UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL

ANÁLISE PROTEÔMICA DO FITOPATÓGENO Xanthomonas axonopodis pv. citri

Agda Paula Facincani Bióloga

UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL

ANÁLISE PROTEÔMICA DO FITOPATÓGENO Xanthomonas axonopodis pv. citri

Agda Paula Facincani

Orientadora: Profa. Dra. Maria Inês Tiraboschi Ferro

Co-orientador: Prof. Dr. Julio Cezar Franco de Oliveira

Tese apresentada à Faculdade de Ciências Agrárias e Veterinárias – Unesp, Campus de Jaboticabal, como parte das exigências para obtenção do título de Doutor em Agronomia (Genética e Melhoramento de Plantas)

JABOTICABAL - SÃO PAULO – BRASIL Fevereiro de 2007

DADOS CURRICULARES DO AUTOR

AGDA PAULA FACINCANI - nascida em São Paulo — S.P, aos 2 de maio de 1976, é Bióloga (Bacharel e Licenciada) formada pelas Faculdades Integradas Riopretense — FIRP, São José do Rio Preto, SP, em dezembro de 1997. Mestre em Agronomia (Genética e Melhoramento de Plantas) pela Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Campus de Jaboticabal (FCAV/UNESP), em julho de 2002, com a Dissertação intitulada: "Estudo de Isoenzimas do Metabolismo de Carboidratos e Clonagem e Expressão da Enolase de *Xylella fastidiosa*". Atualmente é aluna do Programa de Genética e Melhoramento de Plantas da FCAV/UNESP, em nível de doutorado, iniciado em março de 2003.

JESUS, EU AMO VOCÊ

Jesus, eu quero Te dizer: eu amo Você, eu amo Você!

Jesus, preciso de Você. Jesus, sem Você já não dá pra viver.

Jesus, preciso Te dizer: não vivo sem Você, não vivo sem Você.

Eu só queria Te dizer, oh Deus: Te amo tanto, tanto, tanto!!!

Eu só queria Te agradecer por tudo o que fez por mim, por tudo o que eu sou.

Tu és o meu Senhor, meu Deus tu és amor.

Jesus, preciso de Você. Jesus, sem Você já não dá pra viver.

Jesus, preciso Te dizer: eu amo Você, eu amo Você!

Eu só queria Te pedir, Senhor: o Teu amor quero que cresça, o Teu perdão preciso que aconteça.

Jesus meu Salvador. Jesus, Tu és meu rei. Tu és o meu Senhor. Meu Deus tu és amor.

Jesus, preciso de Você. Jesus, sem Você já não dá pra viver.

Jesus, preciso Te dizer: não vivo sem Você, não vivo sem Você !!!

Letra e música - Luciane B. Bonilha Facincani

"A fé e o conhecimento sem a prática não tem valor.

Todo o conhecimento do mundo não tem importância alguma a menos que o coloquemos verdadeiramente em prática."

Heber J. Grant.

"Uma pessoa é a soma de seus conhecimentos e experiências adquiridas durante toda uma vida. Tais conhecimentos e experiências são depositados sobre um cerne moldado desde sua geração por um par de pessoas que se eximiu de seus sonhos para poder ver forjados os sonhos de um novo outro".

A meus pais, *Antonio* e *Maria José*, que nunca mediram esforços para que pudesse ter o que consideraram como o melhor do conhecimento, inúmeras experiências de vida e ser o que sou hoje, não posso somente agradecer, mas dedicar-lhes esse novo sonho realizado e retribuir-lhes sempre o amor que têm por mim. Em especial, a minha mãe por ser a professora dos meus ensinamentos da "escola da vida" e principalmente pela força de viver,

Dedico

Aos meus irmãos *Claudiner* e *Márcio*, a minha cunhada *Luciane*, minha nova irmã, e ao integrante mais novo de nossa família, o meu sobrinho *Thiago*, um verdadeiro presente de Deus, que nos disperta os sentimentos mais puros e ingênuos. A todos, obrigada pela força e apoio sempre presentes e pela alegria de convivência,

Ofereço

AGRADECIMENTOS

A Deus, primeiramente, por sempre ter iluminado meu caminho e permitir que chegasse até aqui. Quero Louvar e Agradecer, porque a Ele pertencem todas as minhas vitórias.

À Profa. Dra. Maria Inês Tiraboschi Ferro, que adotei como "Mãe Científica". Obrigada pela orientação durante todos estes anos, pelas oportunidades concedidas, disposição constante e pela grande amizade.

Ao Prof. Dr. Julio Cezar Franco de Oliveira, pela co-orientação, ensinamentos, conselhos e presença sempre constantes.

Ao Prof. Dr. Jesus Aparecido Ferro, pelo apoio, incentivo e pelo exemplo de profissionalismo.

Ao Prof. Dr. João Martins Pizauro Junior, pelas grandes ajudas, conselhos e ensinamentos sempre presentes.

À Profa. Dra. Márcia Regina Soares da Silva e ao Prof. Dr. Fábio César Gozzo, pela oportunidade de colaboração, imprescindível para a realização deste trabalho, aprendizagens e pela amizade.

Ao Prof. Dr. Mário Sérgio Palma e sua orientada de doutorado Keity Souza Santos, pelas dicas na padronização dos protocolos, utilização do programa ImageMaster e apoio nos momentos de dificuldades.

À Profa. Dra. Eliana Gertrudes de Macedo Lemos, pela disponibilidade do aparelho IPGPhor, para realização de parte deste experimento.

Aos membros da Comissão Examinadora pela disponibilidade, pelas valiosas sugestões e pelo esmero na correção deste trabalho.

Ao Rafael Marini Ferreira, pelo interesse, dedicação e ajuda na concretização deste trabalho durante a iniciação científica.

Aos meus amigos do LBM, que por medo de minha memória falhar, não vou citar nomes, pois no meu coração estão os nomes de todos aqueles que convivi e fiz muitas amizades nessa passagem de minha vida. A minha eterna gratidão por tudo "Pessoal".

Ao meu namorado Gustavo, pelo carinho, apoio, dedicação, compreensão, paciência, companheirismo e incentivo sempre presentes.

À minha "prima-irmã" Fernanda, a quem admiro muito, por sempre estar presente em todos os momentos de minha vida e por ser a minha "anjinha da guarda".

Aos Amigos de Pós Graduação pela eventual ajuda e amizade.

Aos meus professores durante a Pós Graduação, pela oportunidade do aprendizado e amadurecimento científico.

Aos funcionários da FCAV, em especial ao pessoal da Seção de Pós-Graduação e do Departamento de Tecnologia, cuja disponibilidade permite a realização do nosso trabalho.

Ao auxílio financeiro da CAPES pela bolsa concedida, e da FAPESP pelos recursos proporcionados dentro do Auxílio Jovem Pesquisador nº 04/02006-7.

A todos que de alguma forma colaboraram na realização deste e que por falha de minha memória não foram citados, meu muito obrigada.

SUMÁRIO

LISTA DE ABREVIATURAS E SIGLAS	página xi
LISTA DE FIGURAS	
	xiii
LISTA DE TABELAS	xiv
RESUMO	XV
SUMMARY	XVİ
CAPÍTULO 1 – CONSIDERAÇÕES GERAIS	1
A citricultura e o cancro cítrico	1
Xanthomonas axonopodis pv. citri	5
Mecanismos moleculares de interações planta-patógeno	7
Genômica Funcional: Proteômica	15
REFERÊNCIAS	20
CAPÍTULO 2 - PROTEOMA DO FITOPATÓGENO Xanthomonas axonopodis pv. citri: MAPA DE REFERÊNCIA PROTEÔMICO EM CONDIÇÃO NÃO INFECTANTE	33
RESUMO	33
Introdução	34
Material e Métodos	36
Estirpe bacteriana, condições de cultivo e lise celular	36
Cromatografia de troca catiônica forte (SCX)	37
Sistema nLC-MS/MS	38
Busca em Bancos de Dados	39
Resultados e Discussão	39
Análise proteômica da Xac em condição não infectante	39
Validação dos dados	41
Proteoma <i>versus</i> Genoma	41
Metabolismo intermediário e biossíntese de pequenas moléculas	43
Metabolismo de macromoléculas	44

	Estrutura celular	4
	Processos celulares	4
	Elementos genéticos móveis	4
	Patogenicidade virulência e adaptação	4
	Expressão de proteínas hipotéticas	4
	ORFs sem categoria	4
Со	nclusões	4
RE	FERÊNCIAS	4
CAP ov. <i>c</i>	ÍTULO 3- ANÁLISE PROTEÔMICA DE <i>Xanthomonas axonopodis</i> itri EM CONDIÇÃO INFECTANTE	5
RE	SUMO	5
Inti	odução	5
Ма	terial e Métodos	5
	Estirpe bacteriana, condições de cultivo e inoculação em plantas	5
	Recuperação das bactérias de folhas inoculadas (METHA & ROSATO, 2003)	5
	Extração protéica	5
	Eletroforese bidimensional (2D)	6
	Espectrometria de massas e identificação de proteínas dos "spots"	6
	MudPIT – Tecnologia Multidimensional na Identificação de Proteínas	6
	Cromatografia de troca catiônica forte (SCX)	6
	Cromatografia de fase reversa e análise por espectromentria de	
	massas	6
Re	sultados	6
Dis	cussão	7
	Sistema de secreção tipo III (SSTT)	7
	Proteínas efetoras do SSTT	7
	Sistema de secreção tipo II (SSTD)	7
	Sistema de secreção tipo IV (SSTQ)	8
	Proteínas relacionadas a estresse	8

Poliquetídeos	87
Proteínas relacionadas a biossíntese de esteróides	90
Proteínas que participam do metabolismo de carboidratos, relacionadas à patogênese	91
Proteínas relacionadas à carência nutricional	97
Outras proteínas expressas diferencialmente relacionadas à patogênese	101
Conclusões	105
REFERÊNCIAS	106
APÊNDICE	124

LISTA DE ABREVIATURAS E SIGLAS

2D Eletroforese bidimensional

2D + MS Eletroforese bidimensional seguida de espectrometria de

massas

2D LC Cromatografia líquida bidimensional

2D LC-MS/MS Cromatografia líquida bidimensional acoplada a

espectrômetro de massas em série

ACN Acetonitrila

avr Gene de avirulência
BPB Bromophenol blue

BSA Soro albumina bovina

CN Meio de cultura caldo nutriente

DO Densidade óptica

DSF ("diffusible signal factor") Fator de sinalização difusível

EPS Polissacarídeo extracelular

ESI Ionização eletrospray

hpa hrp associado

HR ("Hypersensitivity Response") Resposta de Hipersensibilidade

hrc hrp conservado

hrp ("hypersensitive response and pathogenicity") Genes de

patogenicidade e resposta de hipersensibilidade

LPS Lipopolissacarídeo m/z Razão massa/carga

MALDI TOF MS "Matrix-assisted laser desorption ionization time of flight mass

spectrometry"

MDLC Cromatografia líquida multidimensional

MDLC-MS/MS Cromatografia líquida multidimensional acoplada a

espectrômetro de massas em série

MS Espectrometro (ria) de massas

MS/MS Espectrômetro (ria) de massas em série

MudPIT ("Multidimensional Protein Identification Technology")

Tecnologia de Identificação Multidimensional de Proteínas

nLC Cromatografia líquida capilar (fase reversa)

nLC-MS/MS Cromatografia líquida capilar (fase reversa) acoplada a

espectrômetro de massas em série

pl Ponto isoelétrico

PM Massas moleculares

Pst Pseudomonas syringae pv. tomato

R Gene de resistência

rpf Fatores reguladores de patogenicidade
SCX Cromatografia de troca catiônica forte

SDS-PAGE Eletroforese da segunda dimensão (PM) em gel de

poliacrilamida

SSTD Sistema de Secreção Tipo II
SSTQ Sistema de Secreção Tipo IV
SSTT Sistema de Secreção Tipo III

TFA Ácido trifluoracético

UFC/mL Unidades formadoras de colônia por mL

Xaa Xanthomonas axonopodis pv. aurantifolii

Xac Xanthomonas axonopodis pv. citri

Xam Xanthomonas axonopodis pv. manihotis
 Xcc Xanthomonas campestris pv campestris
 Xcv Xanthomonas campestris pv. vesicatoria

Xoo Xanthomonas oryzae pv. oryzae

LISTA DE FIGURAS

CAPÍTULO 1 – CONSIDERAÇÕES GERAIS	Página
Figura 1: Lesões típicas do cancro cítrico em folhas (A), ramos (B) e frutos de laranjeiras (C). Fonte: www.fundecitrus.com.br	3
Figura 2. SSTT (codificado pelo agrupamento <i>hrp</i>) permite injeção de proteínas de patogenicidade e virulência (efetores) para o citoplasma das células hospedeiras. Fonte da Figura: BUTTNER & BONAS, 2002a, com modificações	12
Figura 3. Modelo da regulação gênica do agrupamento <i>hrp</i> em <i>Xanthomonas campestris</i> pv. <i>vesicatoria.</i> Fonte da Figura: CARVALHO, 2006	13
CAPÍTULO 2 - PROTEOMA DO FITOPATÓGENO <i>Xanthomonas axonopodis</i> pv. <i>citri</i> : MAPA DE REFERÊNCIA PROTEÔMICO EM CONDIÇÃO NÃO INFECTANTE	
Figura 1: Fluxograma dos experimentos de <i>Xac</i> cultivada em meios de culturas nutrientes CN e TSB.	40
Figura 2: Comparação das proteínas de <i>Xac</i> (cultivadas em meio CN e TSB) identificadas neste estudo e da predição genômica	42
Figura 3: Distribuição das proteínas identificadas de <i>Xac</i> por análise proteômica e do genoma por categorias	43
CAPÍTULO 3- ANÁLISE PROTEÔMICA DE <i>Xanthomonas axonopodis</i> pv. <i>citri</i> EM CONDIÇÃO INFECTANTE	
Figura 1. Géis de eletroforese bidimensional	66
Figura 2. Modelo de aparelho do SSTT	74
Figura 3. Modelo de aparelho do SSTD	80
Figura 4. Modelo de aparelho do SSTO	85

LISTA DE TABELAS

	Página
CAPÍTULO 2 - PROTEOMA DO FITOPATÓGENO <i>Xanthomonas axonopodis</i> pv. <i>citri</i> : MAPA DE REFERÊNCIA PROTEÔMICO EM CONDIÇÃO NÃO INFECTANTE	i agiile
Tabela 1. Comparação do genoma com a análise proteômica da Xac	41
Tabela 2. Proteínas de superfície	45
Tabela 3: Proteínas relacionadas à resposta de hipersensibilidade e componentes do sistema de secreção tipo III	47
CAPÍTULO 3- ANÁLISE PROTEÔMICA DE <i>Xanthomonas axonopodis</i> pv. <i>citri</i> EM CONDIÇÃO INFECTANTE	
Tabela 1. Proteínas diferencialmente expressas de <i>Xac</i> identificadas por MALDFTOF/TOF durante o processo de infecção temporal	68
Tabela 2. Proteínas diferencialmente expressas de <i>Xac</i> identificadas pelas duas tecnologias proteômicas (2D + MS e MudPIT) durante o processo de infecção temporal	70
APÊNDICE	
Tabela suplementar I: Proteínas identificadas de <i>Xanthomonas</i> axonopodis pv. citri	125
Tabela suplementar II: Proteínas hipotéticas identificadas de Xanthomonas axonopodis pv. citri (Xac) com funções associadas de proteínas em Xanthomonas campestris pv. vesicatoria (Xcv) utilizando o programa BLAST	150

ANÁLISE PROTEÔMICA DO FITOPATÓGENO Xanthomonas axonopodis pv.citri

RESUMO - A bactéria fitopatogênica *Xanthomonas axonopodis* pv. *citri (Xac)* é o agente causal do cancro cítrico, responsável por perdas significativas na citricultura nacional e mundial. Com a finalidade de se obter um primeiro mapa proteômico de referência da Xac, as bactérias foram cultivadas em dois meios não indutores de virulência (meios CN e TSB), e as proteínas foram digeridas com tripsina e analisadas pela tecnologia de MudPIT (Tecnologia de Identificação Multidimensional de Proteínas). Trinta e nove por cento de todas as proteínas preditas pelo genoma da Xac foram identificadas através de seus peptídeos, e estão distribuídas em todas as categorias funcionais. Além disso, 25% das proteínas designadas como hipotéticas conservadas do genoma foram identificadas. Outro objetivo deste trabalho foi analisar o perfil de expressão protéico durante a patogênese decorrente do contato Xac::citros. Para isso, Xac em condição infectante foi cultivada em meio indutor de virulência XAM1 por 24 h, ou recuperadas de folhas de laranjeiras inoculadas após 3 ou 5 dias de infecção, tendo como referência a Xac cultivada em meio CN. A tecnologia 2D + MS detectou 228 proteínas diferencialmente expressas em condição infectante, e a tecnologia MudPIT identificou 1.679 proteínas de Xac. Um total de 57 proteínas diferenciais [17 (2D + MS) + 40 (MudPIT)] associadas à patogenicidade e virulência, na interação Xac::citros são discutidas neste trabalho, destacando-se proteínas do Sistema de Secreção Tipo III (SSTT), II (SSTD) e IV (SSTQ), efetoras do SSTT, proteínas relacionadas a estresse, goma xantana, carência nutricional, entre outras.

Palavras-Chave: cancro cítrico, eletroforese bidimensional, MudPIT, patogenicidade, proteoma, *Xanthomonas axonopodis* pv. *citri*

PROTEOMIC ANALISYS OF PHYTOPATHOGEN Xanthomonas axonopodis pv. citri

SUMMARY - The phytopathogenic bacteria *Xanthomonas axonopodis* pv. *citri* (Xac) is the causal agent of the citrus canker disease, which responds for important losses in national and worldwide citriculture. In order to obtain the first proteomic reference map of Xac, the bacterium was grown on two non-inductive media for bacterial virulence (CN and TSB media) and proteins were proteolysed with trypsin and analyzed by MudPIT technology (Multidimensional Protein Identification Technology). Thirty nine per cent of all predicted proteins from Xac genome were identified with their component peptides as belonging to all functional categories. Besides, 25% of proteins described as conserved hypothetical in Xac's genome were identified. Another aim of this study was to analyze the proteome profile during Xac::citrus pathogenesis. For this reason, infecting Xac was grown in XAM1 virulence inductive medium for 24 h, or recovered from infected citrus leaves at 3 or 5 days of infection, taking Xac grown on CN medium as reference. The 2D + MS technology has detected 228 differentially expressed proteins in infecting conditional, and MudPIT technology identified 1679 Xac proteins. A total of 57 differential proteins [17 (2D + MS) + 40 (MudPIT)] related to pathogenicity and virulence during Xac::citrus interaction are discussed in this study, emphasizing proteins of type III (SSTT), II (SSTD) and IV (SSTQ) secretion system, effectors of SSTT, proteins related to stress, xanthan gum, starvation, among others.

