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We theoretically predict, and experimentally verify with entangled photons, that outcome communication is
not enough for hidden-state models to reproduce quantum steering. Hidden-state models with outcome com-
munication correspond, in turn, to the well-known instrumental processes of causal inference but in the 1-sided
device-independent (1S DI) scenario of one black-box measurement device and one well-characterised quantum
apparatus. We introduce 1S-DI instrumental inequalities to test against these models, with the appealing feature
of detecting entanglement even when communication of the black box’s measurement outcome is allowed. We
find that, remarkably, these inequalities can also be violated solely with steering, i.e. without outcome commu-
nication. In fact, an efficiently-computable formal quantifier – the robustness of non-instrumentality – naturally
arises; and we prove that steering alone is enough to maximize it. Our findings imply that quantum theory admits
a stronger form of steering than known until now, with fundamental as well as practical potential implications.

Instrumental causal networks are one of the main tools of
causal inference [1, 2]. Introduced almost a century ago [3]
in the context of supply-and-demand models, they find nowa-
days a broad range of applications, from epidemiology and
clinical trials [4, 5] to econometrics [6] and ecology [7], e.g.
In fact, the instrumental causal structure is special because it
is the simplest one for which the strength of causal influences
can be estimated solely from observational data – i.e. with-
out interventions – even in the presence of hidden common
causes [8]. Recently, considerable effort has been put into the
quantisation of the classical theory of causality [1, 2], giving
rise to the so-called quantum causal networks [9–17]. Apart
from its implications in nonlocality [18–24], the young field
has brought about fascinating discoveries [10, 25, 26] and
applications [27–33]. However, some important causal struc-
tures have not yet received enough attention in the quantum
regime. This is the case of the instrumental one.

Partly responsible for that may be the fact [12] that equip-
ping the common cause with entanglement is not enough to
violate the usual instrumental inequalities [8]. Instrumental
inequalities are to instrumental models what Bell inequali-
ties [34] are to local hidden-variable ones; with the difference
that instrumental models are intrinsically nonlocal, involving
1-way outcome communication. In this sense, instrumental-
inequality violations certify a stronger form of nonlocality
than Bell violations [2]. Remarkably, in spite of the no-go
result of [12], a different class [35] of instrumental inequal-
ities has been recently shown [36] to admit a quantum vio-
lation. Besides their fundamental relevance, the violation of

instrumental inequalities with quantum resources is also po-
tentially interesting from an applied viewpoint, as it opens a
possibility towards new types of nonlocality-based protocols
without the requirement of space-like separation, a major ex-
perimental overhead to current implementations.

In turn, both instrumental [2, 8, 35, 36] and Bell [34,
37] inequalities are formulated in the device-independent
(DI) scenario of untrusted measurement devices, effectively
treated as black boxes with classical settings (inputs) and
outcomes (outputs). The DI regime is known to be exper-
imentally much more demanding [38] than the so-called 1-
sided (1S) DI one, where one of the observable nodes is a
black box while the other one a trusted apparatus with full
quantum control. This is the natural framework of steer-
ing [39], a hybrid form of quantum nonlocality intermedi-
ate between Bell and entanglement. While, in the DI sce-
nario, local hidden-variable models enhanced with different
types of communication have a long history in the litera-
ture [19, 36, 40–49], in the 1S-DI setting only input com-
munication has received some attention [50, 51]. In contrast,
output-communication enhanced local models are totally un-
explored in the 1S-DI domain.

Here, we study 1S quantum instrumental (1SQI) processes
obtained from quantizing the communication-receiving node
in classical instrumental causal networks, or, equivalently,
from enhancing local hidden-state models with outcome
communication. We introduce 1S-DI instrumental inequal-
ities and non-instrumentality witnesses, as experimentally-
friendly tools to test against 1SQI models. These natu-
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rally lead to a resource-theoretic measure efficiently com-
putable via semi-definite programming: the robustness of
non-instrumentality. Furthermore, we show that 1S-DI in-
strumental inequalities can be violated with little entangle-
ment and purity at the common-cause node and, remarkably,
without outcome communication, so that the violations are
due solely to the states’ steering. We present an experimen-
tal demonstration in an entangled-photon platform. Finally,
we prove an even stronger incompatibility between steering
and 1SQI processes. Namely, that quantum steering alone is
enough to attain any value of the robustness. Our findings
imply that steering is a stronger quantum phenomenon than
previously thought, beyond classical hidden-variable models
even when equipped with output communication.

