos desta forma tem extensão *JPEG*. Existe também a opção de salvar as informações da tabela de dados em um arquivo do tipo *txt* utilizando o botão *Save*.

### 3.1.2. Rotina: Locator Transitions

Como pode ser observado na Figura 3.3, esta rotina apresenta subrotinas semelhantes à rotina *Possible Transitions*. Entretanto, diferente da rotina anterior, a rotina *Locator Transitions* verifica todas as possíveis transições de qualquer nível de energia inicial para qualquer outro nível de energia, dentro de uma região do espectro definida, aplicando as regras de seleção (vide seção 2.2).


Figura 3.3: Tela do ProgramaASAS. Rotina *Locator Transitons:* 1) Descrição; 2) Parâmetro de entrada;
3) Região do espectro; 4) Transição de passo superior sequencial; 5) Filtro de Dados;6) Tipos de espectros.

- Quadro 1: Descrição resumida da rotina utilizada.
- Quadro 2: Parâmetro de entrada. Neste quadro o usuário insere a sigla do átomo que se deseja estudar e o nível de energia inicial das possíveis transições.

A sigla do átomo pode conter letras maiúsculas, minúsculas e espaço entre as letras (Ex.: Dy I, nd ii, eri, etc.). Caso o usuário insira a sigla de um átomo que não exista na base de dados o sistema informa ao usuário, e o processamento de dados é cancelado.

 Quadro 3: Região do espectro. Neste quadro o usuário limita sua pesquisa em uma região do espectro cujo meio de propagação (ar ou vácuo) pode ser definido. Os limites, inferior e superior, do espectro são dados em nanômetros, podendo ser escritos tanto com vírgulas (",") e pontos (".")

Como nesta rotina o programa procura por **todas** as possíveis transições (partindo de qualquer nível de energia!) dentro da região espectral definida, o programa restringe a região espectral em intervalos de no máximo 10 nm.

- Quadro 4: Filtros de dados. Os filtros são usados para restringir quais as informações das possíveis transições serão necessárias em sua coleta de dados.
- Quadro 5: Tipos de espectro. Neste quadro o usuário define qual o espectro que se deseja estudar absorção ou/e emissão. Para maiores informações sobre tipos de espectro verifique a seção 2.3.

O usuário deve, então, fixar os parâmetros utilizando o botão *Set Parameters*. Se todas as informações fornecidas pelo usuário estiverem corretas, o botão de execução "*Execute*" da rotina é liberado. Caso exista algum dado incorreto, o sistema interrompe o processamento de dados e solicita ao usuário a correção dos possíveis erros.

O processamento de dados pode ser interrompido pelo usuário quando necessário com botão *Cancel*.

Com os dados processados uma nova janela do programa, com as informações das possíveis transições, é aberta. Esta janela disponibiliza ao usuário algumas funções específicas da rotina *Locator transition*, como pode ser visto nos quadros da Figura 3.4.

| λo (nm)   | λair (nm)       | RI (u.a) | Ais (1/s) | Unc.Ais (+/- 1/s) | Ei (1/cm)  | Ji  | Js  | Es (1/cm)  |  |
|-----------|-----------------|----------|-----------|-------------------|------------|-----|-----|------------|--|
| 500,1729  | 500,0359        | 0,00     | 0         | 0.00              | 20166,1300 | 6.0 | 7.0 | 40159,2180 |  |
| 500,5871  | 500,4501        | 0.00     | 0         | 0.00              | 20737,7230 | 6.0 | 5.0 | 40714,2660 |  |
| 500,0074  | 499,8705        | 0.00     | 0         | 0.00              | 21101,5100 | 7.0 | 6.0 | 41101,2140 |  |
| 500,0070  | 499,8701        | 0.00     | 0         | 0.00              | 21168,4300 | 7.0 | 8.0 | 41168,1510 |  |
| 500,9095  | 500,7724        | 0,00     | 0         | 0.00              | 21204,4650 | 9,0 | 8.0 | 41168,1510 |  |
| 500,1624  | 500,0254        | 0.00     | 0         | 0.00              | 21392,8170 | 5.0 | 6.0 | 41386,3250 |  |
| 500,8867  | 500,7496        | 0.00     | 0         | 0.00              | 21551,9190 | 4.0 | 5.0 | 41516,5150 |  |
| 500,0179  | 499,8810        | 0.00     | 0         | 0.00              | 22361,6510 | 4.0 | 5,0 | 42360,9350 |  |
| 500,9659  | 500,8287        | 0,00     | 0         | 0.00              | 22649,9730 | 4.0 | 3,0 | 42611,4130 |  |
| 500,9665  | 500,8294        | 0,00     | 0         | 0.00              | 22650,0000 | 4.0 | 3,0 | 42611,4130 |  |
| 500,5032  | 500,3662        | 0,00     | 0         | 0,00              | 22691,8550 | 6.0 | 7.0 | 42671,7470 |  |
| Number of | transitions: 13 | 34       |           |                   |            |     |     | Print      |  |
|           |                 |          |           |                   |            |     |     |            |  |
|           |                 |          |           |                   |            |     |     |            |  |

Figura 3.4: Tela do Programa ASAS. (à esquerda) Resultados da rotina Locator Transitons: 1A) Tabela de dados; 2A) Salvar dados.

- Quadro 1A: Tabela de dados. Neste quadro o usuário tem acesso a tabela de dados com as informações pré-definidas pelo uso dos filtros de dados (Figura 3.3- quadro 4), e a opção imprimir esta tabela (botão *Print*).
- Quadro 2A: Salvar. Utilizando o botão *Save* o usuário tem opção de salvar as informações da tabela de dados em um arquivo do tipo *txt*.

Esta rotina foi desenvolvida com o intuito de identificar as linhas dos espectros da literatura em espectros obtidos experimentalmente.

#### 3.1.3. Rotina: Spectra Simulation

A rotina *Spectra Simulation* utiliza a base de dados e certos parâmetros para construir espectros simulados, de átomos ou moléculas, através de curvas de Lorentz. A Figura 3.5 demonstra as funções específicas desta rotina através de quadros.

| ECTRA SIMULATON              |                           |  |
|------------------------------|---------------------------|--|
| ameters                      | Spectral limits           |  |
| Dyl<br>(Ex.: Dyl; Ndll; Erl) | 400 (nm)                  |  |
| FWHM (m)                     | Upper limits:<br>570 (rm) |  |
| Import File                  | 4                         |  |
| Open                         | T                         |  |
| @ Vacuum 🔿 Ar                |                           |  |
| Graphics settings            | 5                         |  |
| Color spectrum               |                           |  |

Figura 3.5: Tela do Programa ASAS. Resultados da rotina *Spectra Simulation:* 1) Descrição da rotina; 2) Parâmetros de entrada; 3) Região do espectro; 4) Importar arquivos; 5) Cor do espectro simulado.

- Quadro 1: Descrição da rotina utilizada.
- Quadro 2: Parâmetros de entrada. Neste quadro o usuário insere a sigla do átomo que se deseja estudar e o nível de energia inicial das possíveis transições.

A sigla do átomo pode conter letras maiúsculas, minúsculas e espaço entre as letras (Ex.: Dy I, nd ii, eri, etc.). Caso o usuário insira a sigla de um átomo que não exista na base de dados, o sistema informa ao usuário, e o processamento de dados é cancelado.

O parâmetro FWHM (*Full Width at Half Maximum*), ou simplesmente chamado de largura de linha (à meia altura), pode ser escrito com o uso de vírgulas (",") ou pontos ("."). Este parâmetro define a resolução do espectro simulado e sua unidade é dada em nanômetros (vide seção 2.5).

- Quadro 3: Região do espectro. Neste quadro o usuário limita sua pesquisa em uma região do espectro cujo meio de propagação (ar ou vácuo) pode ser definido. Os limites, inferior e superior, do espectro são dados em nanômetros, podendo ser escritos tanto com vírgulas (",") ou pontos (".")
- Quadro 4: Importar arquivos. Com o uso desta função o usuário pode simular espectros de arquivos que não estão na base de dados. Esta função requer um pouco de cuidado do usuário, pois os arquivos importados devem ter extensão *txt*. Além de conter pelo menos duas colunas de dados, deparadas por espaços em branco, onde a primeira coluna deve conter informações sobre o comprimento de onda de cada linha do espectro, e a segunda coluna com a intensidade relativa de cada linha do espectro.
- Quadro 5: Cor do Espectro. O usuário pode definir dentro de algumas opções a cor do espectro simulado.

O usuário deve então fixar os parâmetros de entrada (o botão *Set Parameters*). Se todas as informações fornecidas pelo usuário estão corretas, o botão de execução "*Execute*" da rotina é liberado. Caso exista algum dado incorreto, o sistema interrompe o processamento de dados e solicita ao usuário a correção dos possíveis erros.

O processamento de dados pode ser interrompido pelo usuário quando necessário com botão *Cancel*.

Em seguida, duas janelas são abertas (Figura 3.6). Na primeira janela, observa-se o gráfico do espectro simulado, com o uso do aplicativo *gnuplot*. Na janela superior estão as funções para salvar o gráfico do espectro (o botão *Save Plot Simulation*) e a função de salvar os dados que descrevem as curvas em arquivos txt (o botão *Save Simulation Data*).



Figura 3.6: Tela do Programa ASAS. Resultado obtido pela rotina *Spectra Simulation:* Espectro simulado e opções de armazenamento de dados.

Todos os gráficos construídos pelo programa Spectra Simulator tem extensão JPEG.

#### 3.1.4. Rotina: Electronic Temperature

A rotina *Electronic Temperature* utiliza a base de dados e informações de dados de espectros experimentais para determinar a temperatura dos elétrons de um sistema. Todos os cálculos realizados para determinar a temperatura tem como base a teoria clássica da mecânica estatística apresentada na seção 2.4.

Nos quadros da Figura 3.7 podem-se verificar as funções desta rotina.



Figura 3.7: Tela do Programa ASAS. Entrada de dados rotina *Eletronic Temperature :* 1) Descrição da rotina; 2) Parâmetros de entrada; 3) Região do espectro; 4) Seleção de linhas.

- Quadro 1: Descrição da rotina utilizada.
- Quadro 2: Parâmetros de entrada. Neste quadro o usuário insere a sigla do átomo que se deseja estudar e o nível de energia inicial das possíveis transições.

A sigla do átomo pode conter letras maiúsculas, minúsculas e espaço entre as letras (Ex.: Dy I, nd ii, eri, etc.). Caso o usuário insira a sigla de um átomo que não exista na base de dados, o sistema informa ao usuário, e o processamento de dados é cancelado.

- Quadro 3: Região do espectro. Neste quadro o usuário limita sua pesquisa em uma região do espectro cujo meio de propagação (ar ou vácuo) pode ser definido. Os limites, inferior e superior, do espectro são dados em nanômetros, podendo ser escritos tanto com vírgulas (",") e pontos (".")
- Quadro 4: Seleção de linhas. Este quadro só é habilitado depois que os dados são fixados pelo usuário e da confirmação do sistema. Aqui são apresentadas as linhas do espectro, registradas na base de dados, do átomo escolhido (no Quadro 1) e cabe ao usuário escolher quais destas linhas vão participar dos cálculos da temperatura dos elétrons. É importante, como visto no na seção 2.4, que as linhas selecionadas pelo usuário, para o cálculo da temperatura eletrônica

tenham coeficiente de emissão espontânea, energia do nível superior da transição e momento angular vinculado ao nível superior. Para melhor entendimento da seleção de linhas pode-se, no capítulo 4, verificar o uso desta rotina.

Após a execução, uma nova janela é aberta com novos parâmetros utilizados pra construção do gráfico de Boltzmann e determinação da temperatura eletrônica do sistema. Nesta nova janela tem-se:

|                                            | λo (nm)                                     | RI (u.a)     | Ais (1/s)     | Unc.Ais (+/- 1/s)   | Ei (1/cm)    | Ji        | Js        | Es (1/cm)        | Intensity | Unc.Intensity *                     |
|--------------------------------------------|---------------------------------------------|--------------|---------------|---------------------|--------------|-----------|-----------|------------------|-----------|-------------------------------------|
| 075                                        | 400,0067                                    | 5,00         | 163000        | 11410,00            | 0,0000       | 8,0       | 8.        | 0 24999,5800     |           |                                     |
| 076                                        | 400,1719                                    | 5,00         | 1070000       | 85600,00            | 7565,6000    | 8,0       | 8,0       | 0 32554,8600     |           |                                     |
| 079                                        | 401,4958                                    | 540,00       | 2930000       | 146500,00           | 0.0000       | 8,0       | 7.        | 0 24906,8600     |           |                                     |
| 080                                        | 402,2031                                    | 5,00         | 830000        | 66400,00            | 7565,6000    | 8,0       | 8,        | 0 32428,6600     |           |                                     |
| 081                                        | 402,4849                                    | 370,00       | 29000000      | 1450000,00          | 7565,6000    | 8,0       | 7.        | 0 32411,2500     |           |                                     |
| 082                                        | 402,9546                                    | 5,00         | 23500000      | 1175000,00          | 7565,6000    | 8,0       | 7.        | 0 32382,2900     |           |                                     |
| 083                                        | 404,6414                                    | 5,00         | 2380000       | 190400,00           | 7050,6100    | 6,0       | 5,0       | 0 31763,8500     |           |                                     |
| 084                                        | 404,7115                                    | 12000.00     | 19200000      | 960000,00           | 0,0000       | 8,0       | 7.        | 0 24708,9600     |           |                                     |
| 085                                        | 405,0507                                    | 5,00         | 2540000       | 127000,00           | 4134,2300    | 7.0       | 7.        | 0 28822,5000     |           |                                     |
| 086                                        | 405,7172                                    | 5,00         | 109000        | 10900.00            | 7050,6100    | 6,0       | 7.        | 0 31698,3200     |           |                                     |
| 087                                        | 408,0740                                    | 5,00         | 3390000       | 169500,00           | 7050,6100    | 6,0       | 6,        | 0 31555,9700     |           |                                     |
| 088                                        | 408,6283                                    | 5,00         | 11200000      | 560000,00           | 7050,6100    | 6,0       | 5,        | 0 31522,7300     |           |                                     |
| 089                                        | 408 6485                                    | 370.00       | 17100000      | 855000 00           | 7565 6000    | 8.0       | 7         | 0 32036 5100     |           | -                                   |
|                                            |                                             |              |               |                     |              |           |           |                  |           | Import Intensity                    |
| Lines                                      |                                             |              |               |                     |              |           |           |                  |           | Import Intensity                    |
| Lines<br>mber                              | λο (nm)                                     | R.I.         | Ais           | Unc.Ais             | Ei           | Ji        | Js        | Es               | Intensity | Import Intensity<br>Unc.Intensity   |
| Lines<br>mber<br>5                         | λο (nm)<br>400,0067                         | R.I.<br>5,00 | Ais<br>163000 | Unc.Ais<br>11410,00 | Ei<br>0,0000 | Ji<br>8.0 | Js<br>8.0 | Es<br>24999,5800 | Intensity | Import Intensity<br>Unc.Intensity   |
| Lines<br>mber<br>5                         | λο (nm)<br>400,00 <del>6</del> 7            | R.I.<br>5,00 | Ais<br>163000 | Unc.Ais<br>11410,00 | Ei<br>0.0000 | Ji<br>8,0 | Js<br>8,0 | Es<br>24999,5800 | Intensity | Unc.Intensity                       |
| Lines<br>mber<br>5<br>s of Esp             | λο (nm)<br>400,0067<br>ectra                | R.I.<br>5,00 | Ais<br>163000 | Unc.Ais<br>11410,00 | Ei<br>0,0000 | Ji<br>8.0 | Js<br>8.0 | Es<br>24999,5800 | Intensity | Import Intensity Unc.Intensity Save |
| Lines<br>mber<br>5<br>s of Esp<br>Emission | λο (nm)<br>400,0067<br>ectra<br>n O Absorpt | R.I.<br>5.00 | Ais<br>163000 | Unc.Ais<br>11410.00 | Ei<br>0,0000 | Ji<br>8.0 | Js<br>8,0 | Es<br>24999,5800 | Intensity | Unc.Intensity                       |

Figura 3.8: Tela do Programa ASAS. Inserir intensidades na rotina *Eletronic Temperature* : 5) Tabela de dados; 6) Incluir Intensidades; 7) Tipo de espectro.

Quadro 5: Tabela de dados. Neste quadro, o usuário tem acesso aos dados com as informações das linhas selecionadas anteriormente (Figura 3.7 - quadro 4). As colunas de intensidade da linha (*Intensity*) e de incerteza do valor da intensidade (*Unc. Intensity*) devem ser preenchidas pelo usuário. Existem duas formas de se preencher esta coluna. Na primeira, o usuário pode preencher as colunas, intensidade e incerteza da intensidade, de cada linha do espectro utilizando os parâmetros do quadro 6. Outra forma de se preencher estas colunas é através do botão *Import Intensity*, que possibilita o usuário importar dados de arquivos externos. Este arquivo deve ter extensão *txt*, além de conter três colunas com as informações no número da linha do espectro, intensidade da linha e incerteza do

valor intensidade (como o exemplo da Figura 3.9). Para linhas sem o valor da incerteza é assumido o valor de incerteza nulo.



Figura 3.9 Exemplo de arquivo formatado de intensidades de linhas.

- Quadro 6: Incluir dados. Este quadro tem a função de inserir na tabela de dados os valores das colunas, intensidade e incerteza da intensidade, de cada linha selecionada. Para concluir a inclusão/alteração dos dados o botão *Save* deve ser acionado.
- Quadro 7: Neste quadro, o usuário define de qual o tipo de espectro (emissão ou absorção) ele pretende calcular a temperatura.

Depois de todos os parâmetros inseridos e o botão para o cálculo da temperatura acionado (*Temperature Calculation*), duas novas janelas são abertas (como na Figura 3.10). Na primeira janela, observa-se o gráfico de Boltzmann para o cálculo da temperatura, com o uso do aplicativo *gnuplot*. Na janela superior, estão as funções para salvar o gráfico do espectro (o botão *Save Boltzmann Graphic*) e a função de salvar os dados das coordenadas dos pontos, utilizadas para o cálculo da temperatura, em arquivos txt (o botão *Save Data Plot*).



Figura 3.10: Tela do Programa ASAS. Resultado obtido pela rotina *Eletronic Temperature:* gráfico de Boltzmann para o cálculo da temperatura; valores obtidos de temperatura e coeficiente R<sup>2</sup> da reta ajustada; opções de armazenamento de dados.

#### 3.2. Base de Dados

A base de dados definida para utilização do programa de análise e simulação de espectros atômicos (ASAS) e também para o projeto PASIL, consiste na utilização de arquivos com extensão *txt* contendo informações sobre os átomos de interesse. Toda base de dados do projeto esta dividida em dois diretórios, sendo que um deles está destinado aos dados das linhas do espectro e o outro contendo informações sobre os níveis de energia.

Nesta versão do programa, a base de dados é formada por dados obtidos da literatura [19,20] e possui apenas alguns átomos. Por este motivo, é muito importante que o usuário compreenda a formatação dos arquivos para obter dados corretos do espectro do átomo que se deseja estudar. Arquivos da base de dados formatados de maneira errônea podem provocar mau funcionamento do programa e, sucessivamente, nos resultados esperados de cada rotina.

#### 3.2.1. Formatação de Arquivo: Linhas do Espectro

Os arquivos que armazenam as informações das linhas do espectro de um determinado átomo devem ser nomeados adequadamente com o seguinte padrão:

Lines <Sigla do átomo>.txt

Por exemplo: *Lines ErI.txt* é o nome do arquivo que contém as informações das linhas do espectro do átomo de Érbio não ionizado. A sigla que define o átomo pode ser escrita tanto com letras maiúsculas e minúsculas. (Exemplos: NdI, NDI ou ndi).

Além de nomeado e armazenado corretamente, os arquivos de linhas espectrais são formatados como uma tabela de dados com dez colunas. As colunas apresentam respectivamente: 1) número da linha do espectro; 2) comprimento de onda da linha no vácuo  $\lambda_0$  (em nm); 3) comprimento de onda da linha no ar  $\lambda_{air}$  (em nm); 4) intensidades relativas *I. R.* da linha do espectro; 5) o coeficiente de emissão espontânea de Einstein  $A_{is}$ ; 6) a incerteza da coeficiente de emissão de Einstein; 7) o nível de energia do estado inferior  $E_{inf}$  (em cm<sup>-1</sup>); 8) o momento angular total  $\vec{J}$ , do estado inferior  $J_{inf}$ ; 9) o nível de energia estado superior  $E_{sup}$  (em cm<sup>-1</sup>); 10) o momento angular total  $\vec{J}$ , do estado superioe  $J_{sup}$ .

Os dados de cada linha devem ser separados por espaços em branco (a quantidade de espaços não é relevante na compilação dos dados) como mostra a



Figura 3.11.

| 1 258.60700<br>2 262.44700<br>3 264.29400<br>4 266.87300<br>5 273.66000<br>6 286.35351<br>7 288.63800<br>8 296.54700<br>9 300.19645<br>10 301.51569 | 258.5300<br>262.3690<br>264.2150<br>266.7940<br>273.5790<br>286.2690<br>288.5530<br>296.4600<br>300.1090<br>301.4280 | 220<br>370<br>110<br>55<br>140<br>120<br>220<br>5<br>5<br>5 | 00<br>00<br>00<br>00<br>7900000<br>00<br>6500000<br>1450000<br>1180000 | 00<br>00<br>00<br>00<br>474000<br>00<br>87000<br>82600<br>61 500 | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | 00<br>00<br>00<br>00<br>8<br>00<br>8<br>8<br>8<br>8 | 00<br>00<br>00<br>00<br>34921.870<br>00<br>33311.520<br>33165.770<br>21900.740 | 00<br>00<br>00<br>00<br>7<br>00<br>8<br>7<br>8 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------|
| 12 313.69183<br>13 314.86060                                                                                                                        | 313.6010<br>314.7694                                                                                                 | 5<br>300                                                    | 1650000<br>11000000                                                    | 99000<br>00                                                      | 00                                                       | 87                                                  | 31878.420<br>00                                                                | 7 8                                            |
| <b>1</b><br>Número<br>da linha                                                                                                                      | $\mathbf{\hat{1}}_{\lambda_{ar}}$                                                                                    | 1<br>I.R.                                                   | A <sub>is</sub>                                                        | Desv.<br>A <sub>is</sub>                                         | 1<br>E <sub>inf</sub>                                    | 1<br>J <sub>inf</sub>                               | E <sub>sup</sub>                                                               | sup                                            |

Figura 3.11: Formatação do arquivo de linhas do espectro para a base de dados do programa.

Os dados não conhecidos pela literatura podem assumir o valor "00". E todos os dados decimais podem ser representados tanto com o uso da vírgula (","), quanto com o uso do ponto (".").

#### 3.2.2. Formatação de Arquivo: Níveis de Energia

Assim como os arquivos de linhas espectrais, os arquivos de níveis de energia também seguem alguns padrões de armazenamento e formatação. Estes arquivos são nomeados da seguinte forma:

#### Levels <Sigla do átomo>.txt

Por exemplo: o arquivo *Niveis YbII.txt* é o arquivo que contém os níveis de energia do átomo de itérbio uma vez ionizado.

Os arquivos de níveis de energia devem conter cinco colunas de dados e apresentam, respectivamente: 1) o momento angular  $\vec{J}$  associado ao nível de energia; o nível de energia E (em cm<sup>-1</sup>); 3) a paridade de função de onda  $\psi$  que descreve os elétrons no nível de energia. Como padrão de formatação a paridade deve admitir os valores: 01 para funções de onda ímpares, 02 para funções de onda pares e 00 para funções de onda com paridade desconhecida; 4) O tempo de meia vida do nível de energia (em milissegundos); 5) a incerteza do tempo meia de vida.

É importante que estes passos sejam seguidos, pois qualquer mudança pode acarretar em erros nos resultados obtidos.

| <b>1</b> |           | <b>β</b><br>Paridade ψ | Tempo | Desv. Tempo |
|----------|-----------|------------------------|-------|-------------|
| 5        | 17347.86  | 01                     | 1190  | 59.5        |
| 8        | 17157.307 | 01                     | 857   | 42.85       |
| 6        | 17073.8   | 01                     | 00    | 00          |
| 5        | 17029.058 | 3 01                   | 00    | 00          |
| 8        | 16727.479 | 01                     | 00    | 00          |
| 4        | 16472.783 | 3 01                   | 00    | 00          |
| 7        | 16464.934 | 1 02                   | 00    | 00          |
| 6        | 16070.095 | 5 01                   | 1088  | 54.4        |

Figura 3.12: Formatação do arquivo de níveis de energia para a base de dados do programa.

#### 3.2.3. Armazenamento de Arquivos

Após a formatação e a nomenclatura correta dos arquivos que compõem a base dados, o usuário deve armazenar corretamente os arquivos. Das fases de criação do arquivo esta é a mais importante, pois arquivos armazenados em locais errados não serão lidos pelo programa ASAS.

Assim que o programa é instalado pelo usuário é criada uma pasta de nome ASAS, dentro desta pasta estão os arquivos utilizados pelo programa, além da pasta *DATABASE*, onde os arquivos da base de dados devem ser armazenados. Como visto anteriormente, existem dois tipos de arquivo desta base de dados, por isso dentro da pasta *DATABASE* ainda existem mais duas distinções que devem ser seguidas com rigor. Os arquivos com as informações das linhas do espectro devem ser armazenados na pasta *LINES*, e os arquivos com os dados dos níveis de energia na pasta *LEVELS*. Este esquema de como o usuário deve armazenar os dados no sistema pode ser resumido na Figura 3.13.



Figura 3.13: Esquema de armazenamento dos arquivos da base de dados.

#### 3.2.4. Acesso a Base de Dados

A base de dados do programa ASAS pode ser acessada de duas formas. Na primeira opção, o usuário pode acessar os arquivos da base de dados através do caminho onde o programa foi instalado (como por exemplo: *C:\Users\Arquivos de Programas\ASAS\DATABASE\LEVELS\Levels ErII.txt*). Desta forma os dados dos arquivos podem ser alterados por qualquer editor de texto, como o *NotePad*.

Outra maneira de acesso aos arquivos da base de dados é através da rotina *Database* do próprio programa ASAS. O uso desta função pode ser mais bem entendido com o auxílio dos quadros da Figura 3.14.

| Open File            | C. Watra      | with latin the sear | юрсэнносяток | SPECTIVADATA | or of the control of |           |    | Unes of the | Spectrum   | Energy Lev |
|----------------------|---------------|---------------------|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----|-------------|------------|------------|
| Number               | λo (nm)       | λair (nm)           | Ri (u.a)     | Ais (1/s)    | Unc.Ais (+/- 1/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ei (1/cm) | JI | Es (1/cm)   | Js         |            |
| 1                    | 258.60700     | 258.5300            | 220          | 0            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0         | 0  | 0           | 0          |            |
| 2                    | 262.44700     | 262.3690            | 370          | 0            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0         | 0  | 0           | 0          |            |
| 3                    | 264.29400     | 264.2150            | 110          | 0            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0         | 0  | 0           | 0          |            |
| 4                    | 266.87300     | 266.7940            | 110          | 0            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0         | 0  | 0           | 0          |            |
| 5                    | 273.66000     | 273.5790            | 55           | 0            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0         | 0  | 0           | 0          |            |
| 6                    | 286.35351     | 286.2690            | 140          | 7900000      | 474000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0         | 8  | 34921.870   | 7          |            |
| 7                    | 288.63800     | 288.5530            | 120          | 0            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0         | 0  | 0           | 0          |            |
| 8                    | 296.54700     | 296.4600            | 220          | 6500000      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0         | 8  | 0           | 8          |            |
| 9                    | 300.19645     | 300.1090            | 5            | 1450000      | 87000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0         | 8  | 33311.520   | 7          |            |
| 10                   | 301.51569     | 301.4280            | 5            | 1180000      | 82600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0         | 8  | 33165.770   | 8          |            |
| 11                   | 313.47235     | 313.3820            | 5            | 1230000      | 61500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0         | 8  | 31900.740   | 9          |            |
| 12                   | 313.69183     | 313.6010            | 5            | 1650000      | 99000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0         | 8  | 31878.420   | 7          |            |
| 13                   | 314 86060     | 314 7694            | 300          | 11000000     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0         | 7  | 0           | 8          | *          |
| Number o             | of Lines: 716 |                     |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |    | Inclu       | ude Data L | ine        |
| it Lines<br>Number   | λο            | λair                | RI (u.a)     | Ais (1/s)    | Unc.Ais                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ei        | Ji | Es          | Js         |            |
| 1                    | 258,60700     | 258,5300            | 220          | 0            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0         | 0  | 0           | 0          |            |
| Save Cha<br>Save All | Changes       | Cancel All C        | Thanges      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |    |             |            | Fuit       |

Figura 3.14: Tela do Programa ASAS. Rotina *Database*: 1) Abrir arquivo; 2) Tipo de arquivo; 3) Tabela de dados; 4) Alterar/Excluir dados.

Quadro 1: Abrir arquivo. Antes de qualquer procedimento, o usuário deve abrir um arquivo da base de dados, através do botão *Open File*. Arquivos que não estão armazenados na base de dados não podem ser abertos desta forma. O local onde o arquivo aberto esta armazenado será indicado no *textbox*.

Quadro 2: Tipo de arquivo. Neste quadro o usuário pode verificar qual o tipo de arquivo foi aberto (linhas do espectro ou níveis de energia). Este quadro não pode ser acessado pelo usuário.

Quadro 3: Tabela de dados. O quadro apresenta uma tabela com os dados do arquivo aberto. Com o botão *Include Data Line*, o usuário pode incluir uma nova linha de informações.

Quadro 4: Alterar/Excluir dados. Com este quadro, o usuário pode incluir, alterar ou excluir os dados de uma linha de dados selecionada do arquivo. Para concluir a inclusão/alteração dos dados, o botão *Save* deve ser acionado. O botão *Delete* apaga a linha de dados selecionada.

Para efetivar todas as mudanças, é indispensável que o usuário salve todas as mudanças (botão *Save All Changes*). As alterações realizadas pelo usuário podem ser canceladas com o botão *Cancel All Changes*.