Keywords: citrus canker, two-dimensional electrophoresis, MudPIT, pathogenicity, proteome, *Xanthomonas axonopodis* pv. *citri*

CAPÍTULO 1 – CONSIDERAÇÕES GERAIS

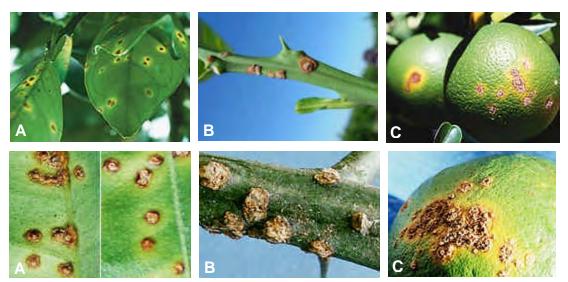
A Citricultura e o Cancro Cítrico

A fruticultura mundial foi responsável pela produção de 497,4 milhões de toneladas em 2004, sendo 21,7% (108,1 milhões de toneladas) representados pela citricultura, o que faz dos cítricos as frutas mais produzidas no mundo (FAO, 2005). Com mais de 1 milhão de hectares de plantas cítricas em seu território, o Brasil tornouse, na década de 80, o maior produtor/exportador mundial de citros, mais de 20 milhões de toneladas anuais e junto com os Estados Unidos, China, Espanha e México, produzem mais de 50% dos citros consumidos no planeta (FAO, 2005).

De janeiro a outubro de 2006 as exportações de sucos de laranja concentrado e sub produtos e de frutos de mesa absorveram mais de US\$ 1,2 bilhão para o Brasil, fato este, explica a relevância da cadeia agroindustrial citrícola na economia brasileira, no agronegócio e na balança comercial do país (CONAB, 2006).

O Estado de São Paulo é o principal pólo produtor brasileiro, pois possui uma área de aproximadamente 630.000 hectares com mais de 200 milhões de árvores, o que corresponde a 87,7% da produção anual nacional e 30% da mundial. A produção de suco de laranja concentrado consome 70% da produção, sendo que o Estado de São Paulo e o Estado da Flórida nos Estados Unidos da América, são responsáveis por 90% da produção mundial de suco concentrado (MACHADO, 1997; FUNDECITRUS, 2006).

O volume de recursos movimentados pelo agronegócio citrícola supera R\$ 5 bilhões por ano, gerando cerca de 400 mil empregos diretos com 3 mil frentes de trabalho na colheita e cerca de 3 milhões de empregos indiretos, somente no estado de São Paulo, (BESPALHOK FILHO *et al.*, 2002). Em muitas cidades o setor representa a base da economia, sendo essencial na sustentação de mais de 440 municípios no Estado de São Paulo e do Triângulo Mineiro (FUNDECITRUS, 2006).


Apesar da importância do Brasil como produtor mundial de citros, a produtividade desta cultura tem sido muito afetada principalmente por doenças, dentre elas, o cancro cítrico é a de maior potencial destrutivo (ROSSETTI *et al*, 1993; KOLLER, 1994).

O cancro cítrico foi constatado pela primeira vez no Brasil em 1957 (BITANCOURT, 1957), encontrado inicialmente em pomares na região de Presidente Prudente, SP, trazida em mudas importadas por imigrantes japoneses. A doença foi posteriormente detectada em regiões dos Estados de São Paulo, Mato Grosso do Sul, Paraná, Santa Catarina e Rio Grande do Sul (NAMEKATA *et al.*, 1996). A doença se alastrou rapidamente pela região produtora e, atualmente, é citada como um dos principais fatores responsáveis pela retração na produtividade de citros do país. Dados do Fundo de Defesa da Citricultura (Fundecitrus) registraram 228.708 pés de laranja erradicados em talhões e 108.294 em pomares domésticos no ano de 2006 de janeiro a setembro, comprovando o potencial destrutivo desta doença altamente contagiosa, causadora de prejuízos da ordem de centenas de milhões de Reais por ano em nosso País.

Segundo LEITE (1990) e ROSSETTI (2001), são conhecidos cinco tipos de cancro cítrico, os quais podem ser distinguidos de acordo com a diferença em patogenicidade e sintomas apresentados, em função de espécies de *Citrus* e outros gêneros afins infectados. O cancro cítrico Asiático ou cancrose A é causado por *Xanthomonas axonopodis* pv. *citri*, que será no presente trabalho, referida como *Xac*. É o grupo mais importante e severo, afeta um grande número de espécies da família *Rutacea*, principalmente ao gênero *Citrus*, e está disseminado, além do Brasil, em muitas regiões dos Estados Unidos, Argentina, Uruguai, China, Japão, Índia, Austrália (LEITE, 1990) e Bolívia (BRAITHWAITE *et al.*, 2002). O cancro cítrico B, cancrose B ou "falso cancro", causada pela estirpe B de *Xanthomonas axonopodis* pv. *aurantifolii* (*Xaa*), afeta um número menor de hospedeiros que a cancrose A. É mais agressivo em limões verdadeiros (*Citrus limom*) e lima ácida "Galego" (*Citrus aurantifolia*) e sua distribuição está restrita a Argentina, Paraguai e Uruguai. A cancrose C ou cancrose do limoeiro "Galego" causada pela estirpe C de *Xaa*, ocorre principalmente em lima ácida "Galego" e está restrita ao Brasil, principalmente, em alguma regiões do Estado de São Paulo. A cancrose D

causada pela estirpe D de *Xaa* foi relatada somente no México e ainda não está bem caracterizada. No entanto, provoca lesões em folhas e ramos de lima ácida "Galego". Por fim, a mancha bacteriana dos citros, causada pela *Xanthomonas axonopodis* pv. *citrumelo* tem patogenicidade limitada e ocorrência restrita a Flórida, ataca porta-enxertos de citrumelo "Swingle" (SWINGS & CIVEROLO, 1993; AMARAL, 2003; BEHLAU, 2006)

O cancro cítrico ocorre em toda parte aérea da planta cítrica, folhas, ramos e frutos, sendo que, nas folhas os sintomas incluem lesões iniciais constituídas de pequenas pústulas salientes, circundadas ou não por um halo amarelo e/ou halo aquoso, nos dois lados da folha, e com o passar do tempo, as lesões vão aumentando de diâmetro e tornam-se pardacentas ou escuras, corticosas, duras e lignificadas (KOLLER et al., 1993). O tamanho das lesões nas folhas depende da susceptibilidade do hospedeiro, podendo atingir até 10 mm de diâmetro em cultivares susceptíveis de laranja e pomelo (LEITE, 1990; STALL & SEYMOUR, 1983). Em frutos e ramos, os sintomas são semelhantes aos observados em folhas, porém com a parte corticosa mais pronunciada e as lesões podendo ou não estar envolvidas pelo halo amarelo (KOLLER et al., 1993) (Figura 1).

Figura 1. Lesões típicas do cancro cítrico em folhas (**A**), ramos (**B**) e frutos de laranjeiras (**C**). Fonte: www.fundecitrus.com.br.

Um sintoma característico e essencial para o diagnóstico do Cancro Cítrico é a indução da formação de tecido hiperplástico (divisões mitóticas excessivas – calogênicas), que resulta em lesões do tipo cancro. A formação do cancro, cuja sintomatologia característica, fundamenta o diagnóstico desta doença, ocorre devido ao rompimento da epiderme ocasionando o surgimento de uma erupção no meio da lesão (SWARUP *et al.*, 1992). A ruptura da epiderme vegetal, tanto na superfície foliar quanto no fruto infectado, leva à liberação de altos títulos do fitopatógeno bacteriano para dispersão rumo a novos hospedeiros (WHITESIDE *et al.*, 1988). Além desses fatores, um desequilíbrio hormonal provocado pela produção excessiva de etileno pela planta, em resposta ao estresse biótico, ocasiona a queda prematura do fruto, que ainda não suficientemente maduro, são impróprios tanto para o mercado de frutas "in natura" como para a produção de suco concentrado (BROWN, 2001).

A curta e média distância, a partir de lesões, as bactérias são disseminadas principalmente através da água de chuva e vento, enquanto que, a longa distância, a bactéria também pode ser levada pelo homem, a outras áreas por meio de materiais vegetais infectados, como frutos, material propagativo e mudas, assim como, através de equipamentos provenientes de áreas endêmicas (LEITE, 1990).

Como em muitas outras doenças bacterianas de plantas, o patógeno entra pelos estômatos e hidatódios do hospedeiro, por meio de ferimentos mecânicos ou pela atividade dos insetos (BROWN, 2001). Para folhas e caules jovens, os períodos de predisposição à doença coincidem com os fluxos de crescimento, permanecendo por seis semanas após cada brotação. No entanto, uma vez no interior dos tecidos de citros, a colonização pelo patógeno restringe-se ao sítio de infecção, o qual se utiliza de sofisticadas estratégias para adaptar-se e se multiplicar em plantas hospedeiras.

Desde a primeira constatação do cancro cítrico no Brasil, no final da década de 50, no Estado de São Paulo, diversas medidas de controle vem sendo empregadas no intuito de reduzir os prejuízos causados por esta doença. Exclusão e erradicação têm sido as medidas básicas adotadas para prevenir e controlar o cancro cítrico em vários países principalmente no Brasil e nos Estados Unidos (NAMEKATA *et al.*, 1996), medidas estas que encarecem substancialmente a produção cítrica, pois há a

necessidade de eliminação das plantas contaminadas e de todas as plantas adjacentes num raio de 30 metros do foco de infecção. Em muitos casos exige-se a eliminação de todo o talhão, sendo proibido o cultivo de *Citrus* no local pelos próximos dois anos. No entanto, a erradicação das árvores contaminadas não garante a eliminação da bactéria causadora do cancro (FUNDECITRUS, 2006).

Em meados da década de 80, período em que a produção de suco de laranja para exportação tornou-se um fator de grande importância na balança comercial brasileira, foram estabelecidas medidas de controle sanitário mais rígidas relacionadas à erradicação. A partir de 1996, o ressurgimento de novos focos de cancro no Estado de São Paulo levou à intensificação do programa de erradicação através da Campanha Nacional de Erradicação do Cancro Cítrico (CANECC/SP), e também inspirou a necessidade de se atuar contra esta doença através de medidas baseadas numa maior compreensão dos mecanismos de interação entre planta hospedeira e patógeno (RUDOLPH, 1993). Em certos casos, a prática de exclusão e erradicação pode até eliminar totalmente a doença, porém não há garantia de que o cancro cítrico não ocorra novamente, caso as medidas de prevenção sejam "amenizadas" (SCHUBERT et al., 2001; SCHUBERT & SUN, 2003)

Além da erradicação, outros métodos de controle do cancro cítrico são utilizados, como localização dos viveiros de mudas em áreas livres de cancro cítrico, estabelecimento de "quebra ventos" nas áreas de produção, uso preventivo de pulverizações de cobres e de controle da larva minadora dos citrus (ROBERTS, 2002).

Xanthomonas axonopodis pv. citri

A agricultura brasileira e mundial é bastante afetada por várias doenças ocasionadas por espécies do gênero *Xanthomonas*, provocando assim, perdas substancias em várias culturas de grande importância econômica. Esse gênero contém uma ampla variedade de espécies, linhagens, e hospedeiros (124 monocotiledôneas e 286 dicotiledôneas) (LEYNS *et al.*, 1984) e representa o maior grupo de bactérias fitopatogênicas, o qual apresenta uma extraordinária diversidade patogênica e

importância econômica (VAUTERIN *et al.*, 2000; VICENTE *et al.*, 2001). Além disso, a *Xac*, agente etiológico do cancro cítrico, está entre as *Xanthomonas*, como a bactéria que causa maior impacto na agricultura mundial (SCHUBERT *et al.*, 2001).

Bactérias do gênero *Xanthomonas* são cosmopolitas, com duas características morfológicas comumentes presentes: 1) devido à produção de goma xantana (exopolissacarídeo que auxilia na dispersão e sobrevivência do patógeno, além de ser uma importante matéria prima nas indústrias de alimentos e petrolífera), suas colônias possuem aspecto mucóide e 2) possuem cor amarela devido à produção de pigmentos, principalmente xantomonadina, quando cultivadas em meio Nutriente Ágar, após 2 ou 3 dias de incubação a 28 °C (BEBENDO, 1995, VAUTERIN *et al.*, 1996).

A bactéria *Xanthomonas axonopodis* Starr & Garces emend. Vauterin, *et al.* pv. *citri* (Hasse) Dye [syn. *Xanthomonas campestris* pv. *citri* (Hasse) Dyel] (AMARAL, 2003), pertence ao filo *Proteobacteria*, classe "Gammaproteobacteria" (Classe III), ordem "Xanthomonadales" (Ordem II) e família "Xanthomonadaceae", classificação esta baseada em comparações de seqüências nucleotídicas, principalmente do rRNA 16S (GARRITY & HOLT, 2000). A fitobactéria Gram-negativa *Xac* apresenta respiração aeróbica, metabolismo oxidativo e nunca fermentativo, não fixadoras de nitrogênio, não formam esporos, com morfologia de bastonetes, possui flagelo polar e não são exigentes nutricionalmente. Estas bactérias são altamente adaptadas ao ambiente de plantas (crescimento endofítico), sendo raramente encontradas livres no solo (SWINGS & CIVEROLO, 1993; WELLS, 1987).

A Xac se adapta bem numa temperatura de 20-30 °C que é excelente para o crescimento e desenvolvimento da infecção, adicionada ao elevado teor de umidade (PELTIER, 1920; BEBENDO, 1995). A temperatura ótima para o desenvolvimento da doença é de 30 °C (STALL & SEYMOUR, 1983), sendo que esse fitopatógeno se multiplica nos espaços intercelulares a 6-25 °C, mas não se desenvolve a uma temperatura de 40 °C (KOIZUMI, 1976; THURSTON, 1998). Para se desenvolver nos espaços intercelulares do parênquima vegetal, a fitobactéria tem que coordenar o seu processo de multiplicação celular à percepção do ambiente representado pelo interior da planta hospedeira, promovendo a indução da expressão de genes e conseqüentes

proteínas que habilitam o patógeno a desenvolver o processo infeccioso com sucesso (BROWN, 2001; VANTINI, 2007).

Mecanismos moleculares de interações planta-patógeno

As bactérias fitopatogênicas utilizam uma gama de estratégias para a invasão e a colonização do hospedeiro (ALEGRIA *et al*, 2004). Estudos bioquímicos, genéticos e celulares destes fitopatógenos demonstraram que os mecanismos utilizados envolvem fatores como adesinas, pili, fatores de sinalização bacteriana, fatores de transcrição especializados como os fatores sigma alternativos, receptores de fatores externos ou derivados de plantas, proteínas envolvidas em transdução de sinais, e proteínas que constituem ou regulam sistemas de secreção de macromoléculas e fatores de patogenicidade e virulência (ALDON *et al.*, 2000; BRITO *et al.*, 2002; FRANCIS & FORSBERG, 2002, HUECK, 1998; SLATER *et al.*, 2000). Este processo normalmente acarreta modificações, ou mesmo o comprometimento da homeostase do tecido invadido ou até da planta inteira (DEDECEK, 2006).

Nesse contexto, muitas bactérias fitopatogênicas colonizam o espaço intercelular (apoplasto) de plantas hospedeiras. Este nicho é nutricionalmente pobre, carregado de substâncias antimicrobianas e acídicas. No entanto, a fim de otimizar seu estilo de vida, o patógeno necessita desenvolver estratégias que almejem ao máximo o fornecimento de nutrientes pelo hospedeiro para sua conseqüente colonização e multiplicação. O estabelecimento do patógeno bacteriano no hospedeiro e sua habilidade em causar doenças depende de um processo complexo que requer a atividade coordenada de muitos genes bacterianos, ligados à patogenicidade e virulência, e conseqüentemente, seus produtos codificados, cuja identidade e modo de ação ainda são obscuros. Em contrapartida, as plantas são adaptadas para detectar a presença dos patógenos no sítio de infecção e responder com defesas antimicrobiais e outras respostas de estresse.

As interações entre plantas e bactérias fitopatogênicas podem ser classificadas como compatíveis ou incompatíveis. Na interação compatível, a bactéria é capaz de

mascarar ou sobrepujar os mecanismos de defesa da planta hospedeira, desenvolvendo-se nos tecidos vegetais, levando à manifestação de sintomas através de mecanismos de patogenicidade e virulência que se caracterizam pela produção de toxinas, secreção de enzimas líticas extracelulares e liberação de fatores de virulência nos meios extra e intracelular da planta hospedeira, capazes de modular, interferir ou suprimir as respostas de defesa da planta (WHITE *et al.*, 2000; VANTINI, 2007). Portanto, a interação compatível implica na doença propriamente dita, pela invasão e colonização da planta hospedeira, sem que esta consiga disparar seu arsenal de defesa o suficiente em intensidade e tempo para conter o patógeno.

Na interação incompatível, o reconhecimento específico entre uma molécula elicitora do patógeno e o receptor específico da planta, muitas vezes codificado por um gene de resistência maior, desencadeiam uma reação de defesa complexa, rápida e intensa no sítio de elicitação (CAMARGO, 1995). A interpretação molecular para este tipo de interação, dita gene-a-gene, prediz que o gene de avirulência (avr) do patógeno codifica uma proteína elicitora (Avr) capaz de interagir especificamente com um receptor da planta codificado pelo gene dominante de resistência (proteína R) correspondente (FLOR, 1971; KEEN, 1990). Assim, a presença do gene avr torna o patógeno não-virulento se a planta tiver o gene R específico. Se um dos genes avr ou R não existir ou não for funcional na planta ou no agente patogênico, não há reconhecimento, nem resistência e a doença se instala. Acredita-se que o gene R codifique o receptor, que por sua vez reconhece a molécula indutora gerada direta ou indiretamente pela ação do gene avr, ativando os mecanismos de defesa. A interação, direta ou indireta, entre o elicitor Avr do patógeno e o receptor R da planta, leva a uma rápida e intensa ativação das vias de transdução de sinais que resultam na resposta de resistência. frequentemente associada a reação resposta esta uma de hipersensibilidade (HR, "Hypersensitivity Response").

A HR caracteriza-se por uma morte celular programada das células vegetais atacadas pelo patógeno e células adjacentes ao sítio de infecção, que leva ao bloqueio e eliminação deste sem que haja manifestação da doença (GOODMAN & NOVACKY, 1994; STASKAWICZ *et al.*, 1995). Os eventos fisiológicos associados à HR envolvem

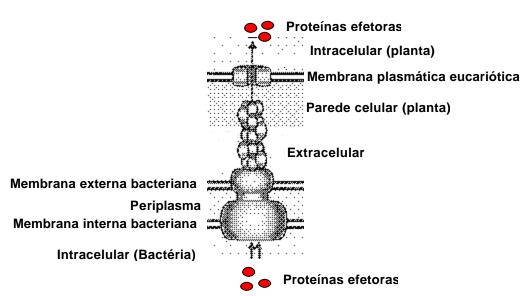
um aumento intracelular dos níveis de espécies ativas de oxigênio (O2-, H2O2 e OH*), a perda de íons potássio (K+) e ganho de íons hidrogênio (H+) pelas células, a destruição de compartimentos e fortalecimento das paredes celulares e da cutícula vegetal, produção de agentes antimicrobianos (fitoalexinas) e indução da expressão de proteínas de defesa (conhecidas como proteínas PR, de *pathogenesis related*), que limitam a colonização de tecidos vegetais pelo agente invasor (HAMMOND-KOSAK & JONES, 1996). Em conclusão, os genes *avr* codificam um grupo de proteínas efetoras responsáveis por controlar a habilidade da bactéria em elicitar a HR em hospedeiros resistentes (LEACH & WHITE, 1996), além de, contribuir em processos de patogenicidade e virulência nas interações compatíveis (RITTER & DANGL, 1995, SWORDS *et al*, 1996). Ademais, as proteínas Avr são responsáveis pela especificidade da interação planta-patógeno, pois, são espécie-específicas e limitam a amplitude de hospedeiros para o patógeno (ALFANO & COLLMER, 1997; VIVIAN & GIBBON, 1997; CORNELIS & VAN GIJSEGEM, 2000; BÜTTNER & BONAS, 2002).