1-sided quantum and quantum-common-cause instrumen-
tal processes. We start by introducing 1SQI causal networks,
shown in Fig. 1 a). Nodes X , A, and B are observable,
while Λ is hidden. Node B is a quantum system with Hilbert
space HB , whereas all four other nodes encode classical ran-
dom variables. Node X takes |X| possible values x ∈ ZX ,
with the short-hand notation ZX := {0, . . . |X| − 1} intro-
duced, A takes |A| values a ∈ ZA, and Λ can – w.l.o.g. –
be assumed to take |Λ| = |A||X| possible values λ ∈ ZΛ

(see App. A). A 1SQI causal model assigns a probabil-
ity distribution PΛ := {Pλ}λ to Λ, a conditional distribu-
tion PA|X,Λ := {Pa|x,λ}a,x,λ to A, and a quantum state
%a,λ ∈ B(HB) toB, i.e. such that %a,λ ≥ 0 and Tr[%a,λ] = 1
for all a and λ. We are interested in the statistics of A and
B given X . Hence, the local statistics of X is not explicitly
considered here. We refer to the users at nodes A and B as
Alice and Bob, respectively.

Since A is classical and B quantum, they are most-
conveniently described jointly by subnormalised conditional
states σa|x, which encapsulate both the probability Pa|x :=

Tr
[
σa|x

]
of a given x for Alice and the conditional state

%a,x := σa|x/Pa|x given a and x for Bob. 1SQI models pro-
duce ensembles Σ

(inst)
A|X :=

{
σ

(inst)
a|x ∈ B(HB)

}
a,x

, with

σ
(inst)
a|x =

∑
λ

Pλ Pa|x,λ %a,λ. (1)

We refer to Σ
(inst)
A|X as a 1SQI assemblage, and denote the

set of all such assemblages by 1SQI. The term “assem-
blage” is native of the steering literature [52]. Its use here
is not coincidental: there is a connection between 1SQI and
steering. To see this, let us next introduce local hidden-state
(LHS) models. These correspond to restricted 1SQI mod-
els without the causal influence from A to B. An LHS as-

a) b)

X

c)

B

⇤

A

X

A
B

⇤X

QI
1SQI

LHS Q=NSQ=NS

Figure 1. a) and b) Hybrid (classical-quantum) instrumental pro-
cesses. Causal structures are specified by directed acyclic graphs
(DAGs). Each node encodes either a classical random variable or
a quantum system, and each directed edge a causal influence. The
term acyclic refers to the physical requirement of no causal loops.
a) 1-sided quantum instrumental (1SQI) causal networks generalise
the classical instrumental causal structure to the case where node B
is a quantum system. Removing the red dashed edge, in turn, leads
to local hidden-state (LHS) models. b) Quantising also Λ gives
what we here refer to as quantum instrumental (QI) processes: Λ is
now a bipartite system in a possibly entangled quantum state, with
one subsystem causally influencing A and the other one B. Re-
moving the red dashed edge here leads to quantum (Q) models. c)
Pictorial representation of the inner geometry of the set QI. 1SQI is
a strict subset of QI. The lower dimensional manifold NS of non-
signalling assemblages coincides (for the bipartite case) with Q, in
turn containing LHS. LHS and Q are the sets studied in steering
theory. Surprisingly, Q is not contained in 1SQI. What is more, for
any assemblage in QI and outside of 1SQI, there is an assemblage
in Q as far away from 1SQI as the former.

semblage Σ
(lhs)
A|X :=

{
σ

(lhs)
a|x ∈ B(HB)

}
a,x

has components

σ
(lhs)
a|x :=

∑
λ Pλ Pa|x,λ %λ, i.e. as Eq. (1) but with %a,λ

independent of a. We denote the set of all LHS assem-
blages by LHS, and call any assemblage ΣA|X steerable if
ΣA|X 6∈ LHS. Clearly, LHS ⊆ 1SQI.

In turn, allowing not only for a quantum B but also for a
quantum Λ defines the set QI of quantum instrumental (QI)
assemblages Σ

(qinst)
A|X :=

{
σ

(qinst)
a|x ∈ B(HB)

}
a,x

. More pre-
cisely, we allocate to Λ a composite Hilbert space HΛ =
HΛA ⊗ HΛB , such that subsystems ΛA and ΛB causally in-
fluence nodes A and B, respectively [see Fig. 1 b)]. Hence,
Λ is now a quantum common cause [15, 16] for A and B
[53]. Accordingly, for Λ in a state %Λ ∈ B(HΛ), the result-
ing QI conditional states are

σ
(qinst)
a|x := EB|a,ΛB

(
TrΛA

[
M (a)
x ⊗ 11ΛB %Λ

])
. (2)

Here, EB|a,ΛB : B(HΛB ) → B(HB) is an a-dependent
completely-positive trace-preserving map and M

(a)
x is the

a-th element of an x-dependent measurement Mx :=
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{
M

(a)
x ∈ B(HΛA) : M

(a)
x ≥ 0,

∑
a′M

(a′)
x = 11ΛA

}
a
, with

11ΛA the identity on HΛA . Clearly, 1SQI ⊆ QI, as Eq. (2)
reduces to Eq. (1) for the specific case of %Λ separable.

