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Gene Regulation Strategies Underlying Skeletal Muscle Atrophy in Cancer Cachexia 

by 

Geysson Javier Fernandez Garcia 

 

Abstract 

 

Cancer cachexia is a syndrome characterized by the severe skeletal muscle wasting 

tissue; that affects more than 50% of all cancer patients and results in lower quality of life due 

to compromised fatigue, weakness, decreased immune function, insulin resistance and poor 

tolerance and response to radio and chemotherapy. Remarkably, approximately 20% of 

cancer-related deaths are estimated to be directly caused by cachexia. There is currently no 

effective targeted therapy and the main limitation lays on the traditional approaches that not 

deal with the inherent complexity, characterized by non-linear interactions, of gene regulatory 

networks (GRN). Thus, a clear identification of the components of gene regulation, and a 

quantitative understanding of their temporal integration to control cellular responses is 

fundamental for capture essential mechanistic details that will ultimately enable the 

development of direct therapeutic strategies for the treatment of cancer cachexia. Here, we 

examine genome-wide gene expression of muscle wasting under two different frameworks, 

using static and dynamic gene expression data. We structure this approach as follow: Chapter 

1 presents a quantitative characterization of the signaling pathways and a GRN reconstruction 

of muscle wasting in Lewis Lung Carcinoma (LLC) tumor-bearing mice by integrating static 

mRNAs and microRNAs expression profiles. The results show that LLC mice reduced body 

weight in 20% and presented muscle and fat tissue wasting after 23 days of tumor induction. 

In addition, we found 1008 differential expressed mRNAs (487 up-regulated and 521 down-

regulated) and eighteen deregulated miRNAs (13 up-regulated and 5 down-regulated). Our 

data suggest activation of the transcriptional factor NF-κB and Stat3, which have been 

described in the activation of atrophic gene programs. Moreover, we ident potential 

posttranscriptional regulation by miRNAs of three important biological process: extracellular 

matrix organization, cell migration and transcription factor binding. Overall our results 

identify a set of signaling pathways that may contribute to muscle wasting in cancer cachexia, 

between them extracellular matrix genes with potential regulatory mechanism mediated by 

miRNAs. 
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Chapter 2 provides further dissection of the NF-κB signaling pathway in atrophying 

muscle cells. Here, we examine quantitatively the genome-wide dynamic gene expression 

effects of the activation of NF-κB by the exposure of tumor necrosis factor – alpha (TNF-α) 

on skeletal muscle cells (C2C12). We characterize the regulatory strategies of gene induction 

and repression by measuring both mRNA transcription and degradation rates and connecting 

these processes via mathematical modeling. Our data points to a dominant role of transcription 

dynamics in the regulation of both gene induction and repression programs in response to 

TNF; and unveils a decrease in mRNA degradation rate as strategy for genes of late response 

to increase their intracellular concentrations. Furthermore, our analysis shows constitutive 

degradation as an intrinsic characteristic of genes that determines most of temporal ranks of 

gene expression profiles. Using a non-degradable form of inhibitor kappa B alpha and RelA 

knockout C2C12 cells we found that NF-κB is responsible for both gene induction and gene 

repression during muscle cell atrophy induced by TNF-α. Our fine-grained data highlights the 

importance of signaling dynamics in mediating the TNF-α effects on skeletal muscle cells and 

reveals a critical interplay between synthesis and degradation control in that regulates dynamic 

gene expression programs. 
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Estratégias de regulação de genes subjacentes a atrofia do músculo esquelético na 

cachexia associada ao câncer 

por 

Geysson Javier Fernandez Garcia 

Resumo 

 

A caquexia associada ao câncer é uma síndrome caracterizada pela grave perda de 

tecido musculo esquelético; que se estima que afeta mais de 50% de todos os pacientes com 

câncer e resulta em menor qualidade de vida devido a fadiga, fraqueza, redução da função 

imune, resistência à insulina e baixa tolerância e resposta à quimioterapia. Notavelmente, 20% 

das mortes relacionadas ao câncer são diretamente causadas pela caquexia. A principal 

limitação de que atualmente não há terapia direcionada, é o uso de abordagens tradicionais 

que não tratam a complexidade em sistemas biológicos, caracterizada por interações não-

lineares de redes de regulação genética (GRN, do inglês Gene Regulatory Networks). Por esse 

motivo, ainda é necessária uma identificação dos componentes da GRN e uma compreensão 

quantitativa de sua integração temporal no controle das respostas celulares. Adquirir tal 

conhecimento é fundamental para capturar detalhes mecanicistas essenciais para direcionar 

estratégias terapêuticas para uma doença complexa, como a caquexia do câncer. Neste 

trabalho, examinamos a expressão genética do músculo esquelético em dois abordagens 

metodológicos diferentes: usando dados de expressão de genes estáticos e dinâmicos. 

Estruturamos nosso trabalho da seguinte maneira: o Capítulo 1 apresenta uma caracterização 

quantitativa das vias de sinalização e uma reconstrução de GRN no tecido musculo esquelético 

em ratos portadores de carcinoma de pulmão de Lewis (LLC, do inglês Lewis lung carcinoma) 

através da integração de perfis de expressão de mRNAs e miRNAs em um tempo. Os 

resultados mostram que os camundongos LLC reduziram o peso corporal em 20% e 

apresentaram perda de tecido muscular e adiposo após 23 dias de indução tumoral. Além 

disso, encontramos 1008 mRNAs expressos diferencialmente (487 induzidos e 521 

reprimidos) e 18 miRNAs desregulados (13 induzidos e 5 reprimidos). Nossos dados sugerem 

a ativação do fator transcricional NF-κB e Stat3, que foram descritos na ativação de programas 

genéticos atróficos no musculo esquelético. Além disso, identificamos a potencial regulação 

pós-transcricional por miRNAs de três processos biológicos importantes: organização da 

matriz extracelular, migração celular e ligação do fator de transcrição. Em geral, nossos 

resultados identificam um conjunto de caminhos de sinalização que podem contribuir na perda 
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de tecido musculo esquelético na caquexia associada ao câncer, entre eles genes da matriz 

extracelular com potencial mecanismo regulatório mediado por miRNAs. 

 

O Capítulo 2 fornece uma dissecção da via de sinalização de NF-κB em células musculares 

atrofiadas. Neste capitulo, examinamos quantitativamente os efeitos dinâmicos na expressão 

genética pela ativação de NF-κB após exposição ao fator de necrose tumoral alfa (TNF-α) nas 

células do músculo esquelético (C2C12). Caracterizamos as estratégias reguladoras de 

indução e repressão de genes, medindo as taxas de transcrição e degradação para cada mRNA 

e conectando esses processos através de modelagem matemática. Nossos dados apontam para 

um papel dominante da transcrição na regulação dos programas de indução e repressão de 

genes em resposta ao TNF; e revela uma diminuição da taxa de degradação de mRNA como 

estratégia para genes de resposta tardia para aumentar suas concentrações intracelulares. Além 

disso, nossa análise mostra a degradação constitutiva como uma característica intrínseca dos 

genes que determina a ordem temporal dos perfis de expressão gênica. Usando uma forma não 

degradável do inibidor kappa B alfa e um knockout de RelA, descobrimos que o fator NF-κB 

é responsável por indução de genes e repressão de genes durante a atrofia de células 

musculares induzida por TNF. Nossos dados destacam a importância da dinâmica de 

sinalização na mediação dos efeitos do TNF nas células do músculo esquelético e revela uma 

interação crítica entre o controle de síntese e degradação, que regula os programas dinâmicos 

de expressão gênica. 

 
 

 
 

 
 

 
 

 
 



 

vii 
 

 

Contents 

1 Genomic Profile of mRNAs and microRNAs of Skeletal Muscle Atrophy in Cancer 
Cachexia ........................................................................................................................1 

1.1 Introduction ...........................................................................................................2 

1.1.1 Skeletal Muscle ..............................................................................................2 

1.1.2 Cancer Cachexia .............................................................................................3 

1.1.3 Molecular pathways in cachexia .....................................................................4 

1.1.4. Genome wide studies .....................................................................................6 

1.1.5 Transcriptome ................................................................................................6 

1.1.6 MicroRNome .................................................................................................7 

1.2. Question to be answered .......................................................................................9 

1.3 Characterization of Lewis Lung Cancer (LLC) tumor bearing mice .......................9 

1.4 Muscle atrophy in cancer cachexia is associated with heterogeneity in 
transcriptome changes ............................................................................................... 13 

1.5 Muscle atrophy in cancer cachexia is discriminate by a reduced set of genes ....... 16 

1.6 Identification of regulatory pathways associated with muscle wasting in cancer 
cachexia .................................................................................................................... 17 

1.7 Transcriptional regulation during muscle atrophy ................................................ 20 

1.8 miRNAs associated with muscle wasting in cancer cachexia ............................... 21 

1.9 Integrative analyses of miRNA and mRNA expression profiles identified signaling 
pathways enriched with predicted miRNA targets ..................................................... 23 

1.10 Discussion ......................................................................................................... 25 

1.11 Methods ............................................................................................................ 29 

 
2 Integrated regulation of mRNA transcription and degradation decodes TNF 
signaling during inflammatory muscle-atrophy ........................................................ 33 

2.1 Introduction ......................................................................................................... 34 

2.2 Question to be answered ...................................................................................... 36 

2.3 TNF stimulation induces skeletal muscle cell atrophy ......................................... 37 

2.4 Dynamic response of cytoplasmic mRNA. .......................................................... 37 

2.5 Integration of temporal mRNA degradation and transcription rates reveal the 
dynamics of gene expression in response to TNF. ..................................................... 40 

2.5.1 mRNA degradation rates correlate with the temporal ordering of gene 
expression clusters. ............................................................................................... 40 



 

viii 
 

2.5.2 Changes in transcription rates correlates with cytoRNA expression levels. ... 42 

2.6 Coupling transcription and degradation dynamic through a mathematical model . 44 

2.6.1 Model accurately describes dynamic changes in gene expression ................. 44 

2.6.2 Synthesis control dominates but degradation control is critical for some genes
 .............................................................................................................................. 46 

2.7 Molecular Regulatory Mechanisms of cytoRNA levels. ...................................... 49 

2.7.1. Transcriptional control is dependent of RelA transcription factor ................ 49 

2.7.2 Transcriptional control dependent of MAPK. ............................................... 52 

2.8 Discussion ........................................................................................................... 53 

2.9 Methods .............................................................................................................. 54 

 
A Supplementary information.................................................................................... 62 

 
B Bibliography ............................................................................................................ 71 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 



 

1 
 

“The way to get good ideas is to get lots of ideas, and throw the bad 

ones away” 

Linus Pauling 

 
 

 
 

 
 

 
 

Genomic Profile of mRNAs and microRNAs of 
Skeletal Muscle Atrophy in Cancer Cachexia

 

 

 

 

 

 



CHAPTER 1 

2 
 

1.1 Introduction 
 

1.1.1 Skeletal Muscle 
 

Skeletal muscles comprise approximately 40-50% of body mass and are responsible for 

basic functions such as locomotion, metabolism and respiration1.  In order to allow movement, 

the organization of muscle cells is highly structured which enable generation and sustaining 

mechanical tension. Myofiber may have several centimeters in length and can contain 

hundreds of nuclei. The myofibers cytoplasm is filled with contractile proteins that are 

assembled into repetitive structures, sarcomeres, the basic contraction unit. These structures 

are made up of highly ordered actin and myosin filaments, as well as hundreds of regulatory 

proteins such as the troponin–tropomyosin complex, and scaffolding and cytoskeletal 

crosslinking proteins such as α-actinin, myomesin and the kinase titin 2 (Figure 1-1). 

 

Figure 1-1 Striated muscle structure. The contractile machinery of skeletal muscle is formed by 
long arrays of sarcomere units. The sarcomere is constructed by interdigitating, antiparallel filaments 
of actin and myosin, the elastic titin filaments and the crosslinker proteins for actin, such as α actinin 
and myomesin. Sarcomeres contain many other accessory components, including proteins involved in 
transcriptional regulation and turnover control. The transcription factor CLOCK, the transcriptional 
cofactors muscle LIM protein (MLP), muscle ankyrin-repeat proteins (MARPs) and LIM domain-
binding protein 3 (LDB3) are found at the Z-disk and/or the I-band. Multifunctional components of 
the protein turnover machinery include sequestosome 1 (SQSTM1), NBR1 and the muscle-upregulated 
RING finger proteins (MURFs). MYOZs, myozenins. [adapted from Braun, et al 2011 2]. 
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1.1.2 Cancer Cachexia 
 

The skeletal muscles have a high plasticity in response to changes in functional 

demands; resistance training induces skeletal muscle hypertrophy, which is characterized by 

increased protein synthesis, fiber diameter and strength3,4. In contrast, conditions of disuse, 

immobilization, denervation, microgravity, aging and food restriction result in loss of muscle 

mass, known as muscle atrophy. Muscle atrophy is characterized by a decrease in the amount 

of protein, fiber diameter and reduction of strength2–5.  The skeletal muscle atrophy is also a 

common phenomenon in many chronic systemic conditions such as sepsis, chronic heart 

failure, chronic obstructive pulmonary disease, chronic kidney disease, diabetes, AIDS and 

cancer6,7. These conditions may be accompanied by a complex metabolic multifactorial 

syndrome characterized by decreased muscle mass, with or without loss of fat, named 

cachexia7,8. 

 

The cachectic state is particularly important in cancer, representing poor prognosis and 

decreased response to radio and chemotherapy treatment; more than 50% of cancer patients  

develop cachexia and, remarkably, approximately 30% of cancer-related deaths are estimated 

as a result of cachexia6,9. Depending on the tumor type, site and mass, weight loss occurs in 

30 – 80% of cancer patients; patients with pancreatic or gastric cancer have the highest 

frequency of weight loss, while patients with non-Hodgkin’s lymphoma, breast cancer, acute 

nonlymphocytic leukemia, and sarcomas have the lowest frequency of weight loss9. In patients 

with pancreatic cancer, weight loss is an important symptom with a median weight loss of 

14.2% of their pre-illness stable weight10 (Figure 1-2). This weight loss is progressive, 

increasing to a median of 24.5% at the last assessment before death (Figure 1-2). 

 

 

 

 

 

 

 

 
 
 
Figure 1-2. Time course of weight loss in patients with advanced pancreatic cancer (n=20). At 
diagnosis, 85% of patients have lost weight. [Adapted from Wigmore, et al 1997  10 ]. 
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1.1.3 Molecular pathways in cachexia 
 

The molecular pathways responsible for cachexia are not completely understood, 

however, a number of studies have shown that cachexia is linked to raised plasma levels of 

pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, tumor necrosis factor alpha 

(TNF) and interferon gamma (IFN); theses cytokines trigger the activation of different axis 

such as: nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Signal 

transducer and activator of transcription (STAT), MAP kinase family (MAPKs) and Activator 

protein 1 (AP-1). The signal transduction to NF-kB and STAT transcriptions factors have a 

key role, especially in the development of cellular and molecular alterations that mainly in the 

regulation of genes of three main pathways: a) ubiquitin proteasome system, b) IGF1-AKT-

FOXO signaling and c) autophagy-lysosome system (Figure 1-3); which lead to an imbalance 

between protein synthesis and degradation that results in loss of  muscle mass and 

function11,12.  

 

Ubiquitin Proteasome System: Protein degradation through the ubiquitin-proteasome 

system is the major pathway of non-lysosomal proteolysis of intracellular proteins13. Proteins 

are targeted for degradation, by covalent modification with ubiquitin; requires the coordinated 

reactions of three enzymes: ubiquitin-activating enzymes (E1), ubiquitin-conjugating 

enzymes (E2) and the ubiquitin ligases E3 that recognizes the specific protein to be 

ubiquitinated13. The central role of  ubiquitin E3 ligases in atrophy of skeletal muscle  atrophy 

is generally due to reduced protein synthesis, increased degradation, or a relative imbalance 

of the two processes 14. These signaling mediators are required to up regulate the expression 

of the key E3 ligases such as , tripartite Motif Containing 63- E3 Ubiquitin Protein Ligase, 

TRIM63 (AKA: MuRF1, in the Figure 1-3) , and F-Box Protein 32, FBXO32 (AKA: 

Atrogine-,1 in the Figure 1-3), which mediate sarcomeric breakdown and inhibition of protein 

synthesis14,15. FBXO32 induces the ubiquitination of an eIF3f, which is part of the protein 

translation machinery16.  