A clonagem e caracterização de diversos genes *avr* de origem bacteriana revelou uma grande diversidade entre os produtos destes genes, o que impediu que fossem feitas generalizações sobre a estrutura de moléculas elicitoras (VIVIAN & GIBBON, 1997). A análise de mutantes demonstrou, em diversos casos, que os genes *avr* fornecem uma vantagem seletiva ao patógeno na ausência do gene *R* correspondente em plantas hospedeiras (KJEMTRUP *et al.*, 2000; LAUGE & DE WIT, 1998; STASKAWICZ *et al.*, 2001; WHITE *et al.*, 2000), o que explica sua manutenção na população do patógeno. Conseqüentemente, postula-se que um gene *avr* poderia agir, primeiramente, como fator de virulência que, durante a co-evolução do patossistema, foi tido como "alvo" pelo genes *R* da planta (COLLMER, 1998).

Um agrupamento de genes que também está diretamente relacionado à interação planta-patógeno é o agrupamento *rpf* (fatores reguladores de patogenicidade) que é responsável por controlar a produção de fatores de patogenicidade importantes como as proteases, endoglucanases, poligalacturonato liases e polissacarídeos extracelulares (como a goma xantana), que influenciam na severidade dos sintomas, agindo sinergisticamente para causar doença (BARBER *et al.*, 1997; DOW *et al.*, 2000). Esse

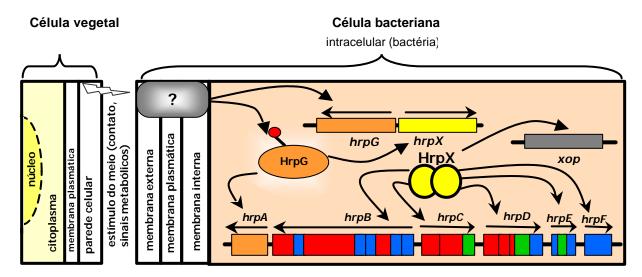
agrupamento é composto de 9 genes, *rpf*ABFCHGDIE, e os gêneros *Xanthomonas* e *Xylella* são os únicos organismos conhecidos que possuem este agrupamento. No entanto, a inserção de um "transposon" em qualquer um desses genes leva a inibição coordenada da síntese de todas as enzimas e polissacarídeos extracelulares e a conseqüente redução da virulência (DOW & DANIELS, 2000).

Mutantes *rpfB* de *Xanthomonas campestris* pv *campestris* (*Xcc*) sugerem que ele atue independentemente na regulação da síntese de enzimas extracelulares (POPLAWSKY & CHUN, 1998). Ademais, os genes *rpfB* e *rpfF* estão envolvidos na regulação do sistema de "quorum sense", através da síntese de um fator extracelular difusível de baixo peso molecular denominado DSF ("diffusible signal factor") (BARBER, 1997). Acredita-se que o DSF seja um derivado de ácido graxo usado por várias bactérias Gram-negativas para a sinalização e regulação intercelular, ou seja, estão envolvidos na regulação da dispersão celular e resistência contra estresse oxidativo (DOW *et al.*, 2003; HE *et al.*, 2006). Este sistema regulatório baseado em pequenas moléculas parece ser essencial para a patogenicidade.


Finalmente o agrupamento *hrp* (<u>h</u>ypersensitive <u>response</u> and <u>pathogenicity</u>, genes de patogenicidade e resposta de hipersensibilidade), cujos elementos e seus produtos codificados constituem-se num dos principais fatores de virulência encontrados em bactérias patogênicas de espécies vegetais e animais. Em bactérias fitopatogênicas o agrupamento de genes *hrp* tem demonstrado um papel tanto na patogenicidade em plantas susceptíveis, quanto na indução de HR em plantas contendo o gene de resistência (R) correspondente ou em plantas não-hospedeiras (BONAS & VAN DEN ACKERVEKEN, 1997). A verificação de que os genes *hrp* são essenciais para a patogenicidade e indução de HR indica que a funcionalidade dos genes *avr* dependem dos genes *hrp* (DANGL, 1994).

Primeiramente descritos em cromossomos de *Pseudomonas* sp. (LINDGREN *et al.*, 1986), agrupamentos de genes *hrp* também foram identificados em cromossomos das bactérias dos gêneros *Xanthomonas* sp. e *Erwinia* sp. (ALFANO & COLLMER, 1997), e no megaplasmídeo em *Ralstonia* sp. (LINDGREN, 1997; VAN GIJSEGEM, 1997; SALANOUBAT *et al.*, 2002). Algumas proteínas codificadas pelo agrupamento

hrp mostram identidade com vários componentes do sistema de secreção tipo III (SSTT) de patógenos bacterianos de animais como Yersinia sp. (PETTERSSON et al., 1996), Shigella sp, Salmonella sp, Pseudomonas aeruginosa, o enteropatógeno Escherichia coli, Chlamydia trachomatis e Chlamydia pneumoniae, Bordetella pertussis e Burkholderia pseudomallei e bactérias simbiontes Rhizobium sp., Bradyrhizobium japonicum e Sinorhizobium fredii (BUTTNER & BONAS, 2002a; BUTTNER & BONAS, 2002b; HUECK, 1998; CORNELIS & VAN GIJSEGEM, 2000; PLANO et al., 2001; ALEGRIA et al, 2004).


O SSTT consiste de mais de 20 proteínas, sendo que a maioria está localizada na membrana interna da bactéria, e juntas injetam vários fatores de patogenicidade e virulência, denominados efetores, para dentro do citosol de células eucarióticas (CORNELIS & VAN GYSEGEM, 2000), e é altamente conservado em bactérias Gramnegativas patogênicas às plantas (BUTTNER & BONAS, 2002a). Neste contexto, as proteínas codificadas pelos genes *hrp* formam uma estrutura tubular do tipo "pilus" capaz de conectar as células bacterianas às do animal ou planta permitindo a translocação de efetores através da membrana plasmática bacteriana diretamente na célula hospedeira, de modo a desorganizar o funcionamento das células atacadas, o que favorece a sobrevivência e multiplicação do patógeno no local invadido e leva à indução de sintomas da doença no hospedeiro (ROINE *et al.*, 1997) (Figura 2). Em *Xac*, o agrupamento *hrp* se estende por mais de 25 kb do genoma e é composto por 26 genes compreendendo de *hpa2* a *hrpF*, o que determina a sua patogenicidade e virulência característica e localizada (DA SILVA *et al.*, 2002).

Nove genes do SSTT são conservados entre os quatro principais gêneros de fitopatógenos e entre os patógenos animais. Para estes genes utilizou-se a denominação *hrc* (*hrp* conservado) (HUECK, 1998). Baseado na sua organização genética (estrutura do agrupamento), similaridade de seqüência dos genes e sistema de regulação, o grupamento *hrp/hrc* dos fitopatógenos são divididos em 2 grupos. O agrupamento *hrp* de *P. syringae*, *Erwinia* sp. e *Pantoea stewartii* foi classificado como grupo I, enquanto que, *Xanthomonas* sp. e *R. solanacearum* constituem o grupo II (ALFANO & COLLMER, 1997; GOPHNA, *et al.*, 2003).

Figura 2. SSTT (codificado pelo agrupamento *hrp*) permite injeção de proteínas de patogenicidade e virulência (efetores) para o citoplasma das células hospedeiras. Fonte da Figura: BUTTNER & BONAS, 2002a, com modificações.

A expressão desses genes ocorre de forma corregulada e pode ser induzida tanto no contato da bactéria com a planta como em meio sintético XVM2 (WENGELNIK et al., 1996) e XAM1 (CARVALHO, 2006). Nos fitopatógenos do grupo I, os agrupamentos são ativados pela proteína HrpL, um membro da família ECF (Extra Cytoplasmic Factor) de fatores sigma alternativos. Este por sua vez é ativado pela proteína HrpS, que é ativado pela HrpR, regulando assim, a expressão do agrupamento hrp no final da cascata (ALFANO & COLLMER, 1997; BUTTNER & BONAS, 2002; XIAO & HUTCHESON, 1994). Já nos fitopatógenos do grupo II, quando em contato com a planta, um sinal ainda desconhecido ativa a expressão de dois genes reguladores, hrpX em X. campestris e hrpB em R. solanacearum, localizados fora da região 25 kb. Estes dois genes são ativados por sua vez pelo produto do gene hrpG, que faz parte de um sistema de dois componentes e funciona como um regulador de resposta e é similar a proteína OmpR de E. coli (WENGELNIK et al., 1996b). O produto do gene hrpG media a ativação da expressão dos genes hrpA e hrpX. A proteína codificada pelo gene hrpX corresponde a um fator de transcrição do tipo AraC, responsável pela ativação coordenada da expressão dos genes presentes nos locos hrpB a hrpF (WENGELNIK et al., 1996b, WENGELNIK & BONAS, 1996) (Figura 3).

Figura 3. Modelo da regulação gênica do agrupamento *hrp* em *Xanthomonas campestris* pv. *vesicatoria*. Fonte da Figura: CARVALHO, 2006.

Muitos genes relacionados à virulência e patogenicidade e egulados pelas proteínas HrpX e HrpB contêm uma seqüência consenso de nucleotídeos (TTCGC...N15...TTCGC) localizada na região promotora, que tem sido caracterizada como elemento que induz a expressão gênica na presença da planta e denominada de "PIP box" (Plant-Inducible-Promoter box) (FENSELAU & BONAS, 1995; WENGELNIK & BONAS, 1996; NOËL *et al.*, 2002, CARVALHO, 2006). Esses genes são regulados de maneira dependente das proteínas HrpX e HrpB, que se ligam na seqüência do "PIP box" ativando a transcrição dos mesmos (DA SILVA *et al.*, 2002; WHALEN *et al.*, 1993; CARVALHO, 2006).

O estudo do controle da expressão de genes *hrp* tem revelado uma complexidade inerente à função indispensável que eles exercem para o estabelecimento tanto de interações compatíveis como de interações incompatíveis, uma vez que a transcrição deste agrupamento gênico é ativada no confronto bactéria-planta. A modulação da expressão de genes *hrp* é dirigida por sinais da planta, tais como osmolaridade, pH, disponibilidade de nutrientes, sugerindo uma complexa gama de sinais aos quais a fitobactéria é confrontada nos diferentes estágios de seu

desenvolvimento na região apoplástica do tecido vegetal infectado (RAHME *et al.*, 1992).

Além do SSTT, outros agrupamentos de genes que codificam para sistemas de secreção de macromoléculas estão envolvidos em patogenicidade e virulência. São estes, o sistema de secreção tipo II (SSTD) e o sistema de secreção tipo IV (SSTQ).

O SSTD é um mecanismo sec-dependente amplamente conservado em bactéria Gram-negativas e está basicamente envolvido na secreção extracelular de enzimas, geralmente associadas à degradação de tecidos do hospedeiro e na nutrição bacteriana. As enzimas degradadoras extracelulares incluem celulases e pectinases de *Erwinia*, elastase, fosfolipase C e exotoxina A de *P. aeruginosa*, amilase e protease de *Aeromonas hydrophyla*, quitinase, protease e toxina da colera de *Vibrio cholerae*, poligalactouronase de *Xanthomonas campestris* e pulanase de *Klebsiella oxytoca*. (HACKER & KAPER, 2000; SANDKVIST, 2001; NOUWEN *et al.*, 1999). Em *Xac* dois SSTD foram identificados. Os genes que codificam esses sistemas são denominados *xps* (Xanthomonas protein secretion) e *xcs* (Xanthomonas citri protein secretion) e estão organizados em agrupamentos (*xpsEFGHIJKLMN e xpsD*) bem conservados (DA SILVA *et al*, 2002)

A secreção por este sistema é dividida em duas etapas: a primeira envolve a passagem pela membrana interna, que é feita pelo sistema Sec, ocorrendo a ligação do peptídeo sinal aminoterminal ao complexo de proteínas Sec associadas à membrana interna e a passagem da proteína pela membrana (PUGSLEY, 1993; HENDERSON *et al.*, 1998). Posteriormente, há a clivagem do peptídeo sinal e a liberação da proteína no periplasma, que então será secretada para o exterior da bactéria (PUGSLEY, 1993; SANDKVIST, 2001, DEDECEK, 2006).

O SSTQ é responsável pela transferência de complexos de proteínas-ácidos nucléicos durante a conjugação bacteriana (CHRISTIE & VOGEL, 2000). Em *Agrobacterium tumefaciens* este sistema atua na translocação do T-DNA oncogênico para o interior de células de plantas hospedeiras (CHRISTIE, 1997, GELVIN, 2000) e ainda, outras bactérias o utilizam para a secreção de toxinas ou outras proteínas (BURNS, 1999). Este sistema pode ser encontrado em gonococos para a secreção de

imunoglobulina A e outras proteases, em *Helicobacter pylori* para a secreção de uma citotoxina, em *B. pertussis* para a secreção de toxina e em *Shigella flexneri* e *E. coli* enteropatogênica (EPEC) para a secreção das toxinas SepA e EspC, respectivamente (THANASSI & HULTGREN, 2000; HUECK, 1998; PUGSLEY, 1993). Semelhantemente ao SSTD, o SSTQ necessita de duas etapas para a secreção de proteínas (HUECK, 1998; PUGSLEY, 1993).

A caracterização de elementos de patogenicidade e virulência ainda desconhecidos, bem como a análise da função de cada um dos componentes implicados nos processos de interação planta-patógeno, permite a compreensão dos mecanismos de patogenicidade e resistência inerentes a cada patossistema, podendo levar ao estabelecimento de novas estratégias de combate e até mesmo ao desenvolvimento de novas drogas construídas para uma atuação específica sobre patógenos, capazes de associar o controle de doenças a ganhos de produtividade com a minimização do impacto ambiental.

Genômica Funcional: Proteômica

A proteômica, entendida como a análise em larga escala da expressão protéica, é atualmente considerada uma das áreas centrais da genômica funcional. De fato, os avanços técnicos que permitem resolver e identificar centenas ou milhares de proteínas a partir de extratos protéicos complexos, através de tecnologia proteômica envolvendo separação eletroforética ou cromatografia aliada à espectrometria de massas, possibilita a aquisição em larga escala de informações sobre o repertório de proteínas envolvidas diretamente com diferentes situações metabólicas e fisiológicas de um dado organismo, e ainda detectar modificações pós-traducionais (ANDERSON & SEILHAMER, 1997). Além disso, o grande número de seqüências disponibilizadas pelos projetos de seqüenciamento de genomas tem favorecido o interesse em análises de proteomas, visto que, através de informações do seqüenciamento de um organismo pode-se deduzir proteínas codificadas num genoma, o que é de fundamental auxílio no

processo de identificação das proteínas detectadas pela análise proteômica, bem como da regulação da expressão destas (JUNGBLUT & WITTMANN-LIEBOLD, 1995).

O següenciamento completo e anotação do genoma da bactéria fitopatogênica Xac (DA SILVA et al., 2002), revelaram um cromossomo circular com 5.175.554 pares de bases (pb) e dois plasmídeos, o pXAC64 (64.920 pb) e o pXAC33 (33.699 pb). Essa constituição genética é responsável por codificar 4.428 proteínas, sendo que, deste total, 2.770 (62,6%) proteínas tiveram suas respectivas funções associadas a proteínas com funções conhecidas descritas na literatura, e 1.653 (37,4%) correspondem a proteínas hipotéticas sem função descrita até então (DA SILVA et al., 2002). Diversos genes envolvidos em patogenicidade e virulência foram descritos neste genoma, codificando para sistemas de secreção de toxinas e proteínas de virulência/avirulência, enzimas de degradação de parede celular vegetal, estruturas de adesão bacteriana e enzimas com capacidade de neutralizar espécies ativas de oxigênio geradas pela planta hospedeira. Porém, o arsenal utilizado pelo patógeno na colonização e ataque está longe de ser totalmente caracterizado e compreendido em suas particularidades individuais e inter-relacionais, ainda mais se considerarmos que 37,4% dos genes contidos no genoma codificam proteínas hipotéticas ou desconhecidas, sem função deduzível até o momento, e que dentre estes muitos podem codificar proteínas com funções importantes de patogenicidade e virulência ainda desconhecidas.

Com o seqüenciamento do genoma completo de bactérias do gênero Xanthomonas: Xac estirpe 306, Xcc estirpe ATCC 3913 (DA SILVA et al., 2002), X. oryzae pv. oryzae (Xoo) (LEE et. al., 2005) e X. campestris pv. vesicatoria (Xcv) (THIEME et. al., 2005), vários genes espécies-específicos foram identificados como características distintas desses patógenos em relação à especificidade de hospedeiro, sintomas das doenças e estratégias nutricionais. Embora as seqüências dos genomas desses fitopatógenos tenham sido reveladas, informações a respeito da expressão de proteínas e genes desses patógenos em condições controladas ou na interação com a planta hospedeira permanecem escassas.

Para a investigação da expressão diferencial de proteínas em larga escala, uma técnica que foi bastante aprimorada nos últimos tempos e vem sendo muito utilizada é a

análise de proteínas através da eletroforese bidimensional (2D) em gel de poliacrilamida. A técnica de eletroforese bidimensional (2D) (O'FARREL, 1975) oferece resolução para a análise de um mapa global, ou perfil de, teoricamente, todos os produtos gênicos presentes na célula num dado momento ou condição experimental. Essa técnica é capaz de separar centenas ou milhares de proteínas pelos seus pontos isoelétricos (pl) e massas moleculares (PM). Conjuntamente com a espectrometria de massas (MS), é possível separar, quantificar e identificar as proteínas de um material em estudo. O recente emprego das técnicas do MALDI TOF MS ("matrix-assisted laser desorption ionization time of flight mass spectrometry") abriu as portas para a caracterização dos polipeptídeos a partir de géis bidimensionais (FEY & LARSEN, 2001).