On the other hand, for the particular case of EB|a,ΛB being
the identity map for all a (no causal influence from A to B),
QI reduces to the set Q of quantum assemblages Σ

(q)
A|X :={

σ
(q)
a|x ∈ B(HB)

}
a,x

, of components σ(q)
a|x := TrΛA

[
M

(a)
x ⊗

11ΛB %Λ

]
. Hence, Q is to QI what LHS is to 1SQI. Clearly,

Q ⊆ QI. In addition, from steering theory, we know that
LHS ⊂ Q. On the contrary, it holds that 1SQI 6⊂ Q, as
Q assemblages are non-signalling while 1SQI ones not. An
assemblage ΣA|X is said to be non-signalling if

%B :=
∑
a

σa|x (3)

(the reduced state of Bob) is independent of x. Also due to
non-signalling, it follows that, actually, LHS ⊂ 1SQI and
Q ⊂ QI. We call the set of non-signalling assemblages NS.
For the bipartite case under consideration, it is known that
Q = NS [54]. In contrast, for instrumental causal models,
Bob’s state can depend on x even after summing a out.

1S-DI instrumental inequalities, witnesses, and robust-
ness. Since 1SQI is convex, any ΣA|X /∈ 1SQI is separated
from 1SQI by a hyperplane, represented by an assemblage-
like object WA|X :=

{
Wa|x ∈ B(HB)

}
a,x

, with Wa|x Her-
mitian, of fixed scale s :=

∑
a, x Tr

[
Wa|x

]
, such that〈

WA|X ,Σ
(inst)
A|X

〉
:=
∑
a, x

Tr
[
Wa|x σ

(inst)
a|x

]
≤ β, (4)

for all Σ
(inst)
A|X ∈ 1SQI, and

〈
WA|X ,ΣA|X

〉
> β ∈ R.

We refer to Eq. (4) as a 1S quantum instrumental inequal-
ity with 1SQI bound β (which depends solely on WA|X ).
Thus, WA|X plays a role analogous to the normal vector
of a plane in Euclidean space. We refer to WA|X as a
non-instrumentality witness. The separation is then quanti-
fied by the violation 〈WA|X ,ΣA|X〉 − β. Finally, we say
that WA|X is an optimal non-instrumentality witness for
ΣA|X /∈ 1SQI if 〈WA|X ,ΣA|X〉 − β ≥ 〈W ′

A|X ,ΣA|X〉 −
β′ for all non-instrumentality witnesses W ′

A|X with 1SQI
bound β′ and scale

∑
a, x Tr

[
W ′a|x

]
= s. Remarkably, as

shown in App. A, the optimal witness is obtained efficiently
via semi-definite programming [52].

Witnesses are, in turn, connected with robustness mea-
sures [56, 57]. Here, we consider the robustness of non-

Visibility

R
o
b
u
s
tn

e
s
s

 

 

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2
Non−instrumentality
Steering

Figure 2. Robustnesses of steering and of non-instrumentality. The
curves and points correspond respectively to theory and experiment.
An assemblage is produced by 3 projective local measurements by
Alice on the %Λ = V |Φ+〉〈Φ+| + (1−V )

2
(|00〉〈00| + |11〉〈11|),

generated by local dephasing on the maximally entangled state
|Φ+〉 = (1/

√
2)(|00〉 + |11〉) with strength given by the visibil-

ity V . The assemblage is steerable in the usual sense for all V > 0,
and is compatible with 1SQI models up to V < 0.24 (white region).
That point is the onset of a stronger form of quantum steering than
explainable by 1SQI models (light and dark green). Finally, for
V > (9 − 4

√
2)/7 ' 0.48 (dark green), the assemblage produces

(under the optimal [55] a-dependent measurements on Bob’s qubit)
black-box correlations that violate the DI instrumental inequality
of [35, 36] (see App. C). That is, the assemblage’s incompatibility
with 1SQI can be verified in the 1S DI setting for a broader range of
visibilities than in the fully DI one. Error bars obtained assuming
Poissonian distributions for the photon counts.

instrumentality Rni, defined, for any ΣA|X ∈ QI, as

Rni(ΣA|X) := min

{
t ∈ R≥0 :

ΣA|X + tΠA|X

1 + t
∈ 1SQI

}
.

(5)
It measures the minimal mixing t/(1 + t) with any ΠA|X ∈
1SQI that ΣA|X tolerates before the mixture enters 1SQI.
Interestingly, Rni is a measure of non-instrumentality in the
formal, resource-theoretic sense [58–60], as we explicitly
show in App. D. Moreover, we note that other choices
of “noise” types are possible, giving rise to different vari-
ants of Rni. However, the choice ΠA|X ∈ 1SQI is par-
ticularly convenient as it yields the robustness efficiently
computable through a semi-definite programming optimisa-
tion. In fact, such optimisation shows that Rni(ΣA|X) =
〈V A|X ,ΣA|X〉 − 1, where V A|X is the optimal for ΣA|X
over a simple subclass of non-instrumentality witnesses (see
App. E for details). We call V A|X the optimal robustness
witness for ΣA|X .