 

IGF1-AKT-FOXO Signaling Pathway: The protein mass within a muscle is 

regulated by an interplay between protein synthesis and degradation. In rodent models of 

cancer associated muscle wasting, both decreased synthesis and increased degradation have 

been described17.  One of the best-characterized mechanisms for inducing protein synthesis is 

through IGF1 (insulin-like growth factor 1) signaling. The pathway that mediates hypertrophy 
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downstream of IGF1 activation is IRS1/PI3K/AKT/mTOR (Figure 1-3)18. AKT induces 

activation of protein synthesis by blocking repression of mTOR, which in turn maintains 

muscle mass through two distinct complexes, known as TORC1 and TORC219. TORC1 

signals to the p70S6 kinase and 4E-BP pathways, which induce ribosome formation and 

induce protein synthesis19. 

 

 Autophagy-lysosome system: Under atrophy conditions, autophagy is induced in addition 

to ubiquitin-mediated proteolysis, which also contributes to the degradation of muscle proteins 

that promotes muscle atrophy 20. In autophagy, organelles are sequestered in autophagosome 

vacuoles that fuse with lysosomes and become digested by lysosomal enzymes21. Autophagy 

genes and the lysosomal proteolytic system are activated in skeletal muscle during denervation 

and cancer and, in both cases, contribute to atrophy through the activity of FOXO (Figure 1-

3) 22. A unique finding determined that analogous to AKT, FOXO3 is negatively regulated by 

PGC-1α23. PGC-1a is itself down-regulated in muscles from tumor-bearing mice and other 

wasting conditions, and transgenic expression of PGC-1α rescues muscle loss in part by 

inhibiting FOXO3 and through the production of metabolic products.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 1-3. Major pathways that control muscle fiber size. Protein synthesis and degradation are 
regulated by several different stimuli, which activate multiple signaling pathways, many of which 
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converge at common intermediates and crosstalk with one to another. Dotted lines depict pathways 
whose molecular mechanisms and role in adult skeletal muscle have yet to be completely defined. 
[adapted from Bonaldo et al, 2013 15]. 

 

1.1.4. Genome wide studies 

 
Although some pathways are characterized as responsible for the muscle wasting in 

cancer cachexia, there are still many unknown molecular mechanisms that are involved in 

gene regulation in this condition15. Currently, the availability of high-throughput technologies 

to acquire genome-wide data is expected to change the way we formulate and address 

biological questions24. With nearly all genes in hand, the conventional reductionist approach 

in the study of cancer cachexia, studying one gene at a time can now be complemented by 

more global or integrative approaches that consider all genes at once. Even though reductionist 

approaches have pointed out many basic facts of biology, they are limited in giving us a 

comprehensive picture of the life of cells, tissues and organisms25. Thus, it is reasonable to 

imagine that more integrative genome wide approaches will bring better understanding of the 

dynamics muscle wasting in cancer cachexia disease processes at a fundamental level. So, by 

integrating the information contained in the genome wide data sets, increasingly meaningful 

biological hypotheses can be formulated. However, it should be kept in mind that these 

hypotheses still need to be tested back in the context of relevant biological settings, perhaps 

using more refined approaches25. 

 

1.1.5 Transcriptome 
 

Transcriptomics is the measurement of the expression of thousands of genes at once, 

through the quantification of the mRNA levels to create a global picture of cellular function. 

This study is the logical next step after sequencing a genome; the sequence tells us what the 

cell could possibly do, while the transcriptome tells us what the cell is doing at a specific time 

point.  

 

The first transcriptomics analysis in cancer cachexia was conducted in 200126 with the 

development of the differential display retro transcription PCR (DDRTPCR) for the analysis 

of several candidate genes (Table 1-1). Later, new strategies of massive analysis (high-

throughput) of transcriptome have been applied, such as the microarray technology, producing 

larger amounts of data in terms of expression of many genes in a single experiment (Table 1-
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1). However,  the microarrays analysis used in previous publication has limitations such as: 

1) semi quantitative technique due the probe saturation 27, 2) annotation issues associated with 

predefined probes28 and 3) inability to comprehensively detect novel transcripts and 

isoforms28. To our knowledge, to date, there is no study that have used the high-performance 

sequencing mRNA (RNA-Seq) to analyze muscle samples in cancer cachexia. Additionally, 

these transcriptome analyses in cancer cachexia based in microarrays platforms (Table 1-1) 

have just analyzed individual genes that are up- or down-regulated rather than the relationships 

between genes. 

 

Finally, many factors determine whether a gene is on or off, and this information 

cannot be accessed just by a transcriptome analysis. For the comprehensive study of the 

mechanisms that control gene expression is necessary examine transcriptional and 

posttranscriptional regulation. Transcriptional regulation can be explored genome wide by 

adding other layers of information such as methylation (e.g. BS-seq), Transcription factors 

binding sites (e.g. CHIP-seq) or chromatin accessibility (e.g. ATAC-seq). On the other hand, 

post-transcriptional regulation mechanisms can be explored using microRNA profiles (e.g. 

small RNAseq) or global mapping of targets for specific RNA-binding proteins (HITS-

CLIP-seq). 

Model Tumor type Tissue Technology Genes #DE 
Genes 

Ref 

Rat Hepatocellular carcinoma Muscle DDRTPCR 15 1 26 
Mouse Adenocarcinome 16 Muscle Microarray 588 9 29 

Rat Hepatocellular carcinoma Muscle Microarray 16392 133 3 
Humans Gastrointestinal Muscle Microarray 38500 83 30 
Humans Gastrointestinal Adipose Microarray 28869 425 31 
Mouse C26 colon adenocarcinoma Muscle Microarray 26766 1607 32 

Humans Pancreatic Muscle cDNA-AFLP ND 183 33 
Mouse C26 colon adenocarcinoma Hypothalamus Microarray 21225 19 34 
Mouse C26 colon adenocarcinoma Muscle Microarray 28132 1907 35 

Table 1-1. Transcriptome studies in cancer cachexia. DDRTPCR: Differential Display Retro 
Transcription PCR, cDNA-AFLP: cDNA Amplified fragment length polymorphism, ND: Not 
determinate. # DE genes: number of differential expressed genes. 

 

1.1.6 MicroRNome 

Almost 90% of the human genome is actively transcribed, and most of these transcripts 

are composed by non-coding RNAs (ncRNA). ncRNAs are important regulatory molecules 
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involved in diverse physiological and cellular processes36. The micro RNAs (miRNAs) 

constitute the most studied and characterized class of small non-coding regulatory, with size 

ranging from 17 to 25 nucleotides37,38. The miRNAs impose an additional level of post-

transcriptional regulation that influence gene expression in a sequence-specific manner, where 

miRNAs bind complementary to a mRNA sequenced named seed region37,38. This binding 

results in either degradation of the targeted mRNA or inhibition of translation of the targeted 

mRNA to its corresponding protein39. 

 

There are many signaling pathways through which miRNAs influence muscle 

metabolism. Regarding to the IGF-1 pathway, which control protein synthesis, miR-1, miR-

206, miR-133 and miR-125b modulates the pathway by targeting IGF-1 or IGF-1 receptor 

(figure 1-4)40,41.The ubiquitin proteasome system is also regulated by miRNAs. The miRNAs 

miR-486 and miR-17-92 down regulated PTEN and FoxO transcription factor, which direct 

induce the expression of a number of atrophy-inducing genes40,42. Also, several studies have 

demonstrated that miR-23a suppresses the translation of both atrogenes, TRIM63 ( AKA: 

MuRF1 in the Figure 1-4) and FBXO32 ( AKA: Atrogin-1 in the Figure 1-4)  as well as an 

increase in muscle mass (Figure 1-4) 40,43. 

 

 

 

 

 

 

 

Figure 1-4. MicroRNAs in muscle atrophy. Protein synthesis and degradation are regulated by 
several miRNA in different key point of  pathways such IGF/PI3K/Akt signaling and the Ubiquitin 
proteasome system  [adapted from Wang, 2013 40]. 

 While the present study was developed, genome wide analysis of miRNAs profiles was 

described in cancer cachexia44. Although the study was performed in humans, mRNA and 

miRNA data from the same sample were not integrated to identify the main pathways related 
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to muscle atrophy in cancer cachexia. So, it is still needed to explore the complex gene 

regulatory networks in terms of miRNA and mRNA expression profiles. So, our current 

project will also decipher a miRNA signature for muscle atrophy in cancer cachexia, and how 

this signature is integrated with the transcriptome of the cell. 

 

1.2. Question to be answered 
 

In this chapter, we will analyze qualitatively the GRN of muscle wasting in cancer 

cachexia by examine genome-wide the mRNA and microRNA profiles. This data helps us to 

explore the major pathways and cell effectors that underlay muscle wasting in cancer cachexia 

and explore potential mRNA posttranscriptional regulations by microRNAs.  

1.3 Characterization of Lewis Lung Cancer (LLC) tumor bearing 

mice 

We use the LLC tumor-bearing mice model, a well-established model of cancer 

cachexia. As expected, all mice that received subcutaneous LLC cells injection developed 

cachexia (LCC group) compared to control mice injected with saline (Control group). After 

seven days of LLC cells injection, it was possible to locate the tumor by palpation. Fifteen 

days post-injection, it was possible to see the tumor site as a projection of the skin. Twenty-

two days post-injection, the tumor was visually observed as a mass under the skin; the tumor 

mass ulcerated in some animals, causing open lesions. When surgically exposed, the tumor 

was solid, vascularized, roughly spherical in shape (Figure 1-5), measuring ~ 2 cm in 

diameter, and weighing ~ 3g (data not shown). 
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Figure 1-5. Morphological features of Lewis Lung Cancer (LLC) tumor-bearing mice.  Exposed 
LLC tumor, twenty-two days following subcutaneous injection of 1.5x106 LLC cells, constituted by a 
spheroid mass measuring ~ 2 cm in diameter, and weighting ~ 3g. The tumor mass is well-defined. 
The LLC tumor-bearing mice carcass show muscle atrophy and pallid coloration. 
 

The LLC line is highly tumorigenic; however, we did not visually identify metastasis 

to the lungs or other organs. Approximately 25% of tumor-bearing-mice died within 22 days 

after treatment (Figure 1-6a). Weight loss in cancer cachexia is associated with loss of body 

fat and deterioration of muscle mass 9,31,45. Consistent with cancer cachexia syndrome, tumor-

bearing mice exhibited more than 20% of weight loss 23 days after LLC cell injections 

compared to control injected with saline (Figure 1-6b). We also observed that GAS, TA, and 

SOL in LLC were atrophic, demonstrating that muscle atrophy occurs regardless the 

glycolytic or oxidative muscle phenotype Figure 1-6c). In addition to the deterioration of 

muscle mass, cancer cachexia was also confirmed by splenomegaly (Figure 1-6d-e), and the 

loss of epididymal, retroperitoneal, and visceral fat (Figure 1-6f); no alterations were found 

in the control mice. Finally, we observed no changes in heart and liver weight in both groups 

(Figure 1-6d). Taken together, these findings correlate with the metabolic changes associated 

with clinical cancer cachexia. 
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Figure 1-6. LCC tumor-induced cachexia in mice. (6a) Kaplan-Meier analysis of survival was 
performed in Control (PBS injected; n = 10) and LLC tumor-bearing mice (n = 20). (6b) Carcass 
weight loss, defined as total body weight - tumor weight, and reported as a percentage of the initial 
body weight of each mouse. (6c) Gastrocnemius (GAS), tibialis anterior (TA), and soleus (SOL) 
muscles weight. (6d) Weights of liver, heart, and spleen (6e) Image showing the splenomegaly in LCC 
tumor-bearing mice compared to the control. (6f) Weights of epidydimal (EP), retroperitoneal (RP), 
and visceral (VIS) fat. The values are mean ± SD. Statistical analysis was conducted using the two-
tailed t-test. *p<0.05. 

 

Next, we evaluated molecular marks of muscle wasting in cancer cachexia by using 

RT-qPCR. The total RNA extracted from gastrocnemius (GAS), tibialis anterior (TA) and 

soleus (SOL) muscles. RNA quality was accessed using Bioanalyzer (Agilent, USA) and the 

RNA Integrity Ratio was higher than 9.0 for all samples (supplementary information 1). We 

selected three transcripts related with muscle atrophy: Myh2, Myh7 and Col1a1. Expression 

of Col1a1, a component of the extracellular matrix, was repressed in LLC compared to control 

in GAS, TA, and SOL (Figure 1-7). Additionally, transcripts that encode for sarcomere 

proteins Myh2 and Myh7 were analyzed. The Myh2, predominantly expressed in fast-twitch 

muscles, was down-regulated in TA; whereas the Myh7 mRNA, predominantly expressed in 

slow-twitch muscles, was repressed and induced, in SOL and GAS, respectively (Figure 1-

7). 
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Figure 1-7. Gene expression of molecular markers of muscle atrophy in LLC tumor-bearing 
mice. The expression of genes that encode for sarcomere and extracellular matrix were analyzed by 
RT-qPCR in (A) GAS: gastrocnemius, (B) TA: tibialis anterior, and (C) Sol: soleus skeletal muscles. 
The expression was normalized to the reference genes: beta actin (Actb), TATA-binding protein (Tbp), 
and ribosomal protein L13 (Rpl13a). Data are expressed as Fold change (mean ± SD; Control: n = 6; 
LLC: n= 13; * fold change > 1.5 and p-value < 0.05). 

Gene expression analysis showed a molecular profile consistent with muscle wasting 

in cachectic mice gastrocnemius, tibialis anterior and soleus skeletal muscles. Considering 

that fast-twitch muscle fibers have greater wasting susceptibility in cancer cachexia46, we 

selected TA muscle, which presents the highest percentage of fast-twitch fibers among the 

analyzed muscles, to conduct the subsequent experiments. Finally, TA fiber cross-sectional 

area (CSA; taken as an index of muscle atrophy) confirmed that cachectic mice decreased 

muscle CSA in 18% when compared to control mice (Figure 1-8). 
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Figure 1-8. Cancer cachexia decreases cross-sectional area (CSA) of tibialis anterior (TA) muscle 
fibers. The CSA (µm2) values from control (n=6) and LLC tumor-bearing (n=13) are expressed as 
mean ± SD. *p<0.001. 

 

1.4 Muscle atrophy in cancer cachexia is associated with 
heterogeneity in transcriptome changes  

 

We analyzed the transcriptome of fast-glycolytic tibialis anterior muscle by high-

throughput sequencing in LLC and control group. Out of nearly 45,000 Refseq genes, 11,436 

were expressed in skeletal muscle (mapped reads > 32 in at least one of the sequenced 

samples).The Inspection of 11436 expressed RefSeq genes through principal component 

analysis (PCA), showed that gene expression data were able to LLC and control samples 

(Figure 1-9a). Moreover, the PCA uncovered a heterogeneity on transcriptome regulation in 

the LLC group, evidenced by the spatial dispersion of the samples in the PCA (Figure 1-9a). 

This heterogeneity in transcriptome is expected since tumor progression is a stochastic 

process, and each mouse develop variable cachectic state from mild to terminal phase47. The 

functional implication of this heterogeneity is important, and especially determine if there is 

a sequence of transcriptional events that culminate in the loss of muscle mass and function 

during the progression of cachexia. 