A abordagem proteômica, por análise 2D, tem sido muito utilizada no estudo das bactérias *E. coli, Bacillus subtilis* e *Listeria*, para a identificação de proteínas induzidas por respostas adaptativas, devido a variações ambientais, principalmente à temperatura e estresses, e condições de cultivo (YURA *et al.*, 1993; JONES & INOUYE, 1994); VOLKER *et al.*, 1994; OH *et al.*, 2002; ARAI *et al.*, 2003; EYMANN *et al.*, 2004; LOPEZ *et al.*, 2005; TAM *et al.*, 2006). Também tem sido utilizada em estudos de interação simbiótica entre membros do gênero *Rhizobium*, *Bradyrhizobium*, *Mesorhizobium*, *Sinorhizobium*, *Azorhizobium* e plantas da família Leguminoseae (GUERREIRO *et al.*, 1999; NATERA *et al.*, 2000). Além disso, projetos de caracterização proteômica em ampla escala foram desenvolvidos com vários microrganismos procarióticos e eucarióticos, dentre eles, *Saccharomyces cerevisiae*, *E. coli, Haemophilus influenzae*, *Mycobacterium tuberculosis*, *Ochrobactrum anthropi*, *Salmonella entérica*, *Spiroplasma melliferum*, *Synechocystitis sp e Dictyostelium discoideum* (HAYNES & YATES, 2000).

Abordagens experimentais que analisam um conjunto de proteínas cuja expressão se modifica em função de uma condição funcional específica, permite identificar grupos protéicos relacionados com um contexto específico (REBOUÇAS & GOMES, 1999). A expressão protéica em microorganismos pode ser correlacionada com as alterações verificadas na produção de proteínas sintetizadas após o estímulo em questão. Em *Helicobacter pylori*, por exemplo, foram identificadas 26 das 33

proteínas secretadas que podem estar envolvidas na interação hospedeiro-patógeno (BAUMANN *et al.*, 2002). Já em *C. trachomatis*, dos 700 "spots" observados em gel de poliacrilamida, 250 tiveram sua identidade revelada por MS e desses, 144 representam proteínas distintas da condição em questão (SHAW *et al.*, 2002).

A análise proteômica diferencial envolvendo interação planta-microorganismo tem sido raramente empregada, principalmente no que diz respeito à expressão protéica de espécies de Xanthomonas em diferentes condições biológicas. MEHTA & ROSATO (2001) relataram em Xac cultivada em meios de cultura suplementados com extratos de folhas de citros, 20 proteínas diferenciais quando comparado com a Xac cultivada em meio mínimo, e 36 proteínas diferenciais entre as condições de cultivo meio mínimo e meio nutricionalmente rico, sendo que, das proteínas diferenciais, 5 foram identificadas por sequenciamento do Nterminal das proteínas. Já a análise do perfil protéico de Xcc quando cultivada em meio rico NYG, comparada com a Xcc recuperada de folhas inoculadas da planta hospedeira, Brassica oleracea, revelou 17 proteínas expressas diferencialmente sendo que dessas, duas tiveram a sua identidade revelada por MS (MEHTA et al., 2005). TAHARA et al (2003) por comparação dos mapas proteômicos de Xanthomonas axonopodis pv. passiflorae cultivada em meio mínimo basal e em meio de indução contendo extrato de folhas de maracujazeiro (planta hospedeira), revelaram a expressão diferencial de 20 proteínas, que podem estar envolvidas na interação planta-hospedeiro.

Recentemente, outro fitopatógeno, *Xylella fastidiosa* teve seu mapa proteômico de referência e a identificação das proteínas expressas mais abundantemente reveladas por SMOLKA *et al.* (2003), no qual identificaram 111 proteínas da bactéria e 35 proteínas secretadas por este fitopatógeno em meio de cultura. Além disso, CASSIANO (2003) constatou a presença de 2 proteínas expressas diferencialmente em *X. fastidiosa*, quando este foi cultivado na presença de 50% de tolueno, e foram identificadas como GROEL e RNA polimerase, sendo estas, relacionadas a respostas ao estresse em geral e exercem uma função essencial na fisiologia das bactérias.

Além da técnica proteômica 2D, outra metodologia recentemente empregada na análise do perfil protéico é a tecnologia multidimensional na identificação de proteínas

(MudPIT) (<u>Multidimensional Protein Identification Technology</u>), que permite a identificação de proteínas em misturas de alta complexidade, a partir de organelas purificadas ou complexos de proteínas (RANISH *et al.*, 2003; FOSTER *et al.*, 2003; MARELLI *et al.*, 2004; GINGRAS *et al.*, 2005). Na tecnologia MudPIT uma cromatografia de troca catiônica com extrato total de proteínas, segue-se, com as frações obtidas, uma cromatografia de fase reversa acoplada a um espectrômetro de massas em série MS/MS. Uma das possibilidades dessa nova estratégia consiste em analisar misturas complexas de proteínas por digestão tríptica sem prévia separação em gel, o que leva a uma maior sensibilidade e capacidade de detecção de proteínas expressas em quantidades menores, quando comparado com a tecnologia 2D.

Combinado-se as cromatografias de troca iônica e de fase reversa (cromatografia líquida multidimensional - MDLC), pode-se reduzir a complexidade das misturas peptídicas em estudo. Em conjunto com a análise do espectro de massas de fragmentação individual de cada peptídeo, pode-se identificar até milhares de proteínas em um único experimento. Ao contrário dos géis bidimensionais, não há restrição relacionada ao pl ou hidrofobicidade das proteínas, sendo portanto, a técnica de MudPIT, capaz de identificar proteínas menos abundantes, proteínas de alta e de baixa PM (10.000 < PM < 100.000 Da) e proteínas extremamente ácidas ou básicas (pl < 3,5 ou pl > 9,5) nas misturas protéicas (SHEN & SMITH, 2002; HERBERT *et al.*, 2001).

A metodologia MudPIT foi descrita pela primeira vez por WASHBURN *et al.* (2001), que identificou 1486 proteínas (24% do genoma) de levedura estirpe S288C e se destacou por identificar um número significante de proteínas de membrana. Dois anos depois, PENG *et al.* (2003) usando a mesma estratégia descreveram 1504 proteínas (25%) na análise do proteoma do mesmo organismo. KOLKER *et al.* (2003) no estudo do proteoma do microorganismo *H. influenzae* identificaram 414 proteínas (25% deste genoma). Esta tecnologia tem sido utilizada para identificar proteínas em amostras de uma ampla variedade de fontes (CHEESEMAN *et al.*, 2002; SCHIRMER *et al.*, 2003; FLORENS *et al.*, 2002; WU *et al.*, 2003) e abundantemente empregada na identificação de modificações pós-traducionais (MACCOSS *et al.*, 2002), tão bem como

na comparação quantitativa da expressão protéica usando marcadores isótopos estáveis (GYGI *et al.*, 1999; WASHBURN *et al.*, 2002).

Visto que ambas as estratégias 2D e MudPIT, possuem suas limitações, a combinação das duas torna-se mais promissora para a obtenção de um proteoma melhor explorado e compreendido. Não há muitos relatos na literatura usando as duas estratégias proteômicas para a análise do perfil de expressão comparativo (ODA *et al.*, 2003; KUBOTA *et al.*, 2003).

A caracterização e estudo proteômico da Xac em situação não infectante e também de suas proteínas relacionadas a patogenicidade, virulência e adaptação em situação infectante, utilizando para isso, as estratégias de 2D e MudPIT em separado e concomitantes, criam condições para a elucidação de muitas questões ainda em aberto dos mecanismos de interação entre Xac e seu hospedeiro cítrico. Nesse contexto, o presente estudo teve por objetivo realizar o primeiro mapa de referência proteômico do fitopatógeno Xac sendo para isso, as bactérias cultivadas em dois meios não indutores de patogenicidade e virulência [CN (caldo nutriente) e TSB] e as proteínas digeridas com tripsina e identificadas pela tecnologia de MudPIT. Além disso, utilizando as duas tecnologias proteômicas, 2D seguida de espectrometria de massas (2D + MS) e MudPIT, concomitantemente, foi realizada uma triagem temporal de proteínas da Xac expressas diferencialmente em diferentes condições infectantes, sendo para tal, a Xac cultivada em meio indutor de virulência (XAM1) por 24 h, ou em confronto direto com a planta cítrica hospedeira por 3 ou 5 dias de infecção (condições infectantes) comparando-se com a Xac cultivada em meio não indutor CN (condição não infectante), que foi utilizado como referência.

REFERÊNCIAS

ALDON, D. et al. A bacterial sensor of plant cell contact controls the transcriptional induction of *Ralstonia solenacearum* pathogenicity genes. **EMBO J**, Oxford, v.19, p.2304-2314, 2000.

ALEGRIA, M. C. et al. New protein-protein interactions identified for the regulatory and structural components and substrates of the type III secretion system of the phytopathogen *Xanthomonas axonopodis* pv. citri. **J. Bacteriol**, Washington, v.186, p.6186-6197, 2004.

ALFANO, J. R.; COLLMER, A. The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, avr proteins, and death. **J. Bacteriol,** Washington, v.179, p.5655-5662, 1997.

AMARAL, A. M. Comunicado Técnico 86. Cancro cítrico: permanente preocupação da citricultura no Brasil e no mundo. EMBRAPA, Brasília, DF, p. 1-5, nov. 2003.

ANDERSON, L.; SEILHAMER, J. A comparison of selected mRNA and protein abundances in human liver. **Electrophoresis**, Weinheim, v. 18, n. 3-4, p. 353-357, 1997 ARAI, M.; IKEDA, M.; SHIMIZU, T. Comprehensive analysis of transmembrane topologies in prokaryotic genomes. **Gene**, Amsterdam, v.304, p.77–86, 2003.

BARBER, C. E. et al. A novel regulatory system required for pathogenicity of *Xanthomonas campestris* is mediated by a small diffusible signal molecule. **Mol. Microbiol,** Salem, v.24, p.555-566, 1997.

BAUMANN, D. et al. Proteome analysis of secreted proteins of the gastric pathogen *Helicobacter pylori*. **Infect Immun**, Bethesda, v.70, p.3396-3403, 2002.

BEBENDO, I. P. **Manchas foliares**. In: Bergamin Filho, A., Kimati, H.; Amorin, L. eds. Manual de Fitopatologia. Volume 1: Princípios e conceitos, 3. ed. São Paulo: Agronômica Ceres, p. 848-858, 1995.

BEHLAU, F. Epidemiologia do cancro cítico (*Xanthomonas axonopodis* pv. *citri*) em laranja "Pêra" (*Citrus sinensis*) sob condição de controle químico e cultural. Piracicaba, 2006. 101f. Dissertação (Mestrado em Agronomia). Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba.

BESPALHOK-FILHO, J. C. et al. Laranja TRANSGÊNICA: Transformação de laranja visando resistência ao cancro cítrico usando genes de peptídeos antibacterianos. **Biotecnologia Ciência e Desenvolvimento**, São Paulo. Ed. IV, v.23, p62, 2002.

BITANCOURT, A. A. O Cancro cítrico. O Biológico, São Paulo, v.23, p.101-111, 1957.

BONAS, U.; VAN DEN ACKERVEKEN G. Recognition of bacterial avirulence proteins occurs inside the plant cell: a general phenomenon in resistance to bacterial diseases? **Plant J**, Oxford, v.12, p.1-7, 1997.

BRAITHWAITE, M. et al. First report of citrus canker caused by *Xanthomonas campestris* pv. *citri* on *Citrus sinensis* in Bolivia. **Plant Pathol**, Oxford, v.51, p.383, 2002. BRITO, B. et al. A signal transfer system through three compartments transduces the plant cell contact-dependent signal controlling *Ralstonia solenacearum hrp* genes. **Mol. Plant-Microbe Interact**, London, v.15, p.109-119, 2002.

BROWN, K. Florida fights to stop citrus canker. **Science,** Washington, v.292, p.2275-2278, 2001

BURNS, D. L. Biochemistry of type IV secretion. **Curr. Opin. Microbiol**, London, v.2, p.25-29, 1999.

BUTTNER, D.; BONAS, U. Getting across—bacterial type III effector proteins on their way to the plant cell. **EMBO J**, Oxford, v.21, p.5313-5322, 2002a.

BUTTNER, D.; BONAS. U. Port of entry—the type III secretion translocon. **Trends Microbiol**, Cambridge , v.10, p.186-192, 2002b.

CAMARGO, L. E. A. Análise genética da resistência e da patogenicidade. In: BERGAMIN FILHO, A., KIMATI, H.; AMORIM, L. (Eds.). **Manual de Fitopatologia,** v.1, p.470-492, 1995.

CARVALHO, F. M. S., Expressão gênica em *Xanthomonas axonopodis* pv. *citri* controlada por promotores induzidos pela planta hospedeira. Ribeirão Preto, 2006. 177f. Tese (Doutorado em genética). Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo. Ribeirão Preto.

CASSIANO, G. C. Indução do estado *VBNC* ("Viable But Nonculturable") e de bombas de efluxo em resposta ao tolueno em *Xylella fastidiosa*. 2003. 95 f. Dissertação (Mestrado em Microbiologia Agropecuária). Universidade Estadual Paulista. Faculdade de Ciências Agrária e Veterinárias. Jaboticabal.

CHEESEMAN, I. M. et al. Phospho-Regulation of Kinetochore-Microtubule Attachments by the Aurora Kinase Ipl1p **Cell**, Cambridge, v.111, p.163–172, 2002.

CHRISTIE, P. J. *Agrobacterium tumefaciens* T-complex transport apparatus: A paradigm for a new family of multifunctional transporters in eubacteria. **J. Bacteriol**, Washington, v.179, p.3085-3094, 1997.

CHRISTIE, P. J.; VOGEL. J. P. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. **Trends Microbiol**, Cambridge, v.8, p.354-360, 2000.

COLLMER, A. The *Pseudomonas syringae* pv. *tomato* HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. **J. Bacteriol,** Washington, v.180, p.5211-5217, 1998.

CONAB, Companhia Nacional de Abastecimento. **Conjunturas agropecuárias.**Disponível

em:

http://www.conab.gov.br/conabweb/download/indicadores/0205_balanca_exportacao.p df>. Acesso em: 18 de dezembro de 2006.

CORNELIS, G. R.; VAN GIJSEGEM, F. Assembly and function of type III secretory systems. **Annu. Rev. Microbiol**, Palo Alto, v.54, p.735-774, 2000.

DA SILVA, A. C. et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. **Nature**, London, v.417, p.459-463, 2002.

DANGL, J. L The enigmatic avirulence genes of phytopathogenic bacteria. **Curr Top Microbiol Immunol**, Berlin, v.192, p.99-118, 1994.

DEDECEK, A. S. Análise da ilha genômica *hrp/hrc* de *Herbaspirillum seropedicae* e caracterização parcial dos genes *hrcC*, *hrcV* e *hrpG*. Curitiba, 2006. 90f. Dissertação (Mestrado em Bioquímica). Universidade Federal do Paraná, Curitiba.

DOW, J. M.; DANIELS, M. J. *Xylella* genomics and bacterial pathogenicity to plants. **Yeast**, New York, v.17, p.263–271, 2000.

DOW, J. M. et al. Biofilm dispersal in *Xanthomonas campestris* is controlled by cell–cell signaling and is required for full virulence to plants. **Proc Natl Acad Sci USA**, Washington, v.100, p.10995–11000, 2003.

DOW, M.; NEWMAN, M.; VON ROEPENACK, E. The induction and modulation of plant defense responses by bacterial lipopolysaccharides. **Annu. Rev. Phytopathol**, Palo Alto, v.38, p.241-261, 2000.

EYMANN, C. et al. A comprehensive proteome map of growing *Bacillus subtilis* cells. **Proteomics,** Weinheim, v. 4, p.2849–2876, 2004.

FAO- Food and Agriculture Organization. **FAOSTAT statistical databases**. Disponivel em: http://apps.fao.org. Acesso em: 30 de novembro de 2005.

FENSELAU, S.; BONAS, U. Sequence and expression analysis of the *hrpB* pathogenicity operon of *Xanthomonas campestris* pv. *vesicatoria* which encodes eight proteins with similarity to components of the Hrp, Ysc, Spa and Fli secretion systems.

Mol Plant Microbe Interact, London, v.8, p.845-854, 1995.

FEY, S. J.; LARSEN, P. M. 2D or not 2D. **Curr. Opin. Chem. Biol,** London, v.5, p.26-33, 2001.

FLOR, H. H. Current status of the gene-for-gene concept. **Annu. Rev. Phytophatol,** Palo Alto, v.9, 1971

FLORENS, L. et al. A proteomic view of the *Plasmodium falciparum* life cycle Nature, London, v.419, p.520–526, 2002.

FOSTER, L. J.; DE HOOG, C. L.; MANN, M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. **Proc. Natl. Acad. Sci. U.S.A,** Washington, v.100, p.5813–5818, 2003.

FRANCIS, M. S.; WOLF-WATZ, H.; FORSBERG, A. Regulation of type III secretion systems. **Curr. Opin. Microbiol**., Oxford, v.5, p.166-172, 2002.

FUNDECITRUS, **Fundo de Defesa da Citricultura**. Disponível em: http://www.fundecitrus.com.br. Acesso em: 2 de dezembro de 2006.

GARRITY, G. M.; HOLT, J.G. An overview of the road map to the manual. **Systematic Bacteriology.** 2.ed. New York: Springer, 2000. 20p. (Bergey's Manual).

GELVIN, S. B. *Agrobacterium* and plant genes involved in T-DNA transfer and integration. **Annu. Rev. Plant Biol. Plant Mol. Biol**, Palo Alto, v.51, p.223-256, 2000.

GINGRAS, A. C.; AEBERSOLD, R.; RAUGHT, B. Advances in protein complex analysis using mass spectrometry. **J. Physiol**, Oxford, v.563, p.11–21, 2005.

GOODMAN, R. N.; NOVACKY, A. J. The hypersensitive reaction in plants to pathogens: A resistance phenomenon. St. Paul: APS Press, 1994.

GOPHNA, U.; RON, E. Z.; GRAUR, D. Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. **Gene**, Amsterdam, v.312, p.151-163, 2003.

GUERREIRO, N.; DJORDJEVIC, M. A.; ROLFE, B. G. Proteome analysis of the model microsymbiont *Sinorhizobium meliloti*: Isolation and characterization of novel proteins. **Electrophoresis,** Weinheim, v.20, p.818-825, 1999.

GYGI, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. **Nat. Biotechnol**. New York, v.17, p. 994–999, 1999.

HACKER, J.; KAPER. J. B. Pathogenicity islands and the evolution of microbes. **Ann. Rev. Microb**, Palo Alto, v.54, p.641-679, 2000.

HAMMOND-KOSAK, K, E.; JONES, J. D, G. Resistance gene-dependent plant defense responses. **Plant Cell**, Rockville, v. 8, p. 1773-1791, 1996.

HAYNES, P.; YATES, J, R. Review article: Proteome profiling – pitfalls and progress. **Yeast**, New York, v.17, p.81-87, 2000.

HE, Y. W. et al. Genome scale analysis of diffusible signal factor regulon in *Xanthomonas campestris* pv. campestris: identification of novel cell–cell communication-dependent genes and functions. **Mol. Microbiol**, Salem, v. 59, p.610–622, 2006.

HENDERSON, I. R.; NAVARRO-GARCIA, F.; NATARO, J. P. The great escape: structure and function of the autotransporter proteins. **Trends Microbiol**, Cambridge, v.6, p.370-378, 1998

HERBERT, B. R. et al. What place for polyacrilamide in proteomics? **Trends Biotech,** Cambridge, v.19, 2001.

HUECK, C. J. Type III protein secretion systems in bacterial pathogens of animals and plants. **Microbiol. Mol. Biol. Rev.**, New York, v.62, p.379-433, 1998.