Fig. 2 shows Rni, together with the usual steering robust-
ness [52], for Q assemblages obtained from local measure-
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ments (by Alice) on states with different degrees of entan-
glement and purity. Some assemblages in the figure have
positive steering robustness and Rni = 0. This confirms that
LHS ⊂ 1SQI: Alice’s outcome signalling indeed provides
the models with more descriptive power. However, the fig-
ure also shows assemblages with Rni > 0. This implies the
following theorem, proven also analytically in App. B.

Theorem 1 (Q 6⊆ 1SQI). Outcome signalling is not enough
for LHS models to reproduce quantum steering.

It is instructive to compare with the fully DI case, where
Bob’s instrument is also a black box. There, usual Bell-like
correlations (where Alice and Bob have independent inputs)
obtained without outcome communication are known to be
stronger than local hidden-variable models augmented with
outcome signalling from Alice [19, 48, 61]. However, for DI
instrumental processes, in contrast, if Bob does not actively
exploit Alice’s output his measurement setting is fixed [62].
Hence, no matter how entangled %Λ, or what measurements
Alice makes, the resulting correlations will be automatically
compatible with local hidden-variable models with no input
for Bob, a subclass of classical instrumental models. In other
words, if Bob applies a measurement that does not depend
on a, the correlations trivially fulfill any DI instrumental in-
equality, including the recent one of Ref. [36]. Thus, in-
compatibility with the instrumental DAG without output sig-
nalling is a distinctive feature of the 1-sided DI case.

Finally, Rni could in principle attain higher values over QI
than over Q. After all, the former allows for signalling while
the latter does not. Surprisingly, this is false. The following
theorem, proven in App. F, holds instead.

Theorem 2 (Rni(Q) = Rni(QI)). For every quantum in-
strumental assemblage, there exists a Q assemblage with the
same non-instrumentality robustness.

From a practical viewpoint, the theorem provides a signifi-
cant computational shortcut in the task of, given a fixed value
of Rni, finding an assemblage with that robustness. Because
the theorem allows one to restrict the search to quantum as-
semblages, instead of searching over all QI ones [63]. From
a fundamental perspective, in turn, it has implications in the
inner geometry of QI. Namely, it tells us that, for any point
Σ

(qinst)
A|X ∈ QI \ 1SQI, there is always a point Σ

(q)
A|X ∈ Q as

far away from 1SQI as Σ
(qinst)
A|X . This does not contradict the

fact that Q ⊂ QI, because Q is a lower-dimensional manifold
(the NS one) of QI. Theorem 2 thus suggests that Σ

(q)
A|X is a

kind of projection of Σ
(qinst)
A|X onto NS [see Fig. 1 c)].

QB!HB!

BBO 
Pump beam !
@ 325 nm! |0�A

|1�A

|0�B
|1�B

a)! b)!
Alice!

Bob!

Alice!

Bob!

Glass slide!
BDB!

QA!HA!

PBS!

650nm Filter!HWP!BDA!

Figure 3. Experimental setup. (a) The BBO crystal is pumped by
a vertically polarized laser beam at 325 nm from a He-Cd source,
so that a pair of down-converted photons, at 650 nm, emerge in an
entangled state of momenta due to momentum conservation. The
momenta encode the two common-cause qubits. All but two mo-
mentum modes, corresponding to |00〉 and |11〉, are filtered out.
The produced momentum state is the two-qubit maximally entan-
gled state |Φ+〉〈Φ+|. One qubit is sent to Alice and the other one to
Bob. (b) Side view of each party’s device, depicting the preparation
(by Alice) and measurement (by Bob) of the assemblage. Beam
displacers BDA and BDB and half-wave plates (HWP) map the
momenta of each photon into its polarisations. A glass slide in-
troduces dephasing between Bob’s two paths, allowing us to tune
the visibility V of the resulting dephased state %Λ from V ∼ 0 to
V ∼ 94, 5%. Quarter-wave plates (QA and QB), half-wave plates
(HA and HB), polarised beam splitters (PBS), and a coincidence-
photon detector implement projective polarization measurements.

Experimental demonstration. We verified the gap between
quantum steering and non-instrumentality using entangled-
photon pairs produced by spontaneous parametric down con-
versions in a BBO crystal [64–66] (see Fig. 3). Alice’s
device is taken as the black box, so her measurement set-
tings (wave-plate angles) and outcomes encode the bits x
and a, respectively. Each measurement by her accounts for
the preparation of the assemblage element σ(q)

a|x. In con-
trast, Bob’s measurements allow for state tomography of
each σ(q)

a|x. We produce assemblages of different purities and
steering by applying local dephasing of different strengths
V on Bob’s qubit and having Alice measure the observables
−(σx+σz)/

√
2, σx, or σz , where σx and σz are respectively

the first and third Pauli matrices. These three observables
correspond to the input choices x =0, 1, and 2, respectively.
We tomographically reconstruct each produced assemblage
and evaluateRni, whose values are those displayed in Fig. 2.