 

To examine the transcriptomic changes associated with skeletal muscle wasting in 

cancer cachexia, we performed differential expressed analysis over the 11436 expressed 

RefSeq genes. We found 1008 differentially expressed genes (DEG) (p ≤ 0.05 and |fold 

change| ≥ 1.5), of which 487 and 521 were up- and down-regulated, respectively 

Control LLC
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(Supplementary information S2). Unsupervised hierarchical clustering analysis of mRNAs 

expression data further confirmed a clear segregation between control and LLC samples 

(Figure 1-9b). 

 

This analysis also showed, these 1008 DEG were grouped into four clusters (I-IV) 

according to their expression profile (Figure 1-9b). Clusters I (n=386) and II (n=101) contain 

genes that are up-regulated, while clusters III (n=157) and IV(n=364) includes genes that are 

down-regulated. Most importantly, the expression of genes from cluster II and IV their 

expression is homogeneous among LLC samples (Figure 1-9c). On the other hand, gene 

expression of genes on cluster I and III is variable among LLC samples, in particular the 

sample L1 which also showed the higher spatial dispersion in the PCA (Figure 1-9a).  

 

Next, we explored the identity of the genes with variability between samples in clusters 

I and III. Interestingly, cluster I includes induced genes that encode proteins associated with 

proteolysis: Proteasome (e.g. Trim63, Fbxo32, Ubc, Ubfd1, Ubb, Psmd4, Psmd11, Psma7, 

Psmd2, Psmc2, Psmc4, Psmd8, Psma5, Psmd7, Fbxo31, Ube4a, Hectd1 and Nub1), lysosome 

(e.g. Ctsl and Retreg1) and a translation inhibitor (e.g. Eif4ebp1) (Figure 1-9d). Additionally, 

the interleukin 6 receptor (Il6ra), a signaling pathway activated in muscle atrophy 48–50, has a 

range of  expression variability of 5 logarithms (fold change that from 1.5 up to 32) (Figure 

1-9d). Group III is largely composed of variable repressed genes related to extracellular matrix 

(e.g. Has3, Col4a3, Cdon, Col15a1, Col22a1, Col9a1, Hmcn1, Cpq, Itm2a and Mmp15) and 

sarcomeric proteins (e.g. Myom3, Myh2, Myl3, Myoz2, Myh7, Palld, Lmod3, Synpo2 and 

Myl1) (Figure 1-9e). Our data show, a set of high variable induced and repressed genes across 

cachectic samples. This variability may explain why in some human studies, atrophy genes 

such as Trim63 and Fbxo32 have not been found as differentially expressed51,52. Moreover, 

the data from experimental models are also difficult to transpose into findings of cachectic 

patients53–56. However, it is not possible to determine whether there is a relationship between 

the severity of cachexia and the degree of expression of the genes. Thus, gene expression 

dynamics and its relationship with survival and severity in cancer cachexia needs to be further 

explored. 
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Figure 1-9. Skeletal muscle expression profiles of. LLC tumor bearing mice. (a) Principal 
component analysis of the gene expression of control and LLC samples. The percentage of variance 
explained by each principal component is indicated. (b) Heatmap of DEG of control and LLC samples. 
Unsupervised hierarchical clustering analysis of gene expression patters show clusters I (n=386), II 
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(n=101), III(n=157) and IV(n=364) indicated by different colors. (c) Cumulative frequency 
distribution of transcripts log2‐fold changes values for each sample of LLC group in each cluster I to 
IV. (d) Fold induction of the 25 variable proteolytic genes in cluster I for LLC tumor bearing mice 
(pink) and control group (light blue). (e) Fold repression of the 25 variable scaffold genes in cluster 
III for LLC tumor bearing mice (pink) and control group (light blue). Dashed lines mean the threshold 
for up and down regulation (|fold change| ≥ 1.5). 

 

1.5 Muscle atrophy in cancer cachexia is discriminate by a reduced 
set of genes 

 

Considering that there is a high variability in the gene expression profile among the 

atrophic skeletal muscle samples of cachectic animals, we determined the minimum number 

of differentially expressed genes that simultaneously group cachectic samples and. 

differentiates it from the control group. First, we used Pearson correlation values for each 

transcript to identify similarity across muscle samples (Figure 1-10a). Hierarchical grouping 

shows that within LLC group, sample L1 has the most different transcriptional and 

additionally two groups, A (samples L2, L3 and L4) and B (samples L5 and L6) were 

identified (Figure 1-10a). This analysis further confirms the homogeneity of the control 

samples, which generate a single control group. 

 

Considering the transcriptome variability across LLC samples, we determined 

differential expression genes comparing the sub-groups A, B, or their union (sub-group AB) 

to evaluate the impact of the sub-grouping whit in LLC. We found changes in the number of 

DEG when we compared all LLC samples, or only the sub-groups (A, B, or AB), with the 

control samples (Figure 1-10b). For example, comparing sub-group B (LLC, n=2) to the 

control group increases in 57% the number of DEG (1582, of which 630 are up- and 952 

down-regulated) while for sub-group A (LLC, n=3), was found a reduction in 56% the number 

of DEG (443, of which 145 are up- and 298 down-regulated) (Figure 1-10b). Importantly, 

this reduced transcriptomic profile was enough to differentiate cachectic from a control 

muscle (Figure 1-10c). 
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Figure 1-10. Reduced muscle expression profile of. LLC tumor bearing mice. (a) Hierarchical 
clustering of the Pearson correlation values was performed. Colors in the dendrogram represent the 
different clusters: Control group (Light blue), LLC group (light pink), AB sub group (green), A sub-
group (Red) and B sub-group (black). (b) Bar plot representing the total number of up-regulated and 
down-regulated genes in each consider group of samples. (c) Heatmap of DEG of control and A sub 
group samples.  

 

1.6 Identification of regulatory pathways associated with muscle 
wasting in cancer cachexia 
 

One approach to identify the most biologically relevant transcripts for the cellular 

phenotype is to identify those that are most abundant and their degree of regulation 57. Using 

a scatter plot integrating the transcript degree of regulation (Fold change- FC) and abundance 

(Reads Per Kilobase Million-RPKM), we identify that most abundant transcripts has subtle 

changes in the degree of regulation when compared to low abundant transcripts (Figure 1-

11a). Notably, this analysis shows that the most relevant genes, based on abundance and 

degree of expression, are those related to the proteasomal degradation pathway: Trim63, 

Fbxo32 and Ubc (with a log2 FC: 2.2, 2.0, and 1.4, respectively), in accord with previous 

results58–63. Additionally, we identified: Ddit4 and Eif4ebp1 (log2 FC: 2.4 and 1.7 
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respectively) which are implicated in protein synthesis during skeletal muscle atrophy but 

have not been studied in cancer cachexia18,64–66. Also importantly, we found the antioxidant 

genes Gpx3, Mt1 and Mt2 (log2 FC: 1.6, 3.1 and 4.7, respectively) which have also been 

described with a role in muscle repair in atrophic conditions 67–70. Although the regulation of 

the sarcomere and the extracellular matrix genes have been strongly related to muscle function 

and atrophy71–73 the transcripts most abundant and with the highest degree of regulation need 

to be determined. 

 

Our analysis approach shows that the transcripts related to the sarcomere with the 

highest degree of regulation are: Myl1, Myh1, Fhl1, Gsn, Myl3 and Actc1 (log2 FC: -0.7, -0.7, 

-1.7, -1.5, -1.7 and -2.0, respectively), and for extracellular matrix we found the genes: 

Col3a1, Thbs4, Col6a1, Col1a1, Col1a2 and Col6a2 (log2 FC: -3.1, -1.1, -2.2, -3.1, -2.8 and 

-2.4, respectively). Finally, we also found low abundant genes with a high degree of 

regulation, these included the genes Il6ra, Mmp9 and Mmp8 (log2 FC: 2.8, 2.0 and 4.5, 

respectively), which are related to activation of the IL-6 pathway and  extracellular proteolysis 

48–50,74,75. 

 

Although the scatter plot analysis was able to identify key deregulated genes, we also 

perform gene set enrichment analysis to identify the over-represented gene ontology 

categories of differential expressed genes in muscle wasting in cancer cachexia. This analysis 

revealed a negative regulation in sarcomere, cell migration and extracellular matrix genes, as 

well as positive regulation in genes involved in proteasome complex, autophagy, IL-6 

signaling, and cell differentiation (Figure 1-11b and supplementary information S3), these 

results are consistent with previous results 3,32. Notably, our analysis reveals some novelties 

such as the negative regulation of cell junctions (e.g.: gap and tight junctions), carbohydrate 

metabolism (e.g.: glycolytic process), cell differentiation (e.g.: axonogenesis, angiogenesis, 

and PDGF signaling) and positive regulation of the immune system (e.g.: neutrophil and 

leukocyte chemotaxis). 

 

Considering the high transcriptome variability across LLC samples, we also asked 

which pathways are enriched in LLC transcriptome profile when we compared with the 

reduced set of genes enriched specifically in the LLC sub-group A. This analysis was possible 

since all deregulated genes in the A sub-group were also deregulated in LLC group. we found 

that cachectic animals deregulated key ontology groups to different degree, specifically those 
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associated with proteasome complex, autophagosome, gap junctions, and glutathione 

metabolic process (Figure 1-11c). These results indicate that differentially expressed genes 

in skeletal muscle atrophy condition are mainly involved in the reorganization of ECM, 

cytoskeleton, sarcomere, autophagy, cell differentiation and immune system pathways. 

 

Figure 1-11. Transcriptional alterations in cancer cachexia. Scatterplot comparing abundance 
(RPKMs, x axis) and their degree of expression (log2 fold change, y axis). Each dot represents an 
expressed transcript (a) or a transcript coding for a transcription factor (f). Red and blue dots indicate 
up- and down- regulated transcripts, respectively. Green, orange and blue shadows represent low, 
medium and high abundance, defined by using quartiles (Q1 and Q3) (b) Gene-set enrichment 
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analysis of differentially expressed genes. Each vertical colored bar (y-axis) represent a major 
module; horizontal bars represent the percentage of genes presented in the data set compared to the 
total number of genes in each ontology category. Fraction of genes in each ontology category 
(up/down, red/blue; respectively) are shown in x-axis. (c) Relative gene set enrichment analysis. 
Each bar represents the ratio of genes in LLC and A sub-group for each ontology category. de novo 
motif analysis performed on promoters (-300 and +50 relative to TSS) of up-regulated (d) and down-
regulated (e) genes. Motifs were compared to a transcription factor JASPAR database to determine the 
closest annotated match. Fg. %, bg. %: fraction of foreground/background sequences that contain at 
least one motif occurrence. 
 

1.7 Transcriptional regulation during muscle atrophy 
 

The transcriptional profile provides a step towards the identification of transcription 

factors that regulate the induction or repression of genes. To identify the transcriptional factors 

that potentially regulate gene expression in skeletal muscle atrophy in cancer cachexia, we 

performed an enrichment analysis of transcriptional motifs with the promoter sequences of 

the differentially expressed genes (Figures 1-11d and e). 

 

Promoters of up-regulated genes revealed a motif enrichment for the Forkhead 

transcription factor (FoxO) (Figure 1-11d), these results are consistent with previously role 

of this transcription factor modulating the ubiquitin-proteasome and autophagy-lysosomal 

proteolytic activities, as well as in metabolic adaptation and myogenic differentiation76–79. 

Additionally, when we analyze transcript degree of expression and abundance, it is shown that 

only two FoxO family members, FoxO1 and FoxO6, are regulated (induced and repressed, 

respectively) (Figure 1-11f). The induction of FoxO1 are in accordance with previous data 

since this transcription factor binds to the promoter sequence of Trim63 and Fbxo32 genes 

80,81. It has been shown that FoxO6 forms a regulatory loop with the PGC-1α factor in the 

determination of oxidative metabolism 77, however the role of FoxO6 during atrophy has not 

been determined. 

 

In addition, binding sites for factors within the NF-κB and STAT families were also 

enriched (Figure 1-11d). These results are supported by our gene set enrichment analysis that 

shows categories that include these genes as over-represented (Figure 1-11b). Additionally, 

we observed components of these two families up-regulated, for NF-κB (Rela, RelB and 

Nfkb2), and for STAT (Stat3) (Figure 1-11f). This finding is consistent with the signaling of 

the proinflammatory cytokines TNFα and IL-6, which activate NF-κB and Stat3 respectively, 

to promote protein degradation and muscle atrophy 82,83. Finally, many studies describe 
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cachexia triggered by a single predominant cytokine, however our results suggest that muscle 

atrophy in cachexia may only be understood in the context of simultaneous presence of 

different cytokines. 

 

Furthermore, we found and enrichment in the AP-1 transcription factor, as well as the 

up-regulation of Junb and Fosl2, proteins that compose the AP-1 heterodimer (Figure 1-11f). 

Indeed, AP-1 activates a muscle atrophy gene program in cancer cachexia and muscle 

denervation84,85. We also found enrichment for other transcriptional factors without a change 

in their expression (Figures 1-11d and f), among these are transcription factors related  to the 

cell cycle regulators (E2f3, Yy1 and Creb3) 86,87, Unfolding protein response (Xbp1) 88 and the 

SMAD family. This last is related to activation of a program of autophagy genes and inhibition 

of protein synthesis mediated by the Akt/mTORC1 axis 89. 

 

At the same time for promoters of down-regulated genes, revealed interesting motif 

enrichment for transcriptional factors related to myogenesis (Myf6, Myod1, Myog, Tcf12, 

Pbx1, lbx1, Nfix and Nfic ) 90–100, lipid homeostasis (Rora and Rorc)101, glucose and energy 

metabolism (Med1)102 and muscle fiber-type specification (Six1, Six2, Tead1, Tead3, Tead4, 

Egr1, Klf3, Hsf1, Hsf2 and Hsf4)103–112(Figure 1-11e).However, only the transcription factors 

Myf6, Myog, Rorc, Rora and Egr1 changed their expression (Figure 1-11f). Indeed, 

myogenesis impairment is a key factor in muscle regeneration and contributes to the 

progression of skeletal muscle atrophy in cancer cachexia (reviewed in 113). Above all, an 

additional interest is that many of the factors identified above have not yet been studied in a 

context of cancer cachexia, which will allow to identify changes in the transcriptional 

dynamics in the regeneration program in conditions of muscular atrophy.  

 

1.8 miRNAs associated with muscle wasting in cancer cachexia 
 

Equally important to identification of transcription factors is the identification of post-

transcriptional regulation mediated by miRNAs, which modulate mRNA stability and protein 

synthesis. Our experimental strategy was to evaluate miRNAs expression by high-throughput 

sequencing in the same samples used for transcriptome analyses (except for sample L4 of the 

LLC group that did not pass the quality filters). Out of 1915 mature miRNAs, 302 were 

expressed in skeletal muscle (mapped reads > 32 in at least one of the sequenced samples). 

Eighteen miRNAs were differentially expressed (FDR ≤ 0.05 and |fold change| ≥ 1.5), in 
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muscle wasting during cancer cachexia compared to controls (13 up and 5 down-regulated) 

(Supplementary information S4). 

 

We next ask whether the 18 miRNAs differentially expressed may discriminate 

between LLC and control group. PCA and clustering analysis (Figures 1-12a and b) shows 

that 18 miRNAs do not provide a clear segregation as found for mRNAs (Figures 1-9a and 

b). Furthermore, 44% of differentially expressed miRNAs have low abundance and degree of 

expression (Figure 1-12c). Interestingly, these results suggest a no determining role of 

miRNAs in mRNA regulation since previous experimental data showed that only abundant 

miRNAs are capable of effectively modulates the expression of target mRNA114. Among the 

differentially expressed miRNAs only miR-29b-3p, miR-146b-5p, miR-146a-5p and miR-

181c-3p have been previously studied in a skeletal muscle context115 . Notably, miR-10b-5p 

is induced in muscle wasting in cancer cachexia and is one of the most abundant miRNAs in 

skeletal muscle (Figure 1-12c), and importantly their mRNA targets in skeletal muscle is 

unknown. Finally, the MyomiRs mir-208a, mir-208b, mir-499, miR-133a, miR-133b and 

miR-1 were not differentially expressed in LLC. 