JONES, P. G.; INOUYE, M The cold shock response – a hot topic. **Mol. Microbiol**, Salem, v.11, p.811-818, 1994.

JUNGBLUT, P., WITTMANN-LIEBOLD, B. Protein analysis on a genomic scale. **J. Biotechnol**, Amsterdam, v.41, p.111-120, 1995.

KEEN, N. T. Gene-for-gene complementarity in plant-pathogen interactions. **Annu. Rev. Genet.** Palo Alto, v.24, p.447-463, 1990.

KJEMTRUP, S.; NIMCHUK, Z.; DANGL, J. L., Effector proteins of phytopathogenic bacteria: bifunctional signals in virulence and host recognition. **Curr. Opin. Microbiol**, London, n.3, v.1, p.73-78, 2000.

KOIZUMI, M. Incubation period of citrus canker in relation to temperature. **Bulletin of Fruit Tree Research Station**, Japan, v.3, p.33-46, 1976.

KOLKER, E. et al. Initial Proteome Analysis of Model Microorganism *Haemophilus influenzae* Strain Rd KW20, **J. Bacteriol**, Washington, v.185, p.4593-4602, 2003.

KOLLER O. L.; SOPRANO, E.; BONAS, U. **Normas técnicas para a cultura de citros em Santa Catarina**. Sistemas de Produção nº 14. Empresa de Pesquisa Agropecuária e Difusão de Tecnologia de Santa Catarina S.A (EPAGRI), 1993

KOLLER, O. C. Citricultura: laranja, limão e tangerina. Editora Rígel, Porto Alegre, 1994. 446p.

KUBOTA, K.; WAKABAYASHI, K.; MATSUOKA, T. Proteome analysis of secreted proteins during osteoclast differentiation using two different methods: Two-dimensional electrophoresis and isotope-coded affinity tags analysis with two-dimensional chromatography **Proteomics**, Weinheim, v.3, p.616, 2003.

LAUGE, R.; DE WIT, P. Fungal avirulence genes: Structure and possible functions. **Fungal Genet. Biol**, Orlando, n.24, v.3, p.285-297, 1998.

LEACH, J. E.; WHITE, F. F. Bacterial avirulence genes. **Annu. Rev. Phytopathol**, Palo Alto. v.34. p.153-179. 1996.

LEE, B. M. et al. The genome sequence of *Xanthomonas oryzae pathovar oryzae* KACC10331, the bacterial blight pathogen of rice. **Nucleic Acids Res**, Oxford, v.33, p.577-586, 2005

LEITE JR, R. P. Cancro Cítrico: Prevenção e Controle no Paraná. IAPAR, Londrina, PR, Brasil. 51p. (IAPAR. Circular, 61), 1990.

LEYNS, F.; DE CLEENE, M.; SWINGS J. G.; DE LEY, J. The host range of the genus *Xanthomonas*. **Botanical Review**, New York, v.50, p.308-356, 1984.

LINDGREN, P. B. The role of hrp genes during plant-bacterial interactions. **Annu. Rev. Phytopathol,** Palo Alto, **v.35**, p.129-152, 1997.

LINDGREN, P. B.; PEET, R. C.; PANOPOULOS, N. J. Gene cluster of *Pseudomonas syringae* pv. *phaseolicola* controls pathogenicity on bean plants and hypersensitivity on nonhost plants. **J. Bacteriol,** Washington, v.168, p.512-522, 1986.

LOPEZ-CAMPISTROUS, A. et al. Localization, Annotation, and Comparison of the *Escherichia coli* K-12 Proteome under Two States of Growth. **Mol. Cell. Proteomics,** Bethesda, v.4, p.1205–1209, 2005.

MACCOSS, M. J. et al. Shotgun identification of protein modifications from protein complexes and lens tissue. **Proc. Natl. Acad. Sci. USA,** Washington, v.99, p.7900–7905, 2002.

MACHADO, M. Citrus Variegated Chlorosis (CVC), a new destructive citrus disease in Brazil, and the xylem limited bacteria, *Xylella fastidiosa*. 1997. Disponível em: http://watson.fapesp.br/Xylella.htm>. Acesso em: 10 de outubro de 2006.

MARELLI, M. et al. Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane. **J. Cell Biol**, New York, v.167, p.1099–1112, 2004.

MEHTA, A. et al. Boletim de Pesquisa e Desenvolvimento 93. Expressão diferencial de proteínas de *Xanthomonas campestris* pv. *campestris* na interação com a planta hospedeira *Brassica olearacea*. EMBRAPA, Brasília, DF, p.1-22, out. 2005.

METHA, A.; ROSATO, Y. B. Differentially expressed proteins in the interaction of *Xanthomonas axonopodis* pv. *citri* with leaf extract of the host plant. **Proteomics,** Weinheim, v.1, p.1111-1118, 2001.

NAMEKATA, T.; ROSSI, A. C.; CERÁVOLO, L. C. Avaliação de novos métodos de erradicação de Cancro cítrico. **Laranja**, Cordeirópolis, n.1, v.17, p.67-78, 1996.

NATERA, S. H. A.; GUERREIRO, N.; DJORDJEVIC, M. A. Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis. **Mol. Plant-Microbe Interact**, London, v.13, p.995-1009, 2000.

NOËL, L.; THIEME, F.; NENNSTIEL, D.; BONAS, U. Two novel type III system-secreted proteins of *Xanthomonas campestris* pv. *vesicatoria* are encoded within the *hrp* pathogenicity island. **J. Bacteriol**, Washington, v.184, p.1340-1348, 2002.

NOUWEN, N. et al. Secretin PulD: association with pilot PulS, structure, and ion-conducting channel formation. **Proc Natl Acad Sci USA**, Washington, n.96, v.14, p.8173-8177, 1999.

ODA, Y. et al. Quantitative Chemical Proteomics for Identifying Candidate Drug Targets. **Anal. Chem**, v.75, p.2159, 2003.

O`FAREL, P. H. High resolution two-dimensional electrophoresis of proteins. **J. Biol. Chem,** Baltimore, v.250, p.4007-4021, 1975.

OH, M. K. et al. Global expression profiling of acetate-grown *Escherichia coli.* **J. Biol. Chem,** Baltimore, v.277, p.13175-13183, 2002.

PELTIER, G. L. Influence of temperature and humidity on the growth of *Xanthomonas citri* and its host plants and on infection and development of the disease. **J. Agric. Res**, Washington, v.20, p.447-506, 1920.

PENG, J. et al. Evaluation of Multidimensional Chromatography Coupled with Tandem Mass Spectrometry (LC/LC-MS/MS) for Large-Scale Protein Analysis: The Yeast Proteome, **J. Proteome Res**, Washington, v.2, p.43-50, 2003.

PETTERSSON, J. et al. Modulation of virulence factor expression by pathogen target cell contact. **Science**, Washington, v.273: p.1231-1123, 1996.

PLANO, G. V.; DAY, J. B.; FERRACCI. F. Type III export: new uses for an old pathway. **Mol Microbiol**, Salem, v.40, p.284-293, 2001.

POPLAWSKY, A. R.; CHUN, W. *Xanthomonas campestris* pv. *campestris* requires a functional pigB for epiphytic survival and host infection. **Mol. Plant Microbe Interact,** London, v.11, p.466–475, 1998.

PUGSLEY, A. P. The complete general secretory pathway in Gram-negative bacteria. **Microbiol. Rev.**, Washington, v.57, p.50-108, 1993.

RAHME, L. G.; MINDRINOS, M. N.; PANOPOULOS, N. J. Plant and environmental sensory signals control the expression of hrp genes in *Pseudomonas syringae* pv. *phaseolicola*. **J. Bacteriol**, Washington, v.174, n.11, p.3499-3507, 1992.

RANISH, J. A. et al. The study of macromolecular complexes by quantitative proteomics. **Nat. Genet**, New York, v.33, p.349–355, 2003.

REBOLÇAS, N. A.; GOMES, M. D. Hibridização subtrativa seguida de pcr: uma abordagem para identificação de genes relacionados com fenótipos celulares específicos. **Biotecnologia Ciência e Desenvolvimento**, São Paulo, v.11, p.30-35, 1999.

RITTER, C.; DANGL, J. L. The *avrRpm1* gene of *Pseudomonas syringae* pv. *maculicola* is required for virulence on *Arabidopsis*. **Mol. Plant-Microbe Interact**, London, v.8, p.444-453, 1995.

ROBERTS, P. D. Citrus Canker Management Strategies. Indian river citrus seminar. Southwest Florida Research and Education Center. 2002.

ROINE, E. et al. Hrp pilus: An *hrp*-dependent bacterial surface appendage produced by *Pseudomonas syringae* pv. *tomato* DC3000. **Plant Biol**, Stuttgart, v. 94, p.3459-3464, 1997.

ROSSETTI, V. Manual ilustrado de doenças dos citros. Piracicaba: Fealq/Fundecitrus. 207p, 2001.

ROSSETTI, V.; MULLER, G. W.; COSTA, A. S. Doenças dos citros causada por algas, fungos, bactérias e vírus., Fundação Cargill, 1993. p.1-84.

RUDOLPH, K. Infection of the plant by *Xanthomonas*. In: SWINGS, J. G., CIVEROLO, E. L. **Xanthomonas**. Chapman and Hall, New York, NY, 1993. p.193-264.

SALANOUBAT, M. et al. Genome sequence of the plant pathogen *Ralstonia* solanacearum. **Nature,** London, v.415, p.497-502, 2002.

SANDKVSIT, M. Type II Secretion and Pathogenesis. **Infect. immun,** Bethesda, v.69, p.3523–3535, 2001.

SCHIRMER, E. C. et al. Nuclear membrane proteins with potential disease links found by subtractive proteomics. **Science**, Washington, v.301, p.1380–1382, 2003.

SCHUBERT, et al. Meeting the challenge of eradicating citrus canker in Florida - Again. **Plant Disease**, St. Paul, v.5, p.340-356, 2001.

& Conservancy Services, 2003. 6p. (Plant Pathology Circular, 377).

SHAW, A. C. et al. Comparative proteome analysis of *Chlamydia trachomatis* serovar A, D and L2. **Proteomics**, Weinheim, v.2, p.164-186, 2002.

SHEN, Y.; SMITH, R. D. Proteomics based on high-efficiency capillary separations. **Electrophoresis**, Weinheim, v.23, p.3106-3124, 2002.

SLATER, H. et al. A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in *Xanthomonas campestris*. **Mol. Microbiol**, Salem, v.38, p.986-1003, 2000.

SMOLKA, M. B. et al. Proteome analysis of the plant pathogen *Xylella fastidiosa* reveals major cellular and extracellular proteins and a peculiar codon bias distribution. **Proteomics,** Weinheim, v.3, p.224-237, 2003.

STALL, R. E.; SEYMOUR, C. P. Canker, a threat to citrus in the gulf-cost states. **Plant Disease**, St. Paul, v.67, p.581-585, 1983

STASKAWICZ, B. J., et al. Common and contrasting themes of plant and animal diseases. **Science**, Washington, n.292, v.5525, p.2285-2289, 2001.

STASKAWICZ, B. J. et al. Molecular genetics of plant disease resistance. **Science**, Washington v.268, p.661-667, 1995.

SWARUP, S. et al. An Xanthomonas-citri pathogenicity gene, ptha, pleiotropically encodes gratuitous avirulence on nonhosts. **Mol. Plant-Microbe Interact**, London, n.5, v.3, p.204-213, 1992.

SWINGS, J. G.; CIVEROLO, E. L. Xanthomonas. Chapman and Hall, New York, NY, 1993.

SWORDS, K.M. et al. Spontaneous and induced mutations in a single open reading frame alter both virulence and avirulence in *Xanthomonas campestris* pv. *vesicatoria avrBs*2. **J. Bacteriol**, Washington, v.178, p.4661-4669, 1996.

TAHARA, S. T.; MEHTA, A.; ROSATO, Y. B. Proteins induced by *Xanthomonas axonopodis pv. passiflorae* in the interaction with leaf extract of the host plant (*Passiflorae edulis*). **Proteomics**, Weinheim, v.3, p.95-102, 2003.

TAM, L. T. et al. Proteome signatures for stress and starvation in *Bacillus subtilis* as revealed by a 2-D gel image color coding approach. **Proteomics**, Weinheim, v.6, p.4565-4585, 2006.

THANASSI, D. G.; HULTGREN, S. J. Multiple pathways allow protein secretion across the bacterial outer membrane. **Curr. Opin. Cell Biol.**, London, v.12, p.420-430, 2000.

THIEME, F. et al. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium *Xanthomonas campestris* pv. *vesicatoria* revealed by the complete genome sequence. **J. Bacteriol,** Washington, v.187, p.7254-7266, 2005.

THURSTON, H. D. Tropical Plant Diseases – Second Edition, v.03, p.143-46, 1998.

VAN GIJSEGEM, F. In planta regulation of phytopathogenic bacteria virulence genes: relevance of plant-derived signals. **Eur. J. Plant Pathol**, Dordrecht, v.103, p.291-301, 1997.

VANTINI, J. S., Ativação das vias relacionadas a resistência de *Citrus sinensis* em resposta a interação com a bactéria *Xanthomonas axonopodis*. Jaboticabal, 2007.

69f. Dissertação (Mestrado em Genética e Melhoramento de Plantas). Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista. Jaboticabal.

VAUTERIN, L., RADEMAKER, J.; SWINGS, J. Synopsis on the taxonomy of the genus *Xanthomonas*. **Phytopathology**, St. Paul, v.90, p.677-682, 2000.

VAUTERIN, L.; SWINGS, J.; KERSTERS, K. Grouping of *Xanthomonas campestris* pathovars by SDS-PAGE of proteins. **J. Gen. Microbiol**, Reading, v.137, p.1307-16, 1996.

VICENTE, J. G.; CONWAY, J.; ROBERTS, S, J.; TAYLOR, J. D. Identification and origin of *Xanthomonas campestris* pv. *campestris* races and related pathovars. **Phytopathology**, St. Paul, v.91, p.492-499, 2001.

VIVIAN, A.; E GIBBON, M. J. Avirulence genes in plant-pathogenic bacteria: signal or weapons? **Microbiol**, Reading, v.143, p.693-704, 1997.

VOLKER, U. et al. Analysis of the induction of general stress proteins of *Bacillus subtilis*. **Microbiol**, Reading, v.140, p.741-752, 1994.

WASHBURN, M. P.; WOLTERS, D.; YATES, J. R., III. Large-scale analysis of the yeast proteome by multidimensional protein identification technology, **Nat. Biotechnol**, New York, v.19, p.242-7, 2001.

WASHBURN, M. P. et al. Analysis of Quantitative Proteomic Data Generated via Multidimensional Protein Identification Technology. **Anal. Chem**, Washington, v.74, p.1650–1657, 2002.

WELLS, J. et al. *Xylella fastidiosa* gen nov, sp nov Gram-negative, xylem limited fastidious plant bacteria related to *Xanthomonas* ssp., **Int. J. of Syst. Bacteriol**, Reading, v.37, p.136-143, 1987.

WENGELNIK, K. et al. Expression and localization of HrpA1, a protein of *Xanthomonas campestris* pv. *vesicatoria* essential for pathogenicity and induction of the hypersensitive reaction. **J. Bacteriol,** Washington, v.178, p.1061-1069, 1996a.

WENGELNIK, K.; BONAS, U. HrpXv, an AraC-type regulator, activates expression of fiver of the six loci in the *hrp* cluster of *Xanthomonas campestris* pv. *vesicatoria*. **J. Bacteriol.** Washington, v.178, p.3462-3469, 1996.

WENGELNIK, K.; VAN DEN ACKERVEKEN, G.; BONAS, U. HrpG, a key *hrp* regulatory protein of *Xanthomonas campestris* pv. *vesicatoria* is homologous to two-component response regulators. **Mol. Plant-Microbe Interact,** London, v.9, p.704-712, 1996b.

WHALEN, M. C. et al. Avirulence gene *avrRxv* from *Xanthomonas campestris* pv. vesicatoria specifies resistance on tomato line Haubii 7998. **Mol. Plant-Microbe Interact,** London, v.6, p.616-627, 1993.

WHITE, F. F.; YANG, B.; E JOHNSON, L. B. Prospects for understanding avirulence gene function. **Current Opinion in Plant Biol**, London, v.3, p.291-298, 2000.

WHITESIDE, J. O.; GARNSEY, S. M; TIMMER, L. W. Compendium of citrus diseases, APS Press, Saint Paul, 1988. p.1-80.

WU, C. C. et al. A method for the comprehensive proteomic analysis of membrane proteins Nat. Biotechnol, New York, v.21, p.532–538, 2003.

XIAO Y.; HUTCHESON, S. W. A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in *Pseudomonas syringae*. **J. Bacteriol**, Washington, v.176, p.3089-3091, 1994.

YURA, T.; NAGAI, H.; MORI, H. Regulation of the heat-shock response in bacteria. **Ann. Rev. Microbiol**, Palo Alto, v.47, p.321-350, 1993.

CAPÍTULO 2 - PROTEOMA DO FITOPATÓGENO *Xanthomonas axonopodis* pv. *citri*: MAPA DE REFERÊNCIA PROTEÔMICO EM CONDIÇÃO NÃO INFECTANTE

Proteoma do Fitopatógeno *Xanthomonas axonopodis* pv. *citri*: Mapa de Referência Proteômico em Condição Não Infectante

RESUMO: O cancro cítrico, causado pela bactéria fitopatogênica *Xanthomonas* axonopodis pv. citri (Xac), é considerado uma das maiores ameaças a citricultura nacional e mundial, pois afeta todas as variedades de citros comerciais, diminuindo a produção e qualidade dos frutos. Neste estudo, o proteoma da Xac foi analisado por cromatografia líquida bidimensional (2D LC) acoplada a espectrômetro de massas (MS/MS). Com a finalidade de se obter informações sobre o metabolismo de Xac, as bactérias foram cultivadas em dois meios distintos e as proteínas foram digeridas com tripsina e identificadas pela tecnologia 2D LC-MS/MS. Diferentes métodos experimentais foram utilizados para a recuperação das proteínas e otimizar a cobertura do proteoma, além de assegurar a identificação das proteínas da Xac. Aproximadamente 39% de todas as proteínas preditas pelo genoma ("Orfs") da Xac foram identificadas através de seus peptídeos constituintes, sem ambigüidade, e revelados por seus espectros de massas. Os resultados obtidos são consistentes com os revelados pela análise do genoma, sendo que as proteínas identificadas mostraram se distribuir em todas as categorias funcionais do genoma da Xac. Pelo menos 25% das proteínas deduzidas e originalmente anotadas como hipotéticas conservadas foram encontradas e, para algumas delas, funções foram designadas por buscas de homologia em bancos de dados. Em conclusão, este é o primeiro mapa de referência proteômico do fitopatôgeno mais agressivo de todas as variedades de citros.

Palavras-chave: cancro cítrico, MudPIT, proteoma, Xanthomonas axonopodis pv. citri

Introdução

O cancro cítrico responde por importantes perdas econômicas mundiais, especialmente no Estado de São Paulo, Brasil. Com mais de 1 milhão de hectares de plantas cítricas em seu território, o Brasil tornou-se o maior produtor mundial de laranjas na década de 80. Atualmente a citricultura é responsável por aproximadamente 400 mil empregos diretos e, é a principal atividade econômica de 322 municípios do Estado de São Paulo e 11 municípios do Estado de Minas Gerais (FUNDECITRUS, 2006).