# 4. ESPECTRO DE EMISSÃO DO DISPRÓSIO

Neste capítulo, são apresentados os resultados obtidos da espectroscopia de emissão de uma lâmpada de catodo oco de disprósio e argônio como gás tampão (LCO Dy-Ar), analisados utilizando o programa *Spectra Simulator*. O espectro em questão compreende as regiões entre 400 e 440 nm e entre 549 e 605 nm, que foram escolhidas devido à densidade e intensidade de linhas do espectro do átomo de disprósio no estado fundamental (Dy I). A partir dos espectros obtidos, foi estimada a temperatura de excitação eletrônica do átomo de disprósio na LCO utilizada, em quatro combinações de pressão do gás tampão e corrente aplicada à descarga. Tal estimativa foi feita por meio do Método do Gráfico de Boltzmann (apresentado na seção 2.4) através da rotina *Eletronic Temperature* do programa *Spectra Simulator*.

#### 4.1. Técnica da Espectroscopia de Emissão

A espectroscopia de emissão atômica (AES. do inglês *Atomic Emission Spectroscopy*) é uma das mais antigas técnicas para análise química e física, amplamente usada para a identificação e análise de elementos de uma amostra. A técnica é baseada na medição das emissões ópticas de átomos excitados ao decaírem para níveis inferiores de energia. As amostras são atomizadas e excitadas por chama, descarga elétrica, laser ou em plasma, dependendo de critérios em função de operação e medição. Com o decaimento dos átomos do gás para um estado de energia mais baixa, a diferença de energia entre os níveis é liberada na forma de uma emissão eletromagnética. Os centros das linhas de emissão são específicos para cada átomo e as intensidades relativas entre as linhas dependem das probabilidades das transições e da temperatura da amostra. A identificação dos elementos é obtida resolvendo-se os comprimentos de onda de emissão da amostra por meio de um espectrômetro [2].

#### **4.2. Procedimento Experimental**

O arranjo experimental utilizado neste trabalho está ilustrado na Figura 4.1.



Figura 4.1: Arranjo Experimental utilizado na espectrospia de emissão. LCO: Lámpade de catodo oco de disprósio e argônio; M: monocromador.

O sistema consiste em uma lâmpada de catodo oco desenvolvida no IEAv para os estudos de espectroscopia atômica. Esta LCO foi alimentada por uma fonte de tensão estabilizada Tectrol, modelo 400/15. O sistema possui, também, um monocromador Jobin Yvon, modelo TRIAX 550, controlado por computador. Para este trabalho, este monocromador foi configurado para cobrir os espectros desde 400 nm até 600 nm por meio da grade de difração 12008 H- 500 G - 1200 g/mm (*blazed* para 500 nm). Uma câmara ICCD Dicam-Pró DP-25-SVGA-P46 (280-1000 nm) também está acoplada ao sistema para detecção do espetro.

Para verificar os efeitos causados pela corrente de operação e pela pressão no interior da LCO na temperatura eletrônica do átomo de Dy I, o experimento foi realizado aplicando combinações diferentes de corrente de operação e pressão. Quatro combinações foram utilizadas: i) pressão de 1 mbar e corrente de 10 mA; ii) pressão de 1 mbar e corrente de 40 mA; iii) pressão de 10 mbar e corrente de 10 mA e iv) pressão de 10 mbar e corrente de 40 mA.

Os espectros de emissão foram obtidos por meio da ICCD. A radiação emitida pela LCO foi focalizada na fibra óptica empregando-se uma lente de quartzo de distância focal de 150 mm. A fenda de entrada do monocromador utilizada foi 0,002 mm. A grade do TRIAX era fixada em uma posição central da varredura e, então, o espectro era registrado com um intervalo de comprimento de onda de, aproximadamente, 20 nm ao redor desta posição. O tempo de exposição da ICCD foi ajustado de acordo com cada espectro para não danificar a ICCD e garantir que

nenhuma linha ficasse saturada. Posteriormente, o tempo de exposição de todos os espectros obtidos foi normalizado em 1 ms.

Utilizando o mesmo sistema para a espectroscopia de emissão, foram obtidos os espectros de uma lâmpada de tungstênio, da Oriel, modelo 63355, calibrada em intensidade. Os dados dos espectros desta lâmpada permitem a correção dos dados das intensidades das linhas obtidas nos experimentos. A correção dos espectros quanto às intensidades encontram-se no Apêndice B, bem como a calibração da escala de comprimento de onda realizada para corrigir os possíveis desvios devido ao deslocamento da grade no monocromador. A calibração da escala de comprimento de onda realizada para tabeladas nas bases de dados para os átomos presentes na LCO.

#### 4.3. Lâmpada de Catodo Oco

A lâmpada de catodo oco utilizada neste trabalho (Figura 4.2) foi desenvolvida no próprio IEAv. Apesar do nome, lâmpada de catodo oco, esta descarga de catodo oco é bastante diferentes das lâmpadas de catodo oco comerciais. A descarga de catodo oco desenvolvida possui catodo removível, portanto, o material que será analisado pode ser substituído. Neste experimento, utilizou-se no catodo uma lâmina de disprósio. A descarga de catodo oco é montada em uma câmara lacrada preenchida por um gás inerte (neste caso o argônio) e o sistema é refrigerado por água corrente. A Figura 4.3 apresenta os elementos que compõem a descarga e sua montagem.



Figura 4.2: Descarga de catodo oco desenvolvida no IEAv.



Figura 4.3: Elementos e montagem da descarga de catodo oco.

Uma importante característica desta descarga de catodo oco é a possibilidade de variar significativamente (de 0 a 40 mA) os valores de sua corrente de operação e alterar

tanto o gás de preenchimento quanto a pressão deste gás. Tais mudanças são impossíveis em LCO comerciais.

O funcionamento das LCO consiste na aplicação de uma diferença de potencial entre os eletrodos, promovendo-se uma descarga dentro do recipiente preenchido pelo gás, provocando a ionização do gás. Os íons (cátions) formados são atraídos e acelerados ao catodo (negativo), colidindo violentamente com as paredes internas da cavidade do mesmo, arrancando átomos que ficam no estado de vapor e são confinados no interior do catodo oco. Ocorre, assim, a colisão destes átomos com os elétrons presentes na descarga e com os íons do gás de preenchimento (Ar<sup>+</sup>). Assim, tais átomos recebem energia suficiente para que ocorram transições eletrônicas promovendo seus elétrons de valência para um estado de maior energia. Os átomos no estado excitado são instáveis, readquirindo sua estabilidade emitindo a energia armazenada na forma de radiação eletromagnética, e, desta forma, volta ao seu estado fundamental. Desta forma, os comprimentos de onda emitidos pela LCO são característicos do metal que constitui o catodo e o gás de preenchimento, neste experimento, disprósio e argônio [21].

#### 4.4. Resultados e Discussão

Esta seção será destinada a apresentar os resultados obtidos experimentalmente por meio da espectroscopia de emissão. É feita a identificação das linhas de Dy I e Ar I no espectro experimental com o auxilio dos espectros simulados pelo programa *Spectra Simulator*. Em seguida, utilizando novamente o programa, apresenta-se uma discussão a respeito da determinação da temperatura eletrônica do átomo de Dy I e o comportamento da temperatura com a variação da corrente de operação e pressão no interior da LCO. Neste trabalho, todos os valores de comprimento de onda são definidos no ar. A base de dados para o Dy I foi construída a partir de dados da literatura [19,20].

#### 4.4.1. Análise dos Espectros de Emissão

Nesta secção, será apresentada a análise dos espectros na região de 400 a 440 nm e de 545 a 605 nm. Esta região de interesse corresponde à região com maior densidade de linhas espectrais do átomo de disprósio com intensidade relevante para o cálculo da temperatura de excitação eletrônica. Os espectros foram tratados quanto à intensidade e ao comprimento de onda, sendo que o procedimento detalhado está descrito no Apêndice B. Utilizando a ICCD, as larguras de linha para a grade de 1200 linhas/mm correspondem a aproximadamente 0,1 nm (89 GHz).

Após as correções dos espectros, as linhas do átomo de Dy I, com intensidades relevantes para o cálculo da temperatura de excitação eletrônica, foram identificadas. Para identificação das Linhas de Dy I foi utilizado à rotina de simulação de espectros do programa *Spectra Simulator*. Os espectros simulados do átomo de argônio Ar I (não ionizado) e Ar II (uma vez ionizado), também foram utilizados para auxiliar a identificação das linhas. A Figura 4.4 apresenta as linhas de Dy I, Ar I e Ar II identificadas na região entre 398 a 418 nm.



Figura 4.4: Identificação das linhas espectrais na região de 398 a 418 nm: (acima) espectro experimental; (abaixo) espectros simulados de Dy I, Ar I e Ar II.

Os espectros identificados das demais regiões de interesse (420 a 440 nm e 585 a 605 nm) podem ser visualizados no Apêndice B.

#### 4.4.2. Determinação da Temperatura Eletrônica de Excitação

Para o cálculo da temperatura de excitação eletrônica dos átomos de Dy I, foi calculada a intensidade de cada uma das linhas de interesse do espectro. A intensidade

de uma linha espectral é proporcional à área sob essa linha, e o método utilizado neste trabalho, para o cálculo das áreas, foi através das áreas de curvas gaussianas ajustadas sobre cada linha do espectro. O desvio da intensidade das linhas por este método é da ordem de 10% [15]. Todo método para o cálculo da intensidade através da área é descrito no Apêndice C. Como o comportamento das linhas espectrais varia de acordo com o regime que é imposto à descarga elétrica (pressão e corrente de operação), as áreas das linhas espectrais, de interesse, foram calculadas para cada um dos regimes utilizados: i) pressão de 1 mbar e corrente de 10 mA; ii) pressão de 1 mbar e corrente de 40 mA; iii) pressão de 10 mbar e corrente de 10 mA e iv) pressão de 10 mbar e corrente de 40 mA. As informações sobre as linhas de Dy I utilizadas, para cada regime, são apresentadas na Tabela 4.1.

Tabela 4.1: Dados das linhas espectrais de Dy I utilizadas para o cálculo da temperatura de excitação eletrônica, nas quatro condições de operação da lâmpada de catodo oco (gás tampão: argônio).

| λ   |        | 4.                      | $\delta A_{in}$ $E_{in}$ |                      | <i>I</i> (u.a.) |                |                |                 |                 |  |  |
|-----|--------|-------------------------|--------------------------|----------------------|-----------------|----------------|----------------|-----------------|-----------------|--|--|
| Ν   | (nm)   | $(10^6  \text{s}^{-1})$ | $(10^6  \text{s}^{-1})$  | $(\mathrm{cm}^{-1})$ | $J_{ m s}$      | 1mbar<br>10 mA | 1mbar<br>40 mA | 10mbar<br>10 mA | 10mbar<br>40 mA |  |  |
| 108 | 416,80 | 192,0                   | 9,60                     | 28119,94             | 6               | 0,026          | 0,076          | 0,0010          | 0,15            |  |  |
| 114 | 418,68 | 126,0                   | 6,30                     | 23877,75             | 8               | 0,072          | 0,12           | -               | 0,25            |  |  |
| 118 | 419,48 | 88,0                    | 4,40                     | 23832,07             | 8               | 0,063          | 0,11           | -               | 0,23            |  |  |
| 126 | 421,17 | 208,0                   | 10,4                     | 23736,6              | 9               | 0,12           | 0,19           | -               | 0,39            |  |  |
| 129 | 421,52 | 81,0                    | 4,05                     | 27851,43             | 8               | 0,018          | 0,068          | 0,0067          | 0,12            |  |  |
| 130 | 421,81 | 120,0                   | 6,00                     | 27834,93             | 7               | 0,020          | 0,058          | -               | 0,087           |  |  |
| 131 | 422,11 | 128,0                   | 6,40                     | 27817,99             | 8               | 0,023          | 0,062          | -               | 0,10            |  |  |
| 133 | 422,52 | 195,0                   | 9,75                     | 30711,7              | 7               | 0,009          | 0,031          | -               | 0,052           |  |  |
| 300 | 554,73 | 0,30                    | 0,030                    | 18021,89             | 8               | 0,031          | 0,076          | 0,00031         | 0,012           |  |  |
| 310 | 563,95 | 0,49                    | 0,039                    | 17727,15             | 9               | 0,066          | 0,16           | 0,00075         | 0,031           |  |  |
| 312 | 565,20 | 0,446                   | 0,0223                   | 17687,9              | 7               | 0,047          | 0,11           | -               | 0,024           |  |  |
| 340 | 597,45 | 0,42                    | 0,0336                   | 16733,2              | 8               | 0,050          | 0,13           | 0,0011          | 0,023           |  |  |
| 342 | 598,86 | 0,561                   | 0,0281                   | 16693,87             | 7               | 0,065          | 0,16           | 0,0015          | 0,031           |  |  |

Em seguida, a rotina *Eletronic Temperature* do programa *Spectra Simulator* foi utilizada para determinação da temperatura. Com mencionado anteriormente (secção Rotina: *Electronic Temperature* 3.1.4), esta rotina utiliza o Método do Gráfico de Boltzmann para determinar a temperatura de excitação eletrônica de um sistema. Os resultados obtidos são apresentados a seguir, levando em conta o regime no qual está submetido a descarga de catodo oco (pressão do:gás inerte e corrente de operação) e os dados apresentados na Tabela 4.1.

A) Para pressão de 1 mbar e corrente de 10 mA:

Obteve-se uma reta ajustada com coeficiente de determinação ( $\mathbb{R}^2$ ) igual a 0,95, e uma temperatura eletrônica de excitação dos átomos de Dy I de 2266 ±30 K. A Figura 4.5 representa o ajuste linear realizado.



Figura 4.5: Determinação da temperatura eletrônica dos átomos de Dy I, na descarga de catodo oco. Gás sob pressão de 1 mbar e corrente de operação de 10 mA.

B) Para pressão de 1 mbar e corrente de 40 mA:

Neste regime, a reta ajustada (Figura 4.6) tem coeficiente de determinação igual a 0,92, e a temperatura eletrônica, dos átomos de Dy I, calculada foi de  $2324 \pm 33$  K.



Figura 4.6: Determinação da temperatura eletrônica dos átomos de Dy I, na descarga de catodo oco. Gás sob pressão de 1 mbar e corrente de operação de 40 mA.

C) Para pressão de 10 mbar e corrente de 10 mA:

Com estes valores de pressão do gás inerte (argônio) e corrente de operação, os átomos de Dy I, na descarga, apresentam temperatura eletrônica de excitação igual a  $3252 \pm 98$  K. A reta ajustada (ver Figura 4.7) apresenta coeficiente R<sup>2</sup> igual a 0,91.



Figura 4.7: Determinação da temperatura eletrônica dos átomos de Dy I, na descarga de catodo oco. Gás sob pressão de 10 mbar e corrente de operação de 10 mA.

D) Para pressão de 10 mbar e corrente de 40 mA:

No último regime, ao qual a descarga foi submetida, a temperatura de excitação dos átomos de Dy I foi de  $3462 \pm 70$  K. A reta ajustada apresenta coeficiente de determinação de 0,95.



Figura 4.8: Determinação da temperatura eletrônica dos átomos de Dy I, na descarga de catodo oco. Gás sob pressão de 10 mbar e corrente de operação de 40 mA.

A Tabela 4.2 resume os resultados Observa-se que, tanto o aumento da corrente quanto o da pressão do gás tampão, faz com que a temperatura de excitação eletrônica dos átomos do catodo aumente.

|         | 10 mA       | 40 mA           |
|---------|-------------|-----------------|
| 1 mbar  | 2266 ±30 K  | $2324 \pm 33$ K |
| 10 mbar | 3252 + 98 K | 3462 + 70 K     |

Tabela 4.2: Resumo dos resultados obtidos para a temperatura de excitação eletrônica da LCO de disprósio, para as diversas condições de operação.

### **5. CONCLUSÕES**

Neste trabalho, foi desenvolvido um código computacional para simulação e análise de espectros atômicos, a partir de bases de dados construídas a partir de dados da literatura, com rotinas aplicáveis ao processo atômico de separação isotópica a laser: i) na primeira rotina do programa desenvolvido, *Possible Transitions*, o programa verifica as possíveis transições eletrônicas, a partir de um nível de energia, aplicando as regras de seleção de paridade e de momento angular total ( $\Delta J = 0, \pm 1$ ); ii) a rotina *Locator Transitions* verifica, aplicando novamente as regras de seleção, as possíveis transições eletrônicas dentro de uma região espectrais; iii) a rotina *Spectra Simulator* cria espectros simulados, utilizando o aplicativo gráfico *gnuplot*, através de curvas lorentzianas e; iv) a rotina *Eletronic Temperature* determina a temperatura de excitação eletrônica através do Método Gráfico de Boltzmann.

Para verificar a confiabilidade dos dados obtidos através do programa Spectra Simulator, suas rotinas foram utilizadas para a análise de espectros de emissão obtidos experimentalmente. Os espectros foram registrados a partir de uma descarga de catodo oco de disprósio e argônio como gás tampão, desenvolvida no IEAv. A descarga de catodo oco foi submetida a regimes, com valores de pressão do gás inerte (argônio) e de corrente de operação, diferentes. Os espectros obtidos foram, então, tratados com relação ao comprimento de onda e intensidade. Neste processo de tratamento, utilizaram-se as rotinas Locator Transistion e Spectra Simulator do programa. Em seguida, utilizando-se a rotina Eletronic Temperature, foi possível determinar as temperaturas eletrônicas de excitação dos átomos de Dy I na descarga de catodo oco. Para o regime com: i) corrente de operação de 10 mA e pressão do gás inerte de 1 mbar, a temperatura eletrônica foi de 2266 ±30 K; ii) corrente de operação de 40 mA e pressão do gás inerte de 1 mbar, a temperatura eletrônica foi de 2324±33 K; iii) corrente de operação de 10 mA e pressão do gás inerte de 10 mbar, a temperatura eletrônica foi de 3252±98 K; iv) corrente de operação de 40 mA e pressão do gás inerte de 10 mbar, a temperatura eletrônica foi de 3462±70 K. Verificou-se, também, com a rotina *Eletronic* Temperature, que as retas ajustadas para a determinação de temperatura, através do Método do Gráfico de Boltzmann, apresentam coeficientes de determinação, R<sup>2</sup>, superiores a 0,91.

A partir da análise dos dados obtidos com a utilização do programa desenvolvido, *Spectra Simulator*, pôde-se confirmar a confiabilidade do programa, em todas as suas rotinas. Atualmente, todas as rotinas implementadas estão sendo utilizadas em trabalhos realizados no laboratório do IEAv, no projeto de desenvolvimento do processo atômico de separação de isótopos a laser dos terras-raras [2].

# **TRABALHOS FUTUROS**

- Criar um manual de instruções do programa, versões em português e inglês, e disponibilizá-lo gratuitamente.
- Implementar a possibilidade de simulação de espectros com outras formas de linha (gaussiana, Voigt).

# REFERÊNCIAS

\_\_\_\_\_

[1] VICTOR, A. R. Espectroscopia Optogalvânica Neodímio em Lâmpada de Catodo Oco. Dissertação de mestrado (ITA), São José dos Campos, 2010.

[2] BUENO, P. Espectroscopia Optogalvânica de Érbio Visando à Separação Isotópica a Laser. Dissertação de mestrado (ITA), São José dos Campos, 2012.

[3] SANTOS, J. R.; DESTRO, M. G.; SBAMPATO, M. E.; BUENO, P.; VICTOR A. R.; BARRETA, L. F. N.; Simulação do Espectro de Disprósio na Região de 570 nm a 650 nm. In: SEMINÁRIO ANUAL DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO DO IEAV, 2011, São José dos Campos. **Anais...** São José dos Campos: IEAV, 2011, v. 1, p.25-30.

[4] SANTOS, J. R.; DESTRO, M. G.; SBAMPATO, M. E.; BUENO, P.; VICTOR A. R.; BARRETA, L. F. N.; Análise do Espectro de Emissão do Disprósio em Lâmpada de Catodo Oco. In: SIMPÓSIO DE CIÊNCIAS E TECNOLOGIA DO INSTITUTO DE ESTUDOS AVANÇADOS, 2012, São José dos Campos. **Anais...** São José dos Campos: IEAv, 2012, v. 1, p.95-100.

[5] EISBERG, R. RESNICK, R. Física Quântica: Átomos, Moléculas, Sólidos, Núcleos e Partículas. 9ed. Rio de Janeiro: Campus, 1992.

[6] FILHO, W. W. Mecânica Quântica. Goiânia: UFG, 2002.

[7] SUBRAMANIAN, N. Oliveira, S. F. Algumas Considerações Sobre A Regra de Hund e a Estrutura Eletrônica de Átomos no Ensino de Química, 1996. Disponível em <u>http://www.scielo.br/pdf/qn/v20n3/4952.pdf</u>. Acessado em: 11 out. 2012.

[8] FARIA, R. B. **Termos Espectrais para Átomos e Íons Livres**, 2012. Disponível em: <u>http://faria.iq.ufrj.br/termos\_espectrais.pdf</u>. Acessado em: 11 out. 2012.

[9] DRAKE, G. W. F. Atomic Molecular and Optical Physics Handbook. Atomic Spectroscopy. Disponível em: <u>http://sed.nist.gov/Pubs/AtSpec/total.html</u>. Acesso em: 15 jun. 2012.

[10] GRIFFITHS, D. J. Mecânica Quântica. 2ed. São Paulo: Pearson, 2011.

[11] EISBERG, R. M. Fundamentals of Modern Physics. 3ed. Wiley: 1963.

[12] DEMTRODER, W. Laser Spectroscopy: Basic Concepts and Instrumentation. 3ed. New York: Springer, 2003, 987p.

[13] SISMANOGLU, B. N. Estudo e Caracterização de Microplasmas Luminescentes Através de Espectroscopia Óptica de Emissão. 2010. 201p. Tese (Doutorado em Física Atômica e Molecular) - Instituto Tecnológico de Aeronáutica, São José dos Campos.

[14] ZHOU, X.; LI, Y.; WANG, J.; HUANG, Z., The Temperature Menasurement of the Electrothermal - Chemical Laucher Plasma by Atomic Emission Spectroscopy. **IEEE TRANSACTIONS ON PLASMA SCIENCE**, v. 29, n. 2, 2001.

[15] ROUFFET M. E.; WENDT, M.; GOETT, G.; KOZAKOV, R.; WELTMANN, K. D.; UHRLANDT, D., Spectroscopic Investigation of the high-current phase of pulsed GMAW process. Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str.2, 17489 Greifswald, Germany.

[16] DEMTRODER, W. Atoms, Molecules and Photons. 1ed. New York: Springer, 2006, 578p.

[17] DESTRO, M. G. **Espectroscopia a Laser em Vapor Metálico de Urânio**. 1993. 163p. Tese (Doutorado em Física Atômica e Molecular) - Instituto Tecnológico de Aeronáutica, São José dos Campos.

[18] WILLIAMS, T. KELLEY, C. **Gnuplot**, Geeknet, Inc. Disponível em: <u>http://www.gnuplot.info</u>. Acesso em: 15 ago. 2011.

[19] RALCHENKO, Yu.; KRAMIDA, A.E.; READER, J., National Institute of Standards and Technology, **Nist Atomic Spectra Databade**, Gaithersburg, MD. Disponível em: <u>http://physics.nist.gov/asd3</u>. Acesso em: 15 mar. 2012.

[20] WICKLIFFE, M. E., LAWLER, J. E. e NAVE, G., Transition Probabilities for Dy I and Dy II. Journal of Quantitative Spectroscopy & Radiative Transfer, v. 66, p. 6 – 29, may.1999.

[21] KRUG, J. F., **Espectroscopia de Absorção Atômica**. Disponível em: <u>http://apostilas.cena.usp.br/Krug/AAS%20geral%20parte%201%20revisada.pdf</u>. Acesso em 20 nov. 2012.

# APÊNDICE A: Base de Dados Espectroscópicos do Dy I construída a partir de [2,20]

# A1 Níveis de Energia

- J = Número quântico de momento angular total.
- E = Energia do nível (cm<sup>-1</sup>).
- P = Paridade do nível: (01) = ímpar; (02) = par.

t = Tempo de vida do nível (ns).

 $\Delta t$  = Desvio no tempo de vida do nível (ns).

## Os valores 00 na tabela indicam que não há dados na literatura.

| J  | E        | Р  | t  | $\Delta t$ |
|----|----------|----|----|------------|
| 8  | 0        | 02 | 00 | 00         |
| 7  | 4134,23  | 02 | 00 | 00         |
| 6  | 7050,61  | 02 | 00 | 00         |
| 8  | 7565,6   | 01 | 00 | 00         |
| 7  | 8519,2   | 01 | 00 | 00         |
| 5  | 9211,58  | 02 | 00 | 00         |
| 9  | 9990,95  | 01 | 00 | 00         |
| 6  | 10088,8  | 01 | 00 | 00         |
| 4  | 10925,25 | 02 | 00 | 00         |
| 6  | 11673,49 | 01 | 00 | 00         |
| 8  | 12007,1  | 01 | 00 | 00         |
| 5  | 12298,56 | 01 | 00 | 00         |
| 7  | 12655,13 | 01 | 00 | 00         |
| 10 | 12892,76 | 01 | 00 | 00         |
| 9  | 13495,92 | 01 | 00 | 00         |
| 4  | 139502   | 00 | 00 | 00         |
| 5  | 14153,49 | 01 | 00 | 00         |
| 7  | 14367,8  | 01 | 00 | 00         |
| 8  | 14625,64 | 01 | 00 | 00         |
| 6  | 14970,7  | 01 | 00 | 00         |
| 7  | 15194,83 | 01 | 00 | 00         |
| 3  | 15254,94 | 00 | 00 | 00         |
| 8  | 15567,38 | 01 | 00 | 00         |
| 6  | 15862,64 | 01 | 00 | 00         |
| 9  | 15972,35 | 01 | 00 | 00         |
| 4  | 16069,98 | 00 | 00 | 00         |
| 8  | 16288,73 | 01 | 00 | 00         |
| 4  | 16412,8  | 00 | 00 | 00         |
| 6  | 16591,38 | 01 | 00 | 00         |
| 5  | 16684,73 | 00 | 00 | 00         |
| 7  | 16693.87 | 01 | 00 | 00         |

| Tabela A1.1: Níveis de energia do Dy I $(0 \text{ cm}^{-1})$ |  |
|--------------------------------------------------------------|--|
| a 16693,87 cm <sup>-1</sup> )                                |  |

| Tabela A1.2: Níveis de energia do Dy I                           |
|------------------------------------------------------------------|
| $(16717,79 \text{ cm}^{-1} \text{ a } 19688,59 \text{ cm}^{-1})$ |

| J  | Е         | Р  | Т  | Δt |
|----|-----------|----|----|----|
| 9  | 16717,79  | 01 | 00 | 00 |
| 8  | 16733,2   | 01 | 00 | 00 |
| 5  | 17502,89  | 00 | 00 | 00 |
| 10 | 17513,33  | 01 | 00 | 00 |
| 9  | 17514,5   | 00 | 00 | 00 |
| 8  | 17613,36  | 00 | 00 | 00 |
| 7  | 17687,9   | 01 | 00 | 00 |
| 9  | 17727,15  | 01 | 00 | 00 |
| 5  | 17804,24  | 01 | 00 | 00 |
| 8  | 18021,89  | 01 | 00 | 00 |
| 7  | 18094,502 | 00 | 00 | 00 |
| 6  | 18172,87  | 00 | 00 | 00 |
| 7  | 18339,8   | 01 | 00 | 00 |
| 7  | 18433,76  | 01 | 00 | 00 |
| 10 | 18462,65  | 00 | 00 | 00 |
| 8  | 18472,71  | 01 | 00 | 00 |
| 7  | 18528,55  | 01 | 00 | 00 |
| 6  | 18561,02  | 00 | 00 | 00 |
| 6  | 18711,93  | 01 | 00 | 00 |
| 7  | 18857,04  | 01 | 00 | 00 |
| 8  | 18903,201 | 00 | 00 | 00 |
| 7  | 18937,78  | 00 | 00 | 00 |
| 8  | 19019,15  | 00 | 00 | 00 |
| 8  | 19092,3   | 01 | 00 | 00 |
| 6  | 19182,66  | 00 | 00 | 00 |
| 9  | 19240,802 | 00 | 00 | 00 |
| 6  | 19304,26  | 01 | 00 | 00 |
| 11 | 19348,702 | 00 | 00 | 00 |
| 5  | 19480,87  | 00 | 00 | 00 |
| 9  | 19557,83  | 01 | 00 | 00 |
| 8  | 19688,59  | 01 | 00 | 00 |