Figure 1-12. Differentially expressed miRNAs in cancer cachexia. (a) PCA of 18 differentially 
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expressed miRNAs in control and LLC atrophying skeletal muscle samples. The percentage of 
variance explained by each principal component is indicated. (b) Heatmap of differentially expressed 
miRNAs in control and LLC samples. (c) Scatterplot comparing abundance (Counts per million-CPM, 
x axis) and their degree of expression (fold change, y axis). Each dot represents a miRNA. Red and 
blue dots indicate up- and down-regulated miRNAs, respectively. Solid lines indicate quartiles (Q1 
and Q3) representing the threshold for low, medium and high abundance.  
 

1.9 Integrative analyses of miRNA and mRNA expression 
profiles identified signaling pathways enriched with predicted 
miRNA targets 
 

Since miRNAs regulate gene expression by both mRNA degradation and translational 

repression mechanisms, and miRNA-mRNA regulatory networks are complex, we used a 

parallel miRNA-mRNA expression profile approach as previously described116 to increase the 

accuracy of our in silico mRNA target prediction used to identify potential mRNA targets of 

the differentially expressed miRNAs. A dataset of predicted and experimentally validated 

mRNAs were paired to the 18 differentially expressed miRNAs in LLC-tumor bearing mice. 

To avoid target multiplicity, we filtered our data using differentially expressed genes (mRNA 

and miRNA) identified by RNA-Seq, considering that mRNA and miRNA expression levels 

should be inversely correlated if one regulates the other.  

 

We found that this network included 171 interactions between 18 miRNAs and 131 

target genes (Figure 1-13a and Supplementary Information S5). These analyses revealed that 

the upregulated miRNA miR-350-3p has the higher number of targets (n=47). Interestingly, 

the miRNA miR-29b-3p also showed a high number of targets (n=22), including many 

transcripts that encode proteins related to extracellular matrix. Additionally, we found that 

repressed miRNAs do not overlap in mRNAs targets. Furthermore, some transcripts, such as 

Map2k6, Ptpn3, Mettl21c, Plxdc2, Ppargc1b, Rgs5 and Vegfa are co-regulated by up to three 

upregulated miRNAs (Supplementary Table S6). These results indicate, as previously 

reported by our research group in cardia cachexia, a complicated combination in terms of both 

target multiplicity and miRNA cooperativeness116.  

 

Based on the integrative miRNA-target analysis described above, we identified 

enriched pathways for target genes deregulated by differentially expressed miRNAs (Figure 

1-13b). Gene set enrichment analysis revealed miRNA interactions affecting genes regulating 

matrix organization, cell migration, transcription factor binding, ion transport and FoxO 
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signaling. To elucidate the functions of these complex interactions between mRNAs and 

miRNAs in cancer cachexia, we construct a regulatory network displaying predicted and 

validated interactions between the miRNAs-target mRNAs, considering physical and pathway 

protein-protein interactions. We found some sub networks such as those related to 

extracellular matrix organization (Figure 1-13c), cell migration (Figure 1-13d), and 

transcription factors (Figure 1-13e). Extracellular matrix organization network (Figure 1-

13c) contains a set of collagen proteins which are experimental validated target of miR-29b-

3p. Furthermore, we found predicted interactions for miR-1843a-3p, miR-350-3p, miR-223-

p and miR-3535 with components of the extracellular matrix such as Col6a1, Timp2, Mmp15, 

Dcn and Actn2. For Cell migration network (Figure 1-13d) we found key growth factors such 

as Igf1, Bmp1, Pdgfra, Pdgfrb, Wnt5 and Vegfa their transcripts are repressed by mirR-29b-

3p, miR-3535, mir-671-3p, miR14b-50, miR-146a-5p, miR-350-5p, miR-1843 and miR-

1249-3p. In the case of transcription factor binding key factor in muscle metabolism and 

muscle atrophy such as Foxo1, Egr1, Ppargc1b, Ccnd1, Bcl2, Cebpb and Myc their transcripts 

are repressed by mirR-29b-3, miR-181c-3p, miR-379-3p, miR-451a, miR146a-5p, miR-183-

5p, miR-350-3p, miR-1249-3p and miR-3535. Finally, these networks share 3 miRNAs: mir-

29b-3p, mir350-3p and miR-3535, which suggests a pleiotropic effect of these miRNAs on 

muscle physiology. 
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Figure 1-13. Integrative analyses of miRNA and mRNA expression. (a) miRNA-mRNA 
target network as red node label color. Node size represents number of targets for each miRNA, edge 
width denotes overlap of targets between miRNAs measured by the Jaccard coefficient (JC), Blue and 
red color in nodes represent up and down regulation of the miRNAs. (b) Gene-set enrichment analysis 
of the of the predicted and validated mRNAs regulated by microRNAs. Horizontal bars represent the 
percentage of genes presented in the data set compared to the total number of genes in each 
pathway. miRNA-mRNA regulatory network for (c) extracellular matrix organization (d) cell 
migration (e) Transcription factors. Networks displays predicted (dashed lines) and validated (solid 
lines) interactions between miRNAs (rectangle) and mRNAs (circles). Light red nodes represent 
down-regulation, light blue nodes represent up-regulation and genes associated with the pathway and 
not differentially expressed are denoted as grey nodes 
 

1.10 Discussion 
 

To the best of our knowledge, ours is the first study performing an integrated and 

simultaneous global miRNA and mRNA expression profiling in the skeletal muscle of a mice 

model of cancer cachexia to unravel novel regulatory networks and molecular pathways 

involved in muscle wasting. Our results highlight miRNA-regulated gene networks involved 
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in skeletal muscle wasting in cancer cachexia. Specifically, our results suggest that key ECM 

miRNAs and their target genes may contribute to muscle wasting in cancer cachexia. 

 
First, we performed a genome-wide profiling of miRNA that identified 18 altered 

miRNAs; 13 were upregulated and 5 downregulated. Previous studies have also reported 

alterations of global miRNA expression in muscle atrophy in primary muscle disorders 117, 

diabetes 118, denervation 118, dexamethasone-induced atrophy 119, fasting 118 and cancer 

cachexia 118. The comparison of our cancer cachexia miRNA profile with these previous 

studies did not reveal any similar miRNA profile but instead identified a specific subset of 

cancer cachexia miRNAs in the LLC tumor-bearing mice. This is in line with the work by 

Soares et al., 2014 118 who did not find a common signature of miRNAs in different atrophic 

models (starvation, denervation, diabetes, and cancer cachexia – C26 model). We also did not 

identify shared miRNAs with those miRNAs associated with cachectic patients with 

pancreatic and colorectal cancer 44. These discrepancies may be related to miRNAs “kinetic 

signatures” (i.e., characteristic time-course patterns to attain protein and mRNA steady-state 

levels, as well as the number of ribosomes per mRNA molecule after microRNA application), 

as proposed by Morozova et al., 120. These authors generate kinetic signatures by creating a 

complete mathematical model of microRNA action, which includes all previously described 

miRNAs mechanisms of action by applying a rigorous mathematical analysis of dynamical 

behavior of the systems involving microRNA action. Thus, further studies are necessary in 

muscle wasting during muscle cachexia to identify a specific miRNA regulation mechanism 

or for selecting between several alternative suggested mechanisms.  

 
Importantly, the miR-350 presented the highest number of target transcripts, comprising 

transcripts encoding proteins related to ECM such as collagens and matrix metalloproteinases. 

This miRNA is the only highly expressed miRNA identified in the late stage of pressure 

overload-induced hypertrophy and induces pathological heart hypertrophy by repressing both 

p38 and JNK pathways 121. Also notable, we identified miR-29b-3p, which had been 

previously reported as involved in the regulation of myogenesis 122.  Specifically, high level 

of miR-29 is important for driving myogenic differentiation, and loss of miR-29 promotes 

transdifferentiation of myoblasts into myofibroblasts by targeting extracellular molecules 

including collagens 123,124. In fact, previous studies have demonstrated the miR-29 family as 

a “master fibromiRNA” regulator of the liver, lung, skin, kidney, heart, and skeletal muscles 

fibrosis 125–132. Multiple transcripts encoding standard ECM proteins such as collagens, 
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fibrillins and elastin have been implicated as miR-29 family direct targets 126–130. In C2C12 

muscle cells, the stable over-expression of miR-29 down-regulates ECM and cell adhesion 

genes 123. Most recently, Galimov et al., 2016 133 used next generation RNA sequencing from 

miR‐29a knockout myoblasts, identified members of the basement membrane as the most 

abundant miR‐29a targets. This same study also showed that miR-29 can initiate muscle cell 

senescence leading to aging-induced atrophy by suppressing the expression of several 

mediators of cell proliferation and muscle growth. Furthermore, in vivo studies have shown 

that intramuscular injection of miR-29 into dystrophic limb muscles down-regulated collagen 

and elastin mRNA expression 130, whereas the systemic delivery of miR-29 mimics led to 

significant improvement of dystrophic diaphragm muscle by reducing existing fibrosis and 

increasing regeneration 124. Thus, the upregulation of the miRNAs miR-29b-3p in our model 

of cancer cachexia suggest that they may have an important role in ECM remodeling in this 

condition.  

 
We have also produced a global transcriptome catalogue of muscle wasting in cancer 

cachexia that identified 1008 differentially expressed genes. These most highly expressed 

genes revealed the matrix metallopeptidase 9 (Mmp9), which substrates include collagen types 

IV, V, VII, X, XIV, elastin, fibronectin, aggrecan, fibrillin, and gelatin. Mmp9 has a role in 

skeletal muscle atrophy 74, and is also significantly increased in adipose tissue turnover and 

fibrosis during cancer cachexia 134. It is also noteworthy that the atrogene Fbxo32 is among 

the top up-regulated genes in muscle wasting in our cancer cachexia model. The Fbxo32 is 

highly expressed during muscle atrophy in a range of catabolic conditions including cancer 

cachexia (reviewed in 9,135). We also identified the upregulated Tgfbr1 transcript with the 

highest number of potential deregulated targets. Interestingly, it has been demonstrated that 

TGF-β, apart from being a local growth factor, has systemic effects, in conditions such as 

cachexia and multiple fibrosis 136,137. TGF-β also decreased muscle fiber size and dramatically 

reduced maximum isometric force production in TGF-β-treated mice 138. According to these 

authors, TGF-β increase procollagen Iα2 and atrogin-1 levels in the skeletal muscle. 

 
 In addition to the induced genes, repressed genes include mRNAs encoding ECM, 

proteins which is consistent with muscle ECM remodeling. To further understand the possible 

contribution of these downregulated genes, we constructed a regulatory network displaying 

predicted and validated interactions of these top downregulated genes, considering physical 

and pathway protein-protein interactions information. This analysis also showed that the top 
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downregulated genes are associated with ECM remodeling, a possible a key event that likely 

contribute to skeletal muscle wasting in cancer cachexia. Importantly, these ECM remodeling 

in cancer cachexia is in agreement with recent studies that showed thickening of endomysium 

and downregulation of several ECM gene transcripts in muscle wasting in cancer cachexia 

139,140.  

 
The category analysis of the all differentially expressed genes also demonstrated the 

regulation of genes for extracellular matrix and cell-cell adhesion. However, this analysis 

showed additional pathways that were altered, including cytokine-mediated signaling 

pathways and immune cell chemotaxis. These results are consistent with a previous meta-

analysis on gene expression signatures pertaining to different types of muscle atrophy 141. 

These authors described six functional pathways that occupy central positions in the molecular 

network obtained by the integration of atrophy transcriptome and interaction data. Similar to 

our study, pathway analysis of these different types of muscle atrophy transcriptome indicated 

that deregulated genes in atrophy conditions are involved in cytokines signaling and ECM 

reorganization 141.  

 
To reduce the complexity of predicted miRNA-mRNA interactions identified by in 

silico prediction, and to increase the list of miRNAs targets likely associated with muscle 

wasting in cancer cachexia, we applied an integrated and simultaneous mRNA and miRNA 

analysis. This strategy enabled us to identify biologically relevant and experimentally 

validated miRNA target genes and provided a comprehensive picture of molecular networks 

regulated by the identified miRNAs.  

 
Several mechanisms have been proposed to explain muscle wasting in cancer cachexia, 

focusing largely on muscle fibers intracellular alterations. The data obtained in our model, 

LLC-tumor bearing mice, described in details mRNAs and miRNAs alterations that may 

contribute to alterations in muscle endomysium during cancer cachexia.  

 
To summarize, we have discovered deregulated miRNAs and their target mRNAs in 

cancer cachexia that modulate important biological processes in the skeletal muscle, such as 

cell migration, transcriptional activity and importantly, ECM organization. In addition, our 

data showed that 8 miRNAs, including miR-1843a-3p, miR-350-3p, miR-223-p and miR-

3535 target transcripts encoding proteins related to ECM, comprising the collagens and matrix 
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metalloproteinases. Herein, our integrative miRNA and mRNA analysis highlight miRNA 

candidates to regulate genes that may contribute to muscle wasting in cancer cachexia. 

 

1.11 Methods  
 
LLC-tumor-bearing mice. For the LLC-tumor-bearing mice, we followed the next protocol: 

after 3 days of acclimation, isogenic C57BL/10 mice were randomly assigned to a non-tumor 

control group (n=10) or a LCC-tumor-bearing group (n=20). LLC cells were cultured in 

DMEM medium supplied with 10% of fetal bovine serum and 1% penicillin/streptomycin and 

maintained in a 5% CO2, 37°C humidified incubator. Cells were passaged when sub-confluent 

and 1.5 x106 cells per mouse were injected subcutaneously (7.5 x 105 cells in each flank). 

Mice were weighed daily and then sacrificed, using ketamine/xylazine (100/14 mg/100g), 3 

weeks following tumor implantation. Gastrocnemius (GAS), tibialis anterior (TA), and soleus 

(SOL) muscles were collected, weighted, and then snapped frozen in liquid nitrogen. Mice 

were treated in strict accordance to the guidelines of the Control of Animal Experimentation 

and Ethical Principles in Animal Research (CONCEA - National Council for Control of 

Experimental Animals), and was approved under the protocol n° 702 by the Institute of 

Bioscience of Botucatu Ethics Committee on Animal Use, from the Sao Paulo State University 

(UNESP). 

 
Muscle fiber cross-sectional area. Muscle fiber cross-sectional area (CSA) was used to 

analyze the degree of muscle atrophy. Briefly, a cryostat (Leica) were used to obtain 10-μm 

sections of muscle, and H&E staining was performed on three sections representing the entire 

length of the muscle. Images were acquired by an Olympus BX51 bright field microscope 

and, at least, 200 individual muscle fiber CSA were determined by the Olympus Microsuite 

Pathology software (version 5.1). Results from all muscle fiber CSA for each animal were 

average prior to the statistical analysis. 

 

Total RNA isolation. RNA extraction was performed using TRIZOL reagent (Thermo 

Scientific, USA), according the manufacturer's instructions. The RNA was quantitated by 

spectrophotometry using the equipment NanoVue (GE Healthcare Life Sciences, USA). RNA 

Integrity was ensured by obtaining a RNA Integrity Number - RIN > 8 with Agilent 2100 

Bioanalyzer (Agilent Technologies, Germany). RNA samples were treated with DNA Free 

Kit (Thermo Scientific, USA) to remove genomic DNA contamination.  
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Gene expression analysis by RT-qPCR. The RT-qPCR experiments were carried out in 

accordance to the “Minimum information for Publication of Quantitative Real-Time PCR 

Experiment” guidelines 18. Reverse transcription of mRNA was performed using the High 

Capacity kit RNA-to-cDNA Master Mix (Life Technologies, USA) following the 

manufacturer's guidelines. For each reaction, 4µL of Master Mix were added to 1 µg of 

total RNA and the final volume adjusted to 20µL with nuclease-free water. The mixture 

was incubated under the following conditions: 25 ° C for 5 min., 42 ° C for 30 min; 

followed by inactivation of the reverse transcriptase at 85 ° C for 5 min. Quantitative 

Polymerase Chain Reaction (qPCR) was performed as follow: For each reaction, 5µL of RT 

reaction were amplified with 1µL GoTaq ® qPCR Master Mix (Promega, USA),1µL of 

primers 10 mM (Supplementary Table S1) in a final volume of 20 µL completed with 

nuclease-free water. Thermocycling was performed in a QuantStudio™ 12K Flex Real-Time 

PCR System (Thermo Fisher, USA) using the following conditions: GoTaq Hot Start 

Polymerase activation, 2 min at 95 °C; followed by 40 cycles of 15 secs at 95 °C; and 1 min, 

at 60 °C. Finally, a dissociation curve experiment was performed in the range of 60-95 °C to 

confirm the presence of a single amplicon. Relative gene expression were evaluated by using 

the comparative quantification method 142. All relative quantifications were assessed by using 

REST software 2009 v 2.0.13 with the pair-wise fixed randomization test with 10,000 

permutations 143 and PCR efficiencies were calculated by linear regression of fluorescence 

increasing in the exponential phase using the software LinRegPCR v 11.1144. The changes in 

gene expression were considered statistically significant when fold change (FC) ≥1.5 and p-

values ≤ 0.05. 