Não há métodos de controle eficiente do agente causal do cancro cítrico, a bactéria *Xanthomonas axonopodis* pv. *citri* (*Xac*) (STALL & CIVEROLO, 1993; GOTTWALD & GRAHAM, 2000). Os sintomas da doença podem ser induzidos nas folhas, ramos e frutos de citros e são caracterizados por hiperplasia celular localizada do hospedeiro seguida por necrose do tecido na área infectada (WHITESIDE *et al.*, 1988; KOLLER, 1994).

Estudos intensivos têm sido conduzidos com a finalidade de elucidar os mecanismos envolvidos na interação planta-patógeno e vários genes envolvidos na patogenicidade têm sido isolados em Xanthomonads. Os genes hrp ("hypersensitive pathogenicity"; *r*esponse and genes de patogenicidade resposta hipersensibilidade) responsáveis por determinar a patogenicidade em plantas hospedeiras e hipersensibilidade em plantas não hospedeiras, estão organizados em agrupamentos extensos da ordem de 25.000 pares de bases (pb) dentro de genomas onde se encontram, dentro de ilhas de patogenicidade (FENSELAU & BONAS, 1995). O mecanismo de ativação da expressão dos genes hrp ainda não está totalmente elucidado, no entanto, foi relatado com sendo controlado por sinais ambientais, e a identificação de tais sinais levou ao desenvolvimento de meios que mimetizam as condições "in planta" (RAHME et al., 1992; SCHULTE & BONAS, 1992). Os genes de avirulência (avr) compreendem outro grupo de genes de patogencidade que foram clonados e caracterizados em muitos patovares de Xanthomonas campestris (LEACH & WHITE, 1996). Em adição a essas duas categorias de genes anteriormente citadas, o

agrupamento *rpf* (fator regulador de patogenicidade) contém vários genes que influenciam na doença e severidade dos sintomas (DANGL, 1994)

Com a finalidade de se descrever adequadamente o modelo de metabolismo da *Xac*, as células foram cultivadas em dois meios distintos e a expressão das proteínas foram analisadas. A expressão protéica é um processo altamente regulado envolvendo múltiplos genes. Seus níveis de expressão podem ser regulados pelos níveis de expressão do RNAm, através das vias de degradação, modificação/processamento póstraducional, localização e secreção. Não há uma relação clara entre os níveis de expressão de RNAm e expressão protéica (ANDERSON & SEILHAMER, 1997). Entretanto, estudos da expressão protéica são as chaves para compreender melhor os processos biológicos. A *Xac* é um bom alvo para estudos proteômicos, visto que seu genoma já está completamente seqüenciado (DA SILVA *et al.*, 2002). A *Xac*, estirpe 306, possui um cromossomo circular que compreende 5,175,554 pb e dois plasmídios: pXAC33 (33,699 pb) e pXAC64 (64,920 pb) (Números de acesso no GenBank: AE008923, AE008924, e AE008925, respectivamente). Além disso, muitos estudos têm sido feitos em vários aspectos da sua bioquímica (ROSSIER *et al.*, 2000; ALEGRIA *et al.*, 2004; ALEGRIA *et al.*, 2005; COLETTA-FILHO *et al.*, 2006; DONG *et al.*, 2006).

No presente estudo, extratos protéicos obtidos de *Xac* cultivada em meios nutrientes foram digeridos com tripsina e os peptídeos resultantes foram analisados por cromatografia líquida bidimensional acoplada ao espectrômetro de massas (2D - LC-MS/MS) ou MudPIT (Tecnologia multidimensional na identificação de proteínas) (LINK *et al.*, 1999; WASHBURN *et al.*, 2001; WU *et al.*, 2003). O uso da cromatografia líquida multidimensional (MDLC) acoplada ao espectrômetro de massas (MS/MS) é muito atrativo para estudos proteômicos, pois não requer o passo de eletroforese e é capaz de identificar um grande número de proteínas. Ao contrário dos géis bidimensionais, não há restrição relacionada a ponto isoelétrico (pl) ou hidrofobicidade das proteínas que podem ser analisadas por MDLC-MS/MS.

Dois perfis diferentes da expressão protéica foram analisados. O primeiro, o meio TSB foi selecionado como meio basal (condição não infectante), porém a detecção de proteínas relacionadas a patogenicidade, indicaram a necessidade em testar outro

meio. Desse modo, o extrato protéico da *Xac* cultivada em meio caldo nutriente (CN) foi também analisado e, algumas proteínas descritas anteriormente, foram encontradas neste extrato. De fato, não há relatos que estes meios induzam a expressão de genes relacionados a patogenicidade e virulência. Por conseguinte, as duas condições (CN e TSB) foram selecionadas para o proteoma de referência.

Neste trabalho, utilizando a estratégia de MDLC-MS/MS e usando dois extratos protéicos de *Xac*, cultivada em meio CN e TSB, foram identificadas 1.702 proteínas (39% de todas as proteínas preditas teoricamente pelo genoma da *Xac*). Estas proteínas foram distribuídas em categorias funcionais diferentes e a maioria das proteínas está relacionada ao desenvolvimento e aquisição de nutrientes. Dentre estas, 413 proteínas estão anotadas como hipotéticas conservadas, as quais foram analisadas com ferramentas computacionais na tentativa de designar funções potenciais. O programa BlastP (ALTSCHUL *et al.*, 1990) foi utilizado para buscas de seqüências de aminoácidos com grau de similaridade.

Material e Métodos

Estirpe bacteriana, condições de cultivo e lise celular

A Xac estirpe 306, usada no projeto genoma e neste estudo, foi obtida da coleção de cultura de bactérias fitopatogênicas do IAPAR (Instituto Agronômico do Paraná, PR, Brasil). Esta estirpe foi cultivada a 28 °C em meios nutrientes líquidos não indutores de virulência, Caldo Nutriente (CN) (5 g/L de peptona; 3 g/L de extrato de carne) ou TSB (10 g/L de triptona; 10 g/L de sacarose; 1 g/L glutamato de sódio).

A extração de proteínas totais foi feita como descrito por METHA & ROSATO (2001), com modificações.

Os precipitados de *Xac*, obtidos por cultivo de 16 h nos meios CN e TSB sob agitação, foram lavados em tampão fosfato (K₂HPO₄ 1,24 g/L; KH₂PO₄ 0,39 g/L; NaCl 8,8 g/L pH 7,2) e adicionados 0,75 mL de tampão de extração (0,7 M sacarose; 0,5 M

Tris-HCl; 30 mM HCl; 50 mM EDTA; 0,1 M KCl e 40 mM DTT), seguido de incubação por 15 min à temperatura ambiente. O mesmo volume de fenol foi adicionado, e após 15 min de agitação em "vortex", a fase fenólica foi recuperada após a suspensão ser centrifugada por 3 min a 20.800 g a 4 °C. Esse procedimento foi repetido por mais duas vezes. As proteínas foram precipitadas pela adição de 5 volumes de 0,1 M de acetato de amônio em metanol. O precipitado foi lavado com 1 mL de acetona 80% e solubilizado diretamente em 500 μL de 8 M de uréia em 25 mM NH₄HCO₃, pH 8.0.

A concentração das proteínas foi estimada pelo método de Bradford (BRADFORD, 1976). O lisado contendo 1,5 mg de proteínas foi reduzido com 10 mM DTT a 37 °C por 1 h, e alquilado com 50 mM iodoacetamida no escuro por 1 h. A amostra foi diluída para reduzir a uréia para 1 M e então, adicionado 20 µg da enzima tripsina bovina (Promega) para digerir as proteínas a 37 °C por 22 h.

Cromatografia de troca catiônica forte (SCX)

Os extratos de proteínas dgeridos foram diluídos para 0,1 M de uréia e foi adicionado ácido fórmico até atingir pH 3,0, e então, os peptídeos acidificados foram fracionados por uma cromatografia de troca catiônica forte. A separação foi feita em uma coluna SP-Sepharose HP (Amersham Biosciences, Uppsala, Sweden) no cromatógrafo AKTA PRIME (Amersham Biosciences, Uppsala, Sweden). A coluna foi equilibrada com o tampão A (25 mM NH₄HCO₃, pH 3,0), e os peptídeos foram eluídos pelo tampão B (25 mM NH₄HCO₃, 500 mM KCl, pH 3,0), com uma taxa de fluxo de 1 mL por min. Concentrações de 10%, 20%, 25% e 30% do tampão B foram usados para fazer o gradiente descontínuo ("step wise") das frações da cromatografia SCX. Frações com intervalos de 1 min (1 mL) foram coletadas e concentradas por centrifugação à vácuo.

Sistema nLC-MS/MS

As frações da SCX foram carregadas no sistema de cromatografia capilar CapLCTM Waters (Waters, Milford, MA). As proteínas digeridas foram desalinizadas "on line" usando a coluna Opti-Pak C18 trap Waters. O volume da amostra injetada foi normalmente 10 μL e a cromatografia líquida foi realizada numa coluna de fase reversa Ease C18 150 mm × 2,1 mm (Waters, Milford, MA) com eluição (2 μL/min), usando um gradiente linear (10 a 50%) de acetonitrila (ACN) contendo 0,1% de ácido fórmico. A extensão do gradiente foi dependente da concentração de peptídeos estimada pela absorbância através da densidade óptica (DO) de cada fração.

O sistema nLC está acoplado ao espectrômetro de massas com fonte de ionização eletrospray ESI com analisadores quadrupolo/tempo de vôo em série (Q-Tof Ultima da Waters, Milford, MA) (nLC-MS/MS), o que permitiu a análise direta dos peptídeos eluídos através do gradiente de ACN no Q-Tof. Para a formação do "spray", foi aplicado no capilar uma voltagem 3500 V e temperatura de 100 °C. O controle do instrumento e a aquisição dos dados foram realizados pelo sistema de dados MassLynx (Versão 4.0, Waters) e os experimentos foram executados pela varredura da razão massa/carga (m/z) de 200 a 2000 usando um tempo de varredura de 1 s, aplicado durante todo o processo cromatográfico. Os espectros de massas correspondentes a cada sinal do total de cromatogramas de íons correntes (TIC) tiveram suas médias calculadas, permitindo uma determinação acurada da massa molecular

Os valores exatos das massas foram obtidos usando uma fonte LockSpray ^{IM} (Waters, Milford, MA). Este sistema consiste de uma segunda fonte de ESI que injeta uma substância de massa conhecida a cada 5 s. Essa massa de referência foi usada para corrigir a massa do analito (amostra) durante toda a corrida. A referência usada neste estudo foi rifampicina com m/z 823,4130.

Aquisição de dados dependentes do MS/MS foram executados em precursores com estados de carga de 2 ou 3 sobre um levantamento de amplitude m/z de 50-2000 e um intervalo abaixo de 2 m/z. No máximo 3 íons foram selecionados para MS/MS de uma única análise MS. As massas apresentadas de Na⁺ e K⁺ foram automaticamente

excluídas. Os espectros de MS/MS de dissociação excluídos por colisão (CID) foram obtidos usando argônio como o gás de colisão a uma pressão de 13 psi e a voltagem de colisão variando entre 18 e 45 V, dependendo da massa do precursor. A razão de escaneamento foi de 1 s.

Busca em Bancos de Dados

Todos os dados foram processados usando o servidor Global ProteinLynx (versão 2.0, Waters). O processamento inclui a correção automática dos valores de m/z dos espectros MS e MS/MS segundo a massa do íon de referência do "lock spray".

A identificação das proteínas foi feita a partir do banco de dados da *Xac* (www.lbi.ic.unicamp.br/) através do programa MASCOT (versão 2.1). Na pesquisa foram usados os valores de massas monoisotópicos dos espectros MS/MS (MS/MS Ion Search), considerando carbamidometilação das cisteínas como modificações fixas e oxidação da metionina como modificação variável. Na hidrólise, por tripsina, foi considerada a possível perda de um sítio de clivagem e a tolerância das massas dos peptídeos e dos fragmentos foi de ± 0,05 Da.

Para avaliar a razão dos falso positivos neste estudo, foi construído um banco de dados de seqüências reversas (um banco de dados em que as seqüências foram adicionadas em sentido contrário) contendo o mesmo número de proteínas no banco de dados de *Xac*.

Resultados e Discussão

Análise proteômica da Xac em condição não infectante

A tecnologia 2D LC-MS/MS utilizada neste estudo pode ser observada esquematicamente na Figura 1 e descrita em maiores detalhes em Material e Métodos. Os peptídeos derivados da digestão tríptica foram separados em aproximadamente 100

frações na primeira dimensão, seguidos pela análise nLC-MS/MS. Estas frações geraram mais de 90.000 espectros MS/MS e mais de 10.000 peptídeos. A análise de todas as frações levou a identificação de 1.162 proteínas da bactéria cultivada em meio CN e 1.261 proteínas da bactéria cultivada em meio TSB, e uma comparação entre proteínas deduzidas a partir do genoma e proteínas identificadas pela análise proteômica (este estudo) estão apresentadas na Tabela 1.

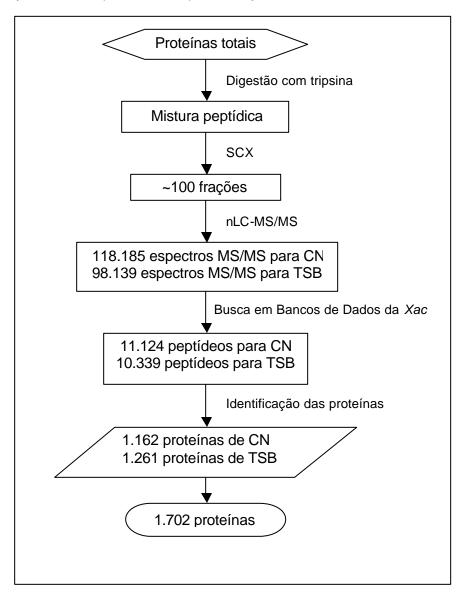
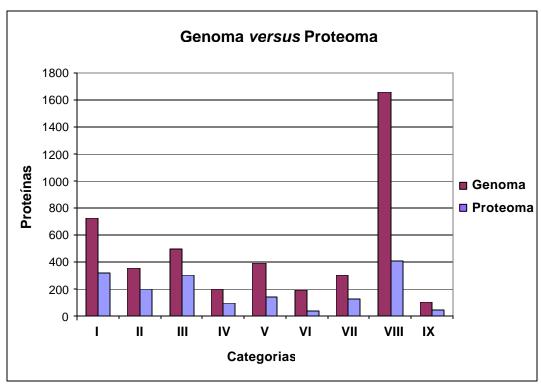


Figura 1: Fluxograma dos experimentos de Xac cultivada em meios de culturas nutrientes CN e TSB.

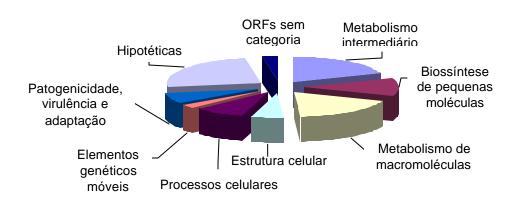
Tabela 1. Comparação do genoma com a análise proteômica da *Xac*.

	Categorias	Genoma	Proteoma	Prot/Gen %
1	Metabolismo intermediário	727	324	45
II	Biossíntese de pequenas moléculas	352	198	56
III	Metabolismo de macromoléculas	496	308	62
IV	Estrutura celular	202	96	48
V	Processos celulares	391	145	37
VI	Elementos genéticos móveis	190	44	23
VII	Patogenicidade, virulência e adaptação	304	125	41
VIII	Hipotéticas	1.658	413	25
IX	ORFs sem categorias	107	49	46
	Total	4.427	1.702	39


Validação dos dados

Utilizando os mesmo parâmetros para o Banco de Dados de *Xac* (erro de 0,05 Da para ambos, precursores e fragmentos), a busca de quase 100.000 espectros MS/MS retornou 9% de identificações falso positivas no banco de dados reverso, mostrando uma boa confiabilidade do método. Além disso, 968 proteínas apresentaram similaridade com pelo menos 2 peptídeos utilizando-se o programa MASCOT e 685 proteínas apresentaram similaridade com mais de 1 peptídeo único, para o experimento de *Xac* cultivada em meio CN.

Proteoma versus Genoma


A estratégia metodológica utilizada neste estudo permitiu uma cobertura alta das proteínas e os resultados foram consistentes com aqueles obtidos da análise do genoma (Figuras 2 e 3). O número total de proteínas encontradas (1.702) corresponde a quase 40% de todas as proteínas preditas pelo genoma da *Xac*, que é equivalente ao proteoma mais abrangente, o proteoma de *E. coli*. Em *E. coli* TAOKA e colaboradores

(2004) identificaram 1.480 proteínas expressas o que corresponde a 35% das proteínas preditas pelo seu genoma. As proteínas de *Xac* identificadas foram classificadas de acordo com a sua função biológica (Tabela 1 e Tabela suplementar I, Apêndice). A maioria das proteínas foi classificada como proteínas hipotéticas (413) (categoria VIII) (≅ 24% do proteoma total), ou relacionadas ao metabolismo (830), categorias I, II e III (≅ 50% do proteoma total) mostrando que a *Xac* nesta condição experimental apresenta um metabolismo ativo.

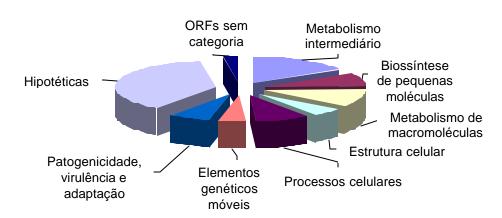


Figura 2: Comparação das proteínas de *Xac* (cultivadas em meio CN e TSB) identificadas neste estudo e da predição genômica

Proteoma

Genoma

Figura 3: Distribuição das proteínas identificadas de *Xac* por análise proteômica e do genoma por categorias

Metabolismo intermediário e biossíntese de pequenas moléculas: o genoma da Xac prediz 727 e 352 genes codificadores para as categorias de metabolismo intermediário e biossíntese de pequenas moléculas, respectivamente. Neste estudo, foram identificadas 324 proteínas da categoria de metabolismo intermediário (45%), sendo que dessas, 106 estão relacionadas ao metabolismo de energia (51%, 106 das 209 preditas pelo genoma), 36 das 72 do genoma (50%) estão relacionadas ao metabolismo central e as demais envolvidas na degradação de moléculas e funções

regulatórias em geral. Já para a categoria de biossíntese de pequenas moléculas foram identificadas 198 proteínas o que corresponde a 56% das preditas pelo genoma da *Xac*, sendo que, 42 proteínas das 51 do genoma (82%) fazem parte da biossíntese de nucleotídeos, 69 das 111 do genoma (62%) estão relacionadas a biossíntese de aminoácidos e as demais envolvidas na biossíntese de carreadores, cofatores, grupos prostéticos, ácidos graxos e fastídico.