# Tabela A1.3: Níveis de energia do Dy I $(19797,96 \text{ cm}^{-1} \text{ a } 23440,46 \text{ cm}^{-1})$

Tabela A1.4: Níveis de energia do Dy I  $(23464,002 \text{ cm}^{-1} \text{ a } 25744,35 \text{ cm}^{-1})$ 

| J  | Е         | Р  | t  | Δt | - | J  | E         | Р  | Т  | Δt |
|----|-----------|----|----|----|---|----|-----------|----|----|----|
| 10 | 19797,96  | 01 | 00 | 00 | - | 6  | 23464,002 | 00 | 00 | 00 |
| 5  | 19813,98  | 00 | 00 | 00 |   | 7  | 23479,77  | 00 | 00 | 00 |
| 6  | 19856,88  | 00 | 00 | 00 |   | 6  | 23529,01  | 01 | 00 | 00 |
| 7  | 19907,501 | 00 | 00 | 00 |   | 8  | 23534,5   | 00 | 00 | 00 |
| 8  | 20193,6   | 00 | 00 | 00 |   | 5  | 23552,65  | 00 | 00 | 00 |
| 9  | 20209     | 00 | 00 | 00 |   | 7  | 23591,27  | 00 | 00 | 00 |
| 8  | 20341,32  | 01 | 00 | 00 |   | 7  | 23655,36  | 00 | 00 | 00 |
| 4  | 20430,101 | 00 | 00 | 00 |   | 11 | 23677,38  | 01 | 00 | 00 |
| 11 | 20448,44  | 01 | 00 | 00 |   | 6  | 23683,87  | 00 | 00 | 00 |
| 4  | 20474,99  | 00 | 00 | 00 |   | 4  | 23686,801 | 00 | 00 | 00 |
| 7  | 20485,4   | 01 | 00 | 00 |   | 6  | 23687,87  | 00 | 00 | 00 |
| 6  | 20554,73  | 01 | 00 | 00 |   | 9  | 23736,6   | 01 | 00 | 00 |
| 7  | 20614,302 | 00 | 00 | 00 |   | 9  | 23780,26  | 00 | 00 | 00 |
| 7  | 20766,29  | 01 | 00 | 00 |   | 7  | 23799,401 | 00 | 00 | 00 |
| 8  | 20789,85  | 00 | 00 | 00 |   | 3  | 23824,68  | 00 | 00 | 00 |
| 6  | 20817,61  | 01 | 00 | 00 |   | 8  | 23832,07  | 01 | 00 | 00 |
| 8  | 20884,87  | 01 | 00 | 00 |   | 9  | 23841,9   | 00 | 00 | 00 |
| 5  | 20891,64  | 01 | 00 | 00 |   | 8  | 23877,75  | 01 | 00 | 00 |
| 5  | 20921,55  | 01 | 00 | 00 |   | 10 | 23953,3   | 01 | 00 | 00 |
| 7  | 20954,18  | 01 | 00 | 00 |   | 7  | 23972,34  | 00 | 00 | 00 |
| 7  | 21074,02  | 00 | 00 | 00 |   | 6  | 24040,59  | 01 | 00 | 00 |
| 6  | 21159,79  | 00 | 00 | 00 |   | 6  | 24040,59  | 00 | 00 | 00 |
| 6  | 21392,4   | 01 | 00 | 00 |   | 6  | 24062,88  | 00 | 00 | 00 |
| 9  | 21540,68  | 01 | 00 | 00 |   | 8  | 24204,19  | 01 | 00 | 00 |
| 8  | 21603,04  | 00 | 00 | 00 |   | 9  | 24229,22  | 01 | 00 | 00 |
| 7  | 21675,28  | 00 | 00 | 00 |   | 6  | 24302,002 | 00 | 00 | 00 |
| 7  | 21675,28  | 01 | 00 | 00 |   | 7  | 24353,58  | 01 | 00 | 00 |
| 7  | 21778,43  | 00 | 00 | 00 |   | 7  | 24430,27  | 00 | 00 | 00 |
| 10 | 21783,42  | 01 | 00 | 00 |   | 5  | 24634,07  | 00 | 00 | 00 |
| 10 | 21/88,93  | 01 | 00 | 00 |   | 3  | 24668,59  | 00 | 00 | 00 |
| 9  | 21838,55  | 01 | 00 | 00 |   | 1  | 24708,96  | 01 | 00 | 00 |
| 8  | 21899,22  | 01 | 00 | 00 |   | 4  | 24841,04  | 00 | 00 | 00 |
| 9  | 22045,79  | 00 | 00 | 00 |   | 10 | 24858,74  | 01 | 00 | 00 |
| /  | 22001,29  | 00 | 00 | 00 |   | 10 | 24838,74  | 00 | 00 | 00 |
| 4  | 22099,00  | 00 | 00 | 00 |   | 0  | 24807,17  | 00 | 00 | 00 |
| 5  | 22200,07  | 01 | 00 | 00 |   | 5  | 24001,03  | 00 | 00 | 00 |
| 10 | 22294,00  | 00 | 00 | 00 |   | 07 | 24899,00  | 00 | 00 | 00 |
| 5  | 22407,14  | 00 | 00 | 00 |   | 6  | 24900,80  | 00 | 00 | 00 |
| 12 | 22524,201 | 00 | 00 | 00 |   | 10 | 24951,05  | 00 | 00 | 00 |
| 6  | 22541,10  | 00 | 00 | 00 |   | 5  | 24978,98  | 00 | 00 | 00 |
| 7  | 22633,23  | 01 | 00 | 00 |   | 8  | 24999 58  | 01 | 00 | 00 |
| 4  | 22696 802 | 00 | 00 | 00 |   | 8  | 25012.21  | 01 | 00 | 00 |
| 8  | 22767.83  | 01 | 00 | 00 |   | 8  | 25012,21  | 00 | 00 | 00 |
| 4  | 22938.03  | 00 | 00 | 00 |   | 5  | 25082.002 | 00 | 00 | 00 |
| 6  | 22956.84  | 00 | 00 | 00 |   | 9  | 25084.8   | 01 | 00 | 00 |
| 8  | 23031.46  | 00 | 00 | 00 |   | 8  | 25095.66  | 00 | 00 | 00 |
| 9  | 23218.59  | 00 | 00 | 00 |   | 5  | 25127.502 | 00 | 00 | 00 |
| 9  | 23271.74  | 01 | 00 | 00 |   | 4  | 25203.902 | 00 | 00 | 00 |
| 8  | 23280.46  | 00 | 00 | 00 |   | 7  | 25268.87  | 01 | 00 | 00 |
| 6  | 23333.902 | 00 | 00 | 00 |   | 7  | 25502.802 | 00 | 00 | 00 |
| 7  | 23340.12  | 01 | 00 | 00 |   | 6  | 25506.38  | 00 | 00 | 00 |
| 6  | 23359.82  | 01 | 00 | 00 |   | 7  | 25567.53  | 01 | 00 | 00 |
| 7  | 23360.66  | 00 | 00 | 00 |   | 6  | 25670.45  | 01 | 00 | 00 |
| 8  | 23388.95  | 00 | 00 | 00 |   | 4  | 25687.02  | 00 | 00 | 00 |
| 5  | 23440,46  | 01 | 00 | 00 |   | 5  | 25744,35  | 00 | 00 | 00 |
|    |           |    |    |    | - |    |           |    |    |    |

Δt

t

| J  | Е         | Р  | t  | $\Delta t$ | _ | J      | Е                    | Р  |
|----|-----------|----|----|------------|---|--------|----------------------|----|
| 8  | 25760,39  | 01 | 00 | 00         |   | 7      | 27837,54             | 00 |
| 4  | 25761,77  | 00 | 00 | 00         |   | 8      | 27851,43             | 01 |
| 10 | 25774,39  | 01 | 00 | 00         |   | 8      | 27896,8              | 02 |
| 6  | 25825,83  | 00 | 00 | 00         |   | 7      | 27959,98             | 00 |
| 6  | 25868     | 00 | 00 | 00         |   | 7      | 27984,5              | 01 |
| 7  | 25879,15  | 00 | 00 | 00         |   | 6      | 27987,9              | 00 |
| 5  | 25912,63  | 00 | 00 | 00         |   | 8      | 28029,68             | 01 |
| 6  | 25920,88  | 01 | 00 | 00         |   | 4      | 28082,47             | 00 |
| 9  | 25955,1   | 01 | 00 | 00         |   | 6      | 28119,94             | 01 |
| 5  | 25993,57  | 00 | 00 | 00         |   | 9      | 28158,501            | 00 |
| 5  | 26135,201 | 00 | 00 | 00         |   | 8      | 28177,14             | 00 |
| 7  | 26200,05  | 00 | 00 | 00         |   | 6      | 28197,66             | 00 |
| 9  | 26244,6   | 00 | 00 | 00         |   | 4      | 28235,74             | 00 |
| 5  | 26284,69  | 00 | 00 | 00         |   | 5      | 28265,78             | 00 |
| 8  | 26349,49  | 00 | 00 | 00         |   | 5      | 28309,18             | 00 |
| 6  | 26387,801 | 00 | 00 | 00         |   | 6      | 28326,48             | 02 |
| 7  | 26425,15  | 00 | 00 | 00         |   | 7      | 28358,7              | 02 |
| 7  | 26435,701 | 00 | 00 | 00         |   | 5      | 28379,802            | 00 |
| 4  | 26440,401 | 00 | 00 | 00         |   | 2      | 28407,001            | 00 |
| 5  | 26506,501 | 00 | 00 | 00         |   | 10     | 28433,401            | 00 |
| 6  | 26533,88  | 00 | 00 | 00         |   | 8      | 28518,3              | 00 |
| 3  | 26607,16  | 00 | 00 | 00         |   | 8      | 28539,57             | 00 |
| 4  | 26662,401 | 00 | 00 | 00         |   | 5      | 28666,301            | 00 |
| 10 | 26752,29  | 00 | 00 | 00         |   | 3      | 28694,501            | 00 |
| 8  | 26759,801 | 00 | 00 | 00         |   | 8      | 28795,26             | 00 |
| 6  | 26785,45  | 00 | 00 | 00         |   | 7      | 28822,5              | 01 |
| 7  | 26848,46  | 00 | 00 | 00         |   | 6      | 28849,06             | 00 |
| 8  | 26868,07  | 00 | 00 | 00         |   | 6      | 28909,39             | 00 |
| 3  | 26886,001 | 00 | 00 | 00         |   | 4      | 28923,05             | 00 |
| 9  | 26955     | 00 | 00 | 00         |   | 8      | 28971,42             | 01 |
| 4  | 26998,27  | 00 | 00 | 00         |   | 5      | 28987,002            | 00 |
| 9  | 27014,02  | 01 | 00 | 00         |   | 5      | 29054,36             | 00 |
| 8  | 27059,89  | 00 | 00 | 00         |   | 9      | 29119,11             | 01 |
| 6  | 27068,94  | 00 | 00 | 00         |   | 6      | 29159,93             | 00 |
| 5  | 27109,93  | 00 | 00 | 00         |   | 7      | 29161,38             | 00 |
| 6  | 27190,74  | 00 | 00 | 00         |   | 7      | 29169,98             | 00 |
| 6  | 27199,02  | 00 | 00 | 00         |   | 8      | 29291,32             | 02 |
| 7  | 27316,49  | 00 | 00 | 00         |   | 6      | 29447,101            | 00 |
| 8  | 27319,08  | 00 | 00 | 00         |   | 9      | 29465,04             | 00 |
| 3  | 27321,26  | 00 | 00 | 00         |   | 5      | 29496,33             | 00 |
| 9  | 27390,97  | 02 | 00 | 00         |   | /      | 29512,27             | 02 |
| /  | 27427,08  | 01 | 00 | 00         |   | /      | 29532,402            | 00 |
| 8  | 27445,9   | 00 | 00 | 00         |   | 3      | 29626,02             | 00 |
| 1  | 27462,41  | 02 | 00 | 00         |   | 6      | 29682,16             | 00 |
| 6  | 27474,64  | 00 | 00 | 00         |   | 10     | 29706,72             | 02 |
| /  | 27550,54  | 01 | 00 | 00         |   | 9      | 29714,702            | 00 |
| 4  | 27578,002 | 00 | 00 | 00         |   | 11     | 29742,49             | 00 |
| 3  | 27642 57  | 00 | 00 | 00         |   | ð<br>7 | 29841,09<br>20877 27 | 00 |
| 5  | 21043,31  | 00 | 00 | 00         |   | 7      | 27011,31<br>20070 60 | 02 |
| 4  | 27039,002 | 00 | 00 | 00         |   | 6      | 27010,07<br>20015 44 | 00 |
| 5  | 27000,102 | 00 | 00 | 00         |   | 5      | 30013,44             | 00 |
| 5  | 21003,01  | 00 | 00 | 00         |   | 5      | 50055,00             | 00 |

Tabela A1.5: Níveis de energia do Dy I (25760,39 cm<sup>-1</sup> a 27834,93 cm<sup>-1</sup>)

27714,33

27751,46

27817,99

27834,93

30102,59

30106,65

30163,33

30426,59

Tabela A1.6: Níveis de energia do Dy I (27837,54 cm<sup>-1</sup> a 30426,59 cm<sup>-1</sup>)

| J       | Е                    | Р  | t  | Δt | _ | J      | Е                      | Р  | t  | Δt   |
|---------|----------------------|----|----|----|---|--------|------------------------|----|----|------|
| 7       | 30444,88             | 02 | 00 | 00 |   | 7      | 31946,702              | 00 | 00 | 00   |
| 9       | 30459,64             | 02 | 00 | 00 |   | 7      | 32016,83               | 00 | 00 | 00   |
| 6       | 30475,95             | 02 | 00 | 00 |   | 7      | 32036,51               | 02 | 00 | 00   |
| 5       | 30512,73             | 00 | 00 | 00 |   | 6      | 32082                  | 01 | 00 | 00   |
| 7       | 30528,36             | 01 | 00 | 00 |   | 6      | 32111,44               | 01 | 00 | 00   |
| 8       | 30544,57             | 01 | 00 | 00 |   | 6      | 32126,16               | 01 | 00 | 00   |
| 9       | 30560,56             | 00 | 00 | 00 |   | 9      | 32206,27               | 00 | 00 | 00   |
| 7       | 30566,07             | 00 | 00 | 00 |   | 5      | 32263,16               | 00 | 00 | 00   |
| 8       | 30600,15             | 00 | 00 | 00 |   | 5      | 32359,002              | 00 | 00 | 00   |
| 7       | 30621,87             | 02 | 00 | 00 |   | 7      | 32382,29               | 02 | 00 | 00   |
| 4       | 30662,79             | 00 | 00 | 00 |   | 6      | 32392,59               | 00 | 00 | 00   |
| 7       | 30711,7              | 01 | 00 | 00 |   | 7      | 32411,25               | 02 | 00 | 00   |
| 9       | 30716,06             | 00 | 00 | 00 |   | 10     | 32428,08               | 00 | 00 | 00   |
| 8       | 30739,79             | 02 | 00 | 00 |   | 8      | 32428,66               | 02 | 00 | 00   |
| 6       | 30778,96             | 01 | 00 | 00 |   | 6      | 32431,601              | 00 | 00 | 00   |
| 6       | 30840,73             | 01 | 00 | 00 |   | 7      | 32470,801              | 00 | 00 | 00   |
| 4       | 30896,57             | 00 | 00 | 00 |   | 8      | 32554,86               | 02 | 00 | 00   |
| 5       | 30904,89             | 01 | 00 | 00 |   | 7      | 32564,97               | 00 | 00 | 00   |
| 5       | 30946,73             | 01 | 00 | 00 |   | 6      | 32607,88               | 01 | 00 | 00   |
| 8       | 30979,53             | 00 | 00 | 00 |   | 8      | 32675,52               | 02 | 00 | 00   |
| 6       | 30988,25             | 00 | 00 | 00 |   | 9      | 32711,9                | 00 | 00 | 00   |
| 8       | 31061,18             | 00 | 00 | 00 |   | 3      | 32712,54               | 00 | 00 | 00   |
| 5       | 31079,502            | 00 | 00 | 00 |   | 7      | 32722,87               | 02 | 00 | 00   |
| 7       | 31124,8              | 00 | 00 | 00 |   | 9      | 32763,21               | 02 | 00 | 00   |
| 7       | 31132,3              | 01 | 00 | 00 |   | 6      | 32790,66               | 01 | 00 | 00   |
| 6       | 31180,001            | 00 | 00 | 00 |   | 6      | 32834,29               | 01 | 00 | 00   |
| 5       | 31200,96             | 01 | 00 | 00 |   | 5      | 32889,19               | 01 | 00 | 00   |
| 7       | 31229,29             | 01 | 00 | 00 |   | 7      | 32920,02               | 00 | 00 | 00   |
| 8       | 31233,57             | 00 | 00 | 00 |   | 9      | 32927,76               | 00 | 00 | 00   |
| 9       | 31287,04             | 02 | 00 | 00 |   | 8      | 32940,47               | 02 | 00 | 00   |
| 6       | 31341,39             | 01 | 00 | 00 |   | 6      | 32945,3                | 00 | 00 | 00   |
| 7       | 31362,62             | 02 | 00 | 00 |   | 6      | 32970,87               | 01 | 00 | 00   |
| 6       | 31399,49             | 00 | 00 | 00 |   | 5      | 33025,64               | 01 | 00 | 00   |
| 5       | 31410,95             | 01 | 00 | 00 |   | 9      | 33086,26               | 00 | 00 | 00   |
| 7       | 31423,002            | 00 | 00 | 00 |   | 7      | 33110,16               | 00 | 00 | 00   |
| 7       | 31423,04             | 00 | 00 | 00 |   | 5      | 33139,24               | 01 | 00 | 00   |
| 8       | 31469                | 00 | 00 | 00 |   | 8      | 33165,77               | 01 | 00 | 00   |
| 10      | 31489,64             | 02 | 00 | 00 |   | 6      | 33210,13               | 00 | 00 | 00   |
| 7       | 31509,102            | 00 | 00 | 00 |   | 8      | 33246,13               | 00 | 00 | 00   |
| 7       | 31519,57             | 00 | 00 | 00 |   | 9      | 33252,28               | 00 | 00 | 00   |
| 5       | 31522,73             | 01 | 00 | 00 |   | 1      | 33311,52               | 01 | 00 | 00   |
| 6       | 31529,68             | 00 | 00 | 00 |   | 4      | 33324,06               | 01 | 00 | 00   |
| 5       | 31545,99             | 00 | 00 | 00 |   | 4      | 33358,79               | 00 | 00 | 00   |
| 8       | 31547,001            | 00 | 00 | 00 |   | 8      | 33358,83               | 00 | 00 | 00   |
| 6       | 31555,97             | 01 | 00 | 00 |   | 5      | 33381,16               | 00 | 00 | 00   |
| 7       | 31580,28             | 01 | 00 | 00 |   | 8      | 33406,06               | 00 | 00 | 00   |
| 7       | 316/4,08             | 02 | 00 | 00 |   | 1      | 33411,25               | 02 | 00 | 00   |
| 1       | 31698,32             | 01 | 00 | 00 |   | 6      | 33474,3                | 00 | 00 | 00   |
| 5       | 31/42,14             | 00 | 00 | 00 |   | 7      | 33475,702              | 00 | 00 | 00   |
| 5       | 31/03,85             | 01 | 00 | 00 |   | 1      | 33552,39               | 00 | 00 | 00   |
| 9       | 31//3,63             | 00 | 00 | 00 |   | 5<br>6 | 33032,23<br>22656.06   | 00 | 00 | 00   |
| ð<br>10 | 51820,28<br>21828 24 | 02 | 00 | 00 |   | 0      | 22721 502              | 00 | 00 | 00   |
| 10      | 31838,24<br>21979 42 | 00 | 00 | 00 |   | 8<br>7 | 33/21,502              | 00 | 00 | 00   |
| /       | 318/8,42<br>21000 74 | 01 | 00 | 00 |   | /      | 33/40,802<br>22752 101 | 00 | 00 | 00   |
| 9       | 31900,74             | 00 | 00 | 00 |   | ð<br>F | 33/33,101              | 00 | 00 | 00   |
| 9       | 31900,74             | 01 | 00 | 00 |   | Э      | 33/88,/9               | 00 | 00 | - 00 |

Tabela A1.7: Níveis de energia do Dy I  $(30444,88 \text{ cm}^{-1} \text{ a } 31900,74 \text{ cm}^{-1})$ 

Tabela A1.8: Níveis de energia do Dy I  $(31946,702 \text{ cm}^{-1} \text{ a } 33788,79 \text{ cm}^{-1})$ 

Tabela A1.9: Níveis de energia do Dy I (33806,102 cm-1 a 35221,27 cm<sup>-1</sup>)

Tabela A1.10: Níveis de energia do Dy I (35221,98 cm-1 a 36717,57 cm<sup>-1</sup>)

| J      | Е         | Р  | t  | Δt | J      | Е         | Р  | t  | Δt |
|--------|-----------|----|----|----|--------|-----------|----|----|----|
| 7      | 33806,102 | 00 | 00 | 00 | 7      | 35221,98  | 00 | 00 | 00 |
| 5      | 33871,7   | 00 | 00 | 00 | 3      | 35231,23  | 01 | 00 | 00 |
| 6      | 33911,002 | 00 | 00 | 00 | 8      | 35249,13  | 00 | 00 | 00 |
| 5      | 33947,13  | 00 | 00 | 00 | 4      | 35316,301 | 00 | 00 | 00 |
| 4      | 33952.33  | 00 | 00 | 00 | 5      | 35354.27  | 00 | 00 | 00 |
| 7      | 34027.7   | 00 | 00 | 00 | 8      | 35377.501 | 00 | 00 | 00 |
| 4      | 34038.46  | 00 | 00 | 00 | 10     | 35385.78  | 00 | 00 | 00 |
| 7      | 34060 16  | 00 | 00 | 00 | 6      | 35421.17  | 00 | 00 | 00 |
| ,<br>7 | 34131 102 | 00 | 00 | 00 | 8      | 35450 17  | 00 | 00 | 00 |
| ,<br>4 | 34137.43  | 00 | 00 | 00 | 8      | 35518 27  | 00 | 00 | 00 |
| 9      | 34174 66  | 00 | 00 | 00 | 5      | 35523 35  | 00 | 00 | 00 |
| 6      | 34179.68  | 00 | 00 | 00 | 5      | 35578 47  | 00 | 00 | 00 |
| 7      | 3/196 55  | 00 | 00 | 00 | 9      | 35580.84  | 00 | 00 | 00 |
| 7      | 34213 65  | 00 | 00 | 00 | 7      | 35605 77  | 00 | 00 | 00 |
| 6      | 34215,05  | 00 | 00 | 00 | 7      | 35737 77  | 00 | 00 | 00 |
| 0      | 34290,09  | 00 | 00 | 00 | 6      | 35744.63  | 00 | 00 | 00 |
| 6      | 34324,00  | 00 | 00 | 00 | 0      | 35762 55  | 00 | 00 | 00 |
| 4      | 34339,30  | 00 | 00 | 00 | 9      | 35702,35  | 00 | 00 | 00 |
| 4      | 24400 67  | 00 | 00 | 00 | 0<br>7 | 25902 72  | 00 | 00 | 00 |
| 5      | 34400,67  | 01 | 00 | 00 | 7      | 35802,75  | 00 | 00 | 00 |
| 5      | 34470,7   | 01 | 00 | 00 | /      | 35800,0   | 00 | 00 | 00 |
| 4      | 34480,89  | 01 | 00 | 00 | 8      | 35894,30  | 00 | 00 | 00 |
| 2      | 34488,402 | 00 | 00 | 00 | 8      | 35899,94  | 00 | 00 | 00 |
| 6      | 34547,46  | 00 | 00 | 00 | 8      | 35938,74  | 00 | 00 | 00 |
| 5      | 34573,07  | 00 | 00 | 00 | 9      | 35940,35  | 00 | 00 | 00 |
| 5      | 34662,101 | 00 | 00 | 00 | 10     | 35945,002 | 00 | 00 | 00 |
| 8      | 34676,95  | 00 | 00 | 00 | 6      | 35970,01  | 00 | 00 | 00 |
| 6      | 34679,75  | 00 | 00 | 00 | 6      | 36093,54  | 00 | 00 | 00 |
| 9      | 34689,19  | 00 | 00 | 00 | 10     | 36094,402 | 00 | 00 | 00 |
| 7      | 34695,402 | 00 | 00 | 00 | 7      | 36119,46  | 00 | 00 | 00 |
| 4      | 34720,68  | 01 | 00 | 00 | 7      | 36248,002 | 00 | 00 | 00 |
| 5      | 34742,701 | 00 | 00 | 00 | 9      | 36260,17  | 00 | 00 | 00 |
| 7      | 34742,84  | 00 | 00 | 00 | 8      | 36288,48  | 00 | 00 | 00 |
| 8      | 34755,07  | 00 | 00 | 00 | 8      | 36308,08  | 00 | 00 | 00 |
| 6      | 34770,3   | 00 | 00 | 00 | 7      | 36316,402 | 00 | 00 | 00 |
| 10     | 34776,04  | 00 | 00 | 00 | 9      | 36341,53  | 00 | 00 | 00 |
| 6      | 34793,49  | 01 | 00 | 00 | 6      | 36365,09  | 00 | 00 | 00 |
| 8      | 34803,87  | 00 | 00 | 00 | 8      | 36392,101 | 00 | 00 | 00 |
| 9      | 34829,3   | 00 | 00 | 00 | 7      | 36417,25  | 00 | 00 | 00 |
| 5      | 34841,48  | 00 | 00 | 00 | 9      | 36440,201 | 00 | 00 | 00 |
| 7      | 34843,101 | 00 | 00 | 00 | 7      | 36441,99  | 00 | 00 | 00 |
| 7      | 34921,87  | 01 | 00 | 00 | 6      | 36462,09  | 00 | 00 | 00 |
| 8      | 34922,08  | 00 | 00 | 00 | 9      | 36487,02  | 00 | 00 | 00 |
| 6      | 34938,33  | 00 | 00 | 00 | 10     | 36490,07  | 00 | 00 | 00 |
| 7      | 34975     | 00 | 00 | 00 | 7      | 36491.05  | 00 | 00 | 00 |
| 7      | 35003.75  | 00 | 00 | 00 | 7      | 36508.79  | 00 | 00 | 00 |
| 8      | 35029.5   | 00 | 00 | 00 | 8      | 36534.04  | 00 | 00 | 00 |
| 8      | 35053.56  | 00 | 00 | 00 | 8      | 36546.78  | 00 | 00 | 00 |
| 8      | 35082.98  | 00 | 00 | 00 | 8      | 36553.84  | 00 | 00 | 00 |
| 3      | 35107.23  | 01 | 00 | 00 | 8      | 36599.44  | 00 | 00 | 00 |
| 7      | 35107.28  | 00 | 00 | 00 | 7      | 36608.28  | 00 | 00 | 00 |
| ,<br>7 | 35135 33  | 00 | 00 | 00 | 6      | 36612.84  | 00 | 00 | 00 |
| 3      | 35136.67  | 01 | 00 | 00 | 8      | 36618 34  | 00 | 00 | 00 |
| 3      | 35141 43  | 00 | 00 | 00 | 10     | 36640.9   | 00 | 00 | 00 |
| 5      | 35171,45  | 00 | 00 | 00 | 7      | 36667 78  | 00 | 00 | 00 |
| 0      | 35710.95  | 00 | 00 | 00 | 0      | 36708 15  | 00 | 00 | 00 |
| 7<br>0 | 35217,05  | 00 | 00 | 00 | 7      | 36717 57  | 00 | 00 | 00 |
| 7      | 55221,27  | 00 | 00 | 00 | 7      | 50717,57  | 00 | 00 | 00 |

| J       | E                     | Р  | t  | Δt | - | J      | Е                   | Р  | t  | Δt |
|---------|-----------------------|----|----|----|---|--------|---------------------|----|----|----|
| 8       | 36760,64              | 00 | 00 | 00 |   | 9      | 37836,5             | 00 | 00 | 00 |
| 8       | 36807,39              | 00 | 00 | 00 |   | 8      | 37841,84            | 00 | 00 | 00 |
| 9       | 36822,27              | 00 | 00 | 00 |   | 8      | 37843,38            | 00 | 00 | 00 |
| 7       | 36865,4               | 00 | 00 | 00 |   | 6      | 37856,402           | 00 | 00 | 00 |
| 10      | 36868,73              | 00 | 00 | 00 |   | 9      | 37933,63            | 00 | 00 | 00 |
| 8       | 36892,01              | 00 | 00 | 00 |   | 7      | 37980,03            | 00 | 00 | 00 |
| 10      | 36905,44              | 00 | 00 | 00 |   | 8      | 37992,78            | 00 | 00 | 00 |
| 7       | 36924,54              | 00 | 00 | 00 |   | 10     | 38019,102           | 00 | 00 | 00 |
| 8       | 36954,35              | 00 | 00 | 00 |   | 7      | 38054,601           | 00 | 00 | 00 |
| 9       | 36964.302             | 00 | 00 | 00 |   | 6      | 38070.03            | 00 | 00 | 00 |
| 10      | 37007.58              | 00 | 00 | 00 |   | 8      | 38078,102           | 00 | 00 | 00 |
| 7       | 37015 202             | 00 | 00 | 00 |   | 5      | 38093 85            | 00 | 00 | 00 |
| ,<br>11 | 37039                 | 00 | 00 | 00 |   | 5      | 38101.89            | 00 | 00 | 00 |
| 8       | 37041 002             | 00 | 00 | 00 |   | 9      | 38102 902           | 00 | 00 | 00 |
| 6       | 37058.6               | 00 | 00 | 00 |   | 7      | 38123.3             | 00 | 00 | 00 |
| 7       | 37073.86              | 00 | 00 | 00 |   | 8      | 38150 502           | 00 | 00 | 00 |
| 7<br>Q  | 37073,80              | 00 | 00 | 00 |   | 5      | 38150,502           | 00 | 00 | 00 |
| 0       | 37007,47              | 00 | 00 | 00 |   | 2      | 38202.48            | 00 | 00 | 00 |
| 9       | 27121.07              | 00 | 00 | 00 |   | 0      | 20202,40            | 00 | 00 | 00 |
| 9       | 3/121,97              | 00 | 00 | 00 |   | 0      | 38214,801           | 00 | 00 | 00 |
| 6<br>7  | 37125,45              | 00 | 00 | 00 |   | 10     | 38247,38            | 00 | 00 | 00 |
| /       | 3/135,33              | 00 | 00 | 00 |   | /      | 38251,55            | 00 | 00 | 00 |
| 8       | 3/146,54              | 00 | 00 | 00 |   | 8      | 38254,97            | 00 | 00 | 00 |
| 6       | 37163,16              | 00 | 00 | 00 |   | 7      | 38264,28            | 00 | 00 | 00 |
| 5       | 37182,19              | 00 | 00 | 00 |   | 9      | 38285,36            | 00 | 00 | 00 |
| 11      | 37182,98              | 00 | 00 | 00 |   | 10     | 38297,502           | 00 | 00 | 00 |
| 7       | 37212,06              | 00 | 00 | 00 |   | 10     | 38329,901           | 00 | 00 | 00 |
| 5       | 37231,26              | 00 | 00 | 00 |   | 5      | 38334,02            | 00 | 00 | 00 |
| 7       | 37295,97              | 00 | 00 | 00 |   | 7      | 38342,48            | 00 | 00 | 00 |
| 11      | 37299,36              | 00 | 00 | 00 |   | 8      | 38356,27            | 00 | 00 | 00 |
| 6       | 37324,602             | 00 | 00 | 00 |   | 8      | 38358,88            | 00 | 00 | 00 |
| 8       | 37339,89              | 00 | 00 | 00 |   | 7      | 38362,65            | 00 | 00 | 00 |
| 8       | 37355                 | 00 | 00 | 00 |   | 7      | 38366,301           | 00 | 00 | 00 |
| 7       | 37360,001             | 00 | 00 | 00 |   | 7      | 38421,29            | 00 | 00 | 00 |
| 7       | 37366,09              | 00 | 00 | 00 |   | 4      | 38431,801           | 00 | 00 | 00 |
| 7       | 37366,93              | 00 | 00 | 00 |   | 8      | 38438,87            | 00 | 00 | 00 |
| 8       | 37398,46              | 00 | 00 | 00 |   | 9      | 38444,35            | 00 | 00 | 00 |
| 7       | 37471,09              | 00 | 00 | 00 |   | 7      | 38452,46            | 00 | 00 | 00 |
| 5       | 37472,68              | 00 | 00 | 00 |   | 7      | 38515,301           | 00 | 00 | 00 |
| 7       | 37501.58              | 00 | 00 | 00 |   | 8      | 38516.86            | 00 | 00 | 00 |
| 8       | 37527.15              | 00 | 00 | 00 |   | 7      | 38524.502           | 00 | 00 | 00 |
| 7       | 37551.19              | 00 | 00 | 00 |   | 8      | 38551.45            | 00 | 00 | 00 |
| 5       | 37559.17              | 00 | 00 | 00 |   | 9      | 38563 33            | 00 | 00 | 00 |
| 7       | 37587 58              | 00 | 00 | 00 |   | 5      | 38673 5             | 00 | 00 | 00 |
| ý<br>Q  | 37591.83              | 00 | 00 | 00 |   | 9      | 38674 901           | 00 | 00 | 00 |
| י<br>ק  | 37607.80              | 00 | 00 | 00 |   | 6      | 38715.04            | 00 | 00 | 00 |
| 0<br>0  | 37635.26              | 00 | 00 | 00 |   | 07     | 38737.66            | 00 | 00 | 00 |
| 0       | 27646.28              | 00 | 00 | 00 |   | 7      | 28737,00            | 00 | 00 | 00 |
| 5       | 37040,20<br>27646 602 | 00 | 00 | 00 |   | 0      | 20117,11<br>2001114 | 00 | 00 | 00 |
| 5<br>6  | 3/040,002<br>37650.09 | 00 | 00 | 00 |   | 0<br>6 | 20014,40            | 00 | 00 | 00 |
| 0       | 5/050,98              | 00 | 00 | 00 |   | 0      | 38832,0<br>28861 55 | 00 | 00 | 00 |
| 8<br>7  | 3/6/6,89              | 00 | 00 | 00 |   | /      | 38861,55            | 00 | 00 | 00 |
| /       | 37694,25              | 00 | 00 | 00 |   | 8      | 38870,001           | 00 | 00 | 00 |
| 10      | 37/06,102             | 00 | 00 | 00 |   | 5      | 38890,902           | 00 | 00 | 00 |
| 8       | 37721,06              | 00 | 00 | 00 |   | 7      | 38954,001           | 00 | 00 | 00 |
| 9       | 37751,03              | 00 | 00 | 00 |   | 5      | 38964,68            | 00 | 00 | 00 |
| 7       | 37751,34              | 00 | 00 | 00 |   | 8      | 38973,45            | 00 | 00 | 00 |
| 8       | 37820,202             | 00 | 00 | 00 |   | 9      | 39035,85            | 00 | 00 | 00 |