 
Preparation and processing of mRNA-Seq libraries. The RNA-Seq was conducted in 

a HiSeq 2000 Sequencing System Platform (Illumina, USA) using the services of the 

Laboratory of Animal Biotechnology, School of Agriculture Luiz de Queiroz (ESALQ, 

USP). RNA libraries were created from TA RNA four controls and six LLC tumor bearing 

mice. The protocol followed the manufacturer's instructions (available at: 

http://goo.gl/hyslD). In summary, sequencing protocol included the preparation of the 

transcriptome analysis of RNA (5 mg total RNA), followed by fragmentation and 

purification of the messenger RNA. The next step was the amplification for the 

construction of cDNA libraries: hybridization and binding of adapters, reverse 

transcription, cDNA purification, and finally, amplification and quantification of the 
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amplified cDNA. This cDNA was diluted and used to generate clusters (amplification of 

specific fragments), and subsequently sequenced. Constructed libraries were 100 bp 

paired-end sequenced. Sequencing was performed on ten RNA samples in each lane of the 

flow cell, following manufacturer’s instructions. Each lane produced ~ 600 million raw 

paired reads. The data output in fastq file format contained sequence information, 

including the sequencing quality (Phred quality score). Average Phred scores of ≥20 per 

position were used for alignment. 

 
Preparation and processing of miRNA-Seq libraries Total RNA (typically 5 μg) from each 

sample were run on denaturing polyacrylamide-urea gels. Approximately 17-25 nucleotide 

RNAs were excised from the gel, ligated to sequencing adaptors on both ends, and reverse-

transcribed. The resulting cDNA library were PCR-amplified for 15 cycles and gel-purified 

on 6% acrylamide gel. The gel-purified amplicon quality and quantity was analyzed on a 6% 

acrylamide gel relative to oligonucleotides of known concentration and size. After obtaining 

a ~92-bp DNA band on 6% PAGE gels, the PCR products were ethanol precipitated and 

purified using Spin-X filter columns. Finally, miRNA libraries were 50 bp paired-end 

sequenced by an Illumina HiSeq2000 instrument (Illumina, USA). Sequencing was performed 

on ten RNA samples in one lane of the flow cell, following manufacturer’s instructions. 

 
Read Alignment and differential gene expression. Paired-end reads for mRNA were 

mapped to the mm10 genome using TopHat2 145. Single-end reads for miRNA were mapped 

to the miRBase version 21 using Bowtie 146,147. Counts for RefSeq genes were obtained using 

HTSeq148 and DESeq2 (version 1.4) 149 was used to normalize expression counts. The changes 

in gene expression were considered statistically significant when |fold change| (FC) ≥1.5 and 

p-values ≤ 0.05. 

 

Motif Analyses. Pscan was used to detect DNA motifs overrepresented in each class between 

nucleotides −300 and +50 relative to the TSS Significance was tested against CpG-content-

matched promoters as background. A binding site was considered significantly 

overrepresented with a p value <0.01. 

 

miRNA target prediction. Candidate miRNA– RNA targets relationships was predicted by 

at least one or more of the following target prediction algorithms (union set) extracted from: 

mirDB150, TargetScan 5.1 (conservation and non-conservation sites)151, DIANA-microT152, 
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PicTar (4-way, and 5-way)153. Additionally, we used validated targets deposited in 

miRTarBase154. We will construct a miRNA target–dysregulated network using candidate 

miRNA-target relationships and filtered to mapping only differentially expressed genes 

derived from mRNA-Seq.  

 
Gene Ontology (GO) Enrichment Analysis. GO enrichment was performed using the 

BiNGO Cytoscape plugin155, using a hypergeometric test with a Benjamini and Hochberg 

False Discovery Rate correction. A p-value cut-off of 0.05 will be used to identify enriched 

processes. Additionally ClueGO will be used to group and analyze the GO and KEGG 

enrichments156. Networks was visualized and analyzed using Cytoscape157. 

 
Interaction Network The interacting genes/proteins graphs were generated by the STRING 

database (http://string-db.org/), which also detect functional interactions among the 

corresponding genes. 
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“If you are faced by a difficulty or a controversy in science, an ounce of 

algebra is worth a ton of verbal argument” 

J. B. S. Haldane 
 

 
 

 
 

 
 

 

Integrated regulation of mRNA transcription and 
degradation decodes TNF signaling during 

inflammatory muscle-atrophy 
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2.1 Introduction  
 

In general, chronic systemic inflammation in cachexia is driven by proinflammatory 

cytokines such as interleukin (IL)-1β, IL-6, leukemia inhibitory factor (LIF), tumor necrosis 

factor alpha (TNF) and interferon gamma (IFN)158–161. TNF in particular has been found 

elevated in the circulation of cachectic patients and it showed induce cachexia in mice 

models162,163. The gene expression in cachexia triggered by TNF are mediated by a group of 

transcription factors, such as NF-B, AP-1 and interferon-regulatory factors. Among those, 

NF-B is a key factor critically involved in the activation of a gene expression program related 

to muscle atrophy160. Several data suggest that the NF-B activation impairs skeletal muscle 

myogenesis by the down regulation of Myod1 and Pax7, and also promotes atrophy by the 

breakdown of myofibrillar proteins mediated through the induction of Murf1, a ubiquitin E3 

ligases 73,160,164. However, the depletion of the Murf1 gene, does not fully protect mice against 

muscle wasting, suggesting that NF-κB also triggers atrophy by activating other pathways. 

 
Until now, a mechanism has been described that explain the down regulation of Myod1 

by TNFα-dependent muscle wasting in cachexia165. This mechanism involves the activation 

of the NF-κB pathway, which in turn drives the transcription of the iNOS gene165–167. In 

addition, the iNOS mRNA 3′ untranslated region (3′UTR) contains a classical destabilizing 

sequence, the AU-rich element (ARE), which when bound to the stabilizing RNA-binding 

protein HuR, it increases the mRNA stability and rapid export to translation in 

cytoplasm165,168. These two events, increased transcription via NF-κB and increased mRNA 

stability via the RNA-binding protein HuR, consequently induce iNOS protein synthesis, 

which through its enzymatic activity leads to the production and release of Nitric oxide (NO) 

gas. NO react with superoxide (O2
−) to form peroxynitrite (ONOO−), which ultimately 

mediate both Myod1 mRNA decay and muscle atrophy165 (Figure 2-1). 
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Figure 2-1. The mechanism of iNOS-induced muscle wasting in cachexia. TNFα activate NF-κB 
that enhances the transcription of the iNOS mRNA. Then the transcript binds to HuR protein by ARE 
motif. This results in an increase in iNOS mRNA levels, and consequently in an enhanced translation 
of the iNOS protein. iNOS activity leads to the production and release of NO that react with O2

− to 
form ONOO−, which ultimately mediate both Myod1 mRNA decay and muscle atrophy. Adapted from 
169. 

 

Although a mechanism for the down regulation of Myod1 has been proposed, it is still 

unclear which other mechanism affect the expression of genes genome-wide. Moreover, the 

majority of genome-wide studies have only measured the steady-state mRNA levels that do 

not distinguish between the control of mRNA synthesis vs. the control of mRNA decay 

genes165,170,171. Nevertheless, in recent years, new next generation sequencing technologies 

172,173, have dramatically changed our knowledge on gene expression and revealed that cellular 

gene expression is controlled by a dynamic regulation of mRNA abundance, which are chiefly 

governed by the rates of nuclear mRNA synthesis, processing, and cytoplasmic mRNA 

degradation174–176. Several genome-wide studies, measuring separately the contribution of 

mRNA degradation and transcription, have established the importance of both process in gene 

expression177–180. This data suggest that complex dynamic mRNA profiles can be regulated at 

each stage of RNA metabolism by the tuned interplay among rates of RNA synthesis, 

processing and degradation (Figure 2-2). 
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Figure 2-2. Dynamic Regulatory Strategies of gene expression programs. Regulatory Strategies 
of gene expression programs. Top: simple regulatory strategy shaped only by transcription rates. 
Bottom: dynamic regulatory strategy shaped by the interplay among transcription, processing and 
degradation rates. 

 

These findings highlight the importance of RNA dynamics strategies to regulate gene 

expression programs during a dynamic response. Thus, given these new evidences and 

technologies in the knowledge of gene expression regulation and coupled with the lack of a 

compressive mechanism controlling gene expression in cachexia triggered by TNF, a genome-

wide approach exploring the contribution of transcription and mRNA degradation, is essential 

in order strike regulatory events and interactions related to skeletal muscle wasting. 

 

2.2 Question to be answered 
 

In cancer cachexia the regulation of mRNA levels in response to TNF signaling is a 

fundamental process; however, the mechanisms that control and shape this gene expression 

program are still poorly understood. Here we propose to study in a mechanistic way, using 

experimental, on a genome-wide level, and mathematical modeling approaches, the effect of 

TNF signaling on RNA metabolic events that regulate gene expression programs. This 

knowledge will help to shed light on how the interplay between TNF signaling and RNA 

metabolism leads to gene expression program related to muscle atrophy in cancer cachexia. 

The project also has a methodological goal, which consists of setting up a full experimental 

and analytical workflow to profile dynamic gene expression and dynamic data on RNA 

metabolism in muscle wasting. 
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2.3 TNF stimulation induces skeletal muscle cell atrophy 
 

As muscle atrophy and proteolysis are hallmarks in cachexia state, we measured these 

both parameters in C2C12 skeletal muscle cell treated with TNF. TNF caused a reduction, 

30% less than non-treated cells, in the diameter of the C2C12 myotubes (Figure 2-3a and 2-

3b). Consistent with these results, we observed the same results in the protein content (Figure 

2-3c). 

Figure 3. TNF induce skeletal muscle atrophy. C2C12 myoblasts were differentiated into myotubes 
for 7 days and subsequently switched to growth medium containing TNF (10 ng/ml) or growth medium 
(Control). (a) Representative field of myosin immunofluorescence at 20h post treatment. 
Magnification 40X, scale bars: all panels 20 μm.(b) fiber diameter was measured from ten randomly 
selected field. (c) Whole extract cells were prepared, and total protein quantified. *p-value <0.05. 
 

2.4 Dynamic response of cytoplasmic mRNA. 
 

Subcellular localization of RNAs determine their function in cellular physiology. For 

instance, changes in temporal concentrations of cytoplasmic mRNA (cytoRNA) determines 

protein production. Nevertheless, gene expression profiles usually have used whole cell 

extracted RNA, but the inclusion of nuclear RNA misrepresent the mRNA profile; therefore, 

the exclusion of the nuclear fraction can provide more reliable differentially expressed genes. 

Here, we performed RNA-seq analysis of biochemically fractionated chromatin-associated, 

and cytoplasmic RNA, which has been used previously to study gene expression dynamics 

181–184. Purity of the cell fractions was confirmed by western blotting detection of key cellular 

compartments markers (Cytoplasm: b-tubulin, Nucleoplasm: SNRP70, and Chromatin: 

histone H3) (Figure 2-4a). 

 
Out of approximately 11,356 expressed cytoplasmic RNA transcripts, we filtered the 

genes with absolute value of log2 fold change ≥ 1 (p < 0.05) which yielded that TNF 

significantly affected the expression of a total of 784 genes, with gene induction 
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predominating (528 genes, 67%) over gene repression (256 genes, 33%). By examining the 

maximum fold change over time in the differentially expressed genes, we found that out of 

the 528 induced genes, 108 genes (20.45%) were induced by at least 5-fold (Figure 2-4b). On 

the other hand, gene repression is not as strong as the induction; and only 22 genes (8,59%) 

were repressed above the same cut-off used for induction (Figure 2-4c). Also, by inspecting 

the basal transcriptional level, genes that were induced have a lower basal level than genes 

were repressed (Figure 2-4d). Moreover, for both gene induction and repression, there is a 

correlation between the basal level and the strength of the fold-change (Figure 2-4e). In fact, 

as in immune cells, TNF induced genes encoding immune response genes in muscle cells, 

which were off before stimulation and exhibited strongly induction (>10-fold). 

 
Dynamic gene expression was assessed by k-means clustering of cytoplasmic RNA 

expression data. Differential expressed genes were grouped in twelve classes, A to L, (Figure 

2-4f). Examining the different classes, two characteristics are evident. Firstly, a sequential 

order of gene expression, for both induction and gene repression, which is characterized 

according to the time to reach the maximum or minimum fold-change expression (Figure 2-

4g). Thus, these classes could be categorized as early- (classes A and B), intermediate- (C to 

E and H to K) and late- responding genes (F, G and L). Interestingly, early response genes 

(less than 60 min) are only restricted to induced genes, and represent only a reduced set of 

genes. Nevertheless, despite being a small set, 23 of the 49 genes are related to gene expression 

regulation: transcription factors (e.g., Fos, Junb, Irf1, Myc and Klf6), transcriptional 

coregulators (e.g., Nfkbia, Nfkbiz, Id3 and Gadd45b), and RNA-binding proteins (Zfp36 [Ttp], 

Zc3h12a, Mex3b and Ccnl1). Secondly, our long timescale allows to unveil six gene 

expression profile strategies: transiently induced (classes A to D), induction until saturation 

(classes E and F), constantly induced (class G), transiently repressed (classes H and J), 

repressed (classes I and K) and repressed preceded by transient induction (class L and some 

genes of classes A and B e.g., Fos, Id3 and Timp3). 
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Figure 2-4. Features of TNF-induced dynamic gene expression profiles. (a) Immunoblot analysis 
of cell fractionation from a representative experiment, in which the segregation of cytoplasmic (beta-
tubulin), nucleoplasmic (SNRP70), and chromatin-associated (histone H3) is shown in four samples 
taken from a stimulation time-course (0h, 1h, 8h, and 20h). Cumulative frequency distribution of 
maximum gene expression fold change values over the TNF stimulation is shown for (b) induced genes 
and (c) repressed genes. The dashed lines represent 5-, 10-, and 50-fold change thresholds. (d) Scatter 
plot of basal abundance for the differentially expressed genes, shown as RPKMs, for induced (red) and 
repressed (blue) genes, and median RPKMs designated as solid black-line. (e) Induced and repressed 
genes were grouped according to the strength of the fold-change, with distribution of basal RPKMs 
shown for each bin and median RPKMs designated as solid black-line. (f) Heatmap of time course 
RNAseq of cytoplasmic polyA RNA reveals 12 temporal clusters across 12-time points (g) Temporal 
profiles averaged across two distinct biological replicates, the size of expression of each cluster is 
indicated in parentheses. Grey shadows indicate standard deviation. 
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2.5 Integration of temporal mRNA degradation and transcription 
rates reveal the dynamics of gene expression in response to TNF. 
 

A key cellular response during TNF signaling is the regulation of gene expression which 

directs and coordinates signal-specific cellular activities. An important aspect of the regulation 

of gene expression refers to the control of temporal concentration profiles of RNAs, through 

mainly transcriptional and post-transcriptional mechanisms which control RNAs synthesis 

and decay, respectively. 

