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(RBF) neural network were trained to estimate the diameter 
of machined holes. The multisensory approach includes an 
acoustic emission sensor, accelerometer, dynamometer and 
an electric power sensor. The optimum configuration for 
each artificial intelligence system was determined based on 
algorithms designed to examine the influence of each sys-
tem’s signals and specific parameters on the final result of 
the estimate. The results indicated the MLP ANN was more 
robust in withstanding data variation. The ANFIS system 
and RBF network showed markedly varying results in 
response to variations in the obtained data during training, 
suggesting these systems should always be trained with the 
dataset presented in the same order. A satisfactory response 
between the multisensory approach and MLP network was 
observed. The vertical component of force, along the z axis, 
was the only parameter able to present valid results for all 
the artificial intelligence systems analysed.

Keywords  Artificial intelligence systems · Drilling 
process monitoring · ANFIS · RBF · ANN · Hole diameter · 
Experimental trials · Cutting forces · Aerospace alloys

1  Introduction

The control of industrial metal removal processes is usu-
ally of great economic importance because of the efforts to 
reduce raw materials, water use and electrical power con-
sumption as well as labor waste. Indirect manufacturing 
operations, such as dimensional quality control, generate 
indirect costs that can be avoided or reduced using control 
systems [1]. The next step in manufacturing process moni-
toring is intelligent manufacturing systems (IMS), which 
have been studied since the 1980s through the application 
of artificial neural networks (ANN) [2].

Abstract  Monitoring metal removal in machining pro-
cesses has proved to be essential for companies seeking a 
high level of excellence in the quality of their products and 
processes, contributing to improved resource allocation and 
reduced wastage due to nonconforming parts. Multisensory 
approaches have been employed to monitor these processes, 
aiming to use signals to train artificial intelligence sys-
tems to perform the task of indicating nonconformities in 
the tools or the product being manufactured. In this study, 
three artificial intelligence systems were used to estimate 
diameter of holes produced in sandwich plates—Ti6Al4V 
alloy was mounted in AA 2024-T3 alloy—and cutting 
conditions were selected to simulate a common aircraft 
fuselage manufacturing process. A multilayer perceptron 
artificial neural network (MLP ANN), an adaptive neuro-
fuzzy inference system (ANFIS) and a radial basis function 
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Automated manufacturing systems have gained ground 
and are applied in machining centers or individually in 
CNC machines. Automation techniques used in manufac-
turing are applied to the processing, assembly, inspection 
and handling of products.

In inspection, various computer-aided quality control 
methods have been employed in industry. These methods 
include control by visual inspection through the application 
of intelligent systems for detecting defects [3], analysis of 
acoustic emission and vibration signals to determine grind-
ing wheel wear, and estimation of surface roughness in 
grinding processes [4].

Nearly 90 % of the all engineering components are sub-
jected to some operation of machining during manufac-
ture. Drilling is one of the most common machining pro-
cesses employed in industrial manufacturing and occupies 
a prominent position in the metal working industry, being 
responsible for removing 25 % of all the removed material 
in industrial processes, especially in automotive industry. 
Most of round holes are manufactured with twist drills and 
need to be inspected. Quality inspection is usually based 
on precision of diameter and form errors (circularity, cilin-
dricity and roughness) according to the design tolerances 
required. Drill wear is generally monitored using direct 
methods such as optical devices. To enable such inspection, 
the process must be stopped and both drill and machined 
part should be carried out to a specific gate in line produc-
tion what increases production time and costs [5]. In addi-
tion, drill point is hidden inside the hole during operation 
and chip evacuation is hampered when drilling blind holes, 
what are unfavorable conditions compared to turning and 
milling operations.

When a cutting edge and/or margin of drill wear out, 
the cutting phenomena of drilling process becomes com-
plex, and as wear progresses, force and power required to 
keep machining is increased. During machining component 
forces are exerted on the outer cutting lips and cutting tools 
are subjected to an extremely severe rubbing process. So, 
the mechanical energy necessary for the drilling process is 
transformed into heat, thereby leading to severe thermal/
frictional conditions at the tool–chip interface. As a result 
of this, high cutting temperatures are generated on this 
interface and can lead to accelerate wear rate, chipping and 
ultimately failure. If drill is not changed before its degra-
dation, hole’s quality will be compromised. Therefore, 
monitoring of machine power or forces and torque during 
machining are an important aspect to be considered and has 
attracted great interest from metal working industry. But 
the major challenge in drilling monitoring is the diagnostic 
capability of the systems in the real-time correct identifica-
tion of the drilling tool condition, i.e., to achieve the correct 
correlation between drill wear and signals being acquired 
in real time monitoring.

It has been reported in the literature that the first work 
using artificial neural networks (ANN) in monitoring 
machining processes was carried out by Rangwala and 
Dornfeld [6] at the end of the 1980s. These authors devel-
oped a back-propagation network to classify sharp and 
worn tools in turning operation. In drilling operation, the 
artificial neural networks have been employed in moni-
toring of drill wear with aid of sensors that can acquire 
many signals. The various types of signals employed 
include those produced during machining and obtained by 
dynamometer loads [7], electrical current obtained by the 
application of Hall-effect sensors on electric motors [8], 
vibrations [9] and also a combination of these and other 
sensors such as accelerometers and acoustic emission sen-
sors [10]. The status of the wear is analysed with base on 
input variables such as cutting speed, feed rate, drill diam-
eter, drill geometry among others.

The use of artificial intelligence systems has filled a gap 
in obtaining mathematical models for complex systems. 
During this research, no mathematical models were found 
in scientific articles or books to analyse the drilling process 
dynamically to determine the final hole geometry.

In this context, this research aims to contribute to ratify 
the use of artificial intelligence systems in evaluating the 
end result of machining manufacturing processes. So, a 
comparative analysis of the performance of three artificial 
intelligence techniques to estimate the diameter of holes 
machined by high-precision drilling in two metallic mate-
rials widely employed in the aircraft industry. This inves-
tigation also contributes to extend the work of Cruz et al. 
[5], who employed multilayer perceptron artificial neural 
networks (MLP ANNs) to analyse the relationship between 
the signals obtained in monitoring the drilling process and 
the hole diameters obtained in the process.

2 � Literature review

Machining represent a large portion of the manufacturing 
processes employed in industry today, and it is estimated 
that about 70 % of manufactured products are produced by 
this type of process, 10 % of which correspond to drilling 
processes [11].

Whatever the field of activity may be, all manufacturers 
share common goals such as maximization of productivity 
allied to minimization of direct operating costs and indirect 
manufacturing or overhead costs, which are widely applied 
in setting goals and objectives for manufacturing processes. 
Overhead costs include: depreciation of machinery and 
equipment used in production, supervisor salaries and labor 
costs, energy consumed by manufacturing processes (elec-
trical, pneumatic, etc.), environmental impacts and worker 
injuries caused by the use of cutting fluids, and quality 
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control costs. The latter contributes to the costs of labor and 
to the acquisition and maintenance—including the calibra-
tion and repair—of measuring instruments and the costs of 
operators, as well as the costs involved in ensuring suitable 
conditions for taking measurements. Like the movement of 
materials, their storage time and the time spent in waiting 
for the next operation, the activity of inspection is consid-
ered a transaction that does not add value to the final prod-
uct [1].

To reduce the costs of inspection activities, industry uses 
control systems to correct operating parameters by moni-
toring signals to keep the product’s characteristics within 
acceptable limits. Monostori et al. [12] have described the 
control, monitoring and diagnostics of industrial processes 
as fields that overlap in terms of the techniques that are 
used, such as signal processing to detect abnormal condi-
tions during the operation.

Manufacturing processes can be monitored to verify tool 
wear and also to detect cutting tool´s breakage during the 
process by analysing signals to measure and estimate the 
process variables. This approach is known as tool condition 
monitoring. Other approaches consist of determining the 
surface integrity or dimensional accuracy of the workpiece. 
Liang et al. [13] reported the state of the art in the control 
and monitoring of industrial processes, and relate the moni-
tored characteristics to the types of signals used in various 
applications.

Control over a process depends on the knowledge of 
a model that relates the parameters and variables of this 
process to the expected results of an architecture, which 
will define the adjustments needed to meet the desired 
characteristics. The model of a process can be obtained 
by two strategies: mathematical formulation by differen-
tial equations or, if a large amount of data is available, an 
artificial intelligence system can be used for the approxi-
mation [14]. Mathematical models are developed when 
one is knowledgeable about the relationship between the 
components involved. However, high complexity allied to 
nonlinearities in the tool and workpiece behavior during 
the process hinders the application of such models and the 
determination of an analytical solution. Furthermore, the 
simulation of complex models requires high computational 
performance.

To be classified as intelligent, a system must have char-
acteristics that are related to human intelligence, such as 
memorization, the use of knowledge (data) in problem solv-
ing, and the ability to learn from experience [15]. Expert 
systems and artificial neural networks (ANN) are two arti-
ficial intelligence tools that can be used in process control. 
According to Wilamowski and Irwin [16], the knowledge 
contained in an ANN is not available in an understandable 
way, while an expert system can provide information about 
how and why a particular solution was obtained.