Tabela A1.11: Níveis de energia do Dy I (36760,64 cm-1 a 37820,202 cm<sup>-1</sup>)

Tabela A1.12: Níveis de energia do Dy I (37836,5 cm-1 a 39035,85 cm<sup>-1</sup>)

| J      | Е         | Р  | t  | Δt | J  |
|--------|-----------|----|----|----|----|
| 5      | 39048,18  | 00 | 00 | 00 | 3  |
| 7      | 39078,14  | 00 | 00 | 00 | 5  |
| 4      | 39084,97  | 00 | 00 | 00 | 8  |
| 8      | 39096,06  | 00 | 00 | 00 | 4  |
| 7      | 39097,74  | 00 | 00 | 00 | 8  |
| 9      | 39120,601 | 00 | 00 | 00 | 4  |
| 8      | 39135,302 | 00 | 00 | 00 | 5  |
| 10     | 39176,58  | 00 | 00 | 00 | 4  |
| 10     | 39182,4   | 00 | 00 | 00 | 3  |
| 6      | 39188,23  | 00 | 00 | 00 | 9  |
| 5      | 39201,13  | 00 | 00 | 00 | 8  |
| 7      | 39325,28  | 00 | 00 | 00 | 7  |
| 9      | 39332,802 | 00 | 00 | 00 | 8  |
| 7      | 39332,97  | 00 | 00 | 00 | 9  |
| 8      | 39376,93  | 00 | 00 | 00 | 8  |
| 4      | 39378,701 | 00 | 00 | 00 | 8  |
| 8      | 39398,01  | 00 | 00 | 00 | 9  |
| 5      | 39411,002 | 00 | 00 | 00 | 9  |
| 4      | 39420,8   | 00 | 00 | 00 | 7  |
| 4      | 39430,94  | 00 | 00 | 00 | 8  |
| 9      | 39513,68  | 00 | 00 | 00 | 4  |
| 7      | 39516,88  | 00 | 00 | 00 | 3  |
| 6      | 39545,9   | 00 | 00 | 00 | 7  |
| 10     | 39573,04  | 00 | 00 | 00 | 6  |
| 9      | 39602,47  | 00 | 00 | 00 | 8  |
| 11     | 39627,83  | 00 | 00 | 00 | 7  |
| 7      | 39681,94  | 00 | 00 | 00 | 6  |
| 9      | 39692,49  | 00 | 00 | 00 | 4  |
| 8      | 39714,02  | 00 | 00 | 00 | 4  |
| 5      | 39748,26  | 00 | 00 | 00 | 4  |
| 10     | 39750,08  | 00 | 00 | 00 | 3  |
| 7      | 39777,602 | 00 | 00 | 00 | 4  |
| 5      | 39780,002 | 00 | 00 | 00 | 6  |
| 6      | 39786,3   | 00 | 00 | 00 | 5  |
| 6      | 39849,801 | 00 | 00 | 00 | 5  |
| 4      | 39853,98  | 00 | 00 | 00 | 10 |
| 9      | 39895,76  | 00 | 00 | 00 | 4  |
| 9      | 39903,34  | 00 | 00 | 00 | 8  |
| 8      | 39909,55  | 00 | 00 | 00 | 4  |
| 10     | 40005,802 | 00 | 00 | 00 | 7  |
| 4      | 40023,04  | 00 | 00 | 00 | 5  |
| 9      | 40030,48  | 00 | 00 | 00 | 7  |
| 5      | 40213,201 | 00 | 00 | 00 | 8  |
| 7      | 40245,78  | 00 | 00 | 00 | 8  |
| 3      | 40295,08  | 00 | 00 | 00 | 6  |
| 1      | 40396,05  | 00 | 00 | 00 | 7  |
| 6      | 40410,19  | 00 | 00 | 00 | 8  |
| 8      | 404/2,96  | 00 | 00 | 00 |    |
| 0      | 40491,53  | 00 | 00 | 00 |    |
| 0      | 40520,48  | 00 | 00 | 00 |    |
| 9<br>0 | 40594,03  | 00 | 00 | 00 |    |
| ð<br>2 | 40000,98  | 00 | 00 | 00 |    |
| 5      | 40621,202 | 00 | 00 | 00 |    |
| 4      | 40625,9   | 00 | 00 | 00 |    |
| 8      | 40639,33  | 00 | 00 | 00 |    |
| 9      | 40683,59  | 00 | 00 | 00 |    |

Tabela A1.13: Níveis de energia do Dy I (39048,18 cm-1 a 440683,59cm<sup>-1</sup>)

Tabela A1.14: Níveis de energia do Dy I (40782,04 cm-1 a 47354,04 cm-1)

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J  | E         | Р  | t  | $\Delta t$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|----|----|------------|
| 5 $40796,402$ 00         00         00           8 $40833,301$ 00         00         00           4 $40835,6$ 00         00         00           4 $40924,8$ 00         00         00           4 $40924,8$ 00         00         00           4 $40973,37$ 00         00         00           3 $40983,6$ 00         00         00           9 $41029,59$ 00         00         00           8 $41037,23$ 00         00         00           8 $41098,701$ 00         00         00           8 $41203,9$ 00         00         00           8 $41235,96$ 00         00         00           9 $41210,3$ 00         00         00           9 $41235,96$ 00         00         00           9 $41235,96$ 00         00         00           141458,202         00         00         00         00           141458,2                                                        | 3  | 40782,04  | 00 | 00 | 00         |
| 8 $40833,301$ 00         00         00           4 $40835,6$ 00         00         00           8 $40871,39$ 00         00         00           4 $40924,8$ 00         00         00           5 $40931,58$ 00         00         00           4 $40973,37$ 00         00         00           3 $40983,6$ 00         00         00           9 $41029,59$ 00         00         00           8 $41037,23$ 00         00         00           8 $41098,701$ 00         00         00           8 $4123,9$ 00         00         00           8 $41235,96$ 00         00         00           9 $41210,3$ 00         00         00           7 $41371,37$ 00         00         00           7 $41383$ 00         00         00           7 $41503,84$ 00         00         00           7                                                                                    | 5  | 40796,402 | 00 | 00 | 00         |
| 4 $40835,6$ $00$ $00$ $00$ $8$ $40871,39$ $00$ $00$ $00$ $4$ $40924,8$ $00$ $00$ $00$ $5$ $40931,58$ $00$ $00$ $00$ $4$ $40973,37$ $00$ $00$ $00$ $3$ $40983,6$ $00$ $00$ $00$ $9$ $41029,59$ $00$ $00$ $00$ $8$ $41037,23$ $00$ $00$ $00$ $8$ $41037,23$ $00$ $00$ $00$ $8$ $41098,701$ $00$ $00$ $00$ $9$ $41135,13$ $00$ $00$ $00$ $8$ $41203,9$ $00$ $00$ $00$ $8$ $4123,9$ $00$ $00$ $00$ $9$ $41235,96$ $00$ $00$ $00$ $7$ $41371,37$ $00$ $00$ $00$ $8$ $41383$ $00$ $00$ $00$ $4$ $41458,202$ $00$ $00$ $00$ $7$ $41638,55$ $00$ $00$ $00$ $6$ $41656,46$ $00$ $00$ $6$ $41656,46$ $00$ $00$ $4$ $42236,05$ $00$ $00$ $4$ $42236,05$ $00$ $00$ $4$ $42236,05$ $00$ $00$ $6$ $42375,03$ $00$ $00$ $6$ $42375,03$ $00$ $00$ $6$ $4222,139$ $00$ $00$ $6$ $4222,139$ $00$ $00$ $6$ $42375,0$                                                                             | 8  | 40833,301 | 00 | 00 | 00         |
| 8 $40871,39$ 00         00         00           4 $40924,8$ 00         00         00           5 $40931,58$ 00         00         00           4 $40973,37$ 00         00         00           3 $40983,6$ 00         00         00           9 $41029,59$ 00         00         00           7 $41053,08$ 00         00         00           8 $41098,701$ 00         00         00           9 $41135,13$ 00         00         00           8 $41203,9$ 00         00         00           9 $41235,96$ 00         00         00           9 $41235,96$ 00         00         00           7 $41371,37$ 00         00         00           4 $41458,202$ 00         00         00           7 $41371,37$ 00         00         00           4 $41458,202$ 00         00         00           7                                                                             | 4  | 40835,6   | 00 | 00 | 00         |
| 4 $40924,8$ $00$ $00$ $00$ $5$ $40931,58$ $00$ $00$ $00$ $4$ $40973,37$ $00$ $00$ $00$ $3$ $40983,6$ $00$ $00$ $00$ $9$ $41029,59$ $00$ $00$ $00$ $8$ $41037,23$ $00$ $00$ $00$ $7$ $41053,08$ $00$ $00$ $00$ $8$ $41098,701$ $00$ $00$ $00$ $9$ $41135,13$ $00$ $00$ $00$ $8$ $41203,9$ $00$ $00$ $00$ $9$ $41235,96$ $00$ $00$ $00$ $9$ $41235,96$ $00$ $00$ $00$ $7$ $41371,37$ $00$ $00$ $00$ $8$ $41383$ $00$ $00$ $00$ $4$ $41458,202$ $00$ $00$ $00$ $7$ $41503,84$ $00$ $00$ $00$ $7$ $41503,84$ $00$ $00$ $00$ $7$ $41642,79$ $00$ $00$ $00$ $6$ $41656,46$ $00$ $00$ $00$ $4$ $41957,18$ $00$ $00$ $00$ $4$ $42236,05$ $00$ $00$ $00$ $4$ $4229,05$ $00$ $00$ $00$ $4$ $42940,5$ $00$ $00$ $00$ $4$ $4229,06$ $00$ $00$ $6$ $41656,41$ $00$ $00$ $6$ $41257,18$ $00$ $00$ $00$ $00$ <td>8</td> <td>40871,39</td> <td>00</td> <td>00</td> <td>00</td>                | 8  | 40871,39  | 00 | 00 | 00         |
| 5 $40931,58$ $00$ $00$ $00$ $4$ $40973,37$ $00$ $00$ $00$ $3$ $40983,6$ $00$ $00$ $00$ $9$ $41029,59$ $00$ $00$ $00$ $8$ $41037,23$ $00$ $00$ $00$ $7$ $41053,08$ $00$ $00$ $00$ $8$ $41098,701$ $00$ $00$ $00$ $9$ $41135,13$ $00$ $00$ $00$ $8$ $41203,9$ $00$ $00$ $00$ $9$ $41210,3$ $00$ $00$ $00$ $9$ $41235,96$ $00$ $00$ $00$ $7$ $41371,37$ $00$ $00$ $00$ $8$ $41383$ $00$ $00$ $00$ $4$ $41458,202$ $00$ $00$ $00$ $7$ $41503,84$ $00$ $00$ $00$ $6$ $41577,18$ $00$ $00$ $00$ $6$ $41656,46$ $00$ $00$ $4$ $41957,18$ $00$ $00$ $4$ $42236,05$ $00$ $00$ $4$ $42236,05$ $00$ $00$ $4$ $42236,05$ $00$ $00$ $4$ $42892,94$ $00$ $00$ $6$ $42375,03$ $00$ $00$ $6$ $42221,39$ $00$ $00$ $6$ $42221,39$ $00$ $00$ $6$ $42375,03$ $00$ $00$ $6$ $42375,03$ $00$ $00$ $6$ $42375,03$ $00$ <td< td=""><td>4</td><td>40924,8</td><td>00</td><td>00</td><td>00</td></td<> | 4  | 40924,8   | 00 | 00 | 00         |
| 4 $40973,37$ $00$ $00$ $00$ $3$ $40983,6$ $00$ $00$ $00$ $9$ $41029,59$ $00$ $00$ $00$ $8$ $41037,23$ $00$ $00$ $00$ $7$ $41053,08$ $00$ $00$ $00$ $8$ $41098,701$ $00$ $00$ $00$ $9$ $41135,13$ $00$ $00$ $00$ $8$ $41203,9$ $00$ $00$ $00$ $9$ $41235,96$ $00$ $00$ $00$ $9$ $41235,96$ $00$ $00$ $00$ $7$ $41371,37$ $00$ $00$ $00$ $8$ $41383$ $00$ $00$ $00$ $4$ $41458,202$ $00$ $00$ $00$ $4$ $41458,202$ $00$ $00$ $00$ $7$ $41503,84$ $00$ $00$ $00$ $6$ $41638,55$ $00$ $00$ $00$ $7$ $41642,79$ $00$ $00$ $00$ $8$ $41638,55$ $00$ $00$ $00$ $4$ $41957,18$ $00$ $00$ $00$ $4$ $42236,05$ $00$ $00$ $00$ $4$ $42236,05$ $00$ $00$ $6$ $42375,03$ $00$ $00$ $6$ $4229,9,4$ $00$ $00$ $6$ $4221,39$ $00$ $00$ $6$ $4221,39$ $00$ $00$ $6$ $42375,03$ $00$ $00$ $6$ $42290,96$ $00$ $00$ <td>5</td> <td>40931,58</td> <td>00</td> <td>00</td> <td>00</td>             | 5  | 40931,58  | 00 | 00 | 00         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4  | 40973,37  | 00 | 00 | 00         |
| 9 $41029,59$ 0000008 $41037,23$ 0000007 $41053,08$ 0000008 $41098,701$ 0000009 $41135,13$ 0000008 $41203,9$ 0000009 $41210,3$ 0000009 $41235,96$ 0000009 $41235,96$ 0000007 $41371,37$ 0000008 $41383$ 0000007 $41371,37$ 0000008 $41383$ 0000007 $41503,84$ 0000007 $41638,55$ 0000008 $41638,55$ 0000007 $41642,79$ 0000008 $41638,55$ 0000008 $41638,55$ 0000007 $41642,79$ 0000004 $41957,18$ 0000004 $42236,05$ 0000004 $42236,05$ 0000005 $42490,5$ 0000006 $42375,03$ 0000007 $42940,96$ 0000008 $42921,39$ 0000007 $42984,701$ 0000008 $44487,65$ 0000<                                                                                                                                                                                                                                                                                                               | 3  | 40983,6   | 00 | 00 | 00         |
| 8 $41037,23$ 00       00       00         7 $41053,08$ 00       00       00         8 $41098,701$ 00       00       00         9 $41135,13$ 00       00       00         8 $41203,9$ 00       00       00         9 $41210,3$ 00       00       00         9 $41235,96$ 00       00       00         9 $41235,96$ 00       00       00         7 $41371,37$ 00       00       00         8 $41383$ 00       00       00         7 $41503,84$ 00       00       00         6 $41577,18$ 00       00       00         7 $41642,79$ 00       00       00         8 $41638,55$ 00       00       00         7 $41642,79$ 00       00       00         6 $4156,46$ 00       00       00         4 $41236,05$ 00       00       00         4 $42236,05$ 00 </td <td>9</td> <td>41029,59</td> <td>00</td> <td>00</td> <td>00</td>                                                    | 9  | 41029,59  | 00 | 00 | 00         |
| 7 $41053,08$ 0000008 $41098,701$ 0000009 $41135,13$ 0000008 $41203,9$ 0000009 $41210,3$ 0000009 $41235,96$ 0000007 $41371,37$ 0000008 $41383$ 0000007 $41371,37$ 0000008 $41383$ 0000004 $41458,202$ 0000007 $41503,84$ 0000006 $41577,18$ 0000007 $41642,79$ 0000008 $41638,55$ 0000006 $41656,46$ 0000007 $41642,79$ 0000004 $41957,18$ 0000004 $42236,05$ 0000004 $42236,05$ 0000004 $42236,05$ 0000005 $42490,5$ 0000006 $42375,03$ 0000007 $42984,701$ 0000008 $42921,39$ 0000007 $42984,701$ 0000008 $43728,57$ 0000008 $47354,04$ 000000                                                                                                                                                                                                                                                                                                                               | 8  | 41037,23  | 00 | 00 | 00         |
| 8 $41098,701$ 0000009 $41135,13$ 0000008 $41203,9$ 0000009 $41210,3$ 0000009 $41235,96$ 0000007 $41371,37$ 0000008 $41383$ 0000007 $41371,37$ 0000008 $41383$ 00000014 $41458,202$ 0000007 $41503,84$ 0000006 $41577,18$ 0000007 $41642,79$ 0000008 $41638,55$ 0000006 $41656,46$ 0000004 $41957,18$ 0000004 $42236,05$ 0000004 $42236,05$ 0000004 $42236,05$ 0000005 $42490,5$ 0000006 $42375,03$ 0000007 $42668,01$ 0000008 $42921,39$ 0000007 $42984,701$ 0000008 $43728,57$ 0000008 $43728,57$ 0000008 $47354,04$ 000000                                                                                                                                                                                                                                                                                                                                                  | 7  | 41053,08  | 00 | 00 | 00         |
| 9 $41135,13$ 0000008 $41136,59$ 0000009 $41203,9$ 0000009 $41210,3$ 0000009 $41235,96$ 0000007 $41371,37$ 0000008 $41383$ 0000004 $41458,202$ 0000003 $41492,401$ 0000006 $41577,18$ 0000007 $41503,84$ 0000006 $41656,46$ 0000007 $41642,79$ 0000008 $41638,55$ 0000006 $41656,46$ 0000004 $41257,18$ 0000004 $42236,05$ 0000004 $42236,05$ 0000005 $42479,83$ 0000006 $42375,03$ 0000007 $42940,5$ 0000008 $4292,94$ 0000009 $43222,01$ 00000010 $42668,01$ 0000007 $43222,01$ 0000008 $43728,57$ 0000008 $43728,57$ 0000008 $47354,04$ 000000                                                                                                                                                                                                                                                                                                                              | 8  | 41098,701 | 00 | 00 | 00         |
| 8 $41136,59$ 0000009 $41203,9$ 0000009 $41235,96$ 0000007 $41371,37$ 0000008 $41383$ 0000004 $41458,202$ 0000003 $41492,401$ 0000006 $41577,18$ 0000007 $41638,55$ 0000008 $41638,55$ 0000006 $41656,46$ 0000007 $41642,79$ 0000006 $41656,46$ 0000004 $4236,05$ 0000004 $42236,05$ 0000004 $42236,05$ 0000005 $42479,83$ 0000006 $42375,03$ 0000007 $4268,01$ 0000008 $4292,94$ 0000008 $42921,39$ 0000007 $42984,701$ 0000008 $43728,57$ 0000008 $43728,57$ 0000008 $44487,65$ 0000008 $47354,04$ 000000                                                                                                                                                                                                                                                                                                                                                                    | 9  | 41135,13  | 00 | 00 | 00         |
| 8 $41203,9$ 0000009 $41210,3$ 0000009 $41235,96$ 0000007 $41371,37$ 0000008 $41383$ 0000004 $41458,202$ 0000003 $41492,401$ 0000007 $41503,84$ 0000006 $41577,18$ 0000007 $41638,55$ 0000006 $41656,46$ 0000007 $41642,79$ 0000006 $41656,46$ 0000004 $41957,18$ 0000004 $42236,05$ 0000004 $42236,05$ 0000006 $42375,03$ 0000007 $42668,01$ 0000008 $42921,39$ 0000009 $42940,96$ 0000009 $42921,39$ 0000009 $43222,01$ 0000009 $43222,01$ 0000009 $42940,96$ 0000009 $43222,01$ 0000009 $42940,96$ 0000009 $43222,01$ 0000009 $43222,01$ 0000009 $43222,01$ 0000 </td <td>8</td> <td>41136,59</td> <td>00</td> <td>00</td> <td>00</td>                                                                                                                                                                                                                                      | 8  | 41136,59  | 00 | 00 | 00         |
| 9 $41210,3$ 0000009 $41235,96$ 0000007 $41371,37$ 0000008 $41383$ 0000004 $41458,202$ 0000003 $41492,401$ 0000007 $41503,84$ 0000006 $41577,18$ 0000007 $41638,55$ 0000008 $41638,55$ 0000006 $41656,46$ 0000004 $41859,44$ 0000004 $41957,18$ 0000004 $42246,022$ 0000004 $42236,05$ 0000004 $42236,05$ 0000005 $42479,83$ 0000006 $42375,03$ 0000007 $42968,01$ 0000008 $42921,39$ 0000009 $42940,96$ 0000007 $42984,701$ 0000007 $42922,01$ 0000008 $43728,57$ 0000008 $44487,65$ 0000008 $47354,04$ 000000                                                                                                                                                                                                                                                                                                                                                                | 8  | 41203,9   | 00 | 00 | 00         |
| 9 $41235,96$ 0000007 $41371,37$ 0000008 $41383$ 0000004 $41458,202$ 0000003 $41492,401$ 0000007 $41503,84$ 0000006 $41577,18$ 0000007 $41638,55$ 0000008 $41638,55$ 0000006 $41656,46$ 0000004 $41859,44$ 0000004 $41957,18$ 0000004 $42246,002$ 0000004 $42236,05$ 0000006 $42375,03$ 0000005 $42490,55$ 0000005 $42490,55$ 0000006 $42921,39$ 0000007 $42984,701$ 0000008 $42922,01$ 0000007 $42984,701$ 0000008 $43728,57$ 0000008 $44487,65$ 0000008 $44487,65$ 0000008 $47354,04$ 000000                                                                                                                                                                                                                                                                                                                                                                                 | 9  | 41210,3   | 00 | 00 | 00         |
| 7 $41371,37$ 0000008 $41383$ 0000004 $41458,202$ 0000003 $41492,401$ 0000007 $41503,84$ 0000006 $41577,18$ 0000008 $41638,55$ 0000007 $41642,79$ 0000006 $41656,46$ 0000004 $41859,44$ 0000004 $41957,18$ 0000004 $42246,002$ 0000004 $42236,05$ 0000006 $42375,03$ 0000006 $42375,03$ 0000007 $42688,01$ 0000008 $42921,39$ 0000007 $42940,96$ 0000007 $42922,01$ 0000008 $42921,39$ 0000007 $42984,701$ 0000008 $43728,57$ 0000008 $44487,65$ 0000008 $44487,65$ 0000008 $47354,04$ 000000                                                                                                                                                                                                                                                                                                                                                                                  | 9  | 41235,96  | 00 | 00 | 00         |
| 8 $41383$ 0000004 $41458,202$ 0000003 $41492,401$ 0000007 $41503,84$ 0000006 $41577,18$ 0000008 $41638,55$ 0000007 $41642,79$ 0000006 $41656,46$ 0000004 $41859,44$ 0000004 $41957,18$ 0000004 $42246,002$ 0000004 $42236,05$ 0000006 $42375,03$ 0000005 $42479,83$ 0000005 $42490,55$ 00000010 $42668,01$ 0000007 $42984,701$ 0000007 $42922,01$ 0000008 $43728,57$ 0000008 $43728,57$ 0000008 $43728,57$ 0000008 $4487,65$ 0000008 $44487,65$ 0000008 $47354,04$ 000000                                                                                                                                                                                                                                                                                                                                                                                                     | 7  | 41371,37  | 00 | 00 | 00         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8  | 41383     | 00 | 00 | 00         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4  | 41458,202 | 00 | 00 | 00         |
| 7 $41503,84$ 0000006 $41577,18$ 0000008 $41638,55$ 0000007 $41642,79$ 0000006 $41656,46$ 0000004 $41859,44$ 0000004 $41957,18$ 0000004 $42146,002$ 0000004 $42220,102$ 0000004 $42236,05$ 0000006 $42375,03$ 0000005 $42479,83$ 0000005 $42490,55$ 00000010 $42668,01$ 0000004 $4292,94$ 0000007 $42984,701$ 0000007 $43222,01$ 0000008 $43728,57$ 0000008 $44487,65$ 0000007 $46391,45$ 0000008 $47354,04$ 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3  | 41492,401 | 00 | 00 | 00         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7  | 41503.84  | 00 | 00 | 00         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6  | 41577,18  | 00 | 00 | 00         |
| 7 $41642,79$ 0000006 $41656,46$ 0000004 $41859,44$ 0000004 $41957,18$ 0000004 $42146,002$ 0000004 $42220,102$ 0000003 $42220,102$ 0000004 $4236,05$ 0000006 $42375,03$ 0000005 $42479,83$ 0000005 $42479,83$ 00000010 $42668,01$ 0000004 $4292,94$ 0000007 $42984,701$ 0000007 $43222,01$ 0000008 $43728,57$ 0000008 $44487,65$ 0000007 $46391,45$ 0000008 $47354,04$ 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8  | 41638.55  | 00 | 00 | 00         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7  | 41642,79  | 00 | 00 | 00         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6  | 41656.46  | 00 | 00 | 00         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4  | 41859,44  | 00 | 00 | 00         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4  | 41957,18  | 00 | 00 | 00         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4  | 42146,002 | 00 | 00 | 00         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3  | 42220,102 | 00 | 00 | 00         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4  | 42236,05  | 00 | 00 | 00         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6  | 42375.03  | 00 | 00 | 00         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5  | 42479,83  | 00 | 00 | 00         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5  | 42490.5   | 00 | 00 | 00         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 | 42668.01  | 00 | 00 | 00         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4  | 42892.94  | 00 | 00 | 00         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8  | 42921.39  | 00 | 00 | 00         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4  | 42940.96  | 00 | 00 | 00         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7  | 42984,701 | 00 | 00 | 00         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5  | 43020.84  | 00 | 00 | 00         |
| 8         43728,57         00         00         00           8         44487,65         00         00         00           6         45703,64         00         00         00           7         46391,45         00         00         00           8         47354,04         00         00         00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7  | 43222.01  | 00 | 00 | 00         |
| 8         44487,65         00         00         00           6         45703,64         00         00         00           7         46391,45         00         00         00           8         47354,04         00         00         00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8  | 43728.57  | 00 | 00 | 00         |
| 6         45703,64         00         00         00           7         46391,45         00         00         00           8         47354,04         00         00         00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8  | 44487.65  | 00 | 00 | 00         |
| 7         46391,45         00         00         00         00           8         47354,04         00         00         00         00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6  | 45703 64  | 00 | 00 | 00         |
| 8 47354.04 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7  | 46391.45  | 00 | 00 | 00         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8  | 47354.04  | 00 | 00 | 00         |
### **A2 Linhas Espectrais**

N = Numero da linha.

 $\lambda_{vacuo}$  = Comprimento de onda no vácuo (nm).

 $\lambda_{ar}$  = Comprimento de onda no ar (nm).

I. R. = Intensidade relativa.

 $A_E$  = Coeficiente de Einstein (s<sup>-1</sup>)

 $\Delta A_E$  = Incerteza no Coeficiente de Einstein (s<sup>-1</sup>).

 $E_i = Nivel de energia inferior$ 

J<sub>i</sub> = Número quântico de momento angular associado ao nível inferior.

 $E_s = N$ ível de energia superior

 $J_s = N$ úmero quântico de momento angular associado ao nível superior.