Final discussion. 1SQI processes are a generalisation of
both classical instrumental processes (native of causal infer-
ence [1, 2]) to the case where the final node is quantum and of
local hidden-state models (native of steering theory [39, 52]),
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thus unifying two previously disconnected topics. We intro-
duced inequalities and witnesses to test against such 1SQI
causal models. These can, in particular, detect entanglement
with a single trusted device even in the presence of 1-way
outcome signalling. Strikingly, they can also be violated
with entanglement alone, i.e. without using outcome com-
munication. Hence, outcome communication is not enough
to explain quantum steering. Interestingly, this is a distinc-
tive feature of the 1S DI setting: For DI instrumental pro-
cesses, if Bob’s setting is independent of Alice’s outcome,
any state produces local hidden-variable correlations, auto-
matically compatible with classical instrumental models.

The proposed quantifier (robustness) of non-
instrumentality is efficiently computable via semi-definite
programming. Moreover, we prove in the appendix that
it is a formal, resource-theoretic monotone. With it, we
showed an even stronger incompatibility between steering
and 1SQI processes: that any value of the robustness can
be attained with steering alone. We experimentally verified
our predictions in an entangled-photon platform. The
experiment is simple, but proves that quantum states can be
steerable in a stronger way than previously reported.

Finally, the fact that quantum mechanics allows one to fal-
sify – with quantum control only at a single lab – classical
explanations even when these exploit output signalling is not
only relevant from the perspectives of quantum foundations

and causal inference but also promising from an applied one.
More precisely, quantum-nonlocality applications are exper-
imentally less demanding in the 1S DI regime than the fully
DI one, as already mentioned. To this, our findings now add
the possibility of steering-based protocols with the additional
experimentally-appealing feature of no need for space-like
separation. We note that, even if B is in the future light-
cone ofA (and, therefore, also ofX), direct causal influences
from X to B can be ruled out (and so an underlying instru-
mental causal structure guaranteed) with interventions on A,
e.g. There, cryptographic or randomess-generation protocols
based on 1S quantum instrumental inequality violations are
conceivable. It would thus be interesting to explore steering
beyond outcome signalling as a potential resource for infor-
mation processing in comparison with conventional steering-
based schemes [38] requiring space-like separation. Our re-
sults open new venues for research in that direction.
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Appendix A: 1-sided quantum instrumentality as a
semi-definite programming membership problem

In this section, we consider the problems of how to de-
termine if a given arbitrary assemblage ΣA|X is or not in
1SQI and how to determine its optimal non-instrumentality
witness, together with its corresponding violation. As in the
membership problem for LHS and the determination of opti-
mal steering witnesses of standard steering theory [52], these
problems turn out to admit a formulation as a semi-definite
programe (SDP). SDPs deal with optimisations of a linear
objective function over a matrix space defined by linear and
positive-semidefinite constraints. Because of this, SDPs are
exact in the sense that the solutions they return are guaran-
teed not to get stuck at local maxima or minima [68].

To this end, we express the conditional states in Eq. (1) as

σ
(inst)
a|x =

∑
λ̃

Dλ̃(a|x) σ̃a,λ̃, (A1)

where Dλ̃ is the λ̃-th deterministic response function and
σ̃a,λ̃ :=

∑
λ P̃λ̃|λ Pλ %a,λ, with P̃λ̃|λ defined such that

Pa|x,λ =:
∑
λ̃ P̃λ̃|λDλ̃(a|x). There are as many such func-

tions as hidden-variable values, i.e. |Λ̃| = |Λ| = |A||X|. In
addition, the conditional states σ̃a,λ̃ are subnormalised such
that

Tr
[
σ̃a,λ̃

]
=
∑
λ

P̃λ̃|λ Pλ =: P̃λ̃, (A2)

for all a ∈ ZA and all λ̃ ∈ ZΛ, i.e. their trace is independent
of a. Note that the distribution P̃Λ :=

{
P̃λ̃
}
λ̃

is automati-
cally normalized if so is ΣA|X .

We can then recast the membership problem of ΣA|X for
1SQI, i.e. whether ΣA|X admits or not a decomposition as
in Eq. (1), directly as an SDP feasibility test. This can be
conveniently expressed by the following optimisation.