A *Xac* possui todas as proteínas requeridas para a biossíntese de poliaminas (XAC0484, XAC3924 e XAC3923). Poliaminas são compostos que possuem várias funções, sendo uma das principais, a manutenção e proteção da integridade de ácidos nucléicos, ribossomos e proteínas (RIBA, 2001).

Metabolismo de macromoléculas: das 496 proteínas envolvidas no metabolismo de macromoléculas preditas pelo genoma, 308 foram detectadas neste estudo. Esta quantidade é equivalente a 62% do genoma. Várias dessas proteínas expressas estão envolvidas no metabolismo de DNA (53%, 71 das 135) ou RNA (53%, 110 das 209) ou proteínas (66%, 103 das 157). Em adição, um grande número de proteínas ribossomais também foram expressas, consistente à expectativa (54 proteínas ribossomais = genoma).

Estrutura celular: semelhante aos outros proteomas bacterianos, proteínas envolvidas na estrutura celular e processos celulares estão presentes no proteoma da *Xac*, assim como proteínas de superfície (Tabela 2).

Para essa categoria foram identificadas 96 proteínas das 202 preditas pelo genoma (48%), sendo que dessas, 40 das 93 (43%) são componentes da membrana interna ou externa; 18 das 27 (67%) são peptidoglicanas; 22 das 54 (41%) são polissacarídeos de superfície, lipopolissacarídeos e antígenos e 16 das 25 (64%) (Tabela 2) são proteínas de estruturas superficiais (fímbria e pilus tipo IV – adesão à célula hospedeira)

Tabela 2. Proteínas de superfície

XAC2017	proteína da biogênese fimbrial
XAC3242	proteína da estrutura fimbrial
XAC1133	proteína da estrutura fimbrial tipo IV
XAC2666	proteína PilX
XAC2923	proteína da mobilidade contratória
XAC3100	proteína da biogênese do pilus
XAC3381	proteína da estrutura fimbrial
XAC3241	fimbrilina
XAC3239	proteína da biogênese do pilus
XAC3099	proteína da biogênese do pilus
XAC3098	proteína PilL
XAC3102	proteína do pilus
XAC3805	proteína fimbrial
XAC2722	proteína FimV
XAC2665	proteína PilY1
XAC3101	proteína PilH

Processos celulares: neste estudo, 145 proteínas desta categoria foram encontradas das 391 preditas pelo genoma (37%), dentre elas, 105 proteínas estão relacionadas a transportes em geral (37%, 105 das 281 do genoma), 17 estão relacionadas à divisão celular (63%, 17 das 27 do genoma), 20 estão envolvidas na quimiotaxia e mobilidade (26%, 20 das 77 do genoma) e 4 proteínas distintas, das 6 presentes no genoma (67%) envolvidas no processo osmótico: XAC0304, XAC0604, XAC2915, XAC0888.

Elementos genéticos móveis: 44 proteínas desta classe, das 190 preditas pelo genoma (23%), foram encontradas, das quais, 12 possuem funções relacionadas a fagos e profagos (28%, 12 das 43), 12 proteínas com funções relacionadas a plasmídios (33%, 12 das 36) e 20 proteínas com funções relacionadas a "introns" e "transposons" (18%, 20 das 111).

Os elementos genéticos móveis são determinantes de resistência a drogas, degradação de açúcares, enterotoxinas, entre outros. Provocam mutações devido a sua inserção, rearranjos cromossômicos, através da recombinação entre seqüências homólogas, ou alteração na expressão dos genes (FINNEGAN, 1989).

Patogenicidade virulência e adaptação: proteínas relacionadas a patogenicidade também foram identificadas, assim como, proteínas envolvidas na adaptação. Estas proteínas podem ser necessárias para a nutrição desse fitopatógeno. Para esta categoria foram identificadas neste estudo 125 proteínas das 304 preditas pelo genoma (41%), dentre elas, 55 proteínas estão envolvidas na produção de toxinas e detoxificação (44%, 55 das 126), 15 estão relacionadas a adaptação, principalmente nutrição e condições de estresses (63%, 15 das 24), 4 são proteínas de avirulência (50%, 4 das 8), 7 estão envolvidas na degradação da parede celular hospedeira (35%, 7 das 20), 6 estão relacionadas a produção de exopolissacarídeos, principalmente goma xantana (40%, 6 das 15) e 6 são proteínas de superfície (43%, 6 das 14).

Pelo menos uma isoforma codificada do *pthA* foi encontrada nos dois extratos protéicos (meios CN e TSB). O *pthA* é o primeiro membro da família de genes *avrBs3/pthA* de *Xanthomonas*, é reconhecido como sendo essencial para patogenicidade e para a formação do cancro necrótico em todas as espécies de citros atacada por *Xac* (GABRIEL, 1999). A *Xac* possui quatro genes codificadores das proteínas PthAs (PthA1, 2, 3 e 4), sendo o que caracteriza cada isoforma é o número de 14 a 23 seqüências repetidas idênticas de 102 pb na sua região central. Além disso, possuem as regiões amino e carboxi-terminal altamente conservadas (DA SILVA *et al.*, 2002). Contudo, a identificação das isoformas da proteína PthA por MS fica comprometida.

Apesar de, a expressão dos genes *hrp* serem geralmente induzida na planta ou sob certas condições indutoras de virulência "in vitro" (BONAS, 1994), 3 proteínas constituintes do sistema de secreção tipo III (SSTT) (HrcN, HrcU e HrcV) e 2 proteínas relacionadas à hipersensibilidade (HpaF e HrpF) foram encontradas (Tabela 3). A função da maioria dos genes *hrp* é prover de um sistema de secreção protéico especializado, chamado tipo III (HE, 1998). Este SSTT é um mecanismo conservado, geralmente encontrado em patógenos de plantas e animais, responsáveis pela translocação de moléculas protéicas efetoras específicas (fatores de patogenicidade e virulência) diretamente nas células hospedeiras de maneira contato-dependente.

Tabela 3: Proteínas relacionadas à resposta de hipersensibilidade e componentes do SSTT.

XAC0393 XAC0394	proteína HpaF proteína HrpF	
XAC0412	proteína HrcN	
XAC0406	proteína HrcU	
XAC0405	proteína HrcV	

Expressão de proteínas hipotéticas: na tentativa de encontrar funções potenciais para as proteínas hipotéticas expressas pela *Xac*, ferramentas computacionais foram utilizadas para buscas de regiões e domínios protéicos conservados. A busca utilizando a ferramenta BLAST para proteínas com similaridade no Banco de Dados do fitopatógeno *Xanthomonas campestris* pv. *vesicatoria* (*Xcv*) encontrou 209 proteínas com identidade e cobertura maior que 34% e 49%, respectivamente, e valores de "evalues" menor ou igual a 10⁻¹⁹ (Tabela suplementar II, Apêndice).

Deste modo, possíveis funções são propostas para algumas proteínas hipotéticas, de acordo, com a similaridade entre os genomas de *Xac* e de *Xcv* (THIEME *et al.*, 2005). Fato este, revela a necessidade de se atualizar a anotação do Banco de Dados da *Xac*.

ORFs sem categoria: um grande número de proteínas, 49 das 107 preditas pelo genoma (46%), sem categoria específica foi encontrado neste trabalho. Estas proteínas foram identificadas nas duas condições analisadas (CN e TSB), sugerindo que as mesmas desempenham um papel importante no metabolismo da *Xac*.

Conclusões

A análise proteômica da *Xac* cultivada em meio líquido, condição não infectante, revelou a presença de 1.702 proteínas, o que correspondem a 39% de todas as proteínas preditas pelo genoma. Uma boa correlação com o genoma foi observada, exceto para a categoria das proteínas hipotéticas.

A metodologia empregada aqui foi capaz de identificar proteínas para uma variedade de funções, abrangendo muitos processos celulares, incluindo componentes que são mais difíceis de serem identificados, tais como os relacionados à maquinaria transcricional e fatores de virulência.

Estes resultados demonstram a utilidade da metodologia para compreender o perfil do proteoma bacteriano, enquanto confirmam a expressão de um grande número de proteínas.

Neste estudo foram utilizados dois meios de cultura (TSB e CN), no qual a literatura considera como meios basais (não indutores de patogenicidade e virulência) quando utilizados para o gênero *Xanthomonas*. Apesar disso, foram identificadas proteínas relacionadas a patogenicidade e virulência, quando a *Xac* foi cultivada em meio TSB. Por conseguinte, o extrato protéico da *Xac* cultivada em meio CN também foi analisado e não foram identificadas proteínas relacionadas ao SSTT (proteínas codificadas pelos agrupamentos de genes *hrp*) sugerindo então, a utilização do mesmo como controle para a caracterização da condição não infectante em experimentos que envolvam a interação *Xac*::citros, assim como na utilização de meios que mimetizem a planta hospedeira (condições infectantes).

REFERÊNCIAS

ALEGRIA, M. C. et al. New protein-protein interactions identified for the regulatory and structural components and substrates of the type III secretion system of the phytopathogen *Xanthomonas axonopodis* pv. *citri*. **J. Bacteriol**, Washington, v.186, p.6186-6197, 2004.

ALEGRIA, M. C. et al. Identification of new protein-protein interactions involving the products of the chromosome- and plasmid-encoded type IV secretion loci of the phytopathogen *Xanthomonas axonopodis* pv. citri. **J Bacteriol,** Washington, v.187, n.7, p.2315-25, 2005.

ALTSCHUL, S. F. et al. Basic local alignment search tool. **J. Mol. Biol**, London, v.215, n.3, p. 403-410, 1990.

ANDERSON, L.; SEILHAMER, J. A comparison of selected mRNA and protein abundances in human liver. **Electrophoresis**, Weinheim, v. 18, n. 3-4, p. 353-357, 1997 BONAS, U. Hrp genes of phytopathogenic bacteria. **Curr. Top. Microbiol. Imunol**, Berlin, v. 2, p.79–98, 1994.

BRADFORD, M. A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein dye binding. **Anal Biochem,** Orlando, v.72, p.248-254, 1976.

COLETTA-FILHO, H. D. et al. Primers based on the rpf gene region provide improved detection of *Xanthomonas axonopodis* pv. citri in naturally and artificially infected citrus plants. **J Appl Microbiol**, Oxford, v.100, n.2, p.279-85, 2006.

DA SILVA, A. C. et al. Comparison of the genomes of two *Xanthomonas* pathogens with differing host specificities, **Nature**, London, v.417, p.459-463, 2002.

DANGL, J. L. The enigmatic avirulence genes of phytopathogenic bacteria. **Curr Top Microbiol Immunol**, Berlin, v.192, p.99-118, 1994.

DONG, S. P. et al. Sensitive and specific detection of *Xanthomonas axonopodis* pv. *citri* by PCR using pathovar specific primers based on hrpW gene sequences. **Microbiol Res**, Jena, v.161, n.2, p.145-149, 2006.

FINNEGAN, D. J. Eukaryotic transposable elements and genome evolution. **Trends Genet,** Cambridge, v.5, n.4, p.103-107, 1989.

FENSELAU, S.; BONAS, U. Sequence and expression analysis of the *hrpB* pathogenicity operon of *Xanthomonas campestris* pv. *vesicatoria* which encodes eight proteins with similarity to components of the Hrp, Ysc, Spa and Fli secretion systems. **Mol Plant Microbe Interact,** London, v.8, p.845-854, 1995.

FUNDECITRUS, **Fundo de Defesa da Citricultura**. Disponível em: http://www.fundecitrus.com.br. Acesso em: 2 de dezembro de 2006.

GABRIEL, D. W. Why do pathogens carry avirulence genes? **Physiol. Mol. Plant Pathol**, London, v.55, n.4, p.205-214, 1999.

GOTTWALD, T. R.; GRAHAM, J. H. **Compendium of Citrus Diseases** (eds TIMMER, L. W., GARNSEY, S. M.; GRAHAM, J. H.), Am. Phytopathol. Soc., SP, 2000. p.5–7.

HE, S. Y. Type III protein secretion systems in plant and animal pathogenic bacteria. **Annu. Rev. Phytopathol,** Palo Alto, v.36, p.363-392, 1998.

KOLLER, O. C. Citricultura: laranja, limão e tangerina. Editora Rígel, Porto Alegre, 1994. 446p.

LEACH, J. E.; WHITE, F. F. Bacterial avirulence genes. **Annu. Rev. Phytopathol**, Palo Alto, v.34, p.153-179, 1996.

LINK, A. K. et al. Direct analysis of protein complexes using mass spectrometry, **Nat. Biotechnol**, New York, v.17, n.7, p.676-682, 1999.

METHA, A.; ROSATO, Y. B. Differentially expressed proteins in the interaction of *Xanthomonas axonopodis* pv. *citri* with leaf extract of the host plant. **Proteomics,** Weinheim, v.1, p.1111-1118, 2001.

RAHME, L. G.; MINDRINOS, M. N.; PANOPOULOS, N. J. Plant and environmental sensory signals control the expression of hrp genes in *Pseudomonas syringae* pv. *phaseolicola*. **J. Bacteriol**, Washington, v.174, n.11, p.3499-3507, 1992.

RIBA, X. F., **Poliaminas y tolerancia al aluminio en variedades tolerantes e sensibles de Zea mays**. Bellaterra, 2001. 172f. Tesis (Doctor em Ciências – Biologia). Facultat de Ciències, Universitat Autônoma de Barcelona. Bellaterra.

ROSSIER, O.; VAN DEN ACKERVEKEN, G.; BONAS, U. HrpB2 and HrpF from Xanthomonas are type III-secreted proteins and essential for pathogenicity and recognition by the host plant. **Mol. Microbiol.** Salem, v.38, n.4, p.828-838, 2000.

SCHULTE, R.; BONAS, U. Expression of the *Xanthomonas campestris* pv. *vesicatoria* hrp gene cluster, which determines pathogenicity and hypersensitivity on pepper and tomato, is plant inducible. **J. Bacteriol,** Washington, v. 174, n.3, p.815-823, 1992.

STALL, R. E.; CIVEROLO, E. L. *Xanthomonas campestris* pv. *citri*: cause of citrus canker, In: SWINGS, J. G., CIVEROLO, E. L. **Xanthomonas**. Chapman and Hall, New York, NY, 1993. p.48-50.

TAOKA, M. et al. Only a small subset of the horizontally transferred chromosomal genes in *Escherichia coli* are translated into proteins. **Mol. Cell. Proteomics**, Bethesda, v.3, p.780-787, 2004.

THIEME, F. et al. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium *Xanthomonas campestris* pv. *vesicatoria* revealed by the complete genome sequence. **J Bacteriol**, Washington, v.187, n.21, p.7254-7266, 2005. WASHBURN, M. P.; WOLTERS, D.; YATES, J. R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology, **Nat. Biotechnol**, New York, v.19, p.242-247, 2001.

WHITESIDE, J. O.; GARNSEY, S. M; TIMMER, L. W. Compendium of citrus diseases, APS Press, Saint Paul, 1988. p.1-80.

WU, C. C. et al. A method for the comprehensive proteomic analysis of membrane proteins. **Nat Biotechnol**, New York, v.21, n.5, p.532-8, 2003.

CAPÍTULO 3- ANÁLISE PROTEÔMICA DE *Xanthomonas axonopodis* pv. *citri* EM CONDIÇÃO INFECTANTE

Análise Proteômica de Xanthomonas axonopodis pv. citri em Condição Infectante

RESUMO - A bactéria fitopatogênica *Xanthomonas axonopodis* pv. *citri (Xac)* é o agente causal do cancro cítrico, responsável por perdas significativas na citricultura nacional e mundial. Para analisar as proteínas diferenciais quando este fitopatógeno ataca a planta hospedeira, a bactéria Xac não infectante foi cultivada em meio CN, enquanto Xac infectante foi cultivada em meio indutor de virulência XAM1 por 24 h, ou recuperadas de folhas de laranjeiras inoculadas após 3 ou 5 dias de infecção. O perfil da expressão protéico durante a infecção foi investigada por 2D + MS e MudPIT. A tecnologia 2D + MS, detectou 228 proteínas diferenciais durante a infecção temporal da Xac. Dessas, 17 proteínas diferenciais relacionadas à patogenicidade e virulência são relatadas neste trabalho. Já a tecnologia MudPIT identificou 1.162, 1.167, 1.157 e 1.072 proteínas de Xac cultivada em meio CN, cultivada no meio indutor XAM1 por 24 h, recuperada da folha de laranjeira 3 dias após a inoculação (d.a.i.), e recuperada da folha de laranjeira, 5 d.a.i., respectivamente. Dentre as 1.679 proteínas de Xac que foram identificadas por MudPIT, 40 proteínas são discutidas neste trabalho. Um total de 57 proteínas [17 (2D + MS) + 40 (MudPIT)] associadas à patogenicidade e diferencialmente expressas na interação Xac::citros foram classificadas de acordo com o papel funcional, segundo o banco de dados de vias metabólicas Kegg (Kyoto Enciclopedia of Genes and Genomes), destacando-se proteínas do Sistema de Secreção Tipo III (SSTT), II (SSTD) e IV (SSTQ), efetoras do SSTT, proteínas relacionadas a estresse, goma xantana, carência nutricional, entre outras.

Palavras-chave - cancro cítrico, eletroforese bidimensional, MudPIT, patogenicidade, proteoma, *Xanthomonas axonopodis* pv. *citri*

Introdução

O seqüenciamento do genoma de *Xylella fastidiosa* (SIMPSON *et al.*, 2000) abriu um novo milênio em pesquisas com bactérias fitopatogênicas, possibilitando investigações de patógenos bacterianos e outras bactérias de interesse biotecnológico. O seqüenciamento e a anotação do genoma da bactéria fitopatogênica *Xanthomonas axonopodis* pv. *citri* estirpe 306 (*Xac*) (Da SILVA *et al.*, 2002) permitiu uma visão global sobre o seu estilo de vida, especialmente no que diz respeito ao metabolismo basal, adaptação no confronto com o hospedeiro, patogenicidade e virulência. Entretanto, os processos biológicos que capacitam a adaptação e ataque da *Xac* à planta hospedeira ainda não estão perfeitamente estabelecidos.

O cancro cítrico (cancrose A), causado pela bactéria Gram-negativa *Xac* é uma das doenças mais agressivas que acometem plantas cítricas de importância comercial, acarretando perdas econômicas significantes no agronegócio citrícola nacional e mundial (FUNDECITRUS, 2006). Uma vez dentro do tecido da planta cítrica hospedeira, o fitopatógeno atua segundo uma estratégia de ataque que leva à indução de sintomas da doença caracterizados por lesões necróticas circulares, eruptivas, corticosas, de coloração parda e circundada por um halo amarelo, presentes nas folhas, em ambos os lados (WHITESIDE *et al.*, 1988), que se manifestam de uma semana a dois meses após a inoculação, dependendo das condições ambientais, podendo também se desenvolver nos frutos e caules infectados (KOLLER, 1994).

A etapa inicial da doença (até o quarto dia de infecção) se caracteriza por encharcamento e hiperplasia do tecido hospedeiro cítrico. Após o quinto dia de infecção, o sintoma do cancro é caracterizado pela necrose, quando ocorre a degradação massiva de compostos da célula vegetal, e eventual lise desta, podendo levar à geração de substâncias tóxicas ao patógeno, além disso, a ruptura da epiderme

vegetal leva à liberação de altos títulos do fitopatógeno bacteriano para dispersão rumo a novos hospedeiros (WHITESIDE *et al.*, 1988).