Os valores 00 nas tabelas a seguir indicam que não há dados na literatura.

| Ν  | $\lambda_{vacuo}$ | $\lambda_{ar}$ | I. R. | $A_E$  | $\Delta A_{\rm E}$ | Ei      | $J_i$ | Es       | J <sub>s</sub> |
|----|-------------------|----------------|-------|--------|--------------------|---------|-------|----------|----------------|
| 1  | 258,607           | 258,53         | 220   | 00     | 00                 | 00      | 00    | 00       | 00             |
| 2  | 262,447           | 262,369        | 370   | 00     | 00                 | 00      | 00    | 00       | 00             |
| 3  | 264,294           | 264,215        | 110   | 00     | 00                 | 00      | 00    | 00       | 00             |
| 4  | 266,873           | 266,794        | 110   | 00     | 00                 | 00      | 00    | 00       | 00             |
| 5  | 273,66            | 273,579        | 55    | 00     | 00                 | 00      | 00    | 00       | 00             |
| 6  | 286,35351         | 286,269        | 140   | 7,9E6  | 474000             | 0       | 8     | 34921,87 | 7              |
| 7  | 288,638           | 288,553        | 120   | 00     | 00                 | 00      | 00    | 00       | 00             |
| 8  | 296,547           | 296,46         | 220   | 6,5E6  | 00                 | 00      | 8     | 00       | 8              |
| 9  | 300,19645         | 300,109        | 5     | 1,45E6 | 87000              | 0       | 8     | 33311,52 | 7              |
| 10 | 301,51569         | 301,428        | 5     | 1,18E6 | 82600              | 0       | 8     | 33165,77 | 8              |
| 11 | 313,47235         | 313,382        | 5     | 1,23E6 | 61500              | 0       | 8     | 31900,74 | 9              |
| 12 | 313,69183         | 313,601        | 5     | 1,65E6 | 99000              | 0       | 8     | 31878,42 | 7              |
| 13 | 314,8606          | 314,7694       | 300   | 1,1E7  | 00                 | 00      | 7     | 00       | 8              |
| 14 | 315,47413         | 315,383        | 5     | 430000 | 34400              | 0       | 8     | 31698,32 | 7              |
| 15 | 316,6533          | 316,562        | 5     | 1,36E7 | 1,088E6            | 0       | 8     | 31580,28 | 7              |
| 16 | 326,16573         | 326,072        | 5     | 1,86E6 | 111600             | 4134,23 | 7     | 34793,49 | 6              |
| 17 | 326,4127          | 326,3186       | 3000  | 1,4E7  | 00                 | 00      | 7     | 00       | 6              |
| 18 | 327,39043         | 327,296        | 5     | 5,81E6 | 290500             | 0       | 8     | 30544,57 | 8              |
| 19 | 342,73231         | 342,634        | 5     | 200000 | 34000              | 4134,23 | 7     | 33311,52 | 7              |
| 20 | 343,41709         | 343,319        | 5     | 2,32E6 | 116000             | 0       | 8     | 29119,11 | 9              |
| 21 | 344,45296         | 344,354        | 5     | 285000 | 28500              | 4134,23 | 7     | 33165,77 | 8              |
| 22 | 348,43133         | 348,332        | 5     | 1,21E6 | 145200             | 4134,23 | 7     | 32834,29 | 6              |
| 23 | 351,2019          | 351,1015       | 1000  | 9,4E6  | 470000             | 4134,23 | 7     | 32607,88 | 6              |
| 24 | 357,24582         | 357,1438       | 1000  | 4,8E6  | 240000             | 4134,23 | 7     | 32126,16 | 6              |
| 25 | 357,43378         | 357,332        | 5     | 1,03E6 | 92700              | 4134,23 | 7     | 32111,44 | 6              |
| 26 | 357,8103          | 357,708        | 5     | 2,77E6 | 166200             | 4134,23 | 7     | 32082    | 6              |
| 27 | 359,04799         | 358,946        | 5     | 326000 | 26080              | 0       | 8     | 27851,43 | 8              |
| 28 | 360,43582         | 360,333        | 5     | 1,29E6 | 77400              | 4134,23 | 7     | 31878,42 | 7              |
| 29 | 360,45284         | 360,35         | 5     | 560000 | 61600              | 7050,61 | 6     | 34793,49 | 6              |
| 30 | 362,79086         | 362,687        | 5     | 600000 | 36000              | 4134,23 | 7     | 31698,32 | 7              |
| 31 | 362,8929          | 362,789        | 5     | 175000 | 10500              | 0       | 8     | 27556,34 | 7              |

Tabela A2.1: Linhas Espectrais de Dy I (1-31)

| Ν        | $\lambda_{ m vacuo}$ | $\lambda_{ m ar}$ | I. R.    | $A_E$            | $\Delta A_{\rm E}$      | Ei          | $\mathbf{J}_{\mathbf{i}}$ | Es                   | J <sub>s</sub> |
|----------|----------------------|-------------------|----------|------------------|-------------------------|-------------|---------------------------|----------------------|----------------|
| 32       | 366,788              | 366,684           | 400      | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 33       | 367,55031            | 367,446           | 5        | 5,22E7           | 2,61E6                  | 4134,23     | 7                         | 31341,39             | 6              |
| 34       | 367,956              | 367,851           | 640      | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 35       | 368,59               | 368,485           | 820      | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 36       | 368,683              | 368,578           | 1300     | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 37       | 369,07097            | 368,966           | 5        | 248000           | 27280                   | 4134,23     | 7                         | 31229,29             | 7              |
| 38       | 370,17815            | 370,073           | 5        | 1,19E8           | 7,14E6                  | 0           | 8                         | 27014,02             | 9              |
| 39       | 372,906              | 372.8             | 300      | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 40       | 374.04               | 373.934           | 930      | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 41       | 374,44068            | 374.334           | 5        | 4.1E6            | 328000                  | 4134.23     | 7                         | 30840.73             | 6              |
| 42       | 375 812              | 375 705           | 1200     | 3E8              | 0                       | 0           | 8                         | 0                    | 9              |
| 43       | 376 25854            | 376 152           | 5        | 590000           | 53100                   | 4134 23     | 7                         | 307117               | 7              |
| 44       | 376.87               | 376 763           | 640      | 00               | 00                      | 00          | ,<br>00                   | 00                   | 00             |
| 45       | 377 218              | 377 111           | 330      | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 45<br>76 | 377 412              | 377 305           | 640      | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 40<br>47 | 377,578              | 377,303           | 370      | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 48       | 378 254              | 378 147           | 420      | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 40       | 370,234              | 280 221           | 420<br>5 | 110000           | 10710                   | 4124.22     | 7                         | 20426 50             | 6              |
| 49<br>50 | 201,225              | 281 227           | 5<br>470 | 119000           | 10/10                   | 4154,25     | 00                        | 30420,39             | 00             |
| 50       | 301,333              | 381,227           | 470      | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 51       | 384,198              | 384,089           | 370      | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 52       | 384,545              | 384,436           | 330      | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 53       | 384,811              | 384,702           | 420      | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 54       | 385,7986             | 385,689           | 5        | 450000           | 36000                   | 7050,61     | 6                         | 32970,87             | 6              |
| 55       | 385,949              | 385,84            | 420      | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 56       | 386,991              | 386,881           | 1600     | 3,1E8            | 0                       | 0           | 8                         | 0                    | 8              |
| 57       | 387,84223            | 387,732           | 5        | 1000000          | 170000                  | 7050,61     | 6                         | 32834,29             | 6              |
| 58       | 388,49963            | 388,39            | 5        | 1,1E6            | 77000                   | 7050,61     | 6                         | 32790,66             | 6              |
| 59       | 391,2781             | 391,167           | 5        | 1,78E6           | 124600                  | 7050,61     | 6                         | 32607,88             | 6              |
| 60       | 391,84               | 391,729           | 540      | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 61       | 392,01697            | 391,906           | 5        | 2,36E6           | 188800                  | 9211,58     | 5                         | 34720,68             | 4              |
| 62       | 392,897              | 392,786           | 420      | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 63       | 393,125              | 393,014           | 540      | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 64       | 393,781              | 393,67            | 420      | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 65       | 394,09069            | 393,979           | 5        | 1,89E6           | 113400                  | 7565,6      | 8                         | 32940,47             | 8              |
| 66       | 396,371              | 396,259           | 370      | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 67       | 396,86304            | 396,751           | 320      | 1,45E7           | 725000                  | 7565,6      | 8                         | 32763,21             | 9              |
| 68       | 396,99727            | 396,885           | 5        | 1.87E6           | 168300                  | 9211.58     | 5                         | 34400.67             | 5              |
| 69       | 397,49941            | 397,387           | 5        | 9.7E6            | 485000                  | 7565.6      | 8                         | 32722,87             | 7              |
| 70       | 398.24898            | 398,136           | 5        | 6.7E6            | 402000                  | 7565.6      | 8                         | 32675.52             | 8              |
| 71       | 398,79484            | 398.682           | 5        | 650000           | 52000                   | 7050.61     | 6                         | 32126.16             | 6              |
| 72       | 399,49839            | 399.385           | 5        | 960000           | 76800                   | 7050.61     | 6                         | 32082                | 6              |
| 73       | 399.56607            | 399.453           | 5        | 1.19E6           | 59500                   | 4134.23     | 7                         | 29161.38             | 7              |
| 74       | 399 80474            | 399 692           | 5        | 370000           | 37000                   | 0           | 8                         | 25012 21             | 8              |
| 75       | 400 00672            | 399 894           | 5        | 163000           | 11410                   | 0           | 8                         | 24999 58             | 8              |
| 76       | 400 17191            | 400.059           | 5        | 105000<br>1 07E6 | 85600                   | 7565.6      | 8                         | 32554.86             | 8              |
| 70       | 400,17171            | 400,057           | 120      | 1,0720           | 00                      | 00          | 00                        | 00                   | 00             |
| 78       | 400,097              | 400,584           | 320      | 00               | 00                      | 00          | 00                        | 00                   | 00             |
| 70       | 400,72               | 400,007           | 520      | 00<br>2.02E6     | 146500                  | 00          | 00                        | 24006.86             | 7              |
| 17       | 401,49381            | 401,382           | 540<br>5 | 2,73E0           | 140300                  | U<br>7565 ( | 0                         | 24700,80             | /<br>0         |
| 0U<br>01 | 402,20311            | 402,089           | J<br>270 | 00000<br>0007    | 00400<br>1 <b>45</b> 56 | 1303,0      | 0                         | 32428,00<br>22711 25 | 0<br>7         |
| ð1<br>92 | 402,48494            | 402,371           | 570      | 2,9E/<br>2,25E7  | 1,45E0                  | 1303,0      | ð                         | 32411,23             | 7              |
| 82       | 402,95462            | 402,841           | 5        | 2,35E7           | 1,1/5E6                 | /363,6      | 8                         | 32382,29             | /              |
| 83       | 404,6414             | 404,527           | 5        | 2,38E6           | 190400                  | /050,61     | 6                         | 31763,85             | 5              |
| 84       | 404,71149            | 404,597           | 12000    | 1,92E8           | 9,6E6                   | 0           | 8                         | 24/08,96             | 1              |
| 85       | 405,05066            | 404,936           | 5        | 2,54E6           | 127000                  | 4134,23     | 7                         | 28822,5              | 7              |
| 86       | 405,7172             | 405,603           | 5        | 109000           | 10900                   | 7050,61     | 6                         | 31698,32             | 7              |
| 87       | 408,07399            | 407,959           | 5        | 3,39E6           | 169500                  | 7050,61     | 6                         | 31555,97             | 6              |
| 88       | 408.62827            | 408.513           | 5        | 1.12E7           | 560000                  | 7050.61     | 6                         | 31522.73             | 5              |

Tabela A2.2: Linhas Espectrais de Dy I (32-88)

| Ν         | λυσομο    | $\lambda_{ar}$ | I.R.      | AF              | $\Lambda A_{\rm E}$ | E:                | J.      | E        | J.     |
|-----------|-----------|----------------|-----------|-----------------|---------------------|-------------------|---------|----------|--------|
| 89        | 408 64847 | 408 533        | 370       | 1 71E7          | 855000              | 7565.6            | 8       | 32036 51 | 7      |
| 90        | 409 47911 | 409 364        | 5         | 3 36E6          | 201600              | 8519.2            | 7       | 32940 47 | 8      |
| 91        | 409 726   | 409.61         | 390       | 00              | 00                  | 00                | ,<br>00 | 00       | 00     |
| 92        | 410 5033  | 410 387        | 860       | 6.2F7           | 3 1F6               | 7050.61           | 6       | 31410.95 | 5      |
| 93        | 411 42139 | 411 305        | 5         | 2 34F7          | 1,126               | 10925 25          | 4       | 35231 23 | 3      |
| 9/        | 412 20157 | 412 175        | 5         | 72000           | 7920                | 7565.6            |         | 31820.28 | 8      |
| 95        | 412,22137 | 412,175        | 5         | 920000          | 46000               | 0                 | 8       | 24229 22 | 9      |
| 96        | 413 02823 | 412,000        | 350       | 920000<br>98E7  | 40000               | 10025 25          | 4       | 35136.67 | 3      |
| 90<br>07  | 413,02823 | 412,912        | 350       | 9,0E7<br>1.76E6 | 4,9L0<br>88000      | 0                 | +<br>0  | 24204 10 | 2      |
| 97<br>08  | 413,15101 | 413,033        | 5         | 780000          | 62400               | 0<br>8510.2       | 8<br>7  | 24204,19 | 8<br>7 |
| 90<br>00  | 413,10046 | 413,044        | 200       | 780000          | 02400               | 00                | 00      | 32722,87 | 00     |
| 99<br>100 | 413,302   | 413,365        | 590       | 7 457           | 00<br>3 7E6         | 10025.25          | 4       | 35107.23 | 3      |
| 100       | 413,55107 | 413,414        | 5         | 7,4D7<br>2,02E6 | 233600              | 7050.61           | 4       | 31220.20 | 3<br>7 |
| 101       | 413,36731 | 413,471        | 5         | 2,92E0<br>6.0E6 | 233000              | 7030,01<br>8510.2 | 07      | 31229,29 | 0      |
| 102       | 415,97054 | 413,034        | 5         | 0,9E0           | 240000              | 0319,2<br>7050.61 | í<br>c  | 21200.06 | 0<br>5 |
| 105       | 414,07207 | 415,950        | 5         | 0,000           | 0 75E6              | 7050,01           | 5       | 31200,90 | 3      |
| 104       | 414,725   | 414,000        | 990<br>5  | 1,9368          | 9,73E0              | 9211,38           | 3       | 33524,00 | 4      |
| 105       | 414,79181 | 414,075        | 5         | 208000          | 14500               | /505,0            | 8       | 310/4,08 | 7      |
| 106       | 415,25325 | 415,136        | 5         | 2,97E7          | 1,485E6             | /050,61           | 6       | 31132,3  | /      |
| 107       | 416,04849 | 415,931        | 5<br>5700 | 7,3E6           | 438000              | 8519,2            | 7       | 32554,86 | 8      |
| 108       | 416,9149  | 416,797        | 5700      | 1,92E8          | 9,6E6               | 4134,23           | /       | 28119,94 | 6      |
| 109       | 417,311   | 417,193        | 370       | 00              | 00                  | 00                | 00      | 00       | 00     |
| 110       | 417,92637 | 417,809        | 2         | 1,48E/          | /40000              | 9211,58           | 5       | 33139,24 | 5      |
| 111       | 418,24449 | 418,127        | 5         | 3,15E6          | 189000              | 8519,2            | 1       | 32428,66 | 8      |
| 112       | 418,47798 | 418,36         | 5         | 1,23E/          | 615000              | 7050,61           | 6       | 30946,73 | 5      |
| 113       | 418,48971 | 418,372        | 930       | 8,8E7           | 4,4E6               | 4134,23           | 7       | 28029,68 | 8      |
| 114       | 418,79993 | 418,682        | 12000     | 1,26E8          | 6,3E6               | 0                 | 8       | 23877,75 | 8      |
| 115       | 419,05721 | 418,939        | 5         | 2,49E6          | 174300              | 8519,2            | 7       | 32382,29 | 7      |
| 116       | 419,21198 | 419,094        | 320       | 2,03E7          | 1,015E6             | 7050,61           | 6       | 30904,89 | 5      |
| 117       | 419,28247 | 419,164        | 2200      | 7,1E7           | 3,55E6              | 4134,23           | 7       | 27984,5  | 7      |
| 118       | 419,60266 | 419,484        | 6800      | 8,8E7           | 4,4E6               | 0                 | 8       | 23832,07 | 8      |
| 119       | 419,92    | 419,802        | 800       | 1,08E8          | 5,4E6               | 9211,58           | 5       | 33025,64 | 5      |
| 120       | 420,22068 | 420,102        | 5         | 3,09E6          | 154500              | 7565,6            | 8       | 31362,62 | 7      |
| 121       | 420,24876 | 420,13         | 680       | 1,7E8           | 8,5E6               | 10925,25          | 4       | 34720,68 | 4      |
| 122       | 420,34256 | 420,224        | 680       | 4,82E7          | 2,41E6              | 7050,61           | 6       | 30840,73 | 6      |
| 123       | 420,624   | 420,506        | 230       | 00              | 00                  | 00                | 00      | 00       | 00     |
| 124       | 420,888   | 420,769        | 5         | 1,58E7          | 790000              | 9211,58           | 5       | 32970,87 | 6      |
| 125       | 421,243   | 421,124        | 440       | 00              | 00                  | 00                | 00      | 00       | 00     |
| 126       | 421,29033 | 421,172        | 16000     | 2,08E8          | 1,04E7              | 0                 | 8       | 23736,6  | 9      |
| 127       | 421,4368  | 421,318        | 1800      | 1,27E8          | 6,35E6              | 7050,61           | 6       | 30778,96 | 6      |
| 128       | 421,55957 | 421,441        | 5         | 5,78E6          | 289000              | 7565,6            | 8       | 31287,04 | 9      |
| 129       | 421,63493 | 421,516        | 3700      | 8,1E7           | 4,05E6              | 4134,23           | 7       | 27851,43 | 8      |
| 130       | 421,92847 | 421,81         | 4400      | 1,2E8           | 6E6                 | 4134,23           | 7       | 27834,93 | 7      |
| 131       | 422,23025 | 422,111        | 4400      | 1,28E8          | 6,4E6               | 4134,23           | 7       | 27817,99 | 8      |
| 132       | 422,33992 | 422,221        | 540       | 7,1E7           | 3,55E6              | 9211,58           | 5       | 32889,19 | 5      |
| 133       | 422,6348  | 422,516        | 2700      | 1,95E8          | 9,75E6              | 7050,61           | 6       | 30711,7  | 7      |
| 134       | 423,32146 | 423,202        | 680       | 7,9E7           | 3,95E6              | 9211,58           | 5       | 32834,29 | 6      |
| 135       | 424,10476 | 423,985        | 680       | 9,4E7           | 4,7E6               | 9211,58           | 5       | 32790,66 | 6      |
| 136       | 424,41867 | 424,299        | 5         | 6,2E6           | 310000              | 10925,25          | 4       | 34486,89 | 4      |
| 137       | 424,71051 | 424,591        | 440       | 1,18E8          | 5,9E6               | 10925,25          | 4       | 34470,7  | 5      |
| 138       | 425,93519 | 425,815        | 5         | 4,55E6          | 227500              | 7050,61           | 6       | 30528,36 | 7      |
| 139       | 425,97747 | 425,858        | 5         | 4,11E7          | 2,055E6             | 10925,25          | 4       | 34400,67 | 5      |
| 140       | 426,94702 | 426,8264       | 1000      | 1,14E6          | 57000               | 4134,23           | 7       | 27556,34 | 7      |
| 141       | 427,41801 | 427,298        | 5         | 1,73E6          | 121100              | 9211,58           | 5       | 32607,88 | 6      |
| 142       | 427,78955 | 427,669        | 250       | 1,22E7          | 610000              | 7050,61           | 6       | 30426,59 | 6      |
| 143       | 429,16466 | 429,044        | 5         | 2,31E6          | 115500              | 8519.2            | 7       | 31820.28 | 8      |
| 144       | 429,31629 | 429,1966       | 3000      | 2,28E6          | 114000              | 4134.23           | 7       | 27427.08 | 7      |
| 145       | 429,625   | 429,504        | 5         | 00              | 00                  | 00                | 00      | 00       | 00     |

Tabela A2.3: Linhas Espectrais de Dy I (89-145)

| $  \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ν   | $\lambda_{vacuo}$ | $\lambda_{ar}$ | I. R. | $A_E$            | $\Delta A_{\rm E}$ | Ei       | $J_i$   | Es       | J <sub>s</sub> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------|----------------|-------|------------------|--------------------|----------|---------|----------|----------------|
| 148         432.708         432.586         320         00         00         00         00         00         00         00           149         433.712         433.651         5         920000         82800         9211.58         5         32111.44         6           151         436.6749         9         330621.87         7         7           153         437.0766         36.924         5         930000         55500         7565.6         8         30449.44         9           153         437.0766         36.021         5         160000         14400         9990.95         9         32763.21         9           155         440.8186         443.015         5         160000         14400         9990.95         9         32763.21         8           146         431.51454         431.93         5         990000         108900         7565.6         8         30739.79         8           154         444.358         5444.458         150         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00<                                                                                                                                                           | 147 | 431,8744          | 431,753        | 5     | 236000           | 21240              | 8519,2   | 7       | 31674,08 | 7              |
| 149         433,7215         433,6         5         82000         57400         7565,6         8         30621,87         7           150         436,6739         436,672         5         920000         82800         9211,58         5         3041,88         7           151         437,07669         436,954         5         930000         7565,6         8         30444,88         7           153         437,2400         437,123         5         190000         36100         9211,58         5         32675,52         8           154         443,8228         440,0705         5         160000         18400         9990,95         9         32675,52         8           156         443,87628         445,373         5         230000         1510         990,95         9         32254,86         8           157         443,41434         432,29         5         650000         71500         9211,58         5         31763,85         5           158         444,5729         446,377         5         1,556         108500         10992,55         4         33242,66         8           161         447,9795         441,843,55         1,556 </td <td>148</td> <td>432,708</td> <td>432,586</td> <td>320</td> <td>00</td> <td>00</td> <td>00</td> <td>00</td> <td>00</td> <td>00</td> | 148 | 432,708           | 432,586        | 320   | 00               | 00                 | 00       | 00      | 00       | 00             |
| 150         436,68389         436,561         5         92000         82800         9211,58         5         32111,48         6           151         437,07669         436,672         5         6,6E6         330000         7565.6         8         30459,64         9           153         437,24601         437,123         5         190000         36100         9211,58         5         32082         6           154         431,5134         443,0107         5         164000         14400         999,95         9         32763,21         9           155         443,1856         443,015         5         230000         1210         9990,95         9         3254,86         8           156         443,1836         444,301         5         090000         108900         7056,5         8         3073,97         8           157         443,4733         444,583         150         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00 <td< td=""><td>149</td><td>433,7215</td><td>433,6</td><td>5</td><td>820000</td><td>57400</td><td>7565,6</td><td>8</td><td>30621,87</td><td>7</td></td<>   | 149 | 433,7215          | 433,6          | 5     | 820000           | 57400              | 7565,6   | 8       | 30621,87 | 7              |
| 151         436,7949         436,672         5         6,6E6         330000         7565,6         8         30449,88         7           152         437,07609         436,954         5         930000         55800         7565,6         8         30444,88         7           153         437,24601         437,123         5         190000         36100         9211,58         5         3048,228         440,705         5         160000         19840         9990,95         9         32675,52         8           156         443,8228         440,705         5         160000         19840         9990,95         9         32675,52         8           164         443,1544         413,39         5         990000         108900         7565,6         8         30739,79         8           157         443,6154         413,7975         47,3578         45,553         5         2,13E6         0.9990,95         9         32428,66         4           161         447,9795         447,384         5         1,55E6         108500         10922,52         4         33241,125         7           162         448,9614         448,435         5         1,55E6                                                                                                                                   | 150 | 436,68389         | 436,561        | 5     | 920000           | 82800              | 9211.58  | 5       | 32111,44 | 6              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 151 | 436,7949          | 436,672        | 5     | 6.6E6            | 330000             | 7565.6   | 8       | 30459,64 | 9              |
| 153437,24601437,1235190000361009211,58532063,219154443,13077439,0075248000198409990,95932675,528155440,02828440,7055166000144009990,95932675,528156443,1856443,0615239000215109990,95932575,528164431,1454431,3935990000010890070565,6830739,798157443,414344432,295650000715009211,58531763,257158444,5722446,32751,55E610850010925,2543324,064161447,9795447,85453500003850010088,8633411,257162448,06852,38E61190007565,682987,27730475,95164446,4522446,3275116000139208519,2730475,956164450,03305449,9075106000139208519,2730475,956164454,0481455,50151,03E68240010088,863236,517170456,0499455,52251,95E6975007665,682921,777171456,0472455,59852,34000211608519,27304475,956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 152 | 437.07669         | 436.954        | 5     | 930000           | 55800              | 7565.6   | 8       | 30444.88 | 7              |
| 154439.13077439.0075248000194.009990.95932673.219155440.82828440.7055160000144009990.95932554.868156443.1856443.06152390001089007565.6830737.788157443.41434443.295650000715009211.58531763.855158444.583444.58315000000000000000159445.67828445.55352.13E609990.95932428.668161446.2229446.82751.55E610850010088.8633324.064161447.9795447.85453500003850010088.8633324.064162448.1934448.06851.73000207609211.58531522.735164448.56144448.4651.63000219.2730739.798166450.46323450.33752.01E61608009211.5853140.955164448.56144448.3651.03E68240010088.8632036.517176455.4684455.75810000000000000164450.46327455.95852.34002160882.3286.517171455.62844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 153 | 437.24601         | 437.123        | 5     | 190000           | 36100              | 9211.58  | 5       | 32082    | 6              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 154 | 439,13077         | 439.007        | 5     | 248000           | 19840              | 9990.95  | 9       | 32763.21 | 9              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 155 | 440.82828         | 440.705        | 5     | 160000           | 14400              | 9990.95  | 9       | 32675.52 | 8              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 156 | 443.1856          | 443.061        | 5     | 239000           | 21510              | 9990.95  | 9       | 32554.86 | 8              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 146 | 431.51454         | 431.393        | 5     | 990000           | 108900             | 7565.6   | 8       | 30739.79 | 8              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 157 | 443,41434         | 443.29         | 5     | 650000           | 71500              | 9211.58  | 5       | 31763.85 | 5              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 158 | 444.583           | 444.458        | 150   | 00               | 00                 | 00       | 00      | 00       | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 159 | 445.67828         | 445.553        | 5     | 2.13E6           | 0                  | 9990.95  | 9       | 32428.66 | 8              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 160 | 446.45229         | 446.327        | 5     | 1.55E6           | 108500             | 10925.25 | 4       | 33324.06 | 4              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 161 | 447.9795          | 447.854        | 5     | 350000           | 38500              | 10088.8  | 6       | 33411.25 | 7              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 162 | 448,19394         | 448.068        | 5     | 2.38E6           | 119000             | 7565.6   | 8       | 29877.37 | 7              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 163 | 448.20639         | 448.081        | 5     | 173000           | 20760              | 9211.58  | 5       | 31522.73 | 5              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 164 | 448.56144         | 448.436        | 5     | 4.65E6           | 279000             | 10088.8  | 6       | 32382.29 | 7              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 165 | 450 03305         | 449 907        | 5     | 116000           | 13920              | 8519.2   | 7       | 30739 79 | 8              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 166 | 450 46323         | 450 337        | 5     | 2.01E6           | 160800             | 9211 58  | 5       | 31410.95 | 5              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 167 | 452,885           | 452,758        | 100   | 00               | 00                 | 00       | 00      | 00       | 00             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 168 | 455 44081         | 455 313        | 5     | 970000           | 48500              | 8519.2   | 7       | 30475 95 | 6              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 169 | 455 6284          | 455 501        | 5     | 1 03E6           | 82400              | 10088.8  | 6       | 32036 51 | 7              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 170 | 455 64999         | 455 522        | 5     | 1,05E0<br>1,95E6 | 97500              | 7565.6   | 8       | 29512.27 | 7              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 171 | 456 0862          | 455 958        | 5     | 234000           | 21060              | 8519.2   | 7       | 30444 88 | 7              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 172 | 456 63727         | 456 509        | 140   | 660000           | 33000              | 0        | 8       | 21899.22 | 8              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 173 | 457 90586         | 457 778        | 420   | 1 96F6           | 98000              | 0<br>0   | 8       | 21838 55 | 9              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 174 | 458 09926         | 457 971        | 5     | 247000           | 27170              | 9990 95  | 9       | 31820.28 | 8              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 175 | 459 06474         | 458 936        | 2100  | 1 37E7           | 685000             | 0        | 8       | 21783 42 | 7              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 176 | 460 28394         | 460 155        | 5     | 97000            | 10670              | 7565.6   | 8       | 29291 32 | 8              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 177 | 461 35506         | 461 226        | 990   | 8 2E6            | 410000             | 0        | 8       | 21675.28 | 7              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 178 | 461 512           | 461 383        | 50    | 00               | 00                 | 00       | 00      | 00       | ,<br>00        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 179 | 461 611           | 461 482        | 50    | 00               | 00                 | 00       | 00      | 00       | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180 | 463 27868         | 463 149        | 5     | 3 32E6           | 166000             | 10088.8  | 6       | 31674.08 | 7              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 181 | 465 14462         | 465 014        | 5     | 1.61E6           | 96600              | 9990 95  | 9       | 31489.64 | 10             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 182 | 466 403           | 466 272        | 50    | 00               | 00                 | 00       | 00      | 00       | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 183 | 467.16267         | 467.032        | 5     | 33000            | 2310               | 7565.6   | 8       | 28971.42 | 8              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 184 | 468 20491         | 468 074        | 5     | 331000           | 19860              | 8519.2   | 7       | 29877 37 | 7              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 185 | 469 56977         | 469 438        | 5     | 590000           | 41300              | 9990 95  | 9       | 31287.04 | 9              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 186 | 470.06132         | 469.93         | 5     | 450000           | 31500              | 10088.8  | 6       | 31362.62 | 7              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 187 | 472.254           | 472.122        | 85    | 00               | 00                 | 00       | 00      | 00       | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 188 | 474 62354         | 474 491        | 5     | 259000           | 23310              | 7050.61  | 6       | 28119 94 | 6              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 189 | 475.07338         | 474.941        | 5     | 162000           | 17820              | 11673.49 | 6       | 32722.87 | 7              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190 | 477 327           | 477 194        | 60    | 00               | 00                 | 00       | 00      | 00       | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 191 | 477 614           | 477.48         | 50    | 00               | 00                 | 00       | 00      | 00       | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 192 | 477 713           | 477 579        | 120   | 00               | 00                 | 00       | 00      | 00       | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 193 | 478 97354         | 478 84         | 5     | 108000           | 11880              | 4134 23  | 7       | 25012.21 | 8              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 194 | 479 26347         | 479.13         | 95    | 1 16E6           | 58000              | 4134.23  | 7       | 24999 58 | 8              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 195 | 480 198           | 480.064        | 29    | 00               | 00                 | 00       | ,<br>00 | 00       | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 196 | 480 92877         | 480 794        | 50    | 960000           | 48000              | 7565.6   | 8       | 28358 7  | 7              |
| 198       481,40269       481,268       5       258000       15480       4134,23       7       24906,86       7         199       481,41451       481,28       50       850000       85000       8519,2       7       29291,32       8         200       481,54967       481,415       5       28000       3360       0       8       20766,29       7         201       481,78585       481,651       5       600000       54000       12007,1       8       32763,21       9         202       481,95465       481,82       5       830000       91300       9990.95       9       30739.79       8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 197 | 481 162           | 481 028        | 40    | 00               | 00                 | 00       | 00      | 00       | ,<br>00        |
| 199       481,41451       481,28       50       850000       85000       8519,2       7       29291,32       8         200       481,54967       481,415       5       28000       3360       0       8       20766,29       7         201       481,78585       481,651       5       600000       54000       12007,1       8       32763,21       9         202       481,95465       481,82       5       830000       91300       9990.95       9       30739.79       8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 198 | 481.40269         | 481.268        | 5     | 258000           | 15480              | 4134 23  | 7       | 24906 86 | 7              |
| 200       481,54967       481,415       5       28000       3360       0       8       20766,29       7         201       481,78585       481,651       5       600000       54000       12007,1       8       32763,21       9         202       481,95465       481,82       5       830000       91300       9990.95       9       30739.79       8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 199 | 481 41451         | 481 28         | 50    | 850000           | 85000              | 8519.2   | 7       | 29291 32 | 8              |
| 201       481,78585       481,651       5       600000       54000       12007,1       8       32763,21       9         202       481,95465       481,82       5       830000       91300       9990.95       9       30739.79       8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200 | 481 54967         | 481 415        | 5     | 28000            | 3360               | 0        | 8       | 20766 29 | 7              |
| 202 481,95465 481,82 5 830000 91300 9990.95 9 30739.79 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 201 | 481 78585         | 481 651        | 5     | 600000           | 54000              | 12007 1  | 8       | 32763 21 | ,<br>9         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 202 | 481.95465         | 481.82         | 5     | 830000           | 91300              | 9990.95  | 9       | 30739.79 | 8              |