 

2.5.1 mRNA degradation rates correlate with the temporal 
ordering of gene expression clusters. 
 

To directly investigate the role of post-transcriptional control in the regulation of the 

dynamic gene expression, we evaluated basal (unstimulated) mRNA degradation rates in 

C2C12 muscle cells by measuring mRNA abundance changes using RNAseq, after blocking 

transcription with actinomycin D (ActD), and collecting the samples after 0, 10, 50, 110, 230 

and 360 min. The abundance of each mRNA was plotted over time and fitted to a first-order 

exponential decay curve allowing the determination of a half-life and confidence interval 

(Figure 2-5a). We could generate reliable half-lives for more than 6738 mRNAs. The median 

half-live of these transcripts was ∼229 min, with 80% of the transcripts decaying with half-

lives ranging from 100 min to 547 min (Figure 2-5b). Overall, we found that the half-lives 

that we calculated fits within the reported range for mRNAs decay in C2C12 cells previously 

investigated 185 For example, in our analysis, Myod1 mRNA presented a half-life of ∼60 min, 

which is consistent with the ∼90 min half-life previously reported186; and col16a1 mRNA had 

a half-life of ∼317 min, which is also similar to that described in a previous report185 

 
We tested whether basal mRNA half-life correlates with the temporal ordering of 

expression clusters (Figure 2-5c). Interestingly, we found a strong correlation between a 

sequential order of gene expression and basal half-life. In addition, it was evident that 

induction, compared to gene repression, has a lower half-life. Specifically, classes A through 

C presented the lowest half-lives, and thus are the classes that fall into the category of early 

expression genes.  

 
Given that the estimation of half-lives is challenging since each of the existing methods 

have disadvantages, we confirmed the above results using metabolic labeling with 4-
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thiouridine (4sU) to estimate mRNA half-lives. We also compared mRNA half-lives obtained 

by metabolic labeling using 4sU with blocking transcription using ActD (Figure 2-5e). 

Likewise, basal RNA half-lives, estimated using metabolic labeling, correlates with temporal 

ordering of gene expression (Figure 2-5d). Together, these results support the idea that 

mRNA degradation rates are an important determinant that controls the temporal patterns of 

the TNF-induced muscle atrophy gene expression program. 

 
 
Figure 2-5. Analysis of mRNA degradation rates in skeletal muscle cells. (a) Example of mRNA 
decay curve. Half-lives were derived from the slope of log-linear regression of the percentage RNA 
remained. (b) Distribution of mRNA half-lives. The 10th-percentile and 90th-percentile values 
(indicated by black doted lines). The median value (229 min) is indicated by a red line. Scatter plot of 
the half-life of all genes estimated using ActD (c) or 4sU (d) in each of 12 gene clusters (x axis) with 
similar temporal profile. (e) Heatscatterplot comparison of mRNA half-lives obtained by ActD 
treatment and 4sU RNA labeling, half-lives (min) determined by 2 h ActD treatment and 60 min of 
4sU labeling. Green line means equal half-life and red lines means 2-fold up or down difference in 
half-lives. 
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2.5.2 Changes in transcription rates correlates with cytoRNA 
expression levels. 
 

Transcriptional control is the most basic and intuitively important step in gene expression, 

and mainly its relevance is due to many factors such as: 1) being the first step in gene 

expression, 2) involves changes in synthesis that finely tune the amount of RNA being 

produced, 3) a variety of mechanisms can control transcription rates, and 4) transcriptional 

control is the most effective and efficient in the use of cell resources.  

 
Given the relevance of transcriptional control in the regulation of the dynamic gene 

expression, we analyze changes in transcription using RNA-seq analysis of biochemically 

fractionated chromatin-associated transcripts (caRNA) from unstimulated and stimulated 

C2C12 skeletal muscle cells. Evaluation of the mapped reading for the caRNA-seq shows that 

these were broadly distributed throughout all the body of the gene, i.e. they are distributed 

equally in both introns and exons; whereas in cytoRNA-seq, the majority of the readings are 

distributed exclusively in exons (Figure 2-6a and 2-6b). These results provide strong 

evidence for the use of caRNA to quantify nascent RNA, and consequently, to calculate 

transcription rates using gene expression temporal data. 

 
Kinetics profiles of the caRNA for the differential expressed genes were visualized using 

the same clusters previously used for cytoRNA (Figure 2-6c). Interestingly, caRNA profiles 

follow the same temporal profile of gene expression not only for induced genes, as previously 

reported 175,183,184,187,188, but also for gene repression (Figure 2-6d). This finding suggests that 

reduction in transcription rates play an important role in gene repression. In addition, changes 

in transcript levels were in early times for caRNA profiles resulting in a temporary delay in 

the cytoRNA profiles (Figure 2-6d). This time-lag is apparently attributed by the delay 

generated by RNA processing and exporting to the cytoplasm. 

 
Our results, as well as previous work 175,187,188, support the hypothesis that changes in 

cytoplasmic RNA levels can be explained mostly by transcriptional mechanisms. To test this 

hypothesis for each gene, we use the statistical cross-correlation analysis, which return an 

index of similarity of two-time series profiles as a function of the shift of one relative to the 

other. Overall, the analysis showed that 85% of the genes present high correlation (greater 

than 0.6) between caRNA and cytoRNA temporal profiles (Figure 2-6e).  
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Finally, besides the correlation of the two temporal profiles, it is known that if the changes 

in the abundance of cytoRNA are of greater magnitude than the changes in caRNA, there is 

an indicative of RNA stability regulation. Comparing the frequency distribution of the 

maximum fold change over time revealed a shift towards a greater magnitude for the caRNA 

(Figure 2-6f). Consequently, by combining the above results, transcription seems to be a 

dominant regulator of kinetic cytoRNA concentrations. 

 
Figure 2-6. Kinetic analysis of transcription during the response of skeletal muscle cells toTNF. 
(a)Distribution of RNA-Seq reads mapping to the Nfkb1 locus in libraries prepared from cytoRNA 
and caRNA. The time point is indicated at the left. Exon (blue bars) and intron (blue line) locations 
are shown at the bottom, and the transcription direction is indicated by the bent arrows. (b) Following 
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Cell Fractionation into cytoRNA and caRNA, pie charts distribution of reads in gene body in exons 
and introns. (c) Heatmap of expression values across time of caRNA profiles. Genes were grouped in 
the same clusters and same order as the cytoRNA heatmap on Figure 4f, also same standardization (z-
score) and scale color was used (red, high expression; white, mean expression; blue, low expression). 
(d) Line graphs of the temporal expression averages per cluster of cytoRNA (red) and caRNA (green) 
for each temporal cluster. Pearson correlation coefficient (ρ). (e) Scatter plot of the time lagged 
analysis showing the autocorrelation function coefficient (ACF) between caRNA and cytoRNA 
temporal profiles of all genes in each of 12 clusters (x-axis). (f) maximum fold change amplitude is 
greater in caRNA. Cumulative distribution plots, for up and down regulated genes, of the maximum 
log2 fold change for caRNA (red) and cytoRNA(green); data represent the average from two 
independent datasets. 
 

2.6 Coupling transcription and degradation dynamic through a 
mathematical model 
 

Gene regulation is a complex multifaceted process involving a dynamic interplay 

between the synthesis and the degradation of gene products. Complexity lies in the fact that 

these processes operate in a non-linear manner, which makes virtually impossible to study, 

through traditional statistical analysis such as above used, their functional properties and 

capture for each gene the degree of cooperation between synthesis and degradation control. 

Nevertheless, the inter-disciplinary field of systems biology offers an ample range of 

quantitative tools to study the molecular interacting systems at different levels of granularity. 

Systems biology-inspired modeling approaches have been increasingly used to account for 

mechanistic details of the molecular biology process. Therefore, a mathematical model of 

transcriptome-wide regulation to quantitatively delineate control mechanisms is essential. 

 

2.6.1 Model accurately describes dynamic changes in gene 
expression  
 

Using the data generated for more than 60 years in the field of molecular biology, we can 

abstract the basic principles of the processes of gene expression regulation (Figure 2-7a). This 

abstraction can be formulated mathematical by two coupled linear differential equations, as 

previously described187 (Figure 2-7b). Briefly, in the formulation, M is the cytoRNA 

concentration, P is the caRNA concentration, dM/dt and dP/dt are their rates of change with 

respect to time t respectively, β denotes transcription rate, α1 is conversion rate and α2 is 

degradation rate (Figure 2-7b). This model considers the following assumptions: 
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• Transcription and degradation rates (β and α2) can abrupt shift to new values in 

response to TNF stimulation. In our model transcription and degradation rates follow a time-

dependent function (impulse model function, see methods for more details). 

 

• Exporting rate (α1) to be a rapid rate (5 min on average), it is considered that it is not 

susceptible to changes in time after TNF-stimulation.  

 

• Nuclear degradation of the caRNA was considered negligible and had no major impact 

on cytoplasmic RNA concentrations. 

 
Under the above mathematical framework, we use direct measurements of nascent RNA 

levels (dP/dt, as caRNA) and RNA levels (dM/dt, as cytoRNA) to parameterize the kinetic 

model that recapitulate the expression behavior of co-regulated clusters of genes. After 

optimization of the model, we compare the model fitted values for caRNA and cytoRNA to 

the experimental data and calculate the error (root-mean-square deviation, RMSD). Out of 

784 differential expressed genes, we got 634 genes (81%) that were considered fitted to the 

model, RMSD less than 0.15 for both caRNA and cytoRNA (Figure 2-7c ). Moreover, when 

the profiles of the simulated data are compared visually with the experimental data, a great 

correlation is observed (Figure 2-7d). On the other hand, temporal resolution of our 

experimental data allows precise quantification of levels of caRNA, cytoRNA and 

transcription rates, but we cannot measure degradation in a comparably resolution, therefore 

we validate the nominal value of the basal degradation rate for each gene with the previously 

obtained experimental data. Interestingly, this analysis showed that the half-lives estimated 

by the model also capture the correlation with the temporal ordering of expression clusters 

(Figure 2-7e). 
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Figure 2-7. Mathematical model delineates regulation of mRNA synthesis and degradation. (a). 
Schematic abstraction and (b) mathematical formulation of gene expression regulation (see the text 
for details). (c) Histogram of root mean square error (RMSE) for caRNA (red) and cytoRNA (green), 
red dashed lines represent the threshold (RMSE< 0.15) of well fitted modeled profiles compared to the 
experimental data. (d) Comparative heatmaps of expression profiles across time between experimental 
data (RNA-seq) and the fitted data (Model). 634 genes (81%) were grouped in the same clusters and 
same order as the previous heatmaps on Figure 4f and Figure 6c, as well as the same standardization 
and scale color. (e). Scatter plot of the basal half-life (unstimulated) of all genes estimated in the 
parametrization of the model. X-axis represents the 12 temporal clusters as previously defined. Note 
that the same rank of basal half-lives is recover using the model, and the experimental data (4sU and 
ActD). 
 

2.6.2 Synthesis control dominates but degradation control is 
critical for some genes 
 

So far, the mathematical formulation applied describes most of the genes profiles 

accurately therefore the next step is quantitatively analysis of transcription and degradations 

rates. In this manner, we systematically studied dynamic RNA regulation examining how 

regulatory steps are coordinated for each gene. Genes were clustered into the same 12 
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temporal expression profiles used above (Figure 2-4f), but we consider changes in the rate of 

degradation as a higher hierarchical level (Figure 2-8a). Notably, for most genes (80.6%), 

transcriptional control is found to be dominant over the control in degradation in both 

induction and repression of gene expression (Figure 2-8b), but for the remaining group of 

genes (19.6%), changes in degradation rates cooperatively coordinated with transcription in 

the configuration of the dynamics of RNA concentrations during TNF stimulation. 

 

Interestingly, changes in degradation rates were more common in late response gene 

(Figure 2-8b); probably, this this is related to the substantial modifications degradation rates 

dependent on the increased concentrations of RNA binding factors (e.g., miRNAs, RNA 

binding proteins), which require time to be synthesized. In addition, our results show that none 

of the RNA profiles is fully dependent on post-transcriptional regulation; therefore, concerted 

regulation in the regulation dynamics in degradation and transcription rates implies that their 

actions may have a synergistic or antagonistic effect on the temporal concentrations of RNA. 

Thus, to discriminate the effects mentioned above, we use the results of the mathematical 

model and explore the relationship between stability and expression (Figure 2-8c), which 

showed the following 4 strategies: 

 
•Destabilization of transiently induced genes: Those in classes B, C and L, a set of genes 

the transcription increases for a short period of time, but after it returns to its basal level, the 

rate of degradation is increased by destabilizing the cytoRNA, decreasing it to levels lower 

than basal (e.g., Id3; Figure 2-8d). 

 
•Stabilization of constantly induced genes: For a group of genes of late induction (class F 

and G), the transcription increases to a point of saturation where it reaches a new steady state, 

however, reducing the rate of degradation the cytoRNA increasing its concentration and 

surpasses the new steady state imposed by the transcription rate (eg, Ikbke, Figure 2-8d). 

 
•Destabilization of repressed genes: In this strategy, some late repressed genes (class K 

and L), the rate of transcription decreases at the same time as the rate of degradation increases 

(eg, Lix1, Figure 2-8d), this synergistic action makes it possible to rapidly decrease citoRNA 

levels of stable genes. 

 
• Stabilization of transiently repressed genes: Among this strategy are genes from classes 

H to J (Figure 2-8d), transcription decreases rapidly and therefore cytoRNA levels, but after 
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a time the rate of degradation is reduced, stabilizing the cytoRNA and diminishing the effect 

of repression imposed by decreasing transcription (e.g., Mpp2, Figure 2-8d). 

 

Figure 2-8. Transcription control dominates, but degradation control relax transcriptional 
constrains. (a) Time-dependent changes in rate parameters governing transcription (left), and 
degradation (middle) as inferred by gene regulation modelling. Genes were clustered into the same 12 
temporal expression profiles used before, but changes in the rate of degradation (constant, variable) as 
a higher hierarchical level. Rates and cytoRNA values are relative to unstimulated cells, and presented 
as log2. (b) Fraction of genes with dynamic (black) or constant degradation(grey) in each temporal 
cluster. (c) Fraction of genes with dynamic degradation that showed an increase (destabilization, black) 
or decrease (stabilization, white) in the rate of degradation in each temporal cluster. (e)Example genes 
for which degradation rates change over time. Kinetic parameters (relative to rate at t0): transcription 
(black curve), degradation (red curve), experimental cytoRNA abundance (blue dots). 
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2.7 Molecular Regulatory Mechanisms of cytoRNA levels. 
 

Extensive studies of signal transduction in the TNF pathway have shown that its 

cellular effect depends on the activation of a set of activated transcription factors across two 

major axes. The first axis, and the most studied, comprises the activation of the transcription 

factor NF-KB which translocate to the nucleus and mediates the activation of a large set of 

genes (Figure 9a). Signaling by TNF results not only in the activation of NF-kB but also 

signaling via mitogen activated protein kinase axis (MAPK), which is divided into three sub-

axes, which include extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase 

(JNK), and p38. Furthermore, the activation of MAPK and its subsequent signaling activates 

transcriptional factors such as AP1, ATF2 and ELK1 (Figure 2-9a). Our results show that 

most dynamic levels of cytoRNA are dependent on temporal changes in transcription rate. To 

explore some of the molecular mechanisms governing dynamic gene expression, we dissected 

the transcription network of TNF signaling using mutation models for NF-kB, and 

pharmacological inhibition of MAPK. 

 

2.7.1. Transcriptional control is dependent of RelA transcription 
factor 
 

As TNF induced muscle atrophy depends on the activation of the NF-κB transcription 

factor83 and transcriptional control were the dominant mechanism in the regulation of both 

gene induction and repression, therefore we test the hypothesis that NF-κB transcription factor 

modify transcriptional rates during TNF response. NF-kB is a heterodimer whose most 

abundant form is the RELA/NFKB1 complex (p65/p50), thereby we use a myoblast cell line 

in which the NF-kB subunit RELA, which contains a transcription activation domain, has 

been homozygous knocked out (REAL-KO) using CRSIPR/Cas9 technology (Figure 2-9b). 