According to Huang and Zhang [2], computer integrated 
manufacturing is always under continuous improvement, so 
the application of intelligent systems is the next step in pro-
duction control, as indicated by the considerable increase 
in the number of scientific articles published since the 
1980s. The authors present a survey of ANN applications 
in manufacturing to support activities involving product 
design, process planning, production scheduling, modeling 
and control, monitoring and diagnostics, quality control, 
parts classification and robotics.

The term soft computing, which was proposed by Zadeh 
[17], reflects the need to consider the vagueness and uncer-
tainty that are part of the human decision-making process 
in the analysis of real problems for intelligent embedded 
systems. The reason for this is that humans make better 
decisions based on imprecise information than on meticu-
lously detailed information, e.g., when parking a car, the 
task of parking was performed based only on the driver’s 
perception of the dimensions of the parking space.

Soft computing consists of the fusion of fuzzy logic with 
artificial neural networks and evolutionary computation, 
resulting in an intelligent system that is able to combine 
the characteristics of each component, such as imprecision, 
learning and uncertainty, respectively [18].

According to Dote and Ovaska [19], industrial applica-
tions of soft computing include the aviation sector, com-
munication systems, home appliances, power systems, 
manufacturing automation and robotics, power electronics 
and motion control, and processes and transport engineer-
ing. Intelligent systems are therefore very effective when 
applied to real problems, when the traditional approach is 
difficult to apply due to the need for better models.

Artificial neural networks are very useful when working 
with reactive quality control, which, according to Huang 
and Zhang [2], includes sampling planning, batch accept-
ance analysis and rework analysis.

Chinnam et  al. [20] proposed an online quality control 
method based on process control during the manufacturing 
operation, which involves the use of a multilayer percep-
tron artificial neural network (MLP ANN) with three hid-
den layers to build a relationship between outputs and pro-
cess parameters.

In the monitoring of machining operations, knowledge 
of the mathematical model of the process is used for con-
trol, based on the physics of their interactions. This model 
is usually approximated by differential equations that can 
be applied to simulation software by the finite element 
method, allowing the behavior of the process to be ana-
lysed, albeit with great computational effort. However, 
due to the complexity of the tool/workpiece interaction 
understanding, accurate mathematical models are difficult 
to be obtained. Soft computing methods such as ANN and 
genetic algorithms can be used to model the process based 
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on collected data. The advantage of using this kind of solu-
tion lies in its ability to relate outputs to inputs, despite 
inaccurate, missing or uncertain data [14].

Abu-Mahfouz [9] proposed a tool condition monitor-
ing system to enable more efficient and economical use 
of a twist drill during dry machining of an AISI 1040 steel 
grade. The author employed an accelerometer to capture 
the flange vibrations, disregarding the input and output 
transients of the drill in the workpiece. An MLP ANN was 
trained using the feed, the tool’s rotation and four statisti-
cal parameters resulting from processing the acceleration 
signal to detect five types of drill wear. The MLP network 
was able to detect wear in all the training sets and achieved 
about 80  % success rate in classifying the type of wear, 
demonstrating the capacity of the acceleration signal to 
monitor manufacturing processes.

Hermann [21] has investigated the application of neural 
network based sensor fusion in monitoring of drill wear 
and failure and trained an MLP ANN by the backpropaga-
tion method to identify both problems, based on acoustic 
emission signals, vibration and feed force. Online monitor-
ing was carried out with a conventional milling machine 
and the accurate recognition of drill wear was analysed in 
relation to the input signals presented to the MLP network. 
The author reported that the best results in terms of detect 
drill wear were obtained by combining the mean values of 
acoustic emission and feed force signals.

Sensors and sensing techniques, control strategies and 
open-source software available for monitoring manufactur-
ing processes were discussed by Liang et al. [13]. Advances 
in these fields are expected to involve the use of data to 
control chip and burr formation. Process information will 
be collected more comprehensively with more sensors to 
monitor several variables.

Bustillo et  al. [22] carried out a study using a virtual 
sensor for online fault detection of multi-tooth tools dur-
ing milling operation of engine crankshafts based on a 
Bayesian model and used the electrical power consumption 

and the machining time as output variables. These authors 
reported that a 26 workpiece interval before the workpiece 
that is machined in real time is necessary for fault detec-
tion, against 40–70 workpiece interval observed in previous 
works, as well as a measured accuracy of 98 %.

An approach for controlling machining processes con-
sists of tool condition monitoring. This approach involves 
collecting data, generally using multiple sensors to deter-
mine the wear level, indicating the most economical 
moment for changing the tool. Kandilli et  al. [10] moni-
tored drilling and milling processes in real time using force 
sensors (x, y and z), acceleration, current, and acoustic 
emission installed in a 4-axis CNC machining center. The 
mean, standard deviation and RMS of the collected signals 
were presented to an MLP ANN to identify wear.

A review of artificial intelligence-based monitoring 
systems for machining processes is presented in Abellan-
Nebot and Subirón [23]. Their survey considered the differ-
ent types of sensors used, the signal processing techniques, 
the characteristics of the signals, and the methods used for 
their extraction, the design of experiments to use the least 
possible amount of data, and lastly, the characteristics of 
the artificial intelligence techniques applied, to relate them 
to process outputs. Figure  1 shows their proposal for the 
implementation of intelligent monitoring of a manufactur-
ing process.

Bustillo and Correa [24] employed a Bayesian network 
to predict the surface roughness of holes drilled in steel 
workpieces. Their results were divided into classes of 
roughness, and the network accurately classified 86  % of 
the estimates.

In other research, Ferreiro et al. [25] employed data min-
ing techniques to obtain a reliable model to detect the gen-
eration of burr in holes of an aeronautical aluminum alloy, 
Al 7075-T6 grade, after drilling operation with carbide 
drills. Since data mining is a process employed to describe 
knowledge discovery and to search for significant relation-
ships, such as patterns, association, and changes among 

Fig. 1   Generic method for developing an intelligent monitoring system for machining processes (adapted from Abellan-Nebot and Subirón [23])
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variables in databases, in this research the authors aimed 
to study the sensitive of different signals to the burr detec-
tion, to treat and to use them to develop on-line monitor-
ing system, thereby approximating the optimal model to 
the industrial real applications. In regard of feature selec-
tion strategy, the authors reported that is important to find 
the most influential variables that can improve the model 
in term of their accuracy, validity, reliability and stability. 
Torque of the spindle, electrical power consumed and axial 
force were the selected signals because of some advantages 
presented by these authors such as: (1) the relative simplic-
ity of the acquisition method and because no elements are 
added to the workpiece, resulting in easy implementation, 
since there are not external sensors; (2) the elimination of 
unproductive operations by the reduction in the number 
of inspections and operations to remove burr and conse-
quently reduction in costs.

Grzenda et al. [26] carried out a research that combines 
genetic algorithms and multilayer perceptrons (MLP) to 
optimize deep drilling operation in terms of improving the 
detection of holes burr under different cutting conditions. 
Their research was divided into three phases (new strat-
egy to evaluate and complete the set of available measure-
ments, a bag of MLP to model the impact of deep drilling 
settings on borehole roughness and a model supplied with 
the hole dimensions, coolant delivery technique (tradi-
tional and MQL one) and expected axial force) to finally 
develop a 3D surface of a surface roughness of a hole as 
a function of drilling process parameters previously men-
tioned. The authors reported that the error rate of predic-
tion performed for the data sets, which are imputed using 
a strategy, can provide the basis for a fitness function, i.e., 
the higher the accuracy of the roughness prediction per-
formed on the imputed data set, the better the imputation 
strategy used to fill in the missing values. Seven input vari-
ables were employed in the experimental trials: tool type, 
tool diameter, hole length, feed rate, cutting speed, coolant 
delivery technique and axial cutting force (parameter that 
the authors considered as one of the main inputs to model 
the drilling process). The authors observed that the MLP 
approach generated reasonable results, since the algorithm 
using a combination of evolutionary approach and MLP 
networks was used to select the imputation strategy and to 
increase the number of measurements available for smooth 
roughness modelling. These authors also found that the 
lowest roughness values provided by the model (3D sur-
face response) was obtained after machining a hole with 
50 mm length with a drill of 10 mm diameter (designed as 
a drill 1), feed rate in the range of 0.22–0.24 mm/rev, cut-
ting speed in the range of 90–120 m/min under the MQL 
technique.

Despite the good results obtained by applying artifi-
cial intelligence systems to monitor machining processes, 

studies focused on estimating the final result of drilling 
process are still few. Into this context, this paper gives the 
contribution to machining field presenting the predicted 
results of hole diameters performed in sandwich plates 
of Ti6Al4V alloy/AA 2024-T3 alloy using three artificial 
intelligence systems. Experimental machining trials were 
also performed.

3 � Materials and methods

This section discusses the implementation of artificial 
intelligence systems, and the methodology used to define 
their configurations. All the information about the tests and 
signal acquisition and processing was obtained from Cruz 
et al. [5].

3.1 � Experimental trials and measurements

The drilling process was carried out in a Zocca U-30 uni-
versal milling machine that is driven by a 6 CV motor 
drive, a variable spindle speed from 45 to 2800 rpm and a 
variable feed rate ranging from 4 to 250 mm/min, with axis 
position control via HMI. The milling machine also has 
electronic rulers with micrometric precision in each axis, 
which was used to ensure that the coordinates of the holes 
in the Zocca workpiece specimen would be standardized 
[5].