| N         A <sub>ware</sub> I.K.         A <sub>R</sub> ΔA <sub>R</sub> E <sub>I</sub> J.         E <sub>A</sub> J.           203         482.030         482.494         75         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         <                                                                                                                                                     |     | <u>^</u>          | •              |         |        |                    | -        | *     | -        | <b>.</b>       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------|----------------|---------|--------|--------------------|----------|-------|----------|----------------|
| 213         482,039         481,904         75         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00                                                                                                                                                                    | Ν   | $\lambda_{vacuo}$ | $\lambda_{ar}$ | I. R.   | $A_E$  | $\Delta A_{\rm E}$ | Ei       | $J_i$ | Es       | J <sub>s</sub> |
| 204         482,631         482,496         85         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00                                                                                                                                                                    | 203 | 482,039           | 481,904        | 75      | 00     | 00                 | 00       | 00    | 00       | 00             |
| 205         482,8865         482,782         5         680000         61200         11673,49         6         32382,97         7           006         483,373         483,288         75         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00 <td>204</td> <td>482,631</td> <td>482,496</td> <td>85</td> <td>00</td> <td>00</td> <td>00</td> <td>00</td> <td>00</td> <td>00</td>                         | 204 | 482,631           | 482,496        | 85      | 00     | 00                 | 00       | 00    | 00       | 00             |
| 206         483,023         482,888         75         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00                                                                                                                                                                    | 205 | 482,8865          | 482,752        | 5       | 680000 | 61200              | 11673,49 | 6     | 32382,29 | 7              |
| 207         483,373         483,238         70         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00                                                                                                                                                                    | 206 | 483,023           | 482,888        | 75      | 00     | 00                 | 00       | 00    | 00       | 00             |
| 208         483,82992         483,695         5         650000         45500         12007,1         8         32675,52         8           209         484,51         484,175         75         00         00         00         00         00         00           211         486,03311         485,897         5         259000         20720         4134,23         7         24708,96         7           212         487,01923         486,883         5         217000         15190         10088,8         6         30621,87         7           213         488,7510         488,455         40         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         0                                                                                                                                                      | 207 | 483,373           | 483,238        | 70      | 00     | 00                 | 00       | 00    | 00       | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 208 | 483.82992         | 483,695        | 5       | 650000 | 45500              | 12007.1  | 8     | 32675.52 | 8              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 209 | 484 31            | 484 175        | 75      | 00     | 00                 | 00       | 00    | 00       | 00             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 210 | 486.03311         | 485 897        | 5       | 259000 | 20720              | 4134 23  | 7     | 24708.96 | 7              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 210 | 486 67105         | 486 535        | 5       | 176000 | 17600              | 12007 1  | 8     | 32554.86 | 8              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 211 | 480,07103         | 400,555        | 5       | 217000 | 15100              | 12007,1  | 6     | 20621.87 | 0<br>7         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 212 | 407,01923         | 400,005        | 5       | 217000 | 13190              | 10088,8  | 0     | 50021,67 | /              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 213 | 487,729           | 487,595        | 40      | 520000 | 00                 | 00       | 00    | 00       | 00             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 214 | 488,15254         | 488,016        | 85      | 520000 | 26000              | 0        | 8     | 20485,4  | /              |
| 216       488,451       488,455       40       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00 <td>215</td> <td>488,55105</td> <td>488,415</td> <td>5</td> <td>1,33E6</td> <td>79800</td> <td>9990,95</td> <td>9</td> <td>30459,64</td> <td>9</td>                                                                                                                     | 215 | 488,55105         | 488,415        | 5       | 1,33E6 | 79800              | 9990,95  | 9     | 30459,64 | 9              |
| 217       488,94448       488,808       95       4,97E6       248500       8519.2       7       28971,42       8         218       489,9505       489,924       24       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00                                                                                                                                                                                                                                                                    | 216 | 488,591           | 488,455        | 40      | 00     | 00                 | 00       | 00    | 00       | 00             |
| 218       489,505       489,368       50       00       00       00       00       00       00         219       490,0501       489,924       24       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00                                                                                                                                                                                                                                                                             | 217 | 488,94448         | 488,808        | 95      | 4,97E6 | 248500             | 8519,2   | 7     | 28971,42 | 8              |
| 219         490,061         489,924         24         00         00         00         00         00         00           220         490,50505         490,368         5         850000         51000         10088,8         6         30475,95         6           221         490,76214         490,625         5         910000         54600         7050,61         6         27427,08         7           223         491,23372         491,1473         5         106000         7420         0         8         20341,32         8           224         491,61018         491,473         5         106000         7420         0         8         20341,32         8           225         491,85488         491,4718         5         550000         33000         7565,6         8         27896,8         8           227         496,097         495,552         40         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         0                                                                                                                                                    | 218 | 489,505           | 489,368        | 50      | 00     | 00                 | 00       | 00    | 00       | 00             |
| 220         490,50505         490,368         5         850000         51000         10088,8         6         30475,95         6           221         490,76214         490,625         5         910000         35000         11673,49         6         32036,51         7           223         491,25372         491,117         5         500000         35000         10088,8         6         30444,88         7           224         491,61018         491,473         5         106000         7420         0         8         20341,32         8           225         491,778         491,641         55         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00                                                                                                                                                     | 219 | 490,061           | 489,924        | 24      | 00     | 00                 | 00       | 00    | 00       | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 220 | 490,50505         | 490,368        | 5       | 850000 | 51000              | 10088,8  | 6     | 30475,95 | 6              |
| 222         491,08629         490,949         5         440000         35200         11673,49         6         32036,51         7           223         491,16108         491,473         5         106000         7420         0         8         20341,32         8           225         491,778         491,641         55         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00 </td <td>221</td> <td>490,76214</td> <td>490,625</td> <td>5</td> <td>910000</td> <td>54600</td> <td>7050,61</td> <td>6</td> <td>27427,08</td> <td>7</td> | 221 | 490,76214         | 490,625        | 5       | 910000 | 54600              | 7050,61  | 6     | 27427,08 | 7              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 222 | 491.08629         | 490.949        | 5       | 440000 | 35200              | 11673.49 | 6     | 32036.51 | 7              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 223 | 491,25372         | 491,117        | 5       | 500000 | 35000              | 10088.8  | 6     | 30444.88 | 7              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 224 | 491 61018         | 491 473        | 5       | 106000 | 7420               | 0        | 8     | 20341 32 | 8              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 225 | 491 778           | 491 641        | 55      | 00     | 00                 | 00       | 00    | 00       | 00             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 225 | 491,770           | 401 718        | 5       | 550000 | 33000              | 7565.6   | 8     | 27896.8  | 8              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 220 | 491,05400         | 491,710        | 24      | 00     | 00                 | 7505,0   | 00    | 27890,8  | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 227 | 490,097           | 495,959        | 24      | 00     | 00                 | 00       | 00    | 00       | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 220 | 497,490           | 497,557        | 20      | 00     | 00                 | 00       | 00    | 00       | 00             |
| $            230  499,26583  499,127  5  227000  22700  12007,1  8  32036,51  7 \\ 231  499,98525  499,846  5  1,64E6  98400  11673,49  6  31674,08  7 \\ 232  500,527  500,387  50  00  00  00  00  00  00  0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 229 | 498,691           | 498,552        | 40<br>- | 00     | 00                 | 00       | 00    | 00       | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 230 | 499,26583         | 499,127        | 5       | 227000 | 22700              | 12007,1  | 8     | 32036,51 | 7              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 231 | 499,98525         | 499,846        | 5       | 1,64E6 | 98400              | 116/3,49 | 6     | 316/4,08 | 7              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 232 | 500,527           | 500,387        | 50      | 00     | 00                 | 00       | 00    | 00       | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 233 | 501,2             | 501,06         | 24      | 00     | 00                 | 00       | 00    | 00       | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 234 | 502,35201         | 502,212        | 70      | 1,27E6 | 63500              | 4134,23  | 7     | 24040,59 | 6              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 235 | 502,543           | 502,403        | 30      | 00     | 00                 | 00       | 00    | 00       | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 236 | 502,59313         | 502,453        | 24      | 1,19E6 | 71400              | 7565,6   | 8     | 27462,41 | 7              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 237 | 502,927           | 502,787        | 40      | 00     | 00                 | 00       | 00    | 00       | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 238 | 503,44            | 503,3          | 50      | 00     | 00                 | 00       | 00    | 00       | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 239 | 504,04496         | 503,904        | 5       | 544000 | 27200              | 8519.2   | 7     | 28358,7  | 7              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 240 | 504.40421         | 504.264        | 160     | 6.9E6  | 345000             | 7565.6   | 8     | 27390.97 | 9              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 241 | 504.71454         | 504.574        | 5       | 272000 | 21760              | 12007.1  | 8     | 31820.28 | 8              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 242 | 504 86488         | 504 724        | 24      | 1 05E6 | 52500              | 8519.2   | 7     | 28326.48 | 6              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 243 | 505 162           | 505 021        | 50      | 00     | 00                 | 00       | 00    | 00       | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 244 | 505,102           | 505,021        | 5       | 740000 | 44400              | 10088.8  | 6     | 29877 37 | 7              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 245 | 505,54225         | 505,201        | 30      | 00     | 00                 | 10000,0  | 00    | 27077,57 | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 245 | 505,470           | 505,555        | 24      | 00     | 00                 | 00       | 00    | 00       | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 240 | 505,087           | 505,540        | 24<br>5 | 248000 | 21220              | 12655 12 | 00    | 22428 66 | 00             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 247 | 505,7200          | 505,580        | 5       | 348000 | 31320              | 12655,13 | 7     | 32428,00 | 8              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 248 | 506,91534         | 506,774        | 5       | 194000 | 19400              | 12655,13 | /     | 32382,29 | /              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 249 | 507,20819         | 507,067        | 95      | 4,59E6 | 229500             | 9990,95  | 9     | 29706,72 | 10             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 250 | 507,90839         | 507,767        | 120     | 410000 | 32800              | 0        | 8     | 19688,59 | 8              |
| 252       511,174       511,032       80       00       00       00       00       00       00       00       00         253       512,147       512,004       130       00       00       00       00       00       00       00       00         254       513,645       513,502       30       00       00       00       00       00       00       00         255       514,84107       514,698       5       433000       25980       10088,8       6       29512,27       7         256       515,95913       515,815       5       117000       12870       12655,13       7       32036,51       7         257       516,05978       515,916       5       434000       26040       8519,2       7       27896,8       8         258       516,64848       516,505       5       239000       28680       12007,1       8       31362,62       7         259       516,678       516,534       50       00       00       00       00       00       00                                                                                                                                                                                                                                                                                                                                                             | 251 | 508,46648         | 508,325        | 5       | 203000 | 18270              | 12007,1  | 8     | 31674,08 | 7              |
| 253512,147512,004130000000000000254513,645513,5023000000000000000255514,84107514,69854330002598010088,8629512,277256515,95913515,81551170001287012655,13732036,517257516,05978515,9165434000260408519,2727896,88258516,64848516,50552390002868012007,1831362,627259516,678516,53450000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 252 | 511,174           | 511,032        | 80      | 00     | 00                 | 00       | 00    | 00       | 00             |
| 254513,645513,50230000000000000255514,84107514,69854330002598010088,8629512,277256515,95913515,81551170001287012655,13732036,517257516,05978515,9165434000260408519,2727896,88258516,64848516,50552390002868012007,1831362,627259516,678516,53450000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 253 | 512,147           | 512,004        | 130     | 00     | 00                 | 00       | 00    | 00       | 00             |
| 255514,84107514,69854330002598010088,8629512,277256515,95913515,81551170001287012655,13732036,517257516,05978515,9165434000260408519,2727896,88258516,64848516,50552390002868012007,1831362,627259516,678516,53450000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 254 | 513,645           | 513,502        | 30      | 00     | 00                 | 00       | 00    | 00       | 00             |
| 256515,95913515,81551170001287012655,13732036,517257516,05978515,9165434000260408519,2727896,88258516,64848516,50552390002868012007,1831362,627259516,678516,53450000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 255 | 514,84107         | 514,698        | 5       | 433000 | 25980              | 10088,8  | 6     | 29512,27 | 7              |
| 257       516,05978       515,916       5       434000       26040       8519,2       7       27896,8       8         258       516,64848       516,505       5       239000       28680       12007,1       8       31362,62       7         259       516,678       516,534       50       00       00       00       00       00       00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 256 | 515,95913         | 515,815        | 5       | 117000 | 12870              | 12655,13 | 7     | 32036,51 | 7              |
| 258         516,64848         516,505         5         239000         28680         12007,1         8         31362,62         7           259         516,678         516,534         50         00         00         00         00         00         00         00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 257 | 516,05978         | 515,916        | 5       | 434000 | 26040              | 8519.2   | 7     | 27896.8  | 8              |
| 259 516.678 516.534 50 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 258 | 516.64848         | 516.505        | 5       | 239000 | 28680              | 12007.1  | 8     | 31362.62 | 7              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 259 | 516.678           | 516.534        | 50      | 00     | 00                 | 00       | 00    | 00       | 00             |

TabelaA2.5: Linhas Espectrais de Dy I (203-259)

| N   | $\lambda_{vacuo}$ | $\lambda_{ar}$ | I. R. | A <sub>E</sub> | $\Delta A_{\rm E}$ | Ei       | Ji | Es       | J <sub>s</sub> |
|-----|-------------------|----------------|-------|----------------|--------------------|----------|----|----------|----------------|
| 260 | 518,67381         | 518,529        | 80    | 246000         | 24600              | 12007,1  | 8  | 31287,04 | 9              |
| 261 | 519,01435         | 518,87         | 5     | 340000         | 37400              | 13495,92 | 9  | 32763,21 | 9              |
| 262 | 521,38731         | 521,242        | 5     | 290000         | 29000              | 13495,92 | 9  | 32675,52 | 8              |
| 263 | 524,68815         | 524,542        | 5     | 110000         | 9900               | 13495,92 | 9  | 32554,86 | 8              |
| 264 | 526,134           | 525,988        | 70    | 00             | 00                 | 00       | 00 | 00       | 00             |
| 265 | 526,202           | 526,056        | 130   | 00             | 00                 | 00       | 00 | 00       | 00             |
| 266 | 526,85734         | 526,711        | 65    | 2,85E6         | 171000             | 9990,95  | 9  | 28971,42 | 8              |
| 267 | 527,7496          | 527,603        | 5     | 135000         | 10800              | 11673,49 | 6  | 30621,87 | 7              |
| 268 | 528,18557         | 528,039        | 5     | 306000         | 30600              | 13495.92 | 9  | 32428.66 | 8              |
| 269 | 528,354           | 528,207        | 55    | 00             | 00                 | 00       | 00 | 00       | 00             |
| 270 | 530,30592         | 530,158        | 160   | 850000         | 42500              | 0        | 8  | 18857.04 | 7              |
| 271 | 531,8453          | 531,697        | 5     | 720000         | 50400              | 11673,49 | 6  | 30475,95 | 6              |
| 272 | 532,617           | 532,469        | 50    | 00             | 00                 | 00       | 00 | 00       | 00             |
| 273 | 532,7256          | 532,577        | 5     | 225000         | 15750              | 11673,49 | 6  | 30444,88 | 7              |
| 274 | 533.82616         | 533.678        | 5     | 440000         | 52800              | 12007.1  | 8  | 30739.79 | 8              |
| 275 | 534,179           | 534,03         | 65    | 00             | 00                 | 00       | 00 | 00       | 00             |
| 276 | 535,36            | 535,211        | 30    | 00             | 00                 | 00       | 00 | 00       | 00             |
| 277 | 537,20782         | 537,058        | 5     | 940000         | 94000              | 12007,1  | 8  | 30621,87 | 7              |
| 278 | 537,72461         | 537,575        | 5     | 122000         | 10980              | 12892,76 | 10 | 31489,64 | 10             |
| 279 | 538,42555         | 538,276        | 5     | 220000         | 39600              | 14367.8  | 7  | 32940,47 | 8              |
| 280 | 539,707           | 539,557        | 40    | 00             | 00                 | 00       | 00 | 00       | 00             |
| 281 | 540,569           | 540,419        | 50    | 00             | 00                 | 00       | 00 | 00       | 00             |
| 282 | 541,93081         | 541,78         | 5     | 38000          | 3800               | 12007,1  | 8  | 30459,64 | 9              |
| 283 | 542,064           | 541,913        | 80    | 00             | 00                 | 00       | 00 | 00       | 00             |
| 284 | 542,36464         | 542,214        | 5     | 139000         | 11120              | 12007,1  | 8  | 30444,88 | 7              |
| 285 | 542,483           | 542,332        | 70    | 00             | 00                 | 00       | 00 | 00       | 00             |
| 286 | 542,578           | 542,427        | 30    | 00             | 00                 | 00       | 00 | 00       | 00             |
| 287 | 543,64726         | 543,496        | 5     | 313000         | 28170              | 12892,76 | 10 | 31287,04 | 9              |
| 288 | 545,262           | 545,111        | 95    | 00             | 00                 | 00       | 00 | 00       | 00             |
| 289 | 545,72165         | 545,57         | 5     | 900000         | 63000              | 13495,92 | 9  | 31820,28 | 8              |
| 290 | 547,34837         | 547,196        | 5     | 253000         | 15180              | 10088,8  | 6  | 28358,7  | 7              |
| 291 | 548,31536         | 548,163        | 5     | 246000         | 14760              | 10088,8  | 6  | 28326,48 | 6              |
| 292 | 549,33344         | 549,181        | 5     | 412000         | 28840              | 11673,49 | 6  | 29877,37 | 7              |
| 293 | 549,836           | 549,683        | 28    | 00             | 00                 | 00       | 00 | 00       | 00             |
| 294 | 550,13399         | 549,981        | 5     | 100000         | 8000               | 12298,56 | 5  | 30475,95 | 6              |
| 295 | 550,432           | 550,279        | 24    | 00             | 00                 | 00       | 00 | 00       | 00             |
| 296 | 550,805           | 550,652        | 28    | 00             | 00                 | 00       | 00 | 00       | 00             |
| 297 | 551,34177         | 551,189        | 5     | 750000         | 75000              | 14625,64 | 8  | 32763,21 | 9              |
| 298 | 552,95482         | 552,801        | 30    | 2,21E6         | 243100             | 12655,13 | 7  | 30739,79 | 8              |
| 299 | 553,68349         | 553,53         | 5     | 188000         | 26320              | 14367,8  | 7  | 32428,66 | 8              |
| 300 | 554,88076         | 554,727        | 65    | 300000         | 30000              | 0        | 8  | 18021,89 | 8              |
| 301 | 556,584           | 556,43         | 5     | 213000         | 14910              | 12655,13 | 7  | 30621,87 | 7              |
| 302 | 557,74875         | 557,594        | 5     | 390000         | 46800              | 14625,64 | 8  | 32554,86 | 8              |
| 303 | 559,58864         | 559,433        | 5     | 176000         | 17600              | 12007,1  | 8  | 29877,37 | 7              |
| 304 | 560,57645         | 560,421        | 5     | 77000          | 6930               | 11673,49 | 6  | 29512,27 | 7              |
| 305 | 560,709           | 560,553        | 24    | 00             | 00                 | 00       | 00 | 00       | 00             |
| 306 | 561,14141         | 560,986        | 5     | 440000         | 35200              | 12655,13 | 7  | 30475,95 | 6              |
| 307 | 561,479           | 561,323        | 30    | 00             | 00                 | 00       | 00 | 00       | 00             |
| 308 | 562,07816         | 561,922        | 5     | 64000          | 7680               | 13495,92 | 9  | 31287,04 | 9              |
| 309 | 562,9049          | 562,749        | 20    | 166000         | 11620              | 4134,23  | 7  | 21899,22 | 8              |
| 310 | 564,10647         | 563,95         | 100   | 490000         | 39200              | 0        | 8  | 17727,15 | 9              |
| 311 | 564,756           | 564,599        | 55    | 00             | 00                 | 00       | 00 | 00       | 00             |
| 312 | 565,35824         | 565,201        | 80    | 446000         | 22300              | 0        | 8  | 17687,9  | 7              |
| 313 | 566,59824         | 566,441        | 5     | 33000          | 2310               | 4134,23  | 7  | 21783,42 | 7              |
| 314 | 568,716           | 568,558        | 24    | 00             | 00                 | 00       | 00 | 00       | 00             |
| 315 | 569,25305         | 569,095        | 5     | 215000         | 21500              | 12892,76 | 10 | 30459,64 | 9              |
| 316 | 570,0913          | 569,933        | 5     | 167000         | 11690              | 4134,23  | 7  | 21675,28 | 7              |

Tabela A2.6: Linhas Espectrais de Dy I (260-316)

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N   | $\lambda_{vacuo}$ | $\lambda_{ar}$ | I. R. | A <sub>E</sub> | $\Delta A_{\rm E}$ | Ei       | Ji     | Es       | Js     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------|----------------|-------|----------------|--------------------|----------|--------|----------|--------|
| 318         571_2598         571,101         5         39000         31200         12007,1         8         29512,7         7           319         572,005         571,1901         5         117000         15210         15144,83         7         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00                                                                                                                                     | 317 | 570,449           | 570,291        | 24    | 00             | 00                 | 00       | 00     | 00       | 00     |
| 119         572,058         571,846         70         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00                                                                                                                                           | 318 | 571,2598          | 571,101        | 5     | 390000         | 31200              | 12007,1  | 8      | 29512,27 | 7      |
| 320         572,1598         571,091         5         117000         15210         15194,83         7         32675,52         8           321         574,179         574,02         50         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00 <td>319</td> <td>572.005</td> <td>571.846</td> <td>70</td> <td>00</td> <td>00</td> <td>00</td> <td>00</td> <td>00</td> <td>00</td> | 319 | 572.005           | 571.846        | 70    | 00             | 00                 | 00       | 00     | 00       | 00     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 320 | 572,0598          | 571,901        | 5     | 117000         | 15210              | 15194.83 | 7      | 32675.52 | 8      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 321 | 574,179           | 574.02         | 50    | 00             | 00                 | 00       | 00     | 00       | 00     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 322 | 574,71198         | 574.553        | 55    | 1.49E6         | 89400              | 9990.95  | 9      | 27390.97 | 9      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 323 | 575.207           | 575.048        | 24    | 00             | 00                 | 00       | 00     | 00       | 00     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 324 | 575,58562         | 575.426        | 5     | 264000         | 21120              | 10088.8  | 6      | 27462.41 | 7      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 325 | 576,039           | 575 879        | 24    | 00             | 00                 | 00       | 00     | 00       | 00     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 326 | 578,56241         | 578.402        | 5     | 121000         | 14520              | 12007.1  | 8      | 29291.32 | 8      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 327 | 580 64456         | 580 484        | 5     | 82000          | 11480              | 12655 13 | 7      | 29877 37 | 7      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 328 | 581.53634         | 581.375        | 5     | 196000         | 23520              | 15567.38 | 8      | 32763.21 | 9      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 329 | 582,90378         | 582.742        | 5     | 245000         | 24500              | 15567.38 | 8      | 32722.87 | 7      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 330 | 585 96691         | 585 805        | 5     | 310000         | 34100              | 14970 7  | 6      | 32036 51 | 7      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 331 | 586,56393         | 586.401        | 5     | 960000         | 76800              | 14625.64 | 8      | 31674.08 | 7      |
| 333         588,66833         588,506         5         128000         16640         15567,38         8         32554,86         8           334         589,47249         589,309         5         284000         19880         12007,1         8         28971,42         8           335         589,4934         589,333         5         420000         13495,92         9         30459,64         9           336         593,07478         592,91         5         186000         20460         15567,38         8         32428,66         8           337         593,22044         593,056         5         40000         4000         12655,13         7         29512,27         7           338         594,474389         594,4579         70         4,21E6         210500         12892,76         10         29706,72         10           341         598,856         140         561000         28050         0         8         16693,87         7           343         599,02228         598,856         140         561000         28050         0         8         16693,87         7           344         600,49276         600,326         5         210000                                                                                                       | 332 | 588,58221         | 588.419        | 5     | 65000          | 5850               | 7050.61  | 6      | 24040.59 | 6      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 333 | 588.66883         | 588,506        | 5     | 128000         | 16640              | 15567.38 | 8      | 32554.86 | 8      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 334 | 589 47249         | 589 309        | 5     | 284000         | 19880              | 12007.1  | 8      | 28971 42 | 8      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 335 | 589,49334         | 589.33         | 5     | 420000         | 46200              | 13495.92 | 9      | 30459.64 | 9      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 336 | 593 07478         | 592,91         | 5     | 186000         | 20460              | 15567 38 | 8      | 32428.66 | 8      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 337 | 593 22044         | 593 056        | 5     | 40000          | 4000               | 12655 13 | 7      | 29512.27 | 7      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 338 | 594,74389         | 594,579        | 70    | 4.21E6         | 210500             | 12892.76 | 10     | 29706.72 | 10     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 339 | 596.611           | 596.446        | 50    | 00             | 00                 | 00       | 00     | 00       | 00     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 340 | 597 61432         | 597 449        | 120   | 420000         | 33600              | 0        | 8      | 16733 2  | 8      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 341 | 598.652           | 598.486        | 24    | 00             | 00                 | 00       | 00     | 00       | 00     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 342 | 599 02228         | 598 856        | 140   | 561000         | 28050              | 0        | 8      | 16693 87 | 7      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 343 | 599 33318         | 599 167        | 5     | 510000         | 35700              | 11673 49 | 6      | 28358 7  | ,<br>7 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 344 | 600 49276         | 600 326        | 5     | 261000         | 20880              | 11673 49 | 6      | 28326.48 | 6      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 345 | 601.06            | 600 894        | 30    | 00             | 00                 | 00       | 00     | 00       | 00     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 346 | 601 09917         | 600,933        | 5     | 390000         | 42900              | 12655 13 | 7      | 29291 32 | 8      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 347 | 601 24843         | 601.082        | 65    | 590000         | 59000              | 4134 23  | ,<br>7 | 20766 29 | 7      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 348 | 601.893           | 601.726        | 24    | 00             | 00                 | 00       | 00     | 00       | 00     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 349 | 603 265           | 603 098        | 24    | 00             | 00                 | 00       | 00     | 00       | 00     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 350 | 605,286           | 605 818        | 24    | 00             | 00                 | 00       | 00     | 00       | 00     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 351 | 606 82373         | 606 656        | 5     | 80000          | 8800               | 15194 83 | 7      | 31674.08 | 7      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 352 | 607 66964         | 607 501        | 5     | 830000         | 99600              | 15972.35 | 9      | 32428.66 | 8      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 353 | 608 674           | 608 506        | 30    | 00             | 00                 | 00       | 00     | 00       | 00     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 354 | 608,99485         | 608.826        | 140   | 1.46E6         | 73000              | 4134.23  | 7      | 20554.73 | 6      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 355 | 611,56095         | 611.392        | 5     | 470000         | 32900              | 12007.1  | 8      | 28358.7  | 7      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 356 | 611 57703         | 611 408        | 5     | 57000          | 4560               | 4134 23  | 7      | 20485.4  | ,<br>7 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 357 | 612,65275         | 612,483        | 5     | 420000         | 33600              | 14153.49 | 5      | 30475.95 | 6      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 358 | 612,88442         | 612,715        | 24    | 1 1E6          | 77000              | 12655 13 | 7      | 28971 42 | 8      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 359 | 613 534           | 613 364        | 24    | 00             | 00                 | 00       | 00     | 00       | 00     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 360 | 615 23052         | 615.06         | 5     | 800000         | 48000              | 14367.8  | 7      | 30621.87 | 7      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 361 | 615 998           | 615 828        | 24    | 00             | 00                 | 00       | 00     | 00       | 00     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 362 | 617 01391         | 616 843        | 100   | 810000         | 40500              | 4134 23  | 7      | 20341 32 | 8      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 363 | 620 5726          | 620 401        | 5     | 510000         | 66300              | 14625 64 | 8      | 30739 79 | 8      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 364 | 623 2308          | 623 058        | 5     | 960000         | 105600             | 16717 79 | 9      | 32763 21 | 9      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 365 | 623 82993         | 623 657        | 5     | 205000         | 24600              | 16733 2  | 8      | 32763 21 | 9      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 366 | 623.91127         | 623,739        | 5     | 35000          | 2800               | 12298 56 | 5      | 28326 48 | 6      |
| 368       625,71762       625,545       5       1,18E6       129800       16693,87       7       32675,52       8         369       626,08195       625,909       270       890000       44500       0       8       15972,35       9         370       626,209       626,036       30       00       00       00       00       00       00         371       629,3385       629,164       5       440000       30800       12007,1       8       27896,8       8         372       630,47767       630,303       5       227000       27240       16693,87       7       32554,86       8         373       632,04493       631,87       5       290000       34800       16733,2       8       32554,86       8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 367 | 625 1473          | 624 974        | 5     | 290000         | 23200              | 14625 64 | 8      | 30621.87 | 7      |
| 369       626,08195       625,909       270       890000       44500       0       8       15972,35       9         370       626,209       626,036       30       00       00       00       00       00       00         371       629,3385       629,164       5       440000       30800       12007,1       8       27896,8       8         372       630,47767       630,303       5       227000       27240       16693,87       7       32554,86       8         373       632,04493       631,87       5       290000       34800       16733,2       8       32554,86       8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 368 | 625 71762         | 625 545        | 5     | 1.18E6         | 129800             | 16693 87 | 7      | 32675 52 | 8      |
| 370       626,209       626,036       30       00       00       00       00       00       00       00         371       629,3385       629,164       5       440000       30800       12007,1       8       27896,8       8         372       630,47767       630,303       5       227000       27240       16693,87       7       32554,86       8         373       632,04493       631,87       5       290000       34800       16733.2       8       32554.86       8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 369 | 626.08195         | 625,909        | 270   | 890000         | 44500              | 0        | , 8    | 15972.35 | 9      |
| 371       629,3385       629,164       5       440000       30800       12007,1       8       27896,8       8         372       630,47767       630,303       5       227000       27240       16693,87       7       32554,86       8         373       632,04493       631,87       5       290000       34800       16733.2       8       32554.86       8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 370 | 626 209           | 626 036        | 30    | 00             | 00                 | 00       | 00     | 00       | 00     |
| 372       630,47767       630,303       5       227000       27240       16693,87       7       32554,86       8         373       632,04493       631,87       5       290000       34800       16733.2       8       32554.86       8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 371 | 629 3385          | 629 164        | 5     | 440000         | 30800              | 12007 1  | 8      | 27896 8  | 8      |
| 373 632,04493 631,87 5 290000 34800 16733.2 8 32554.86 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 372 | 630 47767         | 630 303        | 5     | 227000         | 27240              | 16693 87 | 7      | 32554.86 | 8      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 373 | 632.04493         | 631.87         | 5     | 290000         | 34800              | 16733.2  | ,<br>8 | 32554.86 | 8      |