Alternatively, we used C2C12 which contains a stably expressing a mutant form of the IκBα 

(gene name: Nfkbia) inhibitor in which the serine at positions 32 and 36 are changed to alanine 

(Supplementary information S7). During TNF stimulation this dominant negative mutation, 

named super repressor (SR), makes IκBα insensitive to phosphorylation and following 

proteasome degradation, thereby inhibiting translocation to the nucleus of the transcription 

factor NF-KB (Figure 2-9c). 

 
We observed that the inhibition of NF-κB transcription factor in myotubes subjected 

to TNF reduces the amplitude of change of the cytoRNA temporal expression profiles of both 
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induced and repressed genes (Figure 2-9d). Additionally, when we analyzed the cumulative 

frequency distribution of maximum fold change gene expression, it is evident that the SR 

mutant, compared to RELA-KO, presents a greater inhibition in the induction and repression 

of gene expression (Figure 2-9e). This greater effect of the SR mutant is explained by the fact 

that the mutation is upstream the NF-kB heterodimer; therefore, the SR mutation can inhibit 

not only the heterodimer RELA/NFKB1 but alternative heterodimers such as REL/NFKB1 

and RELB/NFKB1. A deeply analysis of the maximum fold change in the SR mutant, revealed 

that 223 genes (43%) of the induced genes has a decrease of more than two times in its 

expression, on the other hand the number of repressed genes with the same degree of decrease 

was 49 (20%) (Figure 2-9f). 

 
These results clearly suggest that most of the induced genes depend on the activity of 

the transcription factor NF-kB, and unexpectedly we found that a small fraction of repressed 

genes is also dependent. However, other sets of experiments, such as RELA-ChIP-seq, are 

needed to determine if the dependence is a direct effect of NF-kB on the gene promoter. This 

is especially important in repressed genes for which no effect has been reported for Nf-kB as 

a transcriptional repressor. 
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Figure 2-9. Analysis of NF-κB dependent genes. (a) TNF signaling with the two major axes 
activated, NF-κb and MAPK. Complex wired and functional interaction between these axes determine 
the activation of transcription factor network (e.g., NF-κB, ATF-2, AP-1 and ELK1) which determine 
the physiological outcome of TNF response (adapted from189). (b) Validation of RELA knockout 
(RELA-Ko) cell lines using immunoblot analysis of cell lysates of wild-type (WT) and RELA-Ko, 
probed with RELA antibody and with an anti-actin antibody as a loading control. (c) Inhibition, after 
TNF stimulation, of nuclear translocation of NF-κB by the super-repressor forms of IκBα (SR) was 
validated using immunoblot analysis of nuclear extracts of WT and SR, probed against RELA antibody 
and with an anti USF-2 antibody as nuclear loading control. (d) Heatmap of expression values across 
time of WT, RELA-Ko and SR. Same genes were grouped in the same clusters and same order as the 
cytoRNA heatmap on Figure 4f. Standardization from 0 to 1 was performed using the ratio of 
maximum expression value across the three genotypes. Scale color mean: red: high expression, black: 
low expression. (e) Cumulative distribution plots, for up- and down- regulated genes, of the maximum 
log2 fold change for WT (black), RELA-KO (purple) and SR(blue); data represent the average from 
two independent datasets. (f) Scatter plot showing the maximum log2-fold change after TNF 
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stimulation of RNA transcript levels between WT (x axis) and SR (y axis), averaged from two 
biological replicates. Each dot represents an expressed gene. Dashed black lines means 2-fold up or 
down difference. Red and blue dots indicate induced and repressed genes, respectively, with a 
substantial reduction in their expression in the SR mutant (NF-kB dependent genes).  
 

2.7.2 Transcriptional control dependent of MAPK. 
 

The activation of MAPK and NFKB are the two major axes in the regulation of gene 

expression in TNF signaling. MAPKs control gene expression through cascades of 

phosphorylation that targets: Transcription factors, co-regulatory and chromatin proteins. 

Despite the importance of MAPKs, their study in skeletal muscle, as well as in other cell types, 

has been neglected. 

 

To examine the role of MAPKs in modifying transcription rates, we used 

pharmacological inhibition with SB203580 (p38 inhibitor), SP600125 (JNK inhibitor) and 

U0126 (ERK inhibitor) as a strategy (Figure 2-9a). We use a combined inhibition of all 

MAPKs as strategy to reduce cross-reactive activation of targets. Moreover, an alternative 

methodology using CRIPSR/Cas9 knockout is unfeasible given two factors: First, MAPKs are 

essential genes for many cellular functions including metabolism, cell division and 

differentiation. Second, there is a methodological complexity due to the occurrence of 

multiple gene products (i.e. ERK1 and ERK2; JNK1, JNK2, and JNK3; p38α, p38β, p38γ, 

and p38δ). 

 

We evaluated the phosphorylation of transcriptional factor ATF-2 and c-Jun, which 

are direct targets of p-38 and JNK, respectively. For ERK we evaluated its own 

phosphorylation, since the inhibitor U0126 acts on MEK1/2 which is the kinase upstream of 

ERK. Data in Figure 10 shows that after 30 minutes with TNF stimulation the p-38 pathway 

is activated, whereas for JNK and ERK, despite being active, TNF increases its activation. 

Additionally, it is found that ERK inhibition requires 20uM of U0126, whereas for the 

inhibition of p-38 and JNK, require between 50 and 70 uM respectively (Figure 2-10). 



CHAPTER 2 
 

53 
 

 

Figure 2-10. Pharmacological inhibition of MAPKs after TNF stimulation. Cells TNF stimulated 
for 10 min and in presence of a cocktail of MAPK inhibitors (SB203580: p38 inhibitor, SP600125: 
JNK inhibitor, and U0126: ERK inhibitor) with an increased concentration.  Immunoblotted against 
phosphorylated version of ATF-2 and c-Jun were used to check p-38 and JNK inhibition respectively 
and ERK1/2 phosphorylation inhibition was checked directly. Antibodies anti ACTB and GAPDH 
were used as a loading control. 

 

2.8 Discussion 
 

The ability to continuously respond to changing input signals from the environment is 

a hallmark of all living systems. A main component of this response is achieved through 

complex molecular circuits, consisting of multiple intertwined feedback loops and non-linear 

interactions, that compute a quantitative level of each type of RNA at each time. Living cells 

control RNA levels by tightly regulating the processes for their production, by transcription, 

maturation (processing and transport), compartmentalization and degradation, which together 

encompass the dynamic RNA life cycle. However, their immense complexity limited 

available research that describe, analyze and predict their behavior. 

 
In this work, we use RNA-seq of RNA from different cell compartment (caRNA and 

cytoRNA) coupled with basal degradation rates (half-lives) measurements (ActD and 4sU 

labeling) and computational modeling to study RNA regulation in skeletal muscle atrophy 

induced by TNF. Leveraging the massively parallel sequencing technology for accurate 

temporal measurement of RNA concentrations at a high temporal resolution on a genome-

scale. The data and the computational approach allows to decompose RNA concentrations 
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into the separate contributions of RNA transcription and degradation, and estimate changes in 

degradation rates over time.  

 
We discover key principles of temporal RNA regulation in skeletal muscle cell 

atrophy. Genome-wide analysis shows that the variation in basal degradation rates between 

genes, rather than over time, determines the temporal order of expression. In agreement to 

recent works, we find that changes in transcription rate highly correlate with changes in RNA 

level and that dynamic changes in degradation rates have minimal effect on most RNA 

profiles, but that they do play a unique role in genes where transcription impose a constrain 

when reach a new steady state. Thus, stabilization of cytoRNA is the most frequent change, 

which implies amplification in the induction of up-regulated genes while on the other hand 

diminishes the effect of gene repression in down regulated genes.  

 
Deciphering the molecular mechanisms that control the dynamic RNA life cycle is a 

highly difficult task. However, our approach points out to a transcriptional mechanism as 

mainly responsible for almost all the temporal changes in cytoRNA. Between all the myriad 

molecules that could control transcription the most studied are the transcription factors. 

Specifically, we found that the NF-kB transcription factor is responsible for 63% of the gene 

expression profiles, including gene repression.  

 
Our approach provides a new and effective tool to simultaneously study several key 

cellular regulatory processes and model their interactions with each other, generating a 

complementary view to any RNA expression analysis, and deepening our understanding of 

the RNA regulatory mechanisms in skeletal muscle atrophy. 

 

2.9 Methods 
 
Cell culture. The mouse immortalized myoblast cell line C2C12 (ATCC® CRL-1772™), 

was used as in vitro model. Cells was grown at 37°C and 5% CO2 in Dulbecco's modified 

Eagle's medium (DMEM) (Life Technologies, USA) supplemented with 10% calf serum 

(Omega scientific, USA). Muscle differentiation to myotubes will be induced for 6 days by 

switching to serum-deprived media (DM). TNF (10 ng / mL) was added in differentiated 

myotubes to induce muscle wasting, and samples was taken at 0, 15, 30, 60, 90, 120, 180, 240, 

360, 489, 960 and 1200 min. Platinum-E (Plat-E) was used as retroviral packaging cell line. 

Plat-E cells were grown at 37°C and 5% CO2 in Dulbecco's modified Eagle's medium 
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(DMEM) (Life Technologies, USA) supplemented with 10% calf serum (Omega scientific, 

USA) and containing blasticidin (10 μg/ml) and puromycin (1 μg/ml). Hek293 cell line was 

used as lentiviral cell line, cells was grown at 37°C and 5% CO2 in Dulbecco's modified 

Eagle's medium (DMEM) (Life Technologies, USA) supplemented with 10% calf serum 

(Omega scientific, USA). 

 
Generation of RelA Knockout cell line. gRNA sequence to the first exon of RelA were 

designed with the Cas9 design target tool (http://crispr.mit.edu) and inserted into the Cas9-

containing lentiCRISPR v2 vector190. To generate lentiviruses with the LentiCRISPR v2 with 

RelA gRNA plasmid, HEK293 cells were plated in 10cm dishes 24h prior transfection. For 

virus production, 5 μg of pVSV-G, 7.5μg of pMDL-RRE and 7.5μg of pRSV-REV was 

transfected with 10μg of the LentiCRISPR v2 with RelA gRNA plasmid using 

Polyethylenimine. Lentivirus-containing supernatant was harvested 48h after the transfection, 

filtered through a 0.45 μm membrane (Milipore Steriflip HV/PVDF) and used jointly with 8 

μg/mL polybrene to infect C2C12 cells. Cells were refreshed with DMEM 18h after infection 

and subsequently recovered for 24h. Afterward, cells were selected with 1μg/mL puromycin 

for 1 week. 

 
Stable expression of IκBαSR cell line. Plat-E at 80% confluence in 10cm dishes was 

transfected with 20μg of pLXSN-IKBα-SR using polyethylenimine (Sigma Aldrich, USA). 

Retroviral supernatant was harvested 48 h and 96h after transfection and filtered through a 

0.45 μm syringe filter (Millipore).C2C12 cells were infected with diluted viral supernatant 

plus 8 μg/mL polybrene (Sigma Aldrich, USA). Drug selection was conducted using 1 mg/mL 

Geneticin (Sigma Aldrich, USA) for 12 days; uninfected controls were obliterated after 4 days 

of selection. 

 
Immunofluorescence staining. Myoblast were culture in gelatin (2%) glass slide for five 

days in DM and treated with TNF (10 ng/mL) for 1200 min. cells were fixed with 4% 

paraformaldehyde for 30 minutes. The cells were permeabilized with 0.2% Triton X-100 for 

10 minutes at room temperature. Cells were treated with 5% horse serum and 2% bovine 

serum albumin for 30 minutes and then incubated with a mouse Anti- Skeletal Myosin 

(M7523,1:600, Sigma, USA) for 12 h at 4 ° C. After washing in PBS, samples will be 

incubated with a secondary antibody (TRITC, 1:1000, Sigma, USA) for 1 hour at room 

temperature and subsequently assembled with Vecta Shield-DAPI (Vector laboratories, 

USA).  
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Nuclear Extract Preparation. nuclear extracts were prepared as described191. Briefly, 2 × 

106 C2C12 cells were washed with cold PBS, scraped, and suspended in 100 μl of hypotonic 

lysis buffer (10 mM HEPES (pH 7.9), 10 mM KCl, 1.5 mM MgCl2, 0.1 mM EDTA, 0.1 

mM EGTA, 1 mM dithiothreitol, 0.5 mM phenylmethylsulfonyl fluoride, 2.0 μg/ml leupeptin, 

2.0 μg/ml aprotinin, 0.5 mg/ml benzamidine) for 10 min. The cells were then lysed with 3.25 

μl of 10% IPEGAL, the homogenates were centrifuged, and the supernatants containing the 

cytoplasmic extracts were stored frozen at -80 °C. The nuclear pellets were resuspended in 25 

μl of ice-cold high salt nuclear extraction buffer (20 mM HEPES (pH 7.9), 420 mM NaCl, 1 

mMEDTA, 1 mM EGTA, 25% glycerol, 1 mM dithiothreitol, 0.5 mM phenylmethylsulfonyl 

fluoride, 2.0 μg/ml leupeptin, 2.0 μg/ml aprotinin, 0.5 mg/ml benzamidine). After 30 min of 

intermittent mixing the extracts were centrifuged, and the supernatants containing the nuclear 

extracts were collected. The protein content was measured using BioRad protein assay 

reagent. If the extracts were not used immediately, they were stored at -80 °C. 

 
Immunoblot. Samples was separated by SDS-PAGE and the separated proteins transferred 

to Hybond ECL nitrocellulose membranes (Amersham, UK). The membranes will be blocked 

with 5% skimmed milk diluted in TBS-Tween for 1 hour and then incubated overnight at 4°C 

with primary antibody according to the manufacturer's specifications. Secondary antibodies 

conjugated with horseradich peroxidase (HRP) and ECL chemiluminescent detection 

(Amersham, UK) system was used for visualization and quantification of the bands by 

densitometry. The values will be normalized by the values obtained reference genes. 

 
RNA fractionation and extraction. Different transcripts were obtained, through biochemical 

fractionation of cell in cytoplasmic, nucleoplasmic and chromatin, from unstimulated and 

TNF (10 ng / mL) stimulated skeletal muscle cells. Subcellular fractions were prepared as 

described183, with minor changes. The cell lysis buffer contained 0.15% NP-40, and the 

sucrose cushion not contain detergent. The nuclear lysis buffer contains 3M Urea.  Fraction 

purity was confirmed by immunoblot analysis of anti-SNRP70 (Nucleoplasmic fraction: 

ab51266, Abcam,), anti-β-tubulin (Cytoplasmic fraction: T8328, Sigma), and anti-histone H3 

(Chromatin fraction: ab39655, Abcam,). Trizo LS will be added to the chromatin and 

cytoplasmic. cytoRNA was purified by using Direct-zol RNA MiniPrep (Zymo research, 

USA). caRNA was isolated by using choroform followed by further purification with Direct-

zol RNA MicroPrep (Zymo research, USA). The experiment was performed in parallel for 

two biological replicates. 
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RNA-Seq. Strand-specific libraries were generated from 500 ng total RNA (labeled and 

unlabeled), 200 ng caRNA or 2000 ng cytoRNA, 2000. KAPA Stranded mRNA-Seq Kit 

(Roche) was used fot Total and cyto RNA.  KAPA Stranded RNA-Seq Kit with RiboErase 

(Roche) was used for caRNA. cDNA libraries were single-end sequenced (50bp) on an 

Illumina HiSeq 4000. Reads were aligned to the mouse genome (NCBI39/mm10) with STAR 

v2.5192 and allowed one alignment with up to two mismatches per read. Read counts values 

were gotten using featureCounts version 1.4.4 193, in the case of total and cytoRNA we use 

exon as feature option, on the other hand for caRNA we use gene as feature option and 

allowing overlapping. A gene was included in the analysis if it met all of the following criteria: 

the maximum count reached 32 at any time point, the gene has a relative expression at least 

2-fold, and significantly different from the basal (FDR < 0.05) as determined by R package 

Deseq. Genome tracks were generated by using the bam2wig.py 

(https://github.com/MikeAxtell/bam2wig), and visualization was made using IGV V2.4194. 