The data used for training artificial intelligence systems 
consist of the results of monitoring a drilling process. Nine 
identical uncoated cemented carbide helical drills with 
4.95  mm of diameter were employed in all experimental 
trials. They are recommended for machining alloys from 
aviation industry. The tools were manufactured by OSG 
Sulamericana de Ferramentas Ltda (Brazil). All the experi-
mental trials were carried out without cutting fluid (dry 
condition). Each of the nine carbide drills was identified 
with a serial number. One fresh drill was used to perform a 
total of 162 holes. This number was selected based on pre-
vious machining trials that resulted in significant tool wear, 
and consequently allowing variation in the acquired output 
signals.

The outer diameter of each drill was measured with 
a profile projector; and the average of five measurements 
was stored for use in training the artificial intelligence sys-
tems. It is extremely important to know the numerical value 
of the diameter of the drill so that, together with the tool 
rotation value, it is possible to determine the cutting speed, 
which is essential in machining.

The drilling operation was performed in a sandwich 
plate of commercially available alpha–beta titanium-base, 
Ti-6Al-4V, alloy bonded with interface sealing solution to 
a sheet of aluminum-base, AA2024-T3, alloy. Dimensions 
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of workpiece are 150 mm length × 50 mm width × 3 mm 
height. A total of 54 workpiece specimens were machined 
to produce holes under different sets of machining condi-
tions, i.e., six specimens in each of nine sets.

The cutting parameters were selected to represent vari-
ous machining conditions used in the aviation industry. 
Thus, three values of cutting speed (vc), 7.8, 15.5 and 
31.1 m/min, and three values of feed rate (f), 0.05, 0.09 and 
0.125 mm/rev, were combined, which resulted in nine dif-
ferent sets of conditions.

Four sensors were installed to monitor the drilling pro-
cess: an acoustic emission sensor, a 1D accelerometer, a 
Hall-effect sensor, and a 3D dynamometer. The reason 
for using these sensors is because they are the most used 
in monitoring of machining processes. The signals were 
transferred to a computer via a National Instruments NI 
PCI-6035E data acquisition board, 16-bit, with an acquisi-
tion rate of 2 kS/s. Figure 3 illustrates the setup of the sig-
nal acquisition modules with the computer and the machine 
tool.

Each sensor captured a characteristic of the drilling pro-
cess by measuring the following variables:

•	 The acoustic emission (AE) of the material, which 
consists of the propagation of transient elastic waves 
generated by the rapid release of sources of energy in 
it. The sensor was connected to a test bench used to fix 
the dynamometer to the workpiece specimen and to the 
machine tool table top to capture the acoustic emission 
generated by the deformation, shear and/or rupture of 
the machined material;

•	 The vibrations (acceleration—ACC) in the machine, 
which are due to the forces transmitted to a workpiece 
during machining, were measured with aid of acceler-
ometer. Both AE and ACC signals were measured in the 
x direction (Fig.  2) because such axis showed higher 
sensitivity;

•	 Hall-effect sensors were used to measure the current 
and voltage of the induction motor. Both signals were 
multiplied and filtered, resulting in a signal correspond-
ing to the electrical power consumed;

•	 The component forces acting in machining process are 
related to the material’s resistance, shear and yield, 
which determine the choice of the cutting parameters. 
A 3D dynamometer was installed to collect information 
about the forces in the xy plane and the effective cut-
ting force along the z axis. A test bench was installed 
to ensure the rigidity of the workpiece specimen/sensor/
table top setup to mount this sensor (Fig.  2), which is 
fundamental for the performance of drilling;

•	 The collected signals were analysed by computational 
routines in MATLAB® to eliminate the portions before 
and after the cutting operation was performed when the 
tool was not in contact with the workpiece. The abso-
lute average value of the region of each signal was cal-
culated and used as an input for the ANN, in addition to 
the cutting speed and feed rate employed in the condi-
tion under analysis, as previously reported by Cruz et al. 
[5]. Examples of a typical ANN input data can be found 
in the works carried out by Cruz et al. [5] and Ferreiro 
et  al. [25] and Grzenda et  al. [26]. Feed rate and cut-
ting speed were one of the input variables selected by 

Fig. 2   Diagram illustrating the 
mount position of each sensor 
and the signal acquisition with 
the reference system indicating 
the direction of cutting forces 
(Cruz et al. [5])
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Grzenda et al. [26] when applying a soft computing sys-
tem based on intelligent imputation strategies for rough-
ness prediction in deep drilling of F114 (AISI 1045) 
steel grade with various operational parameters.

It worth mentioning that the neural network mod-
els acted as feature extraction tools, in which many input 
combinations further described were tested and analysed 
regarding the least error obtained. In addition, the early 
stopping technique was used in this work to avoid overfit-
ting problem and improve generalization ability of the neu-
ral network models by monitoring error trend of training 
set, validation set and test set during training Wu and Liu 
[27].

In this work, the cross-validation procedure was applied 
to provide better generalization of neural network models. 
To perform the cross-validation procedure input data was 
partitioned into three sets: training, validation and test sets. 
To ensure a correct comparison of different types of neural 
networks the division of input data into training, validation 
and test sets were performed by independent part of code 
and the division result was stored. The partitioning of input 
data was performed randomly with a certain ratio of input 
entities to be stored as training set, validation set and test 
set (0.6, 0.2 and 0.2, respectively).

The vertical component of force along the z axis 
(z-direction), labeled here as Z component force, was 
used to determine the beginning and end of the operation, 

because among all the signals collected, this was the one 
that best represented the two stages. The regions of inac-
tivity were ignored, as it was the portion of the signal 
corresponding to the withdrawal of the drill bit from the 
machined hole.

Because of each workpiece material has different 
properties like mechanical resistance, for instance, the 
holes will present different dimensional deviations as 
well as the recorded signals will show different patterns 
during machining. Because the different physical prop-
erties and consequently different response in signals 
for Ti6Al4V and AA 2024-T3 alloys, the signals were 
divided into two portions: two-fifths to the Ti6Al4V alloy 
and three-fifths to the AA 2024-T3 alloy, as illustrated 
in Fig.  3. For these signals, the arithmetic mean of the 
absolute values of each signal was calculated to obtain an 
average value of each signal for each hole drilled in the 
workpiece specimens.

The holes diameters were measured with the aid of a 
Mahr 1087 B dial indicator with ±0.005 mm precision. To 
preclude the influence of swarf and chips produced in the 
drilling process, the workpiece specimens were cleaned 
with compressed air and dusting cloths.

Due to the alloys’ different properties, each one shows 
a distinct dimensional behavior differently. Thus, the hole 
diameter obtained was expected to present circularity devi-
ations and was approximated by an ellipse indicating mini-
mum and maximum dimensions.

Fig. 3   Division of the col-
lected signals according to the 
machined material, where two-
fifths (yellow) correspond to the 
Ti6Al4V alloy and three-fifths 
(white) to the AA 2024-T3 alloy 
(Cruz et al. [5])  
(color figure online)
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In this work the total data provided by experimental 
trials was randomly divided to obtain the ANNs estima-
tion error in accordance with the following percentage: 
60 % used ANN training, 20 % for validation and 20 % 
for ANN test to confirm the performance of each neu-
ral network tested. Due to the adopted measuring pro-
cedure, four diameter values were recorded for each 
measured hole, representing the minimum and maxi-
mum hole diameters in each of the alloys. The records 
obtained were used to compose the training set of the 
artificial intelligence systems, in terms of the desired 
outputs.

3.2 � Configuration of artificial intelligence systems used 
for estimating the diameter of machined holes

3.2.1 � MLP network

In this study, an MLP ANN was used which was configured 
and implemented in MATLAB® using the ANN toolbox 
application. The MLP was configured using an algorithm 
proposed by Cruz et al. [5], which is aimed at varying the 
architecture of the neural network and two parameters, as 
illustrated in Fig. 4.

After obtaining the results, the MLP network configu-
ration was chosen based on the classification of the mean 
error obtained in the estimate of the minimum and maxi-
mum diameters. This configuration was selected based on a 
previous analysis made of the network among the five best 
ones that provided the lowest mean error in terms of both 
minimum and maximum diameters.

After the classification, a new algorithm was developed 
to verify the influence of the average of each of the col-
lected signals on the network’s performance. The influence 
of the combination of two signals was also considered. 
This procedure was adopted to obtain a process monitoring 
strategy involving the use of the fewest possible sensors, 
thus reducing implementation costs and interference in the 
manufacturing process. The new algorithm is illustrated in 
the flowchart in Fig. 5.

3.2.2 � ANFIS systems

The configuration of the ANFIS system is defined based on 
the determination of a fuzzy inference system (FIS) with 
its components, as shown in the following section, and the 
subsequent adjustment of the pertinence functions, rules, 
and weights.

Fig. 4   Flowchart representing 
the algorithm for testing the 
MLP network architecture and 
parameters, proposed by Cruz 
et al. [5]
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The tests include the evaluation of the influence of the 
cluster centers on the definition of the FIS rules, deter-
mined by trial and error, and of the influence of the com-
bined input signals.

Like in the implementation of the MLP network, the 
ANFIS system available in MATLAB’s Fuzzy toolbox 
was used. Because the system can support the generation 

of only one output, four ANFIS systems were developed, 
two for each alloy of the workpiece specimen. The results 
were analysed using the mean squared error generated at 
the output of the ANFIS. Another limitation inherent to 
MATLAB® is that a maximum of four simultaneous input 
signals can be used.