Tabela A2.7: Linhas Espectrais de Dy I (317-373)

| N          | 2                                      | 2                              | IR         | Δ                 | $\Delta \Delta_{-}$              | F.                     | L                     | F                      | I               |
|------------|----------------------------------------|--------------------------------|------------|-------------------|----------------------------------|------------------------|-----------------------|------------------------|-----------------|
| 374        | $\frac{\kappa_{\rm vacuo}}{632.45346}$ | $\frac{\lambda_{ar}}{632.270}$ | 1. K.<br>5 | 200000            | $\frac{\Delta A_{\rm E}}{40600}$ | $\frac{L_i}{15862.64}$ | <b>J</b> <sub>1</sub> | $\frac{L_s}{31674.08}$ | $\frac{J_s}{7}$ |
| 275        | 622,45540                              | 632,279                        | 5          | 290000            | 40000                            | 13802,04               | 0                     | 20201 22               | 0               |
| 276        | 624 507                                | 634 222                        | 5<br>14    | 00                | 11440                            | 13493,92               | 9                     | 29291,32               | 0               |
| 270        | 625 01014                              | 624,352                        | 14<br>5    | 176000            | 24640                            | 16299 72               | 00                    | 22026 51               | 00<br>7         |
| 270        | 626 14607                              | 625.07                         | 5          | 170000            | 24040<br>50400                   | 10200,75               | 0                     | 32030,31               | 0               |
| 270        | 030,14007                              | 033,97                         | 5          | 420000            | 30400                            | 13307,38               | 0<br>7                | 31287,04               | 9               |
| 3/9        | 030,/9/8/                              | 030,022                        | 5          | 30000             | 2400                             | 12055,15               | 7                     | 28338,7                |                 |
| 201        | 038,10/12                              | (29,69                         | 3          | 101000            | 12880                            | 12033,15               | /                     | 28520,48               | 0               |
| 202        | 038,837                                | 038,08                         | 40         | 520000            | 41600                            | 14070 7                | 00                    | 00                     | 00              |
| 382        | 038,92987                              | 038,/33                        | 5          | 520000            | 41600                            | 14970,7                | 0                     | 30021,87               | 7               |
| 202        | 039,01479                              | 030,030                        | 5          | 400000            | 09000                            | 10/33,2                | 0                     | 32382,29               | /               |
| 384<br>295 | 042,37                                 | 642,192                        | 50         | 00                | 4500                             | 00                     | 00                    | 10699 50               | 00              |
| 202<br>202 | 642,90033                              | 642,729                        | 5          | 43000             | 4300                             | 4154,25                | 7                     | 19088,39               | 0               |
| 380<br>207 | 043,29532                              | 043,118                        | 5<br>12    | 250000            | 32500                            | 15194,85               | /                     | 30739,79               | 8               |
| 38/        | 043,833                                | 043,035                        | 15         | 20000             | 22400                            | 00                     | 00                    | 00                     | 00              |
| 388        | 045,85074                              | 043,073                        | 5          | 50000             | 32400                            | 10288,75               | 8                     | 31820,28               | 8               |
| 389        | 040,18208                              | 040,004                        | 5          | 05000             | /150                             | 13495,92               | 9                     | 28971,42               | 8               |
| 390<br>201 | 040,202                                | 040,083                        | 8          | 00                | 00                               | 12007 1                | 00                    | 00                     | 00              |
| 202        | 647,02681                              | 040,848                        | J<br>11    | 114000            | 9120                             | 12007,1                | 8                     | 2/402,41               | /               |
| 392        | 04/,0/                                 | 647,491                        | 11         | 00                | 00                               | 00                     | 00                    | 00                     | 00              |
| 393        | 048,838                                | 048,059                        | 28<br>5    | 19000             | 00                               | 12007.1                | 00                    | 00                     | 00              |
| 394<br>205 | 650,05149                              | 649,852                        | 5          | 18000             | 2340                             | 12007,1                | 8                     | 27390,97               | 9               |
| 393        | 654,4025                               | 054,222                        | 5          | 99000             | 8910                             | 15194,85               | /                     | 30475,95               | 0               |
| 390        | 055,00552                              | 035,482                        | 5          | 124000            | 18600                            | 14025,04               | 8                     | 29877,37               | 7               |
| 397        | 655, / 3555                            | 655,554                        | 5          | /3000             | /300                             | 15194,83               | /                     | 30444,88               | /               |
| 398        | 055,985                                | 055,802                        | 20         | 20000             | 2200                             | 12655 12               | 00                    | 00                     | 00              |
| 399        | 050,09008                              | 655,915                        | J<br>160   | 20000             | 3200                             | 12055,15               | /                     | 2/890,8                | 8               |
| 400        | 058,11858                              | 657,957                        | 100        | 770000            | 77000                            | 0                      | 8                     | 15194,85               | 7               |
| 401        | 003,01120                              | 002,828                        | D<br>15    | 264000            | 29040                            | 10591,58               | 0                     | 310/4,08               | /               |
| 402        | 004,52                                 | 004,337                        | 15         | 00                | 00                               | 00                     | 00                    | 00                     | 00              |
| 403        | 000,02                                 | 005,830                        | 22         | 00                | 00                               | 00                     | 00                    | 00                     | 00              |
| 404        | 000,348                                | 000,104                        | 29<br>75   | 200000            | 20000                            | 00                     | 00                    | 00                     | 00              |
| 405        | 008,90920                              | 008,785                        | 15         | 300000            | 39000                            | 1/12/,15               | 9                     | 32075,52               | 8               |
| 400        | 070,0832                               | 009,898                        | 5          | 16000<br>5 c 0000 | 2400                             | 14307,8                | /                     | 29291,32               | 8               |
| 407        | 0/1,489/5                              | 671,304                        | 5          | 500000            | 61600                            | 15507,58               | 8                     | 30459,04               | 9               |
| 408        | 6/4,4129/                              | 0/4,227                        | 5<br>20    | 510000            | 61200                            | 1//2/,15               | 9                     | 32334,80               | 8               |
| 409        | 0/4,9/9                                | 0/4,/93                        | 29<br>5    | 00                | 00                               | 12655 12               | 00                    | 00                     | 00              |
| 410        | 0/5,34348                              | 075,157                        | 5<br>10    | 69000             | /590                             | 12055,15               | /                     | 2/402,41               | /               |
| 411        | 0/5,949                                | 0/5,/02                        | 10         | 00                | 00                               | 00                     | 00                    | 00                     | 00              |
| 412        | 0/0,//0                                | 0/0,389                        | 45<br>5    | 00                | 00                               | 16501 28               | 00                    | 00                     | 00              |
| 415        | 0/0,99123                              | 0/0,805                        | 5          | 201000            | 24120                            | 10391,38               | 0                     | 31302,02               | 7               |
| 414        | 0/8,/3/14                              | 078,37                         | 5          | 20000             | 1340                             | /030,01                | 0                     | 21/03,42               | 7               |
| 415        | 0/9,2181/                              | 6/9,031                        | 5          | 29000             | 2320                             | 4154,25                | 7                     | 18857,04               | 7               |
| 410        | 081,/2135                              | 081,333                        | 5<br>10    | 040000<br>00      | 64000                            | 10093,87               | /                     | 31302,02               | /               |
| 417        | 082,008                                | 081,82                         | 12         | 100               | 5000                             | 16722.2                | 00                    | 00                     | 00              |
| 418        | 085,5541                               | 085,500                        | J<br>190   | 400000            | 30600                            | 10/33,2                | 0                     | 51502,02               | /               |
| 419        | 083,/31                                | 083,342                        | 180        | 67000             | 6700                             | 15962 64               | 00<br>6               | 00                     | 00<br>6         |
| 420        | 084,30700                              | 685 206                        | 5          | 07000             | 0700                             | 13802,04               | 0                     | 30473,93               | 0               |
| 421        | 083,483                                | 085,290                        | 80<br>5    | 194000            | 00                               | 15962.64               | 00                    | 20444.99               | 00              |
| 422<br>422 | 003,/03/                               | 003,370<br>685 616             | ン<br>22    | 184000            | 20240                            | 13802,04               | 0                     | 30444,88<br>00         | /               |
| 423<br>424 | 003,033                                | 687 404                        | 22<br>5    | 00                | 7600                             | 14070 7                | 6                     | 00                     | 7               |
| 424<br>125 | 001,00303                              | 007,494                        | 5          | 93000<br>970000   | 1000                             | 149/0,/                | 0                     | 27512,21<br>27551 02   | /<br>0          |
| 423<br>196 | 000,0900                               | 001,901<br>600 000             | 3<br>22    | 270000<br>00      | 40000                            | 10021,89               | 0<br>00               | 52554,80<br>00         | 0<br>00         |
| 420<br>427 | 680 74022                              | 000,000                        | 22<br>5    | 00<br>276000      | 00<br>27600                      | 00<br>12802 74         | 10                    | 00<br>27200 07         | 00              |
| 421<br>120 | 600 26022                              | 600.07                         | 5          | 255000            | 27000                            | 12072,70               | 10                    | 21390,91               | 9<br>0          |
| 420<br>420 | 090,20022<br>603 146                   | 602 055                        | 5<br>15    | 233000            | 17630                            | 13972,33               | 9<br>00               | 50459,04<br>00         | 9<br>00         |
| 429<br>130 | 69/ 10201                              | 694 91                         | 1.)<br>5   | 235000            | 21150                            | 13/05 02               | 00<br>0               | 00<br>27806 8          | 8               |
| -50        | 077,40201                              | 077,21                         | 5          | 255000            | 21130                            | 15475,74               | 1                     | 21020,0                | 0               |

Tabela A2.8: Linhas Espectrais de Dy I (374-430)

| N   | λωσουρ    | λ       | L.R. | AE     | $\Lambda A_{\rm E}$ | E               | J. | E        | J. |
|-----|-----------|---------|------|--------|---------------------|-----------------|----|----------|----|
| 431 | 695.334   | 695.142 | 11   | 00     | 00                  | $\frac{-1}{00}$ | 00 | 00       | 00 |
| 432 | 696       | 695.808 | 40   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 433 | 696.35943 | 696.167 | 5    | 220000 | 30800               | 18021.89        | 8  | 32382.29 | 7  |
| 434 | 697.0691  | 696.877 | 5    | 89000  | 10680               | 14625.64        | 8  | 28971.42 | 8  |
| 435 | 697.68383 | 697,492 | 5    | 134000 | 12060               | 16288.73        | 8  | 30621.87 | 7  |
| 436 | 698.437   | 698.244 | 13   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 437 | 698.81251 | 698.62  | 5    | 97000  | 9700                | 15567.38        | 8  | 29877.37 | 7  |
| 438 | 699.323   | 699.13  | 13   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 439 | 700.003   | 699.81  | 45   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 440 | 701.936   | 701.742 | 20   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 441 | 705.56742 | 705.373 | 5    | 138000 | 12420               | 14153.49        | 5  | 28326.48 | 6  |
| 442 | 708.16013 | 707.965 | 5    | 146000 | 20440               | 18433.76        | 7  | 32554.86 | 8  |
| 443 | 712,73348 | 712.537 | 5    | 71000  | 7100                | 16591.38        | 6  | 30621.87 | 7  |
| 444 | 713.16503 | 712.968 | 5    | 186000 | 29760               | 16717.79        | 9  | 30739.79 | 8  |
| 445 | 713.53497 | 713.338 | 5    | 116000 | 15080               | 15862.64        | 6  | 29877.37 | 7  |
| 446 | 713.94965 | 713,753 | 5    | 183000 | 27450               | 16733.2         | 8  | 30739.79 | 8  |
| 447 | 716,40012 | 716.203 | 5    | 135000 | 13500               | 14367.8         | 7  | 28326.48 | 6  |
| 448 | 719.68075 | 719,482 | 5    | 187000 | 16830               | 13495.92        | 9  | 27390.97 | 9  |
| 449 | 720.06371 | 719.865 | 5    | 6500   | 910                 | 4134.23         | 7  | 18021.89 | 8  |
| 450 | 721.526   | 721.327 | 11   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 451 | 723.203   | 723.004 | 17   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 452 | 725.201   | 725.001 | 13   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 453 | 726,0208  | 725,821 | 5    | 86000  | 10320               | 17513,33        | 10 | 31287,04 | 9  |
| 454 | 728,10038 | 727.9   | 5    | 40000  | 6400                | 15972.35        | 9  | 29706.72 | 10 |
| 455 | 728,16983 | 727,969 | 5    | 35000  | 3500                | 14625,64        | 8  | 28358,7  | 7  |
| 456 | 728.52101 | 728.32  | 5    | 134000 | 13400               | 16733.2         | 8  | 30459.64 | 9  |
| 457 | 729.09254 | 728.892 | 5    | 29000  | 3480                | 7050.61         | 6  | 20766.29 | 7  |
| 458 | 729.30523 | 729.104 | 5    | 79000  | 10270               | 16733.2         | 8  | 30444.88 | 7  |
| 459 | 732,62059 | 732,419 | 5    | 38000  | 7220                | 15862,64        | 6  | 29512,27 | 7  |
| 460 | 735,90882 | 735,706 | 5    | 120000 | 14400               | 16288,73        | 8  | 29877.37 | 7  |
| 461 | 737,80755 | 737,604 | 20   | 110000 | 7700                | 4134,23         | 7  | 17687,9  | 7  |
| 462 | 740,51475 | 740,311 | 5    | 41000  | 3280                | 7050,61         | 6  | 20554,73 | 6  |
| 463 | 740,963   | 740,759 | 11   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 464 | 741,441   | 741,237 | 24   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 465 | 746,93756 | 746,732 | 5    | 36000  | 3960                | 14970,7         | 6  | 28358,7  | 7  |
| 466 | 748,7395  | 748,533 | 5    | 40000  | 4400                | 14970,7         | 6  | 28326,48 | 6  |
| 467 | 749,58417 | 749,378 | 5    | 410000 | 57400               | 18021,89        | 8  | 31362,62 | 7  |
| 468 | 753,51363 | 753,306 | 5    | 67000  | 8040                | 14625,64        | 8  | 27896,8  | 8  |
| 469 | 754,581   | 754,373 | 55   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 470 | 755,508   | 755,3   | 17   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 471 | 756,186   | 755,978 | 27   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 472 | 759,339   | 759,13  | 27   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 473 | 761,365   | 761,155 | 13   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 474 | 761,98    | 761,77  | 11   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 475 | 764,319   | 764,109 | 35   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 476 | 764,796   | 764,586 | 17   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 477 | 764,874   | 764,664 | 13   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 478 | 766,447   | 766,236 | 80   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 479 | 768,48357 | 768,272 | 5    | 270000 | 43200               | 17727,15        | 9  | 30739,79 | 8  |
| 480 | 769,07755 | 768,866 | 5    | 22000  | 3080                | 16288,73        | 8  | 29291,32 | 8  |
| 481 | 769,2858  | 769,074 | 5    | 60000  | 6000                | 15972,35        | 9  | 28971,42 | 8  |
| 482 | 771,745   | 771,533 | 35   | 00     | 00                  | 00              | 00 | 00       | 00 |
| 483 | 772,42087 | 772,208 | 5    | 440000 | 48400               | 17513,33        | 10 | 30459,64 | 9  |
| 484 | 773,4634  | 773,251 | 5    | 216000 | 28080               | 18433,76        | 7  | 31362,62 | 7  |
| 485 | 780,21134 | 779,997 | 5    | 76000  | 9120                | 18857,04        | 7  | 31674,08 | 7  |
| 486 | 780,37634 | 780,162 | 5    | 130000 | 16900               | 18472,71        | 8  | 31287,04 | 9  |
| 487 | 781,421   | 781,206 | 35   | 00     | 00                  | 00              | 00 | 00       | 00 |

Tabela A2.9: Linhas Espectrais de Dy I (431-487)

| N          | λωσουρ    | λ        | L.R.   | AE     | $\Lambda A_{\rm E}$ | E:       | J.     | E        | J. |
|------------|-----------|----------|--------|--------|---------------------|----------|--------|----------|----|
| 488        | 781 78014 | 781 565  | 5      | 59000  | 6490                | 15567 38 | 7      | 28358 7  | 7  |
| 489        | 785 39233 | 785 176  | 5      | 109000 | 13080               | 17727 15 | 9      | 30459 64 | 9  |
| 490        | 786 29333 | 786 077  | 5      | 200000 | 30000               | 18021.89 | 8      | 30739 79 | 8  |
| 401        | 787 27945 | 787.063  | 5      | 60000  | 7800                | 15104.83 | 7      | 27806.8  | 8  |
| 402        | 787,27945 | 787,003  | 5      | 64000  | 7600                | 17804.24 | 5      | 27890,8  | 6  |
| 492        | 789,13947 | 700,942  | 5      | 04000  | /080                | 1/804,24 | 5      | 30473,93 | 0  |
| 493        | 790,47072 | 790,253  | с<br>С | 480000 | 62400               | 18/11,93 | 6      | 31362,62 | /  |
| 494        | /91,156   | 790,938  | 21     | 00     | 00                  | 00       | 00     | 00       | 00 |
| 495        | /93,/1568 | /93,497  | 5      | 13600  | 1632                | 4134,23  | /      | 16/33,2  | 8  |
| 496        | 796,29753 | 796,079  | 5      | 19000  | 3230                | 16/33,2  | 8      | 29291,32 | 8  |
| 497        | 797,082   | 796,863  | 11     | 00     | 00                  | 00       | 00     | 00       | 00 |
| 498        | 800,25224 | 800,032  | 5      | 21000  | 2310                | 15862,64 | 6      | 28358,7  | 7  |
| 499        | 806,45226 | 806,231  | 5      | 70000  | 14700               | 18339,8  | 7      | 30739,79 | 8  |
| 500        | 814,195   | 813,971  | 5      | 129000 | 11610               | 18339,8  | 7      | 30621,87 | 7  |
| 501        | 814,953   | 814,729  | 13     | 00     | 00                  | 00       | 00     | 00       | 00 |
| 502        | 815,1567  | 814,933  | 5      | 31000  | 3100                | 15194,83 | 7      | 27462,41 | 7  |
| 503        | 826,09946 | 825,872  | 5      | 37000  | 4810                | 18339,8  | 7      | 30444,88 | 7  |
| 504        | 826,78    | 826,553  | 20     | 00     | 00                  | 00       | 00     | 00       | 00 |
| 505        | 828,50247 | 828,275  | 5      | 21000  | 2730                | 16288,73 | 8      | 28358,7  | 7  |
| 506        | 832,839   | 832,61   | 35     | 00     | 00                  | 00       | 00     | 00       | 00 |
| 507        | 839,63479 | 839,404  | 5      | 57000  | 7410                | 18711,93 | 6      | 30621,87 | 7  |
| 508        | 845,71102 | 845,479  | 5      | 39000  | 5070                | 17687,9  | 7      | 29512,27 | 7  |
| 509        | 852,14442 | 851,91   | 5      | 36000  | 5400                | 16591,38 | 6      | 28326,48 | 6  |
| 510        | 852,57234 | 852,338  | 5      | 146000 | 18980               | 19557,83 | 9      | 31287,04 | 9  |
| 511        | 863,249   | 863,012  | 11     | 00     | 00                  | 00       | 00     | 00       | 00 |
| 512        | 873,85012 | 873,61   | 5      | 31000  | 4960                | 18433,76 | 7      | 29877.37 | 7  |
| 513        | 877,20914 | 876.968  | 5      | 150000 | 28500               | 21540.68 | 9      | 32940.47 | 8  |
| 514        | 878.324   | 878.083  | 12     | 00     | 00                  | 00       | 00     | 00       | 00 |
| 515        | 889.34186 | 889.098  | 5      | 35000  | 4550                | 17727.15 | 9      | 28971.42 | 8  |
| 516        | 895.05723 | 894.812  | 5      | 18000  | 2520                | 18339.8  | 7      | 29512.27 | 7  |
| 517        | 895,11972 | 894.874  | 5      | 57000  | 9690                | 19304.26 | 6      | 30475.95 | 6  |
| 518        | 904,11008 | 903.862  | 5      | 43000  | 6020                | 4134.23  | 7      | 15194.83 | 7  |
| 519        | 913 11526 | 912,865  | 5      | 28000  | 4200                | 18339.8  | 7      | 29291 32 | 8  |
| 520        | 918 0966  | 917 845  | 5      | 200000 | 42000               | 21783 42 | 7      | 32675 52 | 8  |
| 521        | 924 33316 | 924.08   | 5      | 128000 | 20480               | 18472 71 | 8      | 29291 32 | 8  |
| 522        | 928 38098 | 928,126  | 5      | 420000 | 67200               | 21783 42 | 7      | 32554.86 | 8  |
| 523        | 929 12884 | 928,120  | 5      | 90000  | 14400               | 18528 55 | ,<br>7 | 29291 32 | 8  |
| 523        | 933 15703 | 932 901  | 5      | 330000 | 52800               | 21838 55 | ,<br>9 | 32554.86 | 8  |
| 524<br>525 | 943 72297 | 943 464  | 5      | 31000  | 52000               | 20766 29 | 7      | 31362.62 | 7  |
| 525        | 045 70551 | 945 536  | 5      | 68000  | 9520                | 10304.26 | 6      | 20877 37 | 7  |
| 520        | 050 36708 | 950 107  | 5      | 22000  | 3080                | 17804.24 | 5      | 29077,57 | 6  |
| 528        | 950,50798 | 950,107  | 5      | 124000 | 18600               | 20884.87 | 8      | 20320,40 | 0  |
| 520        | 050 60566 | 954,142  | 5      | 124000 | 10380               | 10002.3  | 8      | 20512.27 | 7  |
| 520        | 959,09500 | 959,455  | 5      | 61000  | 0150                | 20054.19 | 0<br>7 | 21262.62 | 7  |
| 521        | 900,73877 | 900,493  | 5      | 112000 | 9150                | 20934,18 | 0      | 20706 72 | /  |
| 521        | 965,52945 | 985,039  | 5      | 7700   | 1079                | 19337,83 | 9      | 29700,72 | 10 |
| 532<br>522 | 998,11557 | 997,84   | 5      | //00   | 1078                | 18339,8  | 7      | 28358,7  |    |
| 555        | 1000,9459 | 1000,672 | 5      | 20000  | 10480               | 20485,4  | 7      | 30475,95 | 0  |
| 534        | 1001,5558 | 1001,059 | 5      | 20000  | 2800                | 18339,8  |        | 28320,48 | 0  |
| 535        | 1002,9869 | 1002,712 | 5      | 29000  | 4640                | 21392,4  | 6      | 31362,62 | /  |
| 536        | 1009,208  | 1008,931 | 5      | 290000 | 34800               | 19797,96 | 10     | 29706,72 | 10 |
| 537        | 1010,8443 | 1010,567 | 5      | 39000  | 4680                | 18433,76 | 1      | 28326,48 | 6  |
| 538        | 1011,5325 | 1011,255 | 5      | 53000  | 8480                | 18472,71 | 8      | 28358,7  | 7  |
| 539        | 1017,2785 | 1017     | 5      | 77000  | 9240                | 18528,55 | 7      | 28358,7  | 7  |
| 540        | 1017,9485 | 1017,67  | 5      | 48000  | 7200                | 19688,59 | 8      | 29512,27 | 7  |
| 541        | 1026,0241 | 1025,743 | 5      | 173000 | 27680               | 21540,68 | 9      | 31287,04 | 9  |
| 542        | 1027,3807 | 1027,099 | 5      | 162000 | 24300               | 19557,83 | 9      | 29291,32 | 8  |
| 543        | 1030,8524 | 1030,57  | 5      | 300000 | 39000               | 21788,93 | 10     | 31489,64 | 10 |
| 544        | 1043.3719 | 1043.086 | 5      | 44000  | 6600                | 20891.64 | 5      | 30475.95 | 6  |

Tabela A2.10: Linhas Espectrais de Dy I (488-544)

| Ν          | $\lambda_{vacuo}$ | $\lambda_{ar}$ | I. R.  | $A_E$           | $\Delta A_{\rm E}$ | Ei       | $\mathbf{J}_{\mathbf{i}}$ | Es       | J <sub>s</sub> |
|------------|-------------------|----------------|--------|-----------------|--------------------|----------|---------------------------|----------|----------------|
| 545        | 1044,4115         | 1044,125       | 5      | 60000           | 9600               | 20884,87 | 8                         | 30459,64 | 9              |
| 546        | 1046,6382         | 1046,352       | 5      | 33000           | 4950               | 20921,55 | 5                         | 30475,95 | 6              |
| 547        | 1052,841          | 1052,553       | 5      | 280000          | 47600              | 21788,93 | 10                        | 31287,04 | 9              |
| 548        | 1061,1104         | 1060,82        | 5      | 137000          | 17810              | 18472,71 | 8                         | 27896,8  | 8              |
| 549        | 1062,294          | 1062,003       | 5      | 44000           | 5720               | 19557.83 | 9                         | 28971.42 | 8              |
| 550        | 1063,4022         | 1063.111       | 5      | 111000          | 21090              | 23271.74 | 9                         | 32675.52 | 8              |
| 551        | 1067,4352         | 1067,143       | 5      | 21500           | 2795               | 18528,55 | 7                         | 27896.8  | 8              |
| 552        | 1079,1678         | 1078.872       | 5      | 32000           | 4480               | 19092.3  | 8                         | 28358.7  | 7              |
| 553        | 1080.1142         | 1079.818       | 5      | 124000          | 16120              | 20448.44 | 11                        | 29706.72 | 10             |
| 554        | 1104.4305         | 1104.128       | 5      | 9700            | 1358               | 19304.26 | 6                         | 28358.7  | 7              |
| 555        | 1107.8933         | 1107.59        | 5      | 85000           | 12750              | 22647.94 | 7                         | 31674.08 | 7              |
| 556        | 1108.3747         | 1108.071       | 5      | 20500           | 2665               | 19304.26 | 6                         | 28326.48 | 6              |
| 557        | 1112.3842         | 1112.08        | 5      | 119000          | 15470              | 18472.71 | 8                         | 27462.41 | 7              |
| 558        | 1118 7034         | 1118 397       | 5      | 2.1E6           | 357000             | 23736.6  | 9                         | 32675 52 | 8              |
| 559        | 1119 337          | 1119.031       | 5      | 480000          | 57600              | 18528 55 | 7                         | 27462.41 | 7              |
| 560        | 1120.6755         | 1120.369       | 5      | 25000           | 4000               | 20954.18 | ,<br>7                    | 29877.37 | ,<br>7         |
| 561        | 1121 207          | 1120.9         | 5      | 160000          | 40000              | 21540.68 | 9                         | 30459.64 | 9              |
| 562        | 1130 7804         | 1120,5         | 5      | 790000          | 142200             | 23832.07 | 8                         | 32675 52 | 8              |
| 563        | 1134 0106         | 1133,7         | 5      | 3 8E6           | 570000             | 23736.6  | 9                         | 32554.86 | 8              |
| 564        | 1136 6517         | 1136 341       | 5      | 1000000         | 180000             | 23877 75 | 8                         | 32675 52 | 8              |
| 565        | 1146 4222         | 1146 109       | 5      | 1 02F6          | 173400             | 23832.07 | 8                         | 32554.86 | 8              |
| 566        | 1150 1312         | 1140,105       | 5      | 14000           | 2240               | 20817.61 | 6                         | 29512 27 | 7              |
| 567        | 1152 4574         | 1152 142       | 5      | 2 2F6           | 352000             | 23877 75 | 8                         | 32554.86 | 8              |
| 568        | 1153 3081         | 1152,142       | 5      | 120000          | 19200              | 21788.93 | 10                        | 30/59 6/ | 9              |
| 569        | 1159,0078         | 1152,772       | 5      | 35000           | 5250               | 20884 87 | 8                         | 29512.27 | 7              |
| 570        | 1163 2519         | 1162 934       | 5      | 700000          | 112000             | 23832.07 | 8                         | 32428.66 | 8              |
| 571        | 1168 485          | 1168 165       | 5      | 150000          | 22500              | 20054 18 | 7                         | 20512.27 | 7              |
| 572        | 1160 4662         | 1160,105       | 5      | 240000          | 40800              | 20954,18 | 8                         | 32428.66 | 8              |
| 573        | 1169,4002         | 1169,140       | 5      | 240000          | 13000              | 23077,73 | 0                         | 31820.28 | 8              |
| 574        | 1178 5546         | 1178 232       | 5      | 45000           | 7200               | 21302 /  | 6                         | 20877 37 | 7              |
| 575        | 1100 1880         | 1176,232       | 5      | 130000          | 16900              | 21392,4  | 0                         | 27896.8  | 8              |
| 576        | 1199,1009         | 1190,001       | 5      | 18000           | 3060               | 20054.18 | 7                         | 27890,8  | Q<br>Q         |
| 570        | 1201 1080         | 1199,124       | 5      | 124000          | 22220              | 20934,18 | ,<br>0                    | 29291,32 | o<br>Q         |
| 579        | 1201,1009         | 1200,78        | 5      | 250000          | 22320              | 24229,22 | 9                         | 32334,00 | 0              |
| 570        | 1213,8838         | 1213,331       | 5      | 240000          | <i>456</i> 00      | 24204,19 | 8                         | 32428,00 | 0<br>7         |
| 580        | 1222,7779         | 1222,443       | 5      | 240000          | 45000              | 10204,19 | 6                         | 22362,23 | 7              |
| 591        | 1225,7001         | 1225,455       | 5      | 200000          | 20780              | 21202.4  | 6                         | 27402,41 | 7              |
| 582        | 1231,5406         | 1231,21        | 5      | 135000          | 18000              | 21392,4  | 8                         | 29312,27 | /<br>Q         |
| 592        | 1230,0213         | 1230,283       | 5      | 155000          | 8100               | 20864,67 | 8<br>7                    | 20371,42 | 0<br>7         |
| 591        | 1240,4942         | 1240,133       | 5      | 43000           | 2100               | 25540,12 | 7                         | 28071 42 | 0              |
| 585        | 1247,512          | 1240,971       | 5      | 14000           | 2100               | 20954,18 | <b>0</b>                  | 20971,42 | 0              |
| 585        | 1247,0139         | 1247,273       | 5      | 47000           | 11760              | 23271,74 | ד<br>ד                    | 20621.87 | ע<br>ד         |
| 587        | 1254,0808         | 1253,744       | 5      | 63000           | 11070              | 22047,94 | 8                         | 30021,87 | /<br>Q         |
| 588        | 1255 2460         | 1254,054       | 5      | 1.05E6          | 100500             | 22707,83 | 8                         | 30739,79 | o<br>Q         |
| 580        | 1255,2409         | 1254,904       | 5      | 1,03E0<br>45000 | 199300<br>8100     | 24708,90 | 0                         | 32073,32 | 0              |
| 500        | 1259,0447         | 1250,7         | 5      | 43000           | 21200              | 23077,73 | 0<br>10                   | 20706 72 | 0<br>10        |
| 501        | 1202,9787         | 1202,035       | 5      | 240000          | 80000              | 21700,93 | 10                        | 29700,72 | 10             |
| 502        | 1203,107          | 1204,701       | 5      | 400000<br>50000 | 80000<br>7080      | 24030,74 | 0                         | 32703,21 | 9              |
| 392<br>502 | 1273,2301         | 1272,882       | 5      | 39000<br>1 OEC  | 7080               | 22707,85 | 8<br>7                    | 30021,87 | /              |
| 595<br>504 | 1274,551          | 1274,203       | 5      | 1,9E0           | 323000             | 24708,90 | <i>/</i>                  | 32334,80 | 8              |
| J74<br>505 | 12/0,02/3         | 12/0,2/8       | 5      | 23000           | 3220<br>41800      | 17337,83 | ソ                         | 21390,91 | ソフ             |
| 393<br>500 | 1277 4620         | 12/0,412       | 5      | 220000          | 41800              | 24204,19 | ð                         | 32030,31 |                |
| 590<br>507 | 1277,4039         | 1270,000       | 5      | 38000           | 51800              | 22047,94 | /                         | 304/3,93 | 0              |
| 500        | 1280,0393         | 12/9,089       | ג<br>ד | 570000          | 0120               | 230/1,38 | 11                        | 31489,04 | 10             |
| 598        | 1282,3344         | 1282,203       | 5      | 57000           | 9120<br>7140       | 22047,94 | /                         | 30444,88 | /              |
| 399        | 1290,216          | 1289,863       | 5      | 42000           | /140               | 21540,68 | ץ<br>ק                    | 29291,32 | ð              |
| 600        | 1295,38/1         | 1295,033       | 5      | 560000          | 95200<br>10740     | 24/08,96 | /                         | 32428,66 | ð              |
| 001        | 1302,333          | 1301,997       | 5      | 94000           | 19740              | 23084,8  | 9                         | 32703,21 | 9              |