Standardization (subtracted the mean and divided by s.d.) of the data normalized counts of a 

gene, separately per time series, was used to generate the heatmaps and clustering using k-

means (with random initialization, and using Euclidian distance). To determine the impact of 

a mutation, the maximal normalized count in any samples was set at 1 for each gene. 

 
RNA half-life measurement after transcriptional inhibition. C2C12 myotubes were 

treated with actinomycin D (Sigma, USA) at a final concentration of 8 μg/ml to inhibit 

transcription. Cells were then harvested at 0, 10, 50, 110, 230 and 350 min for total RNA 

isolation using Direct-zol RNA MiniPrep (Zymo research, USA). Cells, was spiked-in with 

ERCC RNA controls (Ambion, USA) before the isolation of total RNA. DESeq was used to 

calculate ERCC spike-in RNA size factors, which were then applied to normalize for library 

size changes in each replicate. Degradation rate of mRNA was estimated using linear 

regression of log-transformed normalized counts versus time. Given the wide range in 

degradation rates and the dynamic range of RNAseq, for some genes time points were 

removed sequentially from the time course till the lower confidence limit for slope was 

maximized. A transcript was considered to have reliable half-life measurement if 1) the data 

had a good fit to the linear regression (R>0.7) and 2) the 95% confidence interval for half-life 

is less than two times the half-life. 

 
RNA half-life measurements by 4-Thiouridine (4sU). RNA half-life measurements by 

4sU labeling was carried out essentially as described previously188. Briefly, C2C12 cells 
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were incubated with 500μM 4sU (Sigma, USA) for 60 min or 90 min. Then cells were 

collected and RNA was extracted with TRIzol reagent (Thermo Fisher Scientific, USA) 

according to the manufacturer’s instructions. Biotinylation reaction was done with 100 µg 

total RNA in labeling buffer (10 mM Tris pH 7.4, 1 mM EDTA) and 0.2 mg/ml EZ-Link 

Biotin-HPDP in dimethylformamide (Thermo Fisher Scientific, USA) for 2 h at 25 °C. 

Unbound Biotin-HPDP was removed by chloroform/isoamylalcohol (24:1) extraction 

using Phase Lock Gel Heavy tubes (Eppendorf, Germany). RNA was precipitated at 

20,000g for 20 min with a 1:10 volume of 5 M NaCl and an equal volume of isopropanol. 

The pellet was washed with an equal volume of 75% ethanol and precipitated again at 

20,000g for 10 min. The pellet was resuspended in 100 µl RNase-free water. Biotinylated 

RNA was captured using Dynabeads MyOne Streptavidin T1 beads (Invitrogen). 

Biotinylated RNA was incubated with 100 µl Dynabeads with rotation for 15 min at 25 

°C. Beads were magnetically fixed and washed with 1× Dynabeads washing buffer. Flow-

through was collected for unlabeled preexisting RNA recovery. 4sU-RNA was eluted with 

200 µl of freshly prepared 100 mM dithiothreitol (DTT). Unlabeled and 4sU-RNA was 

recovered from eluates and washing using chloroform/isoamylalcohol (24:1) extraction. 

As shown in Figure 2-11. Libraries and RNAseq for total, label and unlabeled RNA were 

performed as describe above. Data normalization, 4sU labeling bias estimation and accurate 

RNA half-lives estimations were accessed as described in the Supplemental Experimental 

Procedures of Miller et al. (2011)177, using the R package DTA195. 
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Figure 2-11. Metabolic labeling of RNA with 4-thiouridine (4sU). 4sU, a naturally occurring 
uridine derivative, is added to the medium where the cell will incorporate to the new transcribed RNA. 
Purification is made using streptavidin magnetic beads. Total RNA extract is biotinylated by 
covalently linking biotin (orange) to 4sU, followed by binding to Streptavidin coated magnetic beads 
(light blue). Biotylinated (4sU labeled) RNA is magnetically isolated, whereas unlabeled RNA is 
washed out. Finally, cleaving the biotin-4sU disulfide bond releases the labeled RNA from the beads. 
Adapted from 188. 
 
Mathematical model. We use two coupled ordinary equations formulation of dynamic 

RNA life cycle that has been previously described187: 
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P(t), M(t) are the caRNA and cytoRNA concentrations at time t, α1 is the export rate (from 

nuclear to cytoplasm), α2(t) is the time-dependent cytoRNA degradation rate, and β(t) is the 
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transcription rate. Note that the system can easily be solved analytically for fixed (independent 

of time) α1, α2, β. An analytic solution can be written as: 

𝑃(𝑡) = ൬𝑃଴ −
𝛽

𝛼
൰ 𝑒ିఈଵ௧ +

𝛽

𝛼ଵ
                                       (𝟒) 

𝑀(𝑡) = ൬𝑀଴ −
𝛼ଵ𝑃଴ − 𝛽

𝛼ଶ − 𝛼ଵ
−

𝛽

𝛼ଶ
൰ 𝑒ିఈమ௧ +

𝛼ଵ𝑃଴ − 𝛽

𝛼ଶ − 𝛼ଵ
𝑒ିఈభ௧ +

𝛽

𝛼ଶ
        (𝟓) 

 
The absolute values of caRNA and cytoRNA concentrations need to be normalized respect to 

the RNA mass in each compartment, however it is inexactly an introduce a bias. But relative 

abundances (fold change) respect to time zero or unstimulated, its practical and avoid the bias 

of RNA mass normalization. The system at this time was at a steady state, we can formulate 

the equation as follow: 

𝛽(0) = 𝛼ଵ(0)𝑃(0)                                               (6) 

 
𝑃(0)

𝑀(0)
=

𝛼ଶ(0)

𝛼ଵ(0)
                                                  (𝟕) 

 

In terms of the transformed fold change variables the equations 1 and 2 become, 

𝑃෠ =
𝑃

𝑃(0)
, 𝑀෡ =

𝑀

𝑀(0)
, 𝛼ො =

𝛼

𝛼(0)
, 𝛽መ =

𝛽

𝛽(0)
               (𝟖) 

 

𝑑𝑃෠(𝑡)

𝑑𝑡
= 𝛼ଵ(0) ൣ𝛽መ(𝑡)  − 𝛼ଵෞ 𝑃෠(𝑑𝑡)൧                             (𝟗) 

𝑑𝑀෡(𝑡)

𝑑𝑡
= 𝛼ଶ(0) ൣ𝛼ଵෞ𝑃෠(𝑡)  − 𝛼ଶෞ (𝑑𝑡)𝑀෡(𝑡)൧                    (𝟏𝟎) 

 

We assume that transcription rate and degradation (β and α2) are temporally varying rates, and 

we define it with the impulse model196, a 6-parameter double-sigmoid function (Figure 2-12): 

𝜃 =  [ℎ଴, ℎଵ, ℎଶ, 𝑡ଵ, 𝑡ଶ, 𝜆] 

 

𝑟𝑎𝑡𝑒(𝑡; 𝜃)  =  
1

ℎଵ

 ൬ℎ଴ +  (ℎଵ − ℎ଴)
1

1 + 𝑒ିఒ(௧ି௧భ)
൰ ൬ℎଶ + (ℎଵ − ℎଶ)

1

1 + 𝑒ିఒ(௧ି௧మ)
൰ 
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Figure 2-12. The six parameters of the impulse model. Taken from 196 

 
Fitting the model to the data. To perform the optimization of the ODE models we use the 

global optimization algorithm of Differential Evolution as implemented by the function 

NMinimize, with the following settings: Search Points (Population size) = 500, Scaling Factor 

= 0.9, Cross Probability = 0.5. Furthermore, the best parameter setting returned by the 

Differential Evolution algorithm is further used to perform local optimization using the Quasi 

Newton method. 
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“A picture is worth a thousand words” 

proverb 
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Supplementary information S1 

 
 

  
Supplementary Information S1 RNA integrity of tibialis anterior muscle (TA). The 
RNA integrity was verified by using capillary electrophoresis using the Bioanalyzer 2100 
before RNA sequencing (mRNA and miRNA). All the samples presented a RNA integrity 
number (RIN) > 9. 
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Supplementary information S2 mRNAs differentially expressed in cancer cachexia  
 
(available at: https://goo.gl/48Vk01) 
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Supplementary information 3. Gene set enrichment analysis of genes differentially 
expressed in cancer cancer cachexia. 
 

GO Fold 
Enrichment 

% Associated 
Genes 

GO:0001525~angiogenesis 2.119864745 13.30 

GO:0005161~platelet-derived growth factor receptor 
binding 

3.906990521 27.27 

   

GO:0005776~autophagosome 1.876368722 12.66 

GO:0016239~positive regulation of macroautophagy 2.844042143 12.77    

GO:0030335~positive regulation of cell migration 2.133031607 12.31 

GO:0042060~wound healing 2.306226481 11.81    

GO:0031012~extracellular matrix 3.617118715 24.28 

GO:0030574~collagen catabolic process 5.087675389 32.00 

GO:0005921~gap junction 4.257913639 15.63 

GO:0005923~bicellular tight junction 1.764874349 10.10    

GO:0071354~cellular response to interleukin-6 3.964422381 21.43 

GO:0030593~neutrophil chemotaxis 4.441621371 16.47 

GO:0030595~leukocyte chemotaxis 7.268107698 14.86 

GO:0071356~cellular response to tumor necrosis factor 2.543837694 14.19 

GO:0071346~cellular response to interferon-gamma 2.725540387 9.86    

GO:0071277~cellular response to calcium ion 2.725540387 13.46 

GO:0006813~potassium ion transport 2.370035119 7.69    

GO:0006003~fructose 2,6-bisphosphate metabolic process 5.451080774 50.00 

GO:0045821~positive regulation of glycolytic process 4.360864619 23.08    

GO:0046902~regulation of mitochondrial membrane 
permeability 

4.360864619 8.33 

GO:0051901~positive regulation of mitochondrial 
depolarization 

4.845405132 10.4 

   

GO:0030016~myofibril 2.530417248 57.73 

GO:0035914~skeletal muscle cell differentiation 3.074968642 25.91    

GO:0045666~positive regulation of neuron differentiation 2.133031607 28.32 

GO:0007409~axonogenesis 1.998729617 25.25    

GO:0005344~oxygen transporter activity 5.46978673 19.99 

GO:0006749~glutathione metabolic process 2.127251034 14.29    
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GO:0000502~proteasome complex 1.99633328 15.79 

GO:0002020~protease binding 2.500473934 13.56 

GO:0010466~negative regulation of peptidase activity 4.193139057 8.10 

GO:0004175~endopeptidase activity 1.769636883 7.68 

GO:0006508~proteolysis 1.422021071 7.02    

GO:0005520~insulin-like growth factor binding 4.786063389 29.17 

GO:0071560~cellular response to transforming growth 
factor beta stimulus 

2.087647956 10.55 

GO:0004016~adenylate cyclase activity 5.46978673 18.18 

GO:0046330~positive regulation of JNK cascade 2.31960884 9.48 

GO:1900745~positive regulation of p38MAPK cascade 3.634053849 26.67 
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Supplementary information S4 Differentially expressed miRNAs in tibialis anterior muscle in cancer cachexia, ranked by a combination of 
p-value < 0.05 and fold change ≥ 1.5. 
 

Direction of 
Fold 

Change 
microRNA 

miRBase 
ID 

Fold 
Change 

log2 Fold 
Change 

P-value Chromosome Start End Strand 
(cachectic mice vs. non-

cachectic controls) 

Up 

mmu-miR-1843a-3p MI0004155 2,33 1,22 0,002 chr12 80391613 80391677 - 
mmu-miR-146b-5p MI0004665 2,02 1,02 0,003 chr19 46342762 46342870 + 
mmu-miR-350-3p MI0000640 1,91 0,93 0,003 chr1 176772325 176772423 - 
mmu-miR-1249-3p MI0004132 1,81 0,86 0,000 chr15 84951526 84951623 - 
mmu-miR-338-5p MI0000619 1,79 0,84 0,015 chr11 120014765 120014862 - 
mmu-miR-3535 MI0026036 1,76 0,82 0,026 chr1 86351981 86352127 - 
mmu-miR-146a-5p MI0000170 1,73 0,79 0,009 chr11 43374397 43374461 - 
mmu-miR-29b-3p MI0000143 1,72 0,78 0,000 chr6 31063023 31063093 - 
mmu-miR-10b-5p MI0000221 1,67 0,74 0,001 chr2 74726070 74726137 + 
mmu-miR-223-3p MI0000703 1,66 0,73 0,001 chrX 96242817 96242926 + 
mmu-miR-671-3p MI0004133 1,62 0,70 0,007 chr5 24592114 24592211 + 
mmu-miR-183-5p MI0000225 1.81 0.85 0,006 chr6 30169668 30169737 - 
mmu-miR-382-5p MI0000799 1.71 0.77 0,008 chr12 109733771 109733846 + 

Down 

mmu-miR-379-5p MI0000796 0,66 -0,60 0,020 chr12 109709060 109709125 + 
mmu-miR-144-3p MI0000168 0,62 -0,70 0,001 chr11 78073005 78073070 + 
mmu-miR-451a MI0001730 0,60 -0,73 0,000 chr11 78073170 78073241 + 
mmu-miR-144-5p MI0000168 0,57 -0,81 0,001 chr11 78073005 78073070 + 
mmu-miR-181c-3p MI0000724 0,56 -0,84 0,004 chr8 84178873 84178961 - 
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Supplementary information S5. Number of targets mRNAs per differentially expressed 
microRNAs in cancer cachexia. 
 

miRNA Predicted Validated  Total 

miR-10b-5p 0 2 2 
miR-1249-3p 19 0 19 
miR-144-3p 0 2 2 
miR-144-5p 0 2 2 
miR-146a-5p 0 4 4 
miR-146b-5p 0 2 2 
miR-181c-3p 0 1 1 
miR-183-5p 0 2 2 
miR-1843a-3p 18 0 18 
miR-223-3p 7 0 7 
miR-29b-3p 0 22 22 
miR-338-5p 0 4 4 
miR-350-3p 47 0 47 
miR-3535 17 0 17 
miR-379-3p 2 0 2 
miR-382-5p 3 0 3 
miR-451a 1 0 1 
miR-671-3p 15 0 15 
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Supplementary information S6. mRNAs co-deregulated by 3 or more miRNAs in cancer 
cachexia (mRNA downregulated; miRNA upregulated). 
 

mRNA miRNA (n) List of miRNAs 

Map2k6 4 miR-223-3p, miR-350-3p, miR-3535, miR-671-3p 

Ptpn3 4 miR-1249-3p, miR-1843a-3p, miR-350-3p, miR-3535 

Mettl21c 3 miR-1843a-3p, miR-350-3p, miR-671-3p 

Plxdc2 3 miR-1249-3p, miR-1843a-3p, miR-350-3p 

Ppargc1b 3 miR-1249-3p, miR-350-3p, miR-3535 

Rgs5 3 miR-1843a-3p, miR-3535, miR-671-3p 

Vegfa 3 miR-1249-3p, miR-1843a-3p, miR-29b-3p*  
c 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

70 
 

Supplementary information S7 

Supplementary Information S8. Nucleotide and aminoacidic sequence of the Nfkbia gene and 
their encoded protein IκBα. For the Wild type (WT) genotype and the mutant (SR). Colored 
boxes show the point mutation in the SR genotype that lead to the change of the serine to 
alanine. 
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“I received the fundamentals of my education in school, but that was not 

enough. My real education, the superstructure, the details, the true 

architecture, I got out of the public library”  

Isaac Asimov 
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