Fig. 5   Flowchart representing 
the algorithm for testing the 
signals
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An algorithm was developed to analyse the influence of 
the number of training epochs (Fig. 6). To test the influence 
of input signals, the MATLAB® algorithm was used with 
a method of combination of inputs, known as a sequential 
method, which is similar to the method developed for train-
ing the MLP network. Only the signals of acoustic emis-
sion, power, component of the machining force in the Z 
direction, and acceleration were considered for this test.

3.2.3 � RBF network

The tests conducted on the RBF network consisted of ana-
lysing the influence of the applied signals and scattering 
parameter (spread), which means the support, radius or 
standard deviation of a Gaussian function.

Due to reduced computational effort involved, which is 
justified by the need to check only one parameter, the RBF 
test algorithm included the signal tests simultaneously 
with the spread test. Thus, for each signal or combination 
of signals, the spread was varied from 10 to 1000 in steps 
of 10.

Like the signal tests performed on the MLP and ANFIS 
networks, the sequential combination occurred in sets 
of two combined signals or an individual signal. The 

corresponding algorithm is represented in the flowchart in 
Fig. 7.

3.3 � Network evaluation criteria

Three evaluation criteria were defined to analyse the results 
obtained in the estimation of the diameter of the networks:

•	 Mean error Calculation of the average of the absolute 
and relative mean errors obtained by estimating each 
pair of diameters. Equation  (1) shows the calculation 
performed for a total number of samples “n”:

•	 Quality control Analysis of false positives or false nega-
tives, leading to undue acceptance or rejection of the 
drilling results.

•	 Tolerances Error classification (EC) based on allowed 
dimensional deviations, which, according to the Brazil-
ian NBR 6158 standard [28] are necessary for a preci-
sion drilling process (up to ±48 μm), depending on the 
precision of the measuring instrument used (±5 μm), 

(1)E =

1

n

n
∑

i=1

∣

∣Dmeasuredi
− Destimatedi

∣

∣

Fig. 7   Flowchart representing 
the algorithm developed to test 
the influence of the signals and 
the support of the Gaussian 
functions
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and depending on the tolerance generally used in the 
industry (±12 μm).

4 � Results and discussion

The methodology adopted to simulate the networks 
involved three different combinations of sets of input sig-
nals for each type of network, i.e., with all the collected 
signals, with a single input signal, and with specific combi-
nations of input signals.

Due to the large number of results generated after 
machining each alloy, the hole number 160 was chosen 
because it was closer to the stipulated criterion to halt the 
drilling test (162 holes—condition that drill wear was sig-
nificantly high), as mentioned previously in materials and 
methods section. The experimental results obtained for 

all the output parameters [diameter, the acoustic emission 
(AE), acceleration (ACC) and electrical power (POW) sig-
nals, as well as, the Z component force (FZ)] after drilling 
thin plates of Ti6Al4V and AA 2024-T3 alloys under dif-
ferent cutting speeds and feed rates are shown in Tables 1 
and 2, respectively.

From Table 1 can be observed that in general the ACC 
and FZ signals increased with the cutting speed when 
machining the Ti6Al4V alloy plate, irrespective of the feed 
rate employed, whereas the POW values decreased with 
increase in cutting speed. AE and POW parameters were 
more sensitive to variation in feed rate than others. AE sig-
nals tended to stabilize for speeds in excess of 15.5 m/min, 
regardless the feed rate employed. With regard the diam-
eter, in general, it experienced different pattern for differ-
ent combination of cutting speed and feed rate under the 
conditions investigated. The highest values of FZ values 

Table 1   Experimental results after drilling the Ti6Al4V alloy with different cutting conditions for different cutting conditions (hole number 
160)

Cutting conditions (input) Output parameter

Cutting speed 
(m/min)

Feed rate  
(mm/rev)

Hole diameter 
(mm)

Acoustic emission 
AE signal (V)

Acceleration or 
vibration ACC  
signal (m/s2)

Electrical power 
POW (W)

Z component force 
(FZ) (N)

7.8 0.05 4.97 0.01 −9.16 29.62 30.61

15.5 4.97 0.02 13.92 24.72 81.33

31.1 4.97 0.02 27.45 6.25 144.29

7.8 0.09 4.96 0.02 −4.93 15.65 24.25

15.5 4.98 0.03 20.51 20.03 47.3

31.1 4.96 0.03 18.34 20.77 94.28

7.8 0.125 5.02 0.06 −6.7 59.73 21.25

15.5 4.98 0.08 12.64 30.14 29.24

31.1 4.98 0.08 18.56 14.07 52.45

Table 2   Experimental results after drilling the AA 2024-T3 alloy with different cutting conditions for different cutting conditions (hole number 
160)

Cutting conditions (input) Output parameter

Cutting speed  
(m/min)

Feed rate  
(mm/rev)

Hole diameter 
(mm)

Acoustic emission 
AE signal (V)

Acceleration or 
vibration ACC  
signal (m/s2)

Electrical power 
POW (W)

Z component force 
(FZ) (N)

7.8 0.05 5.00 0.01 −8.4 29.16 17.47

15.5 5.00 0.08 4.38 39.74 61.57

31.1 5.00 0.09 29 47.96 127.69

7.8 0.09 4.98 0.03 −4.68 11.31 11.98

15.5 5.02 0.04 21.96 31.26 27.86

31.1 4.98 0.11 17.97 60.48 66.57

7.8 0.125 5.07 0.07 3.57 57.4 8.47

15.5 5.02 0.21 23.42 82.97 19.91

31.1 5.02 0.19 18.44 100.09 38.02
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were obtained after machining with the lowest feed rate of 
0.25 mm/rev, contrary to expected and usually reported in 
the literature.

In Table  2, results for AA 2024-T3 alloy show that 
the AE, ACC, POW and FZ signals increased with cut-
ting speed. With regard the hole diameter, no significant 
influence of cutting speed and feed rate was observed on 
the diameter. From literature it is known that an increase 
in feed rate directly increases the primary and secondary 
shear zones, tool-chip contact length and, consequently, 
lead to increase in heat generation [29]. As a result of 
that, the yield strength of the tool material drops rapidly, 
thus accelerating wear at the cutting edge during machin-
ing. Machining the aluminum alloy with the highest feed 
rate was also responsible for the highest values of all the 
parameters investigated, with exception of FZ. Contrary 
to expected, the lowest values of the Z component force 
(FZ) were obtained after machining both AA 2024-T3 
and Ti6Al4V alloys with the highest feed rate value of 
0.125 mm/rev. Also, from Tables 1 and 2 can be observed 
that values obtained for most of parameters when machin-
ing the AA 2024-T3 were slightly higher than those for 
Ti6Al4V alloy. Since the experimental trials were carried 
out under dry condition, the high values of the hole diam-
eters in particular for the AA 2024-T3 alloy may be attrib-
uted to the severe plastic deformation during it machining, 
thus generating great amount of heat at the cutting interface 
and, consequently, leading to the strength reduction and 
possible melt of the material in contact with the drill. The 
results are larger diameter and distortion. With regard the 
results for titanium alloy, although machining of titanium 
and its alloys has been a challenger, especially due to their 
high chemical affinity with most of commercially available 
cutting tools and their poor thermal conductivity, in this 

work low cutting speeds were employed with carbide drill, 
compared to the usually values reported in the literature. 
Under these conditions the tool wear rate was still low for 
the number of machined holes, reason for the lower vari-
ation in hole diameters after machining this alloy in com-
parison with that for aluminum alloy under the conditions 
investigated.

The next subsections present the network architec-
tures and parameters selected for the three types of net-
works under study after running the algorithms described 
in Sect.  3, pointing out the ones that achieved the lowest 
mean absolute error of inner and outer diameters for each 
network after training. This is followed by a presentation 
of the results based on the criteria described in Sect. 3.3 for 
the evaluation of groups of input signals that were the most 
efficient in each of the evaluated networks.

4.1 � Results for the MLP network

4.1.1 � MLP network with all the input signals

The architecture of the MLP network with the best result 
for Ti6Al4V and AA 2024-T3 alloys is shown Fig. 8, which 
has six sensor signals, two cutting parameters and the drill 
diameter as inputs, three hidden layers, and two outputs 
corresponding to the minimum and maximum diameters. 
For the Ti6Al4V alloy, after running the algorithm shown 
in Fig. 4, the lowest mean maximum and minimum errors 
were obtained by a network with 10 neurons in the three 
hidden layers, with a 0.3 momentum and 0.7 learning rate, 
which was indicated as [10 10 10] Ti-6Al-4V alloy. For the 
AA 2024-T3 alloy, the lowest mean errors were obtained 
by a network with 20, 10 and 5 neurons in each hidden 
layer, respectively. This configuration showed a momentum 

Fig. 8   Representation of the 
architecture of the MLP net-
work used for the two alloys of 
the test specimens with all the 
signals of the available sensors, 
the cutting parameters and the 
drill diameter
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of 0.8 and a learning rate of 0.3. Figure 8 illustrates the [20 
10 5] architecture for AA 2024-T3.

Figure 9a shows the estimation results (ER) of the MLP 
network for Ti6Al4V alloy. It can be noticed that the val-
ues of 0.0079 and 0.0081 correspond to the mean estima-
tion errors for the maximum and minimum diameters, 
respectively.