| N               | λ         | λ                         | IR | A            | $\Lambda A_{\rm E}$ | E:                     | L       | E.                   | I.      |
|-----------------|-----------|---------------------------|----|--------------|---------------------|------------------------|---------|----------------------|---------|
| 602             | 130/19191 | $\frac{1304563}{1304563}$ | 5  | <u>84000</u> | 16800               | $\frac{L_1}{25012.21}$ | 8<br>8  | 32675 52             | 8<br>8  |
| 602             | 1313 0007 | 1312 651                  | 5  | 55000        | 9350                | 24204 19               | 8       | 31820.28             | 8       |
| 604             | 1317,0008 | 1316.6/1                  | 5  | 78000        | 10920               | 19797 96               | 10      | 27390.97             | 9       |
| 60 <del>5</del> | 1317,0000 | 1316 070                  | 5  | 170000       | 28000               | 24220 22               | 0       | 31820.28             | 8       |
| 606             | 1317,3391 | 1325 432                  | 5  | 02000        | 17480               | 24229,22               | 9       | 32554.86             | 8       |
| 607             | 1325,794  | 1325,452                  | 5  | 122000       | 1/480               | 23012,21               | 0<br>10 | 32334,60             | 0<br>10 |
| 609             | 1320,904  | 1320,341                  | 5  | 27000        | 19080               | 23933,3                | 0       | 20250 7              | 10      |
| 608             | 1338,0021 | 1337,030                  | 5  | 27000        | 4030                | 20884,87               | 0       | 20330,7              | /       |
| 609             | 1339,0376 | 1338,672                  | 5  | 390000       | /0200               | 232/1,/4               | 9       | 30739,79             | 8       |
| 610             | 1345,0189 | 1344,651                  | 5  | 29000        | 4060                | 20891,64               | 5       | 28326,48             | 6       |
| 611             | 1345,761  | 1345,393                  | 2  | 74000        | 11100               | 21540,68               | 9       | 28971,42             | 8       |
| 612             | 1350,4517 | 1350,083                  | 5  | 23000        | 3220                | 20921,55               | 5       | 28326,48             | 6       |
| 613             | 1350,5264 | 1350,157                  | 5  | 23000        | 3450                | 20954,18               | 7       | 28358,7              | 7       |
| 614             | 1361,6817 | 1361,31                   | 5  | 129000       | 23220               | 25084,8                | 9       | 32428,66             | 8       |
| 615             | 1363,5608 | 1363,188                  | 5  | 105000       | 18900               | 23953,3                | 10      | 31287,04             | 9       |
| 616             | 1377,0216 | 1376,645                  | 5  | 40000        | 5200                | 23359,82               | 6       | 30621,87             | 7       |
| 617             | 1383,2349 | 1382,857                  | 5  | 320000       | 51200               | 22647,94               | 7       | 29877,37             | 7       |
| 618             | 1384,0064 | 1383,628                  | 5  | 20000        | 3200                | 22286,87               | 6       | 29512,27             | 7       |
| 619             | 1392,7421 | 1392,362                  | 5  | 43000        | 8600                | 25760,39               | 8       | 32940,47             | 8       |
| 620             | 1401,3787 | 1400,996                  | 5  | 23000        | 3910                | 23340,12               | 7       | 30475,95             | 6       |
| 621             | 1405,2582 | 1404,874                  | 5  | 189000       | 30240               | 23359,82               | 6       | 30475,95             | 6       |
| 622             | 1405,7936 | 1405,409                  | 5  | 190000       | 38000               | 25268,87               | 7       | 32382,29             | 7       |
| 623             | 1406,5608 | 1406,177                  | 5  | 92000        | 14720               | 22767,83               | 8       | 29877,37             | 7       |
| 624             | 1407.5071 | 1407.122                  | 5  | 23000        | 3910                | 23340.12               | 7       | 30444.88             | 7       |
| 625             | 1411.4207 | 1411.035                  | 5  | 29000        | 5220                | 23359.82               | 6       | 30444.88             | 7       |
| 626             | 1421.3651 | 1420.977                  | 5  | 78000        | 12480               | 23440.46               | 5       | 30475.95             | 6       |
| 627             | 1426,1409 | 1425.751                  | 5  | 127000       | 17780               | 20884.87               | 8       | 27896.8              | 8       |
| 628             | 1426 7289 | 1426 339                  | 5  | 74000        | 13320               | 24353 58               | 7       | 31362.62             | 7       |
| 629             | 1431 5634 | 1431 172                  | 5  | 38000        | 7600                | 25955 1                | 9       | 32940 47             | 8       |
| 630             | 1435 4823 | 1435.09                   | 5  | 8000         | 1200                | 21392.4                | 6       | 28358 7              | 7       |
| 631             | 1/39/1823 | 1/39/089                  | 5  | 25000        | 1250                | 23529.01               | 6       | 20330,7              | 6       |
| 632             | 1430,4027 | 1/39 985                  | 5  | 151000       | 21140               | 2095/ 18               | 7       | 27896.8              | 8       |
| 632             | 1440,3784 | 1439,983                  | 5  | 17000        | 2380                | 20954,10               | 6       | 27890,8              | 6       |
| 624             | 1442,1324 | 1441,756                  | 5  | 8500         | 2500                | 21392,4                | 6       | 20320,40             | 07      |
| 625             | 1445,9497 | 1445,554                  | 5  | 28000        | 1013                | 25529,01               | 0       | 20444,00<br>20675 50 | 0       |
| 033             | 1440,1044 | 1443,709                  | 5  | 58000        | 8300                | 25700,39               | 0       | 32073,32             | 0       |
| 030             | 1408,8451 | 1408,444                  | 5  | 55000        | 9900                | 25012,21               | 8       | 31820,28             | 8       |
| 637             | 14/7,62   | 14/7,216                  | 5  | 131000       | 26200               | 25268,87               | /       | 32036,51             | /       |
| 638             | 1482,7028 | 1482,298                  | 5  | 24000        | 4080                | 22/6/,83               | 8       | 29512,27             | /       |
| 639             | 1484,6752 | 1484,27                   | 2  | 260000       | 44200               | 25084,8                | 9       | 31820,28             | 8       |
| 640             | 1505,2579 | 1504,846                  | 5  | 63000        | 11340               | 22647,94               | 7       | 29291,32             | 8       |
| 641             | 1508,0909 | 1507,679                  | 5  | 190000       | 30400               | 24858,74               | 10      | 31489,64             | 10      |
| 642             | 1512,2164 | 1511,803                  | 5  | 17000        | 3060                | 23832,07               | 8       | 30444,88             | 7       |
| 643             | 1520,3252 | 1519,91                   | 5  | 10700        | 1605                | 20884,87               | 8       | 27462,41             | 7       |
| 644             | 1529,6952 | 1529,277                  | 5  | 23000        | 4140                | 23340,12               | 7       | 29877,37             | 7       |
| 645             | 1532,9218 | 1532,503                  | 5  | 166000       | 28220               | 22767,83               | 8       | 29291,32             | 8       |
| 646             | 1534,3189 | 1533,9                    | 5  | 122000       | 20740               | 23359,82               | 6       | 29877,37             | 7       |
| 647             | 1535,9638 | 1535,545                  | 5  | 27000        | 5400                | 24229,22               | 9       | 30739,79             | 8       |
| 648             | 1536,5161 | 1536,096                  | 5  | 49000        | 7350                | 20954,18               | 7       | 27462,41             | 7       |
| 649             | 1536,9624 | 1536,543                  | 5  | 170000       | 30600               | 23953,3                | 10      | 30459,64             | 9       |
| 650             | 1537,0191 | 1536,599                  | 5  | 31000        | 4650                | 20884,87               | 8       | 27390,97             | 9       |
| 651             | 1544,7451 | 1544,323                  | 5  | 53000        | 10600               | 25955,1                | 9       | 32428,66             | 8       |
| 652             | 1555,6212 | 1555,197                  | 5  | 53000        | 10070               | 24858,74               | 10      | 31287,04             | 9       |
| 653             | 1561,2291 | 1560,802                  | 5  | 151000       | 25670               | 25268.87               | 7       | 31674.08             | 7       |
| 654             | 1561,3193 | 1560.893                  | 5  | 64000        | 10880               | 25084.8                | 9       | 31489.64             | 10      |
| 655             | 1570,8303 | 1570.401                  | 5  | 83000        | 16600               | 25670.45               | 6       | 32036.51             | 7       |
| 656             | 1575.21   | 1574.78                   | 5  | 28000        | 4760                | 23529.01               | 6       | 29877.37             | 7       |
| 657             | 1599.2963 | 1598.859                  | 5  | 37000        | 7030                | 25567.53               | 7       | 31820.28             | 8       |
| 658             | 1602,3869 | 1601,949                  | 5  | 27000        | 4860                | 24204,19               | 8       | 30444,88             | 7       |

Tabela A2.12: Linhas Espectrais de Dy I (602-658)

| N          | λ         | λ                              | IR     | A             | $\Lambda A_{\Gamma}$ | E:                  | L       | E.                  | I.     |
|------------|-----------|--------------------------------|--------|---------------|----------------------|---------------------|---------|---------------------|--------|
| 659        | 1611 9698 | $\frac{\lambda_{ar}}{1611.53}$ | 5      | 17000         | 2720                 | 22767.83            | 8<br>8  | 28971 /2            | 8      |
| 660        | 1620 181  | 1619 738                       | 5      | 113000        | 19210                | 23340.12            | 7       | 20512.27            | 7      |
| 661        | 1625,161  | 1624 925                       | 5      | 13000         | 2340                 | 23340,12            | 6       | 29512,27            | 7      |
| 662        | 1641 6857 | 16/1 237                       | 5      | 34000         | 6120                 | 23357,82            | 7       | 30444.88            | 7      |
| 663        | 1647 4437 | 1646.004                       | 5      | 165000        | 24750                | 24353,58            | 6       | 27462 41            | 7      |
| 664        | 1654 1776 | 1652 726                       | 5      | 12000         | 24750                | 21392,4             | 0       | 27402,41            | 7      |
| 665        | 1658 5562 | 1659 102                       | 5      | 12000         | 2100<br>6150         | 23652,07            | 0<br>11 | 29071,37            | /      |
| 666        | 1661 2455 | 1660 702                       | 5      | 41000         | 1991                 | 23077,38            | 11      | 29700,72            | 0      |
| 667        | 1666 7722 | 1666 217                       | 5      | 9900          | 2240                 | 232/1,/4            | 9       | 29291,32            | 0<br>7 |
| 00/<br>669 | 1671 2207 | 1670.872                       | 5      | 16000         | 5240<br>28720        | 23877,73            | 0       | 29877,37            | 7      |
| 008        | 16/1,329/ | 1070,873                       | 5      | 109000        | 28/30                | 25529,01            | 0       | 29312,27            | /      |
| 669        | 1680,3334 | 16/9,8/4                       | 5      | 66000         | 11880                | 23340,12            | /       | 29291,32            | 8      |
| 670        | 1/04,9//5 | 1704,512                       | 5      | 127000        | 24130                | 25955,1             | 9       | 31820,28            | 8      |
| 6/1        | 1/09,31/  | 1708,85                        | 5      | 42000         | 6720                 | 21540,68            | 9       | 2/390,97            | 9      |
| 672        | 1725,5987 | 1725,128                       | 5      | 21000         | 4200                 | 25567,53            | 7       | 31362,62            | 7      |
| 673        | 1738,0967 | 1737,622                       | 5      | 4900          | 784                  | 23953,3             | 10      | 29706,72            | 10     |
| 674        | 1745,9381 | 1745,462                       | 5      | 55000         | 11550                | 25012,21            | 8       | 30739,79            | 8      |
| 675        | 1751,0804 | 1750,602                       | 5      | 120000        | 19200                | 22647,94            | 7       | 28358,7             | 7      |
| 676        | 1756,7993 | 1756,32                        | 5      | 14000         | 2800                 | 25670,45            | 6       | 31362,62            | 7      |
| 677        | 1761,016  | 1760,535                       | 5      | 10900         | 1635                 | 22647,94            | 7       | 28326,48            | 6      |
| 678        | 1785,4273 | 1784,94                        | 5      | 162000        | 29160                | 24858,74            | 10      | 30459,64            | 9      |
| 679        | 1788,6304 | 1788,142                       | 5      | 10100         | 1717                 | 22767,83            | 8       | 28358,7             | 7      |
| 680        | 1806,8349 | 1806,341                       | 5      | 14000         | 2660                 | 25955,1             | 9       | 31489,64            | 10     |
| 681        | 1810,3512 | 1809,857                       | 5      | 18000         | 3240                 | 24353,58            | 7       | 29877,37            | 7      |
| 682        | 1814,0096 | 1813,515                       | 5      | 320000        | 60800                | 25774,39            | 10      | 31287,04            | 9      |
| 683        | 1825,6504 | 1825,152                       | 5      | 11400         | 1824                 | 24229,22            | 9       | 29706,72            | 10     |
| 684        | 1835,728  | 1835,227                       | 5      | 28000         | 5320                 | 25012,21            | 8       | 30459,64            | 9      |
| 685        | 1860,5205 | 1860,013                       | 5      | 66000         | 12540                | 25084,8             | 9       | 30459,64            | 9      |
| 686        | 1875,49   | 1874,978                       | 5      | 23000         | 4600                 | 25955,1             | 9       | 31287,04            | 9      |
| 687        | 1883,9204 | 1883,406                       | 5      | 14000         | 2660                 | 24204,19            | 8       | 29512,27            | 7      |
| 688        | 1905,1756 | 1904,655                       | 5      | 17000         | 2890                 | 22647,94            | 7       | 27896,8             | 8      |
| 689        | 1920,4621 | 1919,938                       | 5      | 9200          | 1748                 | 25268,87            | 7       | 30475,95            | 6      |
| 690        | 1931,9901 | 1931,462                       | 5      | 25000         | 4750                 | 25268,87            | 7       | 30444,88            | 7      |
| 691        | 1949,7092 | 1949,177                       | 5      | 19000         | 3230                 | 22767.83            | 8       | 27896.8             | 8      |
| 692        | 1965,7449 | 1965.208                       | 5      | 14000         | 2660                 | 24204.19            | 8       | 29291.32            | 8      |
| 693        | 2000,4481 | 1999,903                       | 5      | 7700          | 1309                 | 23359,82            | 6       | 28358,7             | 7      |
| 694        | 2005,4709 | 2004.923                       | 5      | 6600          | 1056                 | 23340.12            | 7       | 28326.48            | 6      |
| 695        | 2008.2741 | 2007.727                       | 5      | 20000         | 4200                 | 25760.39            | 8       | 30739.79            | 8      |
| 696        | 2046.6556 | 2046.097                       | 5      | 73000         | 11680                | 23440.46            | 5       | 28326.48            | 6      |
| 697        | 2070.5263 | 2069.961                       | 5      | 4700          | 846                  | 23529.01            | 6       | 28358.7             | 7      |
| 698        | 2084 432  | 2083 863                       | 5      | 9200          | 1472                 | 23529.01            | 6       | 28326.48            | 6      |
| 699        | 2094.4909 | 2093.919                       | 5      | 21000         | 4200                 | 25670.45            | 6       | 30444.88            | 7      |
| 700        | 2097 6542 | 2097 082                       | 5      | 27000         | 4860                 | 24204 19            | 8       | 28971 42            | 8      |
| 701        | 2108 7259 | 2108 151                       | 5      | 92000         | 15640                | 24229 22            | 9       | 28971.42            | 8      |
| 702        | 2100,7235 | 2126.632                       | 5      | 22000         | 3300                 | 25920.88            | 6       | 30621.87            | 7      |
| 702        | 2127,2115 | 2129,532                       | 5      | 127000        | 20320                | 22767.83            | 8       | 27462.41            | ,<br>7 |
| 703        | 2130,110  | 2127,555                       | 5      | 34000         | 6460                 | 25760 39            | 8       | 30444.88            | 7      |
| 704        | 2154,7041 | 2154,122                       | 5      | 24000<br>8000 | 1602                 | 23700,39            | 0       | 27806.8             | 8      |
| 705        | 2102,1341 | 2101,544                       | 5      | 13000         | 2210                 | 23271,74            | 9       | 27390,8             | 0      |
| 700        | 2105,052  | 2102,442                       | 5      | 58000         | 2210                 | 22707,83            | 0       | 21390,91            | ל<br>ק |
| 707        | 2209,149  | 2200,347                       | 5      | 17000         | 2000<br>2400         | 23032,07            | 0       | 20330,1             | 0      |
| 700        | 2217,7023 | 2217,370                       | 5      | 17000         | 5400<br>6800         | 23733,1<br>22977 75 | 7<br>0  | 30439,04<br>20250 7 | צ<br>ק |
| 709        | 2231,0090 | 2231,001                       | ג<br>ד | 40000         | 2200                 | 23011,13            | 0<br>7  | 20000,/<br>20077-27 | י<br>ד |
| 710        | 2320,2717 | 2319,039                       | 5      | 10000         | 3200<br>2000         | 25507,55            | /       | 298/1,3/            | /      |
| /11        | 2336,9345 | 2336,297                       | 5      | 15000         | 3000                 | 25012,21            | 8       | 29291,32            | 8      |
| /12        | 2377,262  | 23/6,614                       | 5      | 37000         | /400                 | 25084,8             | 9       | 29291,32            | 8      |
| 713        | 2425,8361 | 2425,174                       | 5      | 20000         | 3600                 | 23340,12            | 1       | 2/462,41            | 1      |
| 714        | 2427,6382 | 2426,976                       | 5      | 11400         | 1938                 | 23271,74            | 9       | 27390,97            | 9      |
| 715        | 2428,9649 | 2428,303                       | 5      | 60000         | 11400                | 25760,39            | 8       | 29877,37            | 7      |

Tabela A2.13: Linhas Espectrais de Dy I (659-715)

| Ν   | $\lambda_{ m vacuo}$ | $\lambda_{ m ar}$ | I. R. | $A_E$ | $\Delta A_{\rm E}$ | Ei       | $\mathbf{J}_{\mathbf{i}}$ | Es       | $J_s$ |
|-----|----------------------|-------------------|-------|-------|--------------------|----------|---------------------------|----------|-------|
| 716 | 2437.4846            | 2436.82           | 5     | 20000 | 3600               | 23359.82 | 6                         | 27462.41 | 7     |

Tabela A2.14: Linhas Espectrais de Dy I (716)

# APÊNDICE B: Tratamento dos Espectros de Emissão

Os espectros de emissão obtidos em laboratório foram tratados por meio do programa *Origin* quanto à intensidade e ao comprimento de onda, a fim de eliminar a influência do equipamento e o erro pela variação de posição da grade de difração durante as medições. A calibração de intensidade foi realizada utilizando uma lâmpada da *Oriel* de quartzo e filamento de tungstênio, Modelo 63355-Sn7-1719, que emite de 250 nm a 2400 nm. Tal lâmpada é pré tratada e calibrada pelo fabricante e os dados são modelados através de dados do NIST, resultando em uma fórmula que é fornecida em seu manual:

$$I(mW/m^2 nm) = \lambda^{-5} \cdot e^{(A+B/\lambda)} \cdot (C + D/\lambda + E/\lambda^2 + F/\lambda^3 + G/\lambda^4 + H/\lambda^5)$$

onde: A = 42,9662266936948 B = -4467,28058252347 C = 0,91706929594553 D = 216,922972460706 E = -190527,025445589 F = 68092375,7403678 G = -9076524505,64917H = 0

### B1 Calibração de Intensidade

Para realizar a calibração de intensidade, foram obtidos espectros na mesma posição de grade tanto para a lâmpada de catodo oco de érbio quanto para a lâmpada de calibração de tungstênio. Para cada um dos espectros, foi obtido o sinal de fundo colocando-se um anteparo entre a entrada do monocromador e a fonte de radiação. Estes sinais foram subtraídos dos espectros das lâmpadas. Considerando a mesma base de tempo, o cálculo para a calibração de intensidade seque a seguinte equação:

$$I_{corr} = I_{LCO} \cdot \frac{I_{Oriel}}{I_{TRIAX \, Oriel}}$$

onde:

 $I_{corr}$  = intensidade corrigida.

 $I_{LCO}$  = intensidade do espectro da lâmpada de catodo oco menos a intensidade obtida com o anteparo (intensidade de fundo).

 $I_{Oriel}$  = valores obtidos pela equação fornecida pelo fabricante.

 $I_{TRIAX \ Oriel}$  = intensidade medida com a lâmpada de calibração menos a intensidade de fundo.

## B2 Calibração do Comprimento de Onda

Para a Calibração de comprimento de onda, realizaram-se os seguintes procedimentos:

- a) Comparação dos espectros simulados do disprósio e do argônio a partir da literatura com o espectro obtido com a lâmpada de catodo oco e identificação das linhas de emissão.Este procedimento está representado nas Figuras B2.1.
- b) Como os espectros adquiridos possuem 1024 pontos, é possível relacionar as linhas de emissão com o correspondente ponto do gráfico:

 $Ponto_i \leftrightarrow \lambda_i$ 

- c) Interpolação dos 1024 pontos por meio do gráfico construído a partir da lista de pontos anterior.
- d) Este interpolação dá origem a uma lista de pontos no *Origin* equivalente ao comprimento de onda corrigido.

Ponto<sub>*i*</sub>  $\leftrightarrow \lambda_i$ 

com *j* = 1, 2, 3,...1024.



Figura B2.0.1: : Identificação das linhas espectrais. (A) na região de 398 a 418 nm: (acima) espectro experimental; (abaixo) espectros simulados de Dy I, Ar I e Ar II. (B) na região de 417 a 438 nm: (acima) espectro experimental; (abaixo) espectros simulados de Dy I, Ar I e Ar II. (C) na região de 548 a 568 nm: (acima) espectro experimental; (abaixo) espectros simulados de Dy I e Ar I. (D) na região de 588 a 605 nm: (acima) espectro experimental; (abaixo) espectros simulados de Dy I e Ar I.

#### B3 Gráficos dos Espectros de Emissão

A seguir são apresentados os espectros calibrados com relação à intensidade e ao comprimento de onda, em que são indicadas linhas de disprósio. Todos os valores de comprimento de onda mostrados no gráfico são correspondentes ao comprimento de onda no vácuo.

A as figuras a seguir apresentam os espectros obtidos da descarga de catodo oco de disprósio submetidas à diferentes correntes de operação e pressão de argônio.



Figura B3.1: Espectros corrigidos da descarga de catodo oco de disprósio submetida a corrente de 10 mA e pressão do argônio de 1 mbar. (A) região de 398 a 418 nm. (B) região de 417 a 438 nm. (C) 548 a 570 nm. (D) região 588 a 605 nm.



Figura B3.2: Espectros corrigidos da descarga de catodo oco de disprósio submetida a corrente de 10 mA e pressão do argônio de 10 mbar. (E) região de 398 a 418 nm. (F) região de 417 a 438 nm. (G) 548 a 570 nm. (H) região 588 a 605 nm



Figura B3.3: Espectros corrigidos da descarga de catodo oco de disprósio submetida a corrente de 40 mA e pressão do argônio de 10 mbar. (I) região de 398 a 418 nm. (J) região de 417 a 438 nm. (K) 548 a 570 nm. (L) região 588 a 605 nm



Figura B3.4: Espectros corrigidos da descarga de catodo oco de disprósio submetida a corrente de 40 mA e pressão do argônio de 1 mbar. (I) região de 398 a 418 nm. (J) região de 417 a 438 nm. (K) 548 a 570 nm. (L) região 588 a 605 nm

As possíveis atribuições para estas linhas encontram-se nas tabelas A2.3, A2.6 e A2.7, do Apêndice A.

# **APÊNDICE C: Tratamento para Determinação da Intensidade Relativa das Linhas do Espectro.**

Para calcular a temperatura eletrônica de excitação de um sistema, através do Método do Gráfico de Boltzmann, é necessário conhecer a intensidade das linhas do espectro deste sistema. O método utilizado para determinar a intensidade de uma linha é calcular a área formada pela mesma.

Neste trabalho, as áreas de cada linha são calculadas através de ajustes de curvas gaussianas sobre as linhas espectrais. Adota-se, assim, que a intensidade da linha espectral é aproximadamente igual a área descrita pela curva gaussiana. O programa *Origin* foi utilizado para a determinação destas intensidades.

O método para o cálculo da intensidade da linha é representado na figura abaixo.



Figura C.1: Método do cálculo de intensidade através de curvas gaussianas.

# ANEXO A: Método dos Mínimos Quadrados e o Coeficiente de Determinação.

O método dos mínimos quadrado (MMQ) é aplicado ao caso em que se pretende ajustar uma linha reta a um conjunto de pares experimentais.

Admita-se que são realizadas várias medidas das grandezas x e y, obtendo-se um conjunto de pontos { $(x_1, y_1); (x_2, y_2); (x_3, y_3), ..., (x_n, y_n)$ }, sendo y uma variável aleatória relacionada a x pela equação de uma reta.

$$y = a.x + b \tag{D.1}$$

A equação D.1 representa o valor mais provável para a variável y. Ver figura abaixo.



Figura D.1: Representação de ajuste linear.

As estimativas de mínimos quadrados das constantes a e b são os valores de a e b que tornam mínima a expressão.

$$\sum_{i=1}^{n} \varepsilon_{i}^{2} = \sum_{i=1}^{n} (y_{i} - (a.x_{i} + b))^{2}$$
(D.2)

onde *n* é o número de pontos e,  $\varepsilon_i$  é a diferença entre o valor observado  $y_i$  e o valor esperado para y = a.x + b. E a expressão (D.2) acima representa a soma dos quadrados destas diferenças.

Diferenciando-se a equação D.2 com relação aos parâmetros a e b, respectivamente, e igualando-se os resultados a zero (condição de mínimo), os melhores valores para as constantes podem então ser encontrados.

$$\frac{\partial \sum \varepsilon_i^2}{\partial a} = \sum_{i=1}^n \frac{\partial \left[ \left( y_i - (a \cdot x_i + b) \right)^2 \right]}{\partial a} = -2 \sum_{i=1}^n [x_i \cdot y_i - a \cdot x_i^2 - b \cdot x_i] = 0 \quad (D.3)$$

$$\frac{\partial \sum \varepsilon_i^2}{\partial b} = \sum_{i=1}^n \frac{\partial \left[ \left( y_i - (a, x_i + b) \right)^2 \right]}{\partial b} = -2 \sum_{i=1}^n [y_i - a, x_i^2 - b] = 0 \qquad (D.4)$$

Pela resolução simultânea das equações D.3 e D.4 para *a* e *b* obtemos:

$$a = \frac{\sum x_i \sum y_i - n \sum (x_i, y_i)}{(\sum x_i)^2 - n \sum x_i^2}$$
(D.5)

$$b = \frac{\sum (x_i, y_i) \sum x_i - \sum x_i^2 \sum y_i}{(\sum x_i)^2 - n \sum x_i^2}$$
(D.6)

Outro parâmetro importante no MMQ é o coeficiente de determinação  $R^2$  que assume valores entre 0 e 1 que indica quão a equação determinada se ajusta aos pontos dados. Quanto mais próximo de 1, tanto melhor o ajuste. O coeficiente de determinação pode ser calculado a através da equação D.7.

$$R^{2} = \frac{\left(\sum x_{i} \cdot y_{i} - \sum x_{i} \sum \frac{y_{i}}{n}\right)^{2}}{\left(\sum x_{i}^{2} - \frac{(\sum x_{i})^{2}}{n}\right) \left(\sum y_{i}^{2} - \frac{(\sum y_{i})^{2}}{n}\right)}$$
(D.7)