Given ΣA|X =
{
σa|x

}
a,x
,

min
{σ̃a,λ∈B(HB)}a,λ

µ, (A3a)

s. t. σa|x =
∑
λ

Dλ(a|x) σ̃a,λ, (A3b)

with Tr [σ̃a,λ] = Tr [σ̃0,λ] , (A3c)
and σ̃a,λ ≥ −µ 11B . (A3d)

Eqs. (A3b) and (A3c) encode the constraints in Eqs. (A1)
and (A2), respectively. Hence, the minimisation in Eq. (A3a)

amounts to finding an 1SQI decomposition in terms of con-
ditional states σ̃a,λ̃ as positive as possible, in the sense of sat-
isfying the constraint of Eq. (A3d) with µ as negative as pos-
sible. When the objective function µ reaches a non-positive
value, a decomposition as in Eq. (A1) is feasible with some
σ̃a,λ̃ ≥ 0, and vice versa. That is, any value µ > 0 returned
by the optimisation is equivalent to an 1SQI-decomposition
being infeasible for ΣA|X , i.e. to ΣA|X 6∈ 1SQI.

By virtue of the duality theory of semi-definite program-
ming [52, 68], every such SDP admits a dual, equivalent for-
mulation as follows.

Given ΣA|X =
{
σa|x

}
a,x
,

max
{Wa|x∈B(HB)}a,x

∑
a, x

Tr
[
Wa|x σa|x

]
, (A4a)

s. t.
∑
x

Wa|xDλ(a|x) ≤ Ca,λ 11B , (A4b)

with
∑
a

Ca,λ = 0, (A4c)

and
∑
a, x, λ

Tr
[
Wa|xDλ(a|x)

]
= −1.

(A4d)

where Ca,λ ∈ R for all a ∈ ZA and all λ ∈
ZΛ. Eqs. (A4b) and (A4c) together imply that∑
a, x Tr

[
Wa|x

∑
λ̃Dλ̃(a|x) σ̃a,λ̃

]
≤ 0, for any condi-

tional states σ̃a,λ̃ satisfying Eq. (A2). So, these two equa-
tions encode the constraints that the assemblage-like object
WA|X = {Wa|x ∈ B(HB)}a,x of Hermitian operatorsWa|x
returned by the optimisation is a non-instrumentality witness
for some β ≥ 0. Eq. (A4d) fixes the scale of WA|X , which
prevents the maximisation in Eq. (A4a) from diverging to
∞. Indeed, using the fact that

∑
λ Dλ(a|x) = |A||X|−1,

Eq. (A4d) yields

s = − 1

|A||X|−1
. (A5)

Other choices of scaling are valid, but they must be accom-
panied by a corresponding rescaling factor for the primal
objective function in Eq. (A3a). Finally, the maximisation
in Eq. (A4a) guarantees that WA|X is the optimal non-
instrumentality witness for ΣA|X and that it is therefore (due
to the convexity of 1SQI) tight – i.e. that β = 0 –, as we
wanted to show. In other words, the maximisation returns a
positive value if, and only if, ΣA|X /∈ 1SQI.

Finally, it is important to mention that the primal and dual
SDPs, given respectively by Eqs. (A3) and (A4), satisfy a
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convenient property called strong duality [52, 68]. By virtue
of this, the primal and dual objective functions, i.e. µ and∑
a, x Tr

[
Wa|x σa|x

]
, respectively, converge to the same op-

timal values. That is, the minimum of Eq. (A3a) and the
maximum of Eq. (A4a) are guaranteed to coincide.

Appendix B: Proof of theorem 1

Here, we analytically prove theorem 1. We give a non-
instrumentality witness WA|X and a quantum assemblage
Σ

(q)
A|X ∈ Q such that Σ

(q)
A|X violates the 1S quantum in-

strumental inequality defined by WA|X . The assemblage
we use is the same as that of Fig. 2 in the main text for
V = 1 (no dephasing), i.e. the one obtained from |Φ+〉 =

(|00〉+ |11〉) /
√

2 through projective local measurements by
Alice in the bases −(σx + σz)/

√
2, σx, and σz . As our wit-

ness, we use the assemblage itself multiplied by a factor 2
for normalization purposes, i.e. WA|X = 2 Σ

(q)
A|X . Below,

we show that the 1SQI bound corresponding to this witness
is β = 2 + 1/

√
2. On the other hand, it is immediate to see

that 〈
WA|X , Σ

(q)
A|X

〉
= 3 > 2 + 1/

√
2. (B1)

This implies that Σ
(q)
A|X /∈ 1SQI and, therefore, that Q 6⊆

1SQI.
To prove that β = 2 + 1/

√
2, we analytically maximise〈

WA|X , Σ
(inst)
A|X

〉
over all Σ

(inst)
A|X ∈ 1SQI and obtain the

claimed maximum 2 + 1/
√

2. To this end, note first that the
components of the quantum assemblage Σ

(q)
A|X in question

are rank 1, so that Tr [Wa,xWa′,x] = δa,a′ . Then, using that
σ

(inst)
a|x =

∑
λ∈Λ P (λ)Dλ(a|x) ρa, λ, one gets〈

WA|X , Σ
(inst)
A|X

〉
=

3

2
+

1

2
P (λ) (v0,λ · r0,λ − v1,λ · r1,λ) ,

(B2)
where ra,λ :=

∑3
j=1 Tr[ρa,λ σj ] ej and

va,λ :=

2∑
x=0

Dλ(a|x)ux, (B3)

with ux :=
∑3
j=1 Tr[W0,x σj ] ej and ej the j-th element

of the canonical orthogonal basis of R3, for j = 1, 2, or 3.
Finally, optimising over P (λ) and ra,λ yields〈