The analysis based on the quality control criterion indi-
cated the ability of the MLP network to perform dimen-
sional analysis adequately based on the measured diameters 
when using all the input signals, indicating the acceptance 
or rejection of a machined hole (Table 3).

The results obtained with the third criterion were 
assessed for correct estimates, according to criterion num-
ber two, i.e., ignoring the results that presented false posi-
tives or negatives.

Figure 9b shows that 49.0 % of the errors made by the 
MLP network in estimating the minimum diameter are 
undetectable, and that the percentage obtained for the 
maximum diameter was 56.0  %. This network performed 

satisfactorily in providing dimensional results, as indicated 
by the absence of errors in minimum diameter exceeding 
48 μm and by the presence of only 0.4 % of error above the 
basic mechanical limit, which corresponds to the result of 
only one measurement for a set of 249 measurements of the 
hole diameter.

Figure 9c shows the results of the estimation by the MLP 
network for the AA 2024-T3 alloy. As can be seen, the val-
ues of the mean estimation error of the maximum and mini-
mum diameters were 0.0082 and 0.0093, respectively.

Based on the quality control criterion, the MLP network 
indicated that it was capable of performing the dimensional 
analysis satisfactorily based on the measured diameters, 
indicating the acceptance or rejection of a machined hole 
(Table 4). As can be seen in Table 4, after calculating the 
arithmetic mean between values of minimum (Dmin) and 
maximum (Dmax) diameters, i.e. on average, the results 
indicate that the network estimated 12.9  % of the holes 
incorrectly, with 9.0 % false positives and 3.9 % false nega-
tives when using all the input signals.

(a) ER for the MLP network using all the input signals for the Ti6Al4V
alloy 

(b) EC in the MLP network using all the input 
signals for the Ti6Al4V alloy 

(c) ER for the MLP network using all the input signals for the AA 2024-
T3 alloy 

(d) EC in the MLP network using all the input
signals for the AA 2024-T3 alloy  
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Fig. 9   Estimation Results (ER) and Errors Classification (EC) in the estimation of hole diameters provided by the MLP network with all the 
input signals for the Ti6Al4V and AA 2024-T3 alloys
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Figure 9d indicates that 46 % of the errors made by the 
MLP network in estimating the minimum diameter are 
undetectable, and that the percentage obtained for the max-
imum diameter was 39 %. The performance of this artificial 
intelligence system proved to be excellent since it indicated 
the dimensional results satisfactorily, as can be observed 
from the absence of errors exceeding 48 μm in the mini-
mum diameter and in the presence of an error of only 0.4 % 

above the basic mechanical limit. Again, this corresponds 
to the result of only one measurement for a set of 238 hole 
diameter measurements. Thus, like the network for the 
Ti6Al4V alloy, the MLP network for the AA 2024-T3 alloy 
showed a single measurement with a deviation exceeding 
48 μm.

Ferreiro et al. [25] employed data mining techniques to 
improve the detection of burr on holes drilled on an aero-
space aluminum alloy, Al 7075-T6 grade. The experiments 
were carried out with three-edged carbide drills of 10 mm 
diameter, feed rate in rage of 0.2–0.5 mm/rev and without 
coolant. The output parameters were the torque of electro-
spindle, electrical power consumed and axial force, espe-
cially because the signal of torque in particular has dem-
onstrated good correlation with burr size. The objective 
was to obtain a more suitable classification model, with 
a result of Burr =  yes|Burr =  no, or in classes as Class 
(Burr = no): admissible burr and Class (Burr = yes): non 
admissible burr, as defined by aeronautical industry, based 
on the output parameters investigated and using differ-
ent algorithms. After applying a tenfold cross-validation 
that was repeated ten times to calculate the accuracy of the 
prediction models., the authors observed that false nega-
tives varied between 0 and 3 for all the machine learning 
algorithms, with type classification that includes classi-
fication trees, induction rules, distance based techniques, 
techniques based on probabilities and neural networks. 
They also found that J48 (classification trees type) and JRip 
(induction rules type) algorithms provided superior perfor-
mance and were able to eliminate false negatives.

Bustillo et al. [30] have investigated the use of ensemble 
algorithms to achieve an accurate prediction model (based 
on a 10  ×  10-fold cross-validation method) for surface 
roughness of a quenched steel (AISI H13) grade after ball-
end milling operation under various operational conditions 
(cutting speed, feed rate, radial depth of cut, tool properties 
geometry and machining environment). They reported that 
the best results were obtained after using a neural network 
with default training values (0.3 learning rate, 0.2 momen-
tum, number of epochs = 500 that resulted in an accuracy 
of 81.88 %) in comparison with the extensively fine-tuned 
neural network. Random subspace ensemble yielded bet-
ter results than the fine-tuned MLP. The worse results were 
obtained after using the AdaBoost algorithm with experi-
mental dataset. Finally, they observed that the best result 
of accuracy rate provided for a network was 83.03  %, 
obtained with parameters momentum of 0.075, learning 
rate of 0.15 and number of epochs of 500.

Cruz et al. [5] carried out an experimental and model-
ling investigation to estimate hole diameter and finishing 
in sandwich plates composed of Ti6Al4V and AA 2024-
T3 alloys after drilling operation under similar cutting 
conditions as those employed in the present study. Hole 

Table 3   Behavior of the different networks using different input sig-
nals in the quality control evaluation of holes in the Ti6Al4V alloy

Network Input signal DMIN DMAX

% %

MLP All False positive 1.1 False positive 1.5

False negative 6.0 False negative 5.6

False results 7.1 False results 7.1

FZ False positive 0.7 False positive 0.7

False negative 3.0 False negative 3.7

False results 3.7 False results 4.5

AE + ACC False positive 6.0 False positive 4.1

False negative 1.9 False negative 3.7

False results 7.9 False results 7.9

ANFIS FZ False positive 1.9 False positive 0.7

False negative 2.2 False negative 4.9

False results 4.1 False results 5.6

RBF All False positive 0.4 False positive 2.2

False negative 7.5 False negative 5.2

False results 7.9 False results 7.5

Table 4   Behavior of the different networks using different input 
signals in the quality control evaluation of holes in the AA 2024-T3 
alloy

Network Input signal DMIN DMAX

% %

MLP All False positive 7.5 False positive 10.5

False negative 3.7 False negative 4.1

False results 11.2 False results 14.6

FZ False positive 3.4 False positive 9.4

False negative 21.0 False negative 16.1

False results 24.3 False results 25.5

POW + FZ False positive 4.1 False positive 7.5

False negative 7.5 False negative 7.5

False results 11.6 False results 13.3

ANFIS FZ False positive 3.0 False positive 8.6

False negative 12.4 False negative 13.5

False results 15.4 False results 22.1

RBF FZ False positive 7.9 False positive 7.5

False negative 8.2 False negative 14.2

False results 16.1 False results 21.7
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diameter and surface roughness values of each hole were 
the output variables for the experimental trials and also 
to feed into the ANN output layer employed. According 
to the authors, this can enable the biases to be updated on 
a backpropagation feed-forward algorithm. The authors 
adopted the following strategy of percentage of obtained 
total data to obtain the ANNs estimation error: 60 % used 
ANN training, 20  % for validation and 20  % for ANN 
test to confirm it satisfactory performance. As a result, 
the authors found that an average error for estimated min/
max diameter was 6.9 and 9.3 μm for the Ti6Al4V alloy 
and AA 2024-T3 alloy, respectively. In terms of surface 
roughness, the absolute average estimation error was 
0.264 μm which was considered very low for a control 
method.

4.1.2 � Performance of the MLP networks considering the 
influence of the input signals

The network configurations selected for each alloy were 
tested to verify the influence of the signals and combina-
tions of signals. The result for the Ti6Al4V alloy (Fig. 10) 
indicated that the use of the acoustic emission and accel-
eration signals as inputs of the MLP network (AE + ACC) 
reached the lowest mean error in the estimation of diam-
eters. However, these signals led to a poorer performance 
when applied separately. Considered separately as an input 
to the network, the signal with information about the force 
on the Z axis (FZ) led to the lowest mean error.

In the MLP network used for estimating the hole diam-
eters in the AA 2024-T3 alloy, the use of electric power 

Fig. 10   Results of the test to verify the influence of separate signals and paired signals for the Ti6Al4V alloy

Fig. 11   Results of the test to verify the influence of separate signals and paired (combined) signals for the AA 2024-T3 alloy
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signals and Z component force (POW + FZ) resulted in the 
lowest error among the set of inputs with two combined sig-
nals. Similarly to the result of the network for the Ti6Al4V 
alloy, the Z component force as a single input (FZ) pro-
duced the lowest error compared with the other signals 
applied separately as inputs (Fig.  11). It can be observed 
from Figs.  10 and 11 that in average the estimation error 
of diameter in the AA 2024-T3 alloy were slightly higher 
than that for AA 2024-T3 alloy. This can be attributed to 
higher values for most of output variables obtained after 
machining the latter that were used in training of the MLP 
network, thereby reflected on the predicted values.

The results from both the tests to verify the influence of 
the signals on the two materials indicate that two signals—
Z component force (FZ) and acoustic emission (AE)—
stand out in characterizing the drilling process when 
applied in combination with another signal. However, the 
comparison of the individual signals showed only the sig-
nal of Z component force standing out in the two networks. 
Therefore, the following tests were performed for the best 
configuration for an individual signal and for the configura-
tions with the best combinations of signals.

4.1.3 � MLP network with the force Z signal isolated

The architecture employed for the analysis of the MLP net-
work with the Z component force isolated as an input sig-
nal for both alloys is showed in Fig. 12. Figure 13a shows 
the results using only the signal of Z component force on 
Ti6Al4V alloy. It can be observed that the average esti-
mation error was 0.0076  mm for the maximum diameter 
and 0.0078  mm for the minimum diameter. The percent 
relative error was low, corresponding to an average of only 
0.2 % for both diameters. The average errors highlighted in 
Fig. 13a were calculated from the point by point estimates 
of this configuration of the MLP. As can be seen, the darker 
line, which indicates the estimates of the MLP, followed 
the lighter line very accurately. The analysis based on the 
quality control criterion presented the results described in 
Table 3. These results indicate that, on average, the network 

estimated 4.1 % of the holes incorrectly, with 0.7 % false 
positives and 3.4 % false negatives.

The result depicted in Fig. 13b indicates that 48 % of the 
errors made by the MLP network in estimating the mini-
mum diameter are undetectable, and that a percentage of 
54 % was obtained for the maximum diameter. The perfor-
mance of the artificial intelligence system proved excellent 
in satisfactorily indicating the dimensional results. This is 
confirmed by the absence of errors exceeding 48 μm for 
both the maximum and minimum diameters above the 
basic mechanical limit, which again corresponds to the 
results of only one measurement for a set of 255 hole diam-
eter measurements.

The results for the AA 2024-T3 alloy indicate a lower 
mean error than that obtained by combining all the 
six available signals. The mean estimation error was 
0.0095  mm for the maximum diameter and 0.0085  mm 
for the minimum diameter (Fig. 13c). The percent relative 
error was low, corresponding on average to only 0.2 % for 
both diameters, like in the network for the Ti6Al4V alloy. 
The analysis based on the quality control criterion yielded 
the results presented in Table 4. These results indicate that, 
on average, the network incorrectly estimated 24.9 % of the 
holes, with 6.4 % false positive and 18.5 % false negative.

The results shown in Fig.  13d indicates that 43  % of 
the errors made by the MLP network in estimating the 
minimum diameter are undetectable, and that the percent 
obtained for the maximum diameter was 44  %. The per-
formance of this artificial intelligence system proved to 
be excellent in satisfactorily indicating the dimensional 
results, as can be confirmed by the absence of errors 
exceeding 48  μm for both the maximum and minimum 
diameters.

As reported in the literature, components of machining 
forces have presented a good correlation with geometrical 
errors [5, 7], burr size [25] and tool wear and tool failure 
[31–33], so the lowest error in estimation diameters veri-
fied when FZ was used input in MLP network in this study 
contributed to support such correlation.

Fig. 12   MLP network for the 
two alloys using the Z compo-
nent force (FZ) as input signal
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4.1.4 � MLP network with two input signals

The results of the tests with different signals used as input 
signals for the MLP networks indicate that the acoustic 
emission (AE) signal combined with the acceleration signal 
(ACC) presented the lowest error in the estimates for the 

Ti6Al4V alloy. The electric power (POW) and Z compo-
nent force (FZ) signals, in turn, led to the best performance 
for AA 2024-T3 alloy, as illustrated in Figs. 10 and 11. The 
architectures used for a more detailed analysis are repre-
sented in Fig. 14.

(a) ER for the MLP network using the FZ as input signal for the Ti6Al4V 
alloy 

(b) EC in the MLP network using the FZ as input 
signal for the Ti6Al4V alloy 

(c) ER for the MLP network using the FZ as input signal for the AA 
2024-T3 alloy 

(d) EC in the MLP network using the FZ as input 
signal for the AA 2024-T3 alloy 
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Fig. 13   Estimation Results (ER) and Errors Classification (EC) in the estimation of hole diameters provided by the MLP network using the 
Z-component force (FZ) as input signal for the Ti6Al4V and AA 2024-T3 alloys

Fig. 14   Architectures used 
for testing the MLP networks 
using combination of two input 
signals
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The results in Fig. 15a indicate a mean error very simi-
lar to that achieved by the combination of all six available 
signals. The average estimation error was 0.0087  mm for 
the maximum diameter and 0.0085  mm for the minimum 
diameter. The percent relative error was low, correspond-
ing on average to only 0.2 % for both diameters. As can be 
seen, the darker line, which indicates the estimates of the 
MLP, accompanied the lighter line with a certain degree of 
accuracy. The analysis based on the quality control crite-
rion yielded the results presented in Table 3. These results 
indicate that, on average, the network estimated 7.9 % of 
the holes incorrectly, with 5.1 % false positive and 2.8 % 
false negative when using the AE and ACC as input signals. 
These figures are slightly lower than those obtained showed 
in the configuration with all the signals used as input sig-
nals for the network.

With regard to the third criterion, the results depicted in 
Fig. 15b indicate that 45 % of the errors made by the MLP 
network in estimating the minimum diameter are undetectable, 

and that the error percentage for the maximum diameter was 
44  %. The performance of this artificial intelligence system 
was excellent in satisfactorily indicating the dimensional 
results. This is confirmed by the absence of errors exceeding 
48 μm for the maximum diameter and only one measurement 
of the minimum diameter exceeding the basic mechanical 
limit in a set of 246 holes diameters measurements.

For the AA 2024-T3 alloy, using the paired signals of elec-
tric power (POW) and Z component force (FZ), the results 
(Fig. 15c) indicate a mean estimation error of 0.0089 mm for 
the maximum diameter and of 0.0081 mm for the minimum 
diameter. The percent relative error was low, corresponding 
on average to only 0.17  % for both diameters. The analy-
sis based on the quality control criterion yielded the results 
presented in Table 4. These results indicate that, on average, 
the network estimated 12.5 % of the holes incorrectly, with 
5.8 % false positive and 7.5 % false negative.

The analysis based on tolerance, with two input signals, 
indicates that 47 % of the errors made by the MLP network 

(a) ER for the MLP network using the AE and ACC as input signals for 
the Ti6Al4V alloy 

(b) EC in the MLP network using the AE and ACC 
as input signals for the Ti6Al4V alloy 

(c) ER for the MLP network using the POW and  FZ  as input signals for 
the AA 2024-T3 alloy 

(d) EC in the MLP network using the POW and  FZ  
as input signals for the AA 2024-T3 alloy
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Fig. 15   Estimation Results (ER) and Errors Classification (EC) in the estimation of hole diameters provided by the MLP network with different 
combination of input signals for the Ti6Al4V and AA 2024-T3 alloys
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in estimating the minimum diameter are undetectable, and 
that 44 % correspond to the maximum diameter. The perfor-
mance of this artificial intelligence system was considered 
excellent in indicating the dimensional results satisfactorily. 
This is confirmed by the absence of errors exceeding 48 μm 
for the maximum diameter and only one measurement of 
the minimum diameter exceeding the basic mechanical limit 
in a set of 237 holes diameters measurements (Fig. 15d).

4.2 � Results obtained by the ANFIS System

The results of the ANFIS system were obtained after running 
the algorithm described in Fig. 6. The influence of the sig-
nals on the system’s performance was checked prior to tests.

In the case of the Ti6Al4V alloy, the FZ was clearly the 
signal with the most positive influence on performance, in 
terms of obtaining lower percentage errors. When combin-
ing two input signals, the best result was achieved by com-
bining the data of the forces on the X and Z axes. The final 
classification is shown in Fig. 16.

Like the results obtained for the Ti6Al4V alloy, the 
results obtained for the test of the ANFIS system for the AA 
2024-T3 alloy indicate that the force on the Z axis is the 
signal that exerts the most positive influence. In the combi-
nation of two input signals, the best result was attained by 
combining the data of acoustic emission with the force on 
the Z axis. Figure 17 shows the final classification. Again, 
a component of machining force (FZ) confirmed its good 

Fig. 16   Results of the test to verify the influence of individual and combined signals on the ANFIS system for the Ti6Al4V alloy

Fig. 17   Results of the test to verify the influence of the individual and combined signals on the ANFIS system for the AA 2024-T3 alloy
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correlation to estimate the hole diameters in both Ti6Al4V 
and AA 2024-T3 alloy with AFNIS system, like observed 
with MLP network.

The test to determine the number of epochs required for 
training was evaluated using the algorithm in Fig.  6. The 
result indicates that 105 epochs were required to train the 
system for the Ti6Al4V alloy and 270 epochs were needed 
to train it for the AA 2024-T3 alloy.

Figure  18 depicts the result of this test, clearly show-
ing the difference in the behavior of the error for the two 
alloys investigated. It can be seen that the absolute error for 
Ti6Al4V alloy abruptly decreases from 0.11 to 0.038 when 
number of epochs is increased up to 40, then it remains 
practically steady until to reach the number of epoch of 
270, point that it decreases again to the value of 0.017 and 
finally keeps stable until the end. Contrarily to the observed 
for the Ti6Al4V alloy, absolute error for the AA 2024-T3 
alloy remained steady, regardless of the number of epochs 
used in training. This divergence may be attributed to the 
microstructural differences between the Ti6Al4V alloy and 
the AA 2024-T3 alloy, whose low complexity resulted in 
negligible variations in the collected signals, thus simpli-
fying their mapping. The values obtained in this test were 
used in the subsequent tests. It is known from literature 
that titanium and its alloys are classified as difficult-to-
machining materials with conventional tools, especially 
because the main elements present in titanium alloys, such 
as Ti and Al, have high chemical affinity with most cut-
ting tool materials such HSS, cemented carbide, ceramics 
and CBN/PCBN. Also, due to the high diffusion rate and 
instability of the segmented chip formation process when 
machining titanium alloys, tools are subjected to acceler-
ated wear [34, 35], specifically when machining without 
coolant (what is not a recommended practice in industrial 
applications), like in this study. This adversely affects the 
dimensional and form errors. Therefore, the ANFIS system 
was able to detect the poor machinability of the Ti6Al4V 

alloy in comparison with the AA 2024-T3 alloy under the 
conditions investigated.