WA|X , Σ
(inst)
A|X

〉
=

3

2
+

1

2
max
λ∈Λ
‖v0,λ‖+ ‖v1,λ‖. (B4)

For the vectors ux used here (namely u0 = −(e1 +e3)/
√

2,
u1 = e1, and u2 = e3) we obtain maxλ∈Λ ‖v0,λ‖ +

‖v1,λ‖ = 1 +
√

2, from which the value β = 2 + 1/
√

2
follows and the proof is completed.

Appendix C: Device-independent instrumental inequality

We use the linear inequality derived in [35] and recently
revisited in [36] to test for violations of the classical instru-
mental model by our assemblages, under an a-dependent
measurement Ma by Bob (his input is equal to the output
of Alice’s black box). The inequality can be expressed as∑

a, b∈{0,1}

[
(−1)a − (−1)b − (−1)a+b

]
P (a, b|0)

+2 (−1)b P (a, b|1) + 2(−1)a+b P (a, b|2) ≤ 3,
(C1)

where P (a, b|x) := Tr
[
M

(b)
a σa|x

]
, with M (b)

a the b-th ele-
ment of the a-th measurement of Bob’s. The optimal mea-
surements by Bob for the maximal violation are obtained
through the analytical technique of Ref. [55].

Appendix D: Monotonicity of Rni under free operations of
non-instrumentality

In this section we prove that Rni is a non-instrumentality
monotone for any linear class of free operations of non-
instrumentality. We leave the details of the resource the-
ory of non-instrumentality (in particular the explicit form of
the corresponding free operations) for future work and prove
monotonicity solely from the abstract generic properties of
free operations. That is, we prove that Rni is monotonous
(non-increasing) under any linear map satisfying the essen-
tial free-operation requirement that M(ΣA|X) ∈ 1SQI for
all ΣA|X ∈ 1SQI. The proof is similar to that [58] of steer-
ing monotonicity for the steering robustness [52].

By definition, Rni(ΣA|X) is the minimal value t∗ ∈ R≥ 0

such that

ΣA|X + t∗ΠA|X = (1 + t∗) Σ
(inst)
A|X , (D1)

for some ΠA|X ∈ 1SQI and Σ
(inst)
A|X ∈ 1SQI. ApplyingM

to both sides of this equation gives

M(ΣA|X)+t∗M(ΠA|X) = (1+t∗)M
(
Σ

(inst)
A|X

)
, (D2)
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where the linearity of M has been used. Now, since
M(ΠA|X),M(Σ

(inst)
A|X ) ∈ 1SQI (becauseM is a free oper-

ation of QI), Eq. (D2) realises a particular decomposition for
M(ΣA|X) of the form of that of Eq. (D1) for ΣA|X . Thus,
t∗ must necessarily be larger or equal than the corresponding
minimum forM(ΣA|X). That is,

Rni(M(ΣA|X)) ≤ Rni(ΣA|X), (D3)

which proves that Rni is a non-instrumentality monotone.

Appendix E: Robustness of non-instrumentality as an SDP
optimisation

Eq. (5) can be re-expressed as Rni(ΣA|X) = t∗, with t∗

defined by Eq. (D1). This implies that

σa|x = (1 + t∗)
∑
λ̃

Dλ̃(a|x) σ̃a,λ̃ − t∗ πa|x, (E1)

with ΠA|X = {πa|x ≥ 0}a, x ∈ 1SQI. Hence,

πa|x =
∑
λ̃

Dλ̃(a|x)σ′
a,λ̃
, (E2)

for σ′
a,λ̃
≥ 0, with Tr[σ′

a,λ̃
] = Tr[σ′

a′,λ̃
], ∀ a, a′ ∈ A. Both

Dλ̃(a|x) and σ̃a,λ̃ are also defined as in Eq. (A1). The prob-
lem of finding t∗ is then expressed explicitly as the following
SDP:

Given ΣA|X =
{
σa|x

}
a,x
,

min
{χ̃a,λ, χa,λ∈B(HB)}a,λ

t, (E3a)

s. t. σa|x =
∑
λ

Dλ(a|x) (χ̃a,λ − χa,λ) ,

(E3b)

with 1 + t =
∑
λ

Tr [χ̃a,λ] , (E3c)

Tr [χ̃a,λ] = Tr [χ̃0,λ] , (E3d)
Tr [χa,λ] = Tr [χ0,λ] , (E3e)
χ̃a,λ ≥ 0, (E3f)

and χa,λ ≥ 0. (E3g)

Note that normalization of σa|x automatically implies∑
λ Tr[χa,λ] = t, which explains why one does not impose

it as an independent, explicit constraint on the optimization.