The three criteria defined in Sect.  3.3 were used to 
organize the results from the ANFIS system, following the 
same procedure as the one employed to analyse the perfor-
mance of the MLP network.

4.2.1 � ANFIS system with Z component force signal applied 
as input signal

Table  5 lists the parameters of the clusters, which were 
defined by trial and error for both alloys until the lowest 
possible error was obtained. After configuring the system, 
the results of the estimates were obtained and are depicted 
in Fig.  19a. The mean absolute error in estimating the 
diameter was 0.0090 mm, with a mean percentage error of 
0.3 %. As for the quality control criterion, the ANFIS sys-
tem showed good efficacy by presenting an average of only 
4.9 % of false results in the assessment of hole dimensions. 
Also on average, 1.3 % corresponds to false positives and 
3.6 % to false negatives when using Z component force as 
input signal. The results for the minimum and maximum 
diameters in the Ti6Al4V alloy are shown in Table 3.

For the third criterion, the error classification indicates 
that, on average, 42.0 % of the estimates had an error lower 
than the precision of the measuring instrument. None of the 
estimates of the minimum diameter exceeded the limit of 
precision mechanics, while only one estimate for the maxi-
mum diameter exceeded this limit, as shown in Fig. 19b.

For the AA 2024-T3 alloy, the signal cluster with the 
lowest mean error in estimating the diameter was also the 
isolated Z component force signal. Table  6 describes the 
cluster parameters for the ANFIS system used for estimat-
ing of the hole diameters in the AA 2024-T3 alloy.

The results from the estimates were obtained after 
configuring the system, and are illustrated in Fig.  19c. 
The mean absolute error in estimating the diameter was 
0.0102 mm, with a mean percentage error of 0.4 %. As for 
the quality control criterion, the ANFIS system showed 
reasonable efficiency by presenting, on average, only 
18.9 % of false results in the evaluation of hole dimensions. 
Also on average, 5.8 % corresponds to false positives and 
13.0  % to false negatives when using Z component force 
as input signal. The results for the minimum and maximum 

Fig. 18   Results of the test to ascertain the influence of the number of 
epochs on the ANFIS system for each alloy

Table 5   Parameters of influence of the cluster centers defined by the 
ANFIS system of estimation for the Ti6Al4V alloy

Parameter Value

Radius of influence of the cluster center Input cluster = 0.12

Output cluster = 0.12

Distance between the cluster centers 1.25
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diameters in AA 2024-T3 alloy when using Z component 
force as an input signal are shown in Table 4.

For the third criterion, the error classification indicates 
that, on average, 43.0 % of the estimates had an error below 
the precision of the measuring instrument. None of the esti-
mates exceeded the limit of precision mechanics, as can be 
seen in Fig. 19d.

4.3 � Results for the RBF network

4.3.1 � RBF networks using all the input signals

The group of signals that provided the lowest mean diam-
eter estimation error was the set of all the collected input 
signals.

The RBF network was configured for the Ti6Al4V 
alloy using a spread of 80, yielding the results presented 
in Fig. 20a. The absolute error for the two diameters was 
0.0092  mm, on average, while the percentage error was 
0.3 %, as also shown in Fig. 20a. The analysis based on the 
quality control criterion indicates that, on average, the RBF 
network presented false results in 7.7 % of the estimates, 
i.e., 1.3 % false positives and 6.4 % false negatives when 
using all the input signals (Table 3).

(a) ER for the ANFIS system using the FZ as input signal for the 
Ti6Al4V alloy

(b) EC in the ANFIS system using the FZ as input 
signal for the Ti6Al4V alloy

(c) ER for the ANFIS system using the FZ as input signal for the AA 
2024-T3 alloy

(d) EC in the ANFIS system using the FZ as input 
signal for the AA 2024-T3 alloy
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Fig. 19   Estimation Results (ER) and Errors Classification (EC) in the estimation of hole diameters provided by the ANFIS system using the Z 
component force (FZ) as input signal for the Ti6Al4V and AA 2024-T3 alloys

Table 6   Parameters of influence of the cluster centers defined by the 
ANFIS system of estimation for the AA 2024-T3 alloy

Parameter Value

Radius of influence of the cluster center Input cluster = 0.36

Output cluster = 0.21

Distance between the cluster centers 1.25
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For the third criterion, the error classification indicates 
that, on average, the error of 43.5 % of the estimates was 
below the precision of the measuring instrument. None of 
the measurements of the minimum diameter presented an 
error above the limit of precision mechanics (Fig. 20b), and 
only one measurement of the maximum diameter exceeded 
this limit, representing 0.4 % of the estimates.

With a spread of 10,000 for the AA 2024-T3 alloy, the 
RBF network was configured for training and subjected 
to simulation. However, this configuration was not able to 
generalize from the training data, as can be seen in Fig. 20c. 
After initiating the variations in the measured diameters, 
the network continues to make estimates, but with a neg-
ligible variation, appearing to adopt a constant value. This 
behavior generated a relatively low mean error, which, in 
a first analysis, may lead to an erroneous pre-assessment 
about the performance of this network, which can be 
observed by analysing Fig.  20c. This detected problem 

invalidated the subsequent analyses, and it should be noted 
that 50.6 % of the measuring results were incorrect.

It should be noted that the good performance of the RBF 
is tied to the amount of available training data, and that it 
requires a large amount of information due to the charac-
teristics of its algorithm. Therefore, the results from this 
study indicate that a larger number of points are required 
than were used here, which is an obstacle intrinsic to the 
accurate determination of an ideal number, for this particu-
lar case.

4.3.2 � Evaluation of the influence of the signals and the 
spread

The results from the influence tests presented in the flow-
chart in Fig. 7 show the positive influence of the signal of 
Z component force on the performance of the RBF net-
work. When applied separately to the RBF network for the 

(a) ER for the RBF network using all the input signals for the Ti6Al4V 
alloy 

(b) EC in the RBF network using all the input 
signals for the Ti6Al4V alloy 

(c) ER for the RBF network using all the input signals for the AA 2024-
T3 alloy, which failed to present generalization 
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Fig. 20   Estimation results (ER) and errors classification (EC) in the estimation of hole diameters provided by the RBF network with all the 
input signals for the Ti6Al4V and AA 2024-T3 alloys
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Ti6Al4V alloy, the Z component force resulted in a mean 
error of 0.0100 mm, using a spread of 30. The paired sig-
nals with the lowest estimation error were the combina-
tion of the force on the Y axis and the acceleration, which 
resulted in an average error of 0.0097 mm, with a spread of 
40. The complete classification is shown Fig. 21.

Applied separately in the RBF network for the AA 2024-
T3 alloy, the Z component force resulted in a mean error 
of 0.0115 mm, using a spread of 3020. The paired signals 
with the lowest estimation error were the combination of 
the force on the Y axis and the force on the Z axis, which 

resulted in a mean error of 0.0101  mm, with a spread of 
2370. The complete classification is shown in Fig. 22.

The size of state space hidden inside a RBF network is 
high and data classification problem tends to be linearly 
separable. This was one of the reasons for evaluating RBF 
networks. Whereas an artificial neural network can be 
developed as an approximation problem in a high-dimen-
sional space, the learning setting in a RBF network aims 
to find a surface inside that space that best fits the train-
ing data. Generalization is equivalent to interpolation of 
the surface test data. The training algorithms performs the 

Fig. 21   Results of the test to ascertain the influence of individual and paired signals, plus spread, on the performance of the RBF network for 
the Ti6Al4V alloy

Fig. 22   Results of the test to ascertain the influence of individual and paired signals, plus spread, on the performance of the RBF network for 
the AA 2024-T3 alloy
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adjustment of the centers as well as supports the radial basis 
functions in the hidden layer usually by a data clustering 
algorithm such as k-means, in a first step. The second step 
is to adjust the synaptic weights of the output layer, using 
backpropagation method. RBF network has faster training 
than MLP network, but it needs more data. The sensitivity 
of a RBF network may be tuned adjusting spread, where a 
large spread implies less sensitivity. As shown earlier, an 
algorithm was developed to test simultaneously the input 
signals and combinations of these signals in pairs together 
with spread. However, the spread test was also performed 
for all inputs together, for each material of the test body. 
The spread range for titanium alloy was the same as used 
in the algorithm (10–1000). However, for the aluminum 
alloy, this range did not show good results. Thus, the spread 
range used for the aluminum alloy was from 10 to 10,000. 
It was observed that the error value increases when spread 
goes higher than 10,000.

4.3.3 � RBF network using as input only the Z component 
force signal

For the AA 2024-T3 alloy, the RBF network that pre-
sented the lowest mean error in estimating the diameters 
with a single sensor signal was the individual Z component 
force. The mean error in estimating the maximum diame-
ter was 0.0101 mm and that of the minimum diameter was 
0.0109 mm (Fig. 23a). The percent relative error was low, 
corresponding on average to only 0.2 % for both diameters. 
The analysis by the quality control criterion presented the 
results listed in Table 4. These results indicate that, on aver-
age, the network estimated 18.9 % holes incorrectly, with 
7.7 % false positive and 11.2 % false negative when using 
Z component force as input signal.

The mean errors listed in Table  4 for the Z compo-
nent force signal were calculated from the point by point 
estimates of this configuration of the RBF network. In 
Fig. 23a, note that the darker line, which indicates the RBF 
estimates, followed the lighter line, but with a lower accu-
racy than the MLP network.

The results shown in Fig.  23b indicate that 51  % of 
the errors made by RBF network in estimating the mini-
mum diameter are undetectable, and that the percentage 
obtained for the maximum diameter was 45 %. Only one 
measurement of the maximum diameter exceeded the basic 
mechanical limit.

4.4 � Comparison of the performance of the three tested 
artificial intelligence systems

All the results obtained in the tests and simulations of the 
three artificial intelligence systems involved in this study, 
as well as the results achieved with the groups of signals 
that did not obtain the lowest mean absolute error in the 
estimation of hole diameters for both the Ti6Al4V and 
AA2024-T3 alloys are shown in Table 7. The results for the 
two alloys were separated due to the divergent behavior of 
the signals elicited from each material.

In addition to the results described in detail in this paper, 
in Table 7 are also presented the results obtained with all 
the groups of simulated signals and which showed higher 
absolute errors than those already presented. The columns 
containing the sign “−” represent the system’s failure to 
produce satisfactory results. It was found in the ANFIS 
system, that slight changes in the cluster of input and out-
put data used in training make it impossible for the FIS to 
produce a suitable formulation, thus preventing the ANFIS 
training.

(a) ER for the RBF network using the FZ as input signal for the AA 
2024-T3 alloy 

(b) EC in the RBF network using the FZ as input
signal for the AA 2024-T3 alloy 
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Fig. 23   Estimation Results (ER) and Errors Classification (EC) in the estimation of hole diameters provided by the RBF network using the 
Z-component force (FZ) as input signal for the Ti6Al4V and AA 2024-T3 alloy
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In the case of the RBF network, the failure to execute 
other tests is due to its poor generalization ability in the 
situations in question. This is attributed to the fact that this 
type of network is highly sensitive to the presentation of 
data and their relationship with the spread parameter.

Because of the spread tests in this study, which were 
performed in conjunction with the evaluation of the signals, 
were performed at moments other than the simulations to 
obtain further details, the parameter obtained in the tests 
did not correspond to the same results, except for the use of 
the Z component force input data.

RBF networks are similar to a MLP network with three 
layers, being one as an input, one as an output and one as 
a hidden layer. However, the two networks are different in 
the following aspects:

(a)	 A RBF network has one hidden layer, while a MLP 
may have one or more hidden layers.

(b)	 The compute nodes of an MLP, located in a hidden 
layer or an output layer, share a common neural model. 
Moreover, the computational nodes in the hidden layer 
of a RBF network are very different and they serve a 

Table 7   Final comparison of the behavior of the three tested artificial intelligence (AI) systems in estimation of hole diameters for the two 
alloys investigated

Ti6Al4V alloy AA 2024-T3 alloy

Parameter AI system Parameter AI system

MLP ANFIS RBF MLP ANFIS RBF

All input signals All input signals

Absolute error (mm) 0.008 – 0.0092 Absolute error (mm) 0.0088 – 0.0176

Percent error (%) 0.2 – 0.3 Percent error (%) 0.2 – –

False positives (%) 1.3 – 1.3 False positives (%) 9 – –

False negatives (%) 5.8 – 6.4 False negatives (%) 3.9 – –

Hits ≤ 5 μm (%) 52.5 – 43.5 Hits ≤ 5 μm (%) 42.5 – –

Hits IT7 (%) 35.5 – 40 Hits IT7 (%) 34 – –

Hits IT10 (%) 12 – 16.5 Hits IT10 (%) 23.5 – –

AI system AI system

MLP ANFIS RBF MLP ANFIS RBF

Z component force (FZ) Z component force (FZ)

Absolute error (mm) 0.0077 0.009 0.0102 Absolute error (mm) 0.009 0.0102 0.0105

Percent error (%) 02 0.3 0.2 Percent error (%) 0.2 0.4 0.2

False positives (%) 0.7 1.3 3 False positives (%) 6.4 5.8 7.7

False negatives (%) 3.4 3.6 3.2 False negatives (%) 18.5 12.9 11.2

Hits ≤ 5 μm (%) 51 42 38 Hits ≤ 5 μm (%) 43.5 44 48

Hits IT7 (%) 34.5 39.5 39.5 Hits IT7 (%) 37 34 33

Hits IT10 (%) 14.5 18 21.5 Hits IT10 (%) 19.5 21.5 19

AI system AI system

MLP ANFIS RBF MLP ANFIS RBF

Combined signals Combined signals

AE + ACC FX + FZ FY + ACC POW + FZ AE + FZ FY + FZ

Absolute error (mm) 0.0090 0.0102 0.0118 Absolute error (mm) 0.0085 0.0104 0.0175

Percent error (%) 0.2 0.35 – Percent error (%) 0.2 0.4 –

False positives (%) 5.1 4.9 – False positives (%) 5.8 4.5 –

False negatives (%) 2.8 1.9 – False negatives (%) 7.5 17.2 –

Hits ≤ 5 μm (%) 44.5 35 – Hits ≤ 5 μm (%) 45.5 41 –

Hits IT7 (%) 35 40 – Hits IT7 (%) 34 32 –

Hits IT10 (%) 20.5 25 – Hits IT10 (%) 20.5 26.5 –
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different purpose from those of the network output 
layer.

(c)	 The hidden layer of an RBF network is nonlinear, 
while the output layer is linear. However, the hidden 
and output layers of a MLP network, when used as a 
pattern classifier, are all usually nonlinear.

(d)	 The argument of activation function in each hidden unit 
inside a RBF network calculates the Euclidean norm 
between the input vector and the center of that unit. 
Meanwhile, the activation function of each hidden layer 
in an MLP network calculates the inner product of the 
input vector by synaptic weight vector of that unit.

(e)	 MLP networks build global approximations from a 
non-linear input–output mapping. On the other hand, 
RBF networks using nonlinearities located with expo-
nential decay build local approximations from nonlin-
ear input–output mappings.

5 � Conclusions

From this investigation on the experimental and numerical 
simulation tests conducted on drilling of sandwich plates 
of Ti6Al4V and AA 2024-T3 alloys with cemented carbide 
drills, the following conclusions can be drawn:

•	 ACC and FZ signals in general increased with the cut-
ting speed when machining the Ti6Al4V alloy plate, 
irrespective of the feed rate employed, whereas the 
POW values decreased with increase in cutting speed. 
AE and POW parameters were more sensitive to varia-
tion in feed rate. Different pattern was observed for the 
diameter when using different cutting speed and feed 
rate combination;

•	 AE, ACC, POW and FZ signals increased with cutting 
speed when machining the AA 2024-T3 alloy. No sig-
nificant influence of cutting speed and feed rate was 
observed on the diameter values. Values of most input 
parameters when machining the AA 2024-T3 were 
slightly higher than those for Ti6Al4V alloy;

•	 The MLP ANN outperformed the ANFIS and RBF net-
works, exhibiting great versatility with respect to varia-
tions in the data sets presented to it and maintaining low 
errors. This system proved reliable in the determination 
of valid results and most of its errors were below the 
precision the measuring instrument. A loss in perfor-
mance was detected with elevation of the mean error in 
Ti6Al4V alloy, and this fact is consistent with the char-
acteristic of the MLP ANN initially constituted on the 
filter base. Thus, in the presence of noisy signals, the 
ANN tends to ignore variations induced in the drilling 
process, producing a lower result than that found for the 
AA 2024-T3 alloy;

•	 The input with the Z component force was the only 
one able to present valid results for all the artificial 
intelligence systems analysed in this study because it 
yielded the best results in all the analysed criteria, with 
the exception of the quality control criterion in the sys-
tems configured for AA 2024-T3 alloy, which produced 
larger numbers of false results;

•	 The limitation of the number of inputs in ANFIS pre-
cludes the simultaneous use of more than four inputs. 
However, this network system was able to detect the 
poor machinability of the Ti6Al4V alloy;

•	 The RBF network exhibited great instability in 
response to the introduction of variations in the train-
ing set, which was evidenced by its low generalization 
ability;

•	 The potential to generate correct results in quality con-
trol was demonstrated by the low percentage of false 
results for the Ti6Al4V alloy. However, this was not 
confirmed for the AA 2024-T3 alloy;

•	 Regardless of the signals presented as inputs, the results 
analysed for the tolerances proved to be very reliable, 
since, among the valid results, a very small number of 
estimates was above the tolerance required by precision 
mechanics;

•	 X and Y components of machining forces, the 
AE + ACC paired signals for the MLP ANN as well as 
the FY + ACC paired signals for the RBF network were 
marginally representative for the drilling of the Ti6Al4V 
alloy.
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