Like Eq. (A3), the test (E3) admits a dual formulation,
which takes the following form.

Given ΣA|X =
{
σa|x

}
a,x
,

max
{Va|x∈B(HB)}a,x

∑
a,x

Tr
[
Va|x σa|x

]
− 1, (E4a)

s. t. B′a,λ 11B ≤
∑
x

Va|xDλ(a|x) ≤ Ba,λ 11B ,

(E4b)

with
∑
a

Ba,λ = 1, (E4c)

and
∑
a

B′a,λ = 0. (E4d)

where Ba,λ, B′a,λ ∈ R for all a ∈ ZA and all λ ∈ ZΛ. With
the same arguments as in the discussion right after Eqs. (A4),
one sees that Eq. (E4a) returns a positive maximum (the one
defining t∗) if, and only if, ΣA|X /∈ 1SQI. In fact, using
that ΣA|X is well-normalised, the term −1 in the objective
function can be absorbed into the witness’ definition with the
variable change V A|X → WA|X := {Va|x−11B/|X| }a,x.
The resulting SDP (for the redefined witness WA|X ) is sim-
ilar to the one in Eqs. (A4), but with an extra constraint
coming from the left-hand side inequality of Eq. (E4b), and
with the witness scale no longer fixed. Thus, the robustness
is given by the violation of the optimal V A|X over all non-
instrumentality witnesses with 1SQI bound β = 1 and sub-
ject to the specific constraints given by Eqs. (E4).

Appendix F: Proof of theorem 2

Consider an arbitrary Σ
(qinst)
A|X ∈ QI. By definition, it

admits a decomposition as in Eq. (2). Here, we use the
short-hand notation Σ

(qinst)
A|X = EB|A,ΛB

(
Σ

(q)
A|X

)
, where

EB|A,ΛB := {EB|a,ΛB}a, to represent Eq. (2). In addition,
we denote by E∗B|A,ΛB := {E∗B|a,ΛB}a the collection of dual
(adjoint) maps E∗B|a,ΛB of each completely-positive trace-
preserving (CPTP) map EB|a,ΛB . This has the property that〈
V A|X ,EB|A,ΛB

(
ΣA|X

)〉
=
〈
E∗B|A,ΛB

(
V A|X

)
,ΣA|X

〉
,

for any V A|X and ΣA|X . Then, if V A|X is the optimal ro-
bustness witness of Σ

(qinst)
A|X , defined by Eqs. (E4), it holds
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that

Rni

(
Σ

(qinst)
A|X

)
=
〈
V A|X ,Σ

(qinst)
A|X

〉
− 1

=
〈
V A|X ,EB|A,ΛB

(
Σ

(q)
A|X

)〉
− 1

=
〈
E∗B|A,ΛB

(
V A|X

)
,Σ

(q)
A|X

〉
− 1. (F1)

Now, assume, for a moment, that E∗B|A,ΛB
(
V A|X

)
is also

a valid robustness witness. Then, denoting by UA|X the op-
timal robustness witness for Σ

(q)
A|X , it must hold that

〈
E∗B|A,ΛB

(
V A|X

)
,Σ

(q)
A|X

〉
− 1 ≤

〈
UA|X ,Σ

(q)
A|X

〉
− 1.

(F2)
The left-hand side of this equation equals Rni

(
Σ

(qinst)
A|X

)
,

whereas the right-hand side equalsRni

(
Σ

(q)
A|X

)
, thus giving

Rni

(
Σ

(q)
A|X

)
≥ Rni

(
Σ

(qinst)
A|X

)
. So, the only missing in-

gredient is to show that E∗B|A,ΛB
(
V A|X

)
is, in fact, a valid

robustness witness.
To prove this we note that, for any

Σ
(inst)
A|X ∈ 1SQI, EB|A,ΛB (Σ

(inst)
A|X ) is also in

1SQI. Hence,
〈
E∗B|A,ΛB

(
V A|X

)
,Σ

(inst)
A|X

〉
=〈

V A|X ,EB|A,ΛB
(
Σ

(inst)
A|X

)〉
≤ 1, for all Σ

(inst)
A|X ∈ 1SQI.

This implies that E∗B|A,ΛB
(
V A|X

)
is a non-instrumentality

witness with βE∗
B|A,ΛB

(V A|X) = 1. Also, given that each

E∗B|a,ΛB is completely-positive (CP) and unital, since it
is the dual of a CPTP map, applying these dual maps to
any robustness witness does not invalidate its defining
constraints, in Eqs. (E4b)-(E4d). This means that the
resulting object after the application of the dual map is also a
valid 1SQI-robustness witness in the SDP formulation.
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