A dispersão do patógeno para outros focos de infecção ocorre principalmente através de respingos da chuva e vento (STALL & CIVEROLO, 1993). Uma vez depositado o patógeno sobre o órgão vegetal, o processo infeccioso inicia-se com a penetração por meio de aberturas naturais, tais como estômatos e hidatódios, em tecidos jovens, ou por meio de ferimentos em tecidos maduros (WHITESIDE *et al.*, 1988, BROWN, 2001). Esta doença pode causar diminuição na qualidade dos frutos e não há métodos de controle eficazes para o combate contra o cancro cítrico, a não ser pela erradicação de árvores infectadas (KOLLER, 1994, ROSSETTI *et al.*, 1993).

Com o sequenciamento do genoma completo de duas espécies intimamente relacionadas de Xanthomonas, Xac estirpe 306 e Xanthomonas campestris pv. campestris (Xcc) estirpe ATCC 3913, vários genes espécies-específicos foram identificados como características distintas desses dois patógenos em relação à especificidade de hospedeiro, sintomas das doenças e estratégias nutricionais (DA SILVA et al., 2002). De interesse particular são os genes com atribuição funcional associados com a patogenicidade e virulência. Destes genes, os avr (avirulência), rpf (fatores reguladores de patogenicidade) e hrp (hypersensitive response and pathogenicity; genes de patogenicidade e resposta de hipersensibilidade) são os elementos e seus produtos codificados, os mais amplamente estudados. Os genes avr codificam um grupo de proteínas efetoras responsáveis por controlar a habilidade da bactéria em elicitar a reação de hipersensibilidade (HR) em hospedeiros resistentes (LEACH & WHITE, 1996), além de, contribuírem em processos de patogenicidade e virulência em interações compatíveis (RITTER & DANGL, 1995, SWORDS et al, 1996). O agrupamento rpf é responsável por controlar a produção de fatores de patogenicidade importantes como as proteases, endoglucanases, poligalacturonato liases e polissacarídeos extracelulares, que influenciam na severidade dos sintomas (BARBER et al., 1997, DOW et al., 2000). Finalmente, os genes hrp, que são agrupados dentro de ilhas de patogenicidade nos cromossomos de Erwinia, Pseudomonas e Xanthomonas sp, e no megaplasmídeo em Ralstonia (LINDGREN, 1997, VAN

GIJSEGEM, 1997), são responsáveis por codificar proteínas envolvidas no sistema de secreção tipo III (SSTT), comum a bactérias patogênicas de vegetais e animais, onde uma estrutura tubular do tipo "pilus" permite conectar a célula bacteriana ao hospedeiro e translocar proteínas efetoras para dentro das células hospedeiras, com o intuito de desorganizar o funcionamento das células atacadas, o que favorece a sobrevivência e multiplicação do patógeno no local invadido e leva à indução de sintomas da doença no hospedeiro (BONAS, 1994; BONAS & VAN DEN ACKERVEKEN, 1997; ROINE *et al.*, 1997; HYUN-HAM *et al.*, 1998; HUECK, 1998). Dentre os principais patógenos que se utilizam desse sistema para atacar os seus respectivos hospedeiros destacam-se os patógenos animais como, *Yersinia* sp., *Salmonella*, *Pseudomonas aeruginosa*, o enteropatógeno *Escherichia coli* e os fitopatógenos como *Ralstonia solanacearum*, *Pseudomonas syringae, Xanthomonas* sp, e *Erwinia* (BUTTNER & BONAS, 2002a; BUTTNER & BONAS, 2002b; HUECK, 1998; PLANO *et al.*, 2001).

Em *Xac*, o agrupamento *hrp* se estende por mais de 25 kilobases (kb) do genoma e é composto por 26 genes compreendidos entre *hpa2* e *hrpF* (DA SILVA *et al.*, 2002). Em *Xanthomonas campestris* pv. *vesicatória* (*Xcv*) a expressão desses genes ocorre de forma co-regulada e pode ser induzida pelo contato da bactéria com a planta hospedeira, assim como pelo meio de cultura sintético XVM2 (WENGELNIK *et al.*, 1996a). Quando em contato com a planta, um sinal ainda desconhecido ativa a expressão de dois genes reguladores, *hrpX* e *hrpG*, localizados fora da região 25 kb. O produto do gene *hrpG* media a ativação da expressão dos genes *hrpA* e *hrpX*. A proteína codificada pelo gene *hrpX* corresponde a um fator de transcrição do tipo AraC, responsável pela ativação coordenada da expressão dos genes presentes nos locos *hrpB* a *hrpF* (WENGELNIK *et al.*, 1996b; WENGELNIK & BONAS, 1996).

Além do SSTT, outros agrupamentos de genes que codificam para sistemas de secreção de macromoléculas estão envolvidos em patogenicidade e virulência. Dentre estes, o sistema de secreção tipo II (SSTD) está envolvido principalmente na secreção extracelular de enzimas degradadoras e na nutrição bacteriana (HACKER & KAPER, 2000). O sistema de secreção tipo IV (SSTQ) é responsável pela transferência de complexos de proteínas-ácidos nucléicos durante a conjugação bacteriana (CHRISTIE

& VOGEL, 2000). O SSTQ em *Agrobacterium tumefaciens* atua na transferência do T-DNA para o interior de células de plantas hospedeiras (CHRISTIE, 1997, GELVIN, 2000) e outras bactérias utilizam esse sistema para a secreção de toxinas ou outras proteínas (BURNS, 1999).

A análise proteômica vem sendo utilizada como uma poderosa ferramenta para investigar em larga escala, mudanças globais no programa de expressão protéica de organismos procarióticos. A análise do proteoma de um organismo sob condições contrastantes pode contribuir para a compreensão holística de como um organismo reconhece e se adapta em novos ambientes.

A caracterização e estudo de proteínas relacionadas a patogenicidade, virulência e adaptação de Xac em situação infectante criam condições para a elucidação de muitas questões ainda em aberto no contexto da interação entre Xac e o hospedeiro cítrico. Visando estudar o proteoma da Xac infectante, neste trabalho foram utilizadas duas tecnologias de análise proteômicas: eletroforese bidimensional (2D) O`FAREL, 1975) seguida de espectrometria de massas (2D + MS), e a tecnologia multidimensional na identificação de proteínas (Multidimensional Protein Identification Technology) (MudPIT), onde a cromatografia de troca catiônica de extrato total de proteínas de Xac, segue-se, com as frações obtidas, uma cromatografia de fase reversa acoplada a um espectrômetro de massas MS/MS, o que permite a análise de misturas protéicas complexas. A estratégia de MudPIT foi descrita pela primeira vez por WASHBURN et al. (2001) que identificou 1486 proteínas (24% do genoma) de levedura. Dois anos depois, PENG et al. (2003) usando a mesma estratégia descreveram 1504 proteínas (25%) na análise do proteoma do mesmo organismo. KOLKER et al. (2003) no estudo do proteoma do microrganismo Haemophilus influenzae identificaram 414 proteínas (25%) do genoma).

Já a análise de proteínas diferencialmente expressas, utilizando a técnica de 2D, tem sido utilizada no estudo das bactérias *E. coli*, *Bacillus subtilis* e *Listeria*, para a identificação de proteínas induzidas por respostas adaptativas devido a variações ambientais, principalmente à temperatura e estresse, e condições de cultivo (YURA *et al.*, 1993; JONES & INOUYE, 1994; VOLKER *et al.*, 1994; OH *et al.*, 2002; ARAI *et al.*,

2003; EYMANN *et al.*, 2004; LOPEZ *et al.*, 2005; TAM *et al.*, 2006). A eletroforese bidimensional também tem sido utilizada em estudos de interação simbiótica entre membros do gênero *Rhizobium*, *Bradyrhizobium*, *Mesorhizobium*, *Sinorhizobium*, *Azorhizobium* e plantas da família Leguminoseae (GUERREIRO *et al.* 1999; NATERA *et al.*, 2000).

Outro exemplo de análise diferencial de proteomas, envolvendo interação plantamicrorganismo, foi relatado em *Xac* cultivada em meios de cultura suplementados com extratos de folhas de citros no qual foram constatadas 20 proteínas diferenciais quando comparado com a *Xac* cultivada em meio mínimo e 36 proteínas diferenciais entre as condições de cultivo meio mínimo e meio nutricionalmente rico, sendo que, das proteínas diferenciais, cinco foram identificadas por sequenciamento do N-terminal das proteínas (METHA & ROSATO, 2001). Já o fitopatógeno *X. fastidiosa* cultivada em meio sólido, teve seu mapa proteômico de referência e a identificação das proteínas expressas mais abundantemente, por SMOLKA *et al.* (2003) no qual identificaram 111 proteínas da bactéria e 35 proteínas secretadas por este fitopatógeno em meio de cultura.

Neste trabalho, utilizando duas tecnologias proteômicas, 2D + MS e MudPIT, concomitantemente, foi realizada uma triagem temporal de proteínas da *Xac* expressas diferencialmente em diferentes condições infectantes, sendo portanto, a *Xac* cultivada em meio indutor de virulência (XAM1) por 24 h, ou em confronto direto com a planta cítrica hospedeira por 3 ou 5 dias de infecção (condições infectantes) comparando-se com a *Xac* cultivada em meio não indutor de virulência CN (condição não infectante), que foi utilizado como referência. Os resultados obtidos revelaram um grande número de proteínas expressas diferencialmente quando a *Xac* está em processo de infecção, em comparação com a *Xac* cultivada em meio padrão de cultivo o CN. As proteínas diferenciais pertencem a todas as categorias funcionais metabólicas de anotação do genoma da *Xac*, dentre as quais, proteínas relacionadas a patogenicidade e virulência, que são discutidas neste trabalho.

Material e Métodos

Estirpe bacteriana, condições de cultivo e inoculação em plantas

A Xac estirpe 306 foi cultivada em meio não indutor de virulência Caldo Nutriente - CN (5 g/L de peptona; 3 g/L de extrato de carne) sem e com adição de ágar (15 g/L), e usado como controle do experimento. Para o experimento de indução *in vitro* por 24 h, a bactéria foi cultivada em meio indutor XAM1 (7,4 mM (NH₄)₂SO₄; 16 mM KH₂PO₄; 30 mM K₂HPO₄; 1,6 mM citrato de sódio (C₆H₅Na₃O₇.2H₂O); 10 mM frutose; 10 mM sacarose; 1 mg/mL BSA (soro albumina bovina); pH 5,4), usado como mimetizador de plantas (Frank White, comunicação pessoal). Em ambas condições experimentais as culturas foram mantidas a 28 °C. O meio XAM1 é derivado do meio sintético XVM2, no qual WENGELNIK *et al.* (1996a) relataram que o mesmo reflete as condições nos espaços apoplásticos da planta hospedeira de *Xcv*, sendo capaz de induzir a expressão dos genes *hrp*.

O meio indutor XAM1 foi utilizado devido à dificuldade de se obter quantidades suficientes de bactérias exsudadas de folhas de laranjeira no tempo de 24 h após a infecção experimental. Além disso, mesmo que obtido o preciptado de células de *Xac*, se apresentou carregado de contaminantes das folhas de laranjeira, como por exemplo, os compostos fenólicos que prejudicavam na quantificação das proteínas e nos procedimentos subsequentes de 2D.

Para os experimentos *in vivo* (inoculação da *Xac* em folhas de laranjeira) a bactéria foi cultivada por 16 h em meio CN sólido para obtenção de massa celular. As células foram ressuspendidas em água destilada e ajustadas a uma densidade óptica de A₆₀₀ = 0,3, equivalente a aproximadamente 10⁸ unidades formadoras de colônia por mL (UFC/mL). A suspensão foi infiltrada, com auxílio de seringa hipodérmica sem agulha no espaço apoplástico de folhas de plantas, em toda parte abaxial do limbo foliar de folhas jovens e expandidas de laranjeira "Pêra-Rio" (C*itrus sinensis*), mantidas em laboratório de segurança.

Recuperação das bactérias de folhas inoculadas (METHA & ROSATO, 2003)

Entre 60 e 40 folhas de laranjeira "Pêra-Rio" (*C. sinensis*) inoculadas com *Xac* foram coletadas, respectivamente, no 3° e 5° dias após a inoculação, com a finalidade de se obter informações relacionadas à expressão protéica temporal durante o processo infeccioso. Todas as folhas foram esterilizadas com álcool 70 %, e em seguida cortadas em pequenas tiras de cerca de 2 mm empregando um bisturi estéril, e mergulhadas em 400 mL de água estéril gelada, mantidas em Becker, e deixadas por 20 min a 4 °C sob agitação. A incubação durante este período de tempo permite as bactérias exsudarem do tecido foliar para a água. Os debris foliares foram separados por filtração em gaze e a suspensão bacteriana resultante foi centrifugada a 10.600 g por 10 min a 4 °C para recuperar as células de *Xac* infectante.

Extração protéica

A extração de proteínas totais foi feita como descrito por METHA & ROSATO (2001), com modificações.

Os precipitados de *Xac*, obtidos por cultivo de 16 h em meio CN líquido e 24 h em meio XAM1, e por exsudação de folhas inoculadas de laranjeiras, foram lavados em tampão fosfato (K₂HPO₄ 1,24 g/L; KH₂PO₄ 0,39 g/L; NaCl 8,8 g/L pH 7,2) e foram adicionados 0,75 mL de tampão de extração (0,7 M sacarose; 0,5 M Tris-HCl; 30 mM HCl; 50 mM EDTA; 0,1 M KCl e 40 mM DTT), seguido de incubação por 15 min (25 °C). O mesmo volume de fenol foi adicionado, e após 15 min de agitação em "vortex", a suspensão foi centrifugada por 3 min a 20.800 g a 4 °C e a fase fenólica recuperada. Esse procedimento foi repetido por mais duas vezes. As proteínas foram precipitadas com a adição de 5 volumes de 0,1 M de acetato de amônio em metanol. O precipitado foi lavado com 1 mL de acetona 80% e solubilizado diretamente em 500 μL de tampão de re-hidratação da 1ª dimensão (8 M uréia, 2% CHAPS, 70 mM DTT, 0,5% anfólitos pH 4-7). Alíquotas dos extratos recém-preparados foram utilizadas para dosagem de proteínas pelo método de Bradford (BRADFORD,1976), utilizando o kit da BioRad para

quantificação de proteínas (BioRad®) e BSA como padrão. O restante dos extratos foi estocado a -80 °C.

Após a extração e quantificação de proteínas dos extratos não infectantes (*Xac* cultivada em meio CN) e infectantes (*Xac* cultivada em meio XAM1 e as recuperadas de folhas de laranjeira) as proteínas foram submetidas às duas técnicas proteômicas utilizadas neste estudo: as técnicas proteômicas 2D + MS e a MudPIT, sendo esta correspondente à análise proteômica "shotgun" na identificação de proteínas utilizando a tecnologia multidimensional.

Eletroforese bidimensional (2D)

Quantidade de proteína suficiente para uma boa visualização do gel, aproximadamente 1 mg, foi completado para 250 μL do tampão de re-hidratação da 1^a dimensão, citado anteriormente, e com adição de 0,001% w/v bromophenol blue (BPB) foram aplicadas em 'Dry-Strips" de 13 cm com pH 4–7 linear imobilizado (Amersham Biosciences, Uppsala, Sweden), permanecendo por 12 h no sistema IPGphor (Amersham Biosciences, Uppsala, Sweden) a 20 °C. Após a re-hidratação, a focalização isoelétrica foi realizada a 500 V por 1 h, 1000 V por 1 h e 8000 V até o término da corrida (aproximadamente 16 kVh) no mesmo aparelho.

Antes da segunda dimensão, os "Strips" foram equilibrados em tampão contendo 50 mM Tris-HCl pH 6,8, 6 M uréia, 30% glicerol, 2% SDS, adicionando 2% DTT para a redução e 2,5% de iodoacetamida para alquilação, respectivamente, por 12 min cada.

A eletroforese da segunda dimensão (SDS-PAGE) foi conduzida de acordo com LAEMMLI (1970) em gel de 12,5% de poliacrilamida em um sistema Hoefer SE600 acoplado a um "Multitemp II Refrigerating" (Amersham Biosciences, Uppsala, Sweden), sendo submetida à corrente elétrica de 70 V por cerca de 10 min e uma corrente elétrica constante de 25 mA/gel por aproximadamente 7 a 8 h. Foi utilizado o marcador de peso molecular Mark12TM (Invitrogen - Life Technologies).

As proteínas foram visualizadas usando a evelação com Coomassie Brilliant Blue R-250 (Sigma). Os géis foram submetidos à solução de fixação (40% de etanol,

10% de ácido acético) por 30 min, seguido de imersão em solução de descoloração (20% de etanol, 5% de ácido acético) por 3 min, e posteriomente corados em solução de Coomassie Brilliant Blue 0,025% (Coomassie Brilliant Blue 0,025%, 40% de etanol, 10% de ácido acético) por 90 min. Repetidas lavagens foram feitas com a solução de descoloração a fim de obter as proteínas reveladas. Os géis foram estocados em solução de preservação (5% de ácido acético).

As imagens dos géis foram digitalizadas por um "scanner" em modo de transparência e analisadas pelo "software" ImageMaster 2D V 3.01 (Amersham Biosciences, Uppsala, Sweden). Triplicata dos géis foram feitas para todas as condições experimentais e o melhor gel foi escolhido para ser analisado.

Os "spots" foram detectados automaticamente e os artefatos foram corrigidos manualmente. Os valores experimentais de peso molecular (PM) e ponto Isoelétrico (pl) foram calculados através de valores de PM e pl obtidos do sequenciamento de seis proteínas localizadas de forma esparsa internamente nos quatro géis concomitantes (quatro condições experimentais) com a finalidade de reduzir os erros de PM e pl de todas as proteínas migradas em conjunto no gel bidimensional. Os valores obtidos de PM e pl das seis proteínas seqüenciadas foram plotados em coordenadas y (ordenada) e x (abscissa) dos géis, e através do "software" ImageMaster 2D V 3.01 (Amersham Biosciences, Uppsala, Sweden) foram elaboradas equações ajustadas por regressão de primeira ordem, que servem para a determinação do PM e do pl de cada "spot".

Os "spots" foram quantificados em unidades de volume (área *versus* intensidade) e a normalização foi efetuada dividindo-se o volume de cada "spot" pela soma total dos volumes de todos os "spots", de forma que cada volume normalizado representasse uma porcentagem do volume total. Somente os "spots" com aumento ou diminuição de 1,5 "fold" foram definidos como diferencialmente expressos, e portanto excisados do gel e analisados no espectrômetro de massas.

Espectrometria de massas e identificação de proteínas dos "spots"

Os "spots" de proteínas foram excisados do gel manualmente, descorados com solução 25 mM NH₄HCO₃ em 50% de ACN (acetonitrila) pH 8,0 e desidratados com 100% de ACN. Os "spots" foram re-hidratados com aproximadamente 15 μ L de Tripsina bovina (10 ng/ μ L) (Promega), em 25 mM de bicarbonato de amônia pH 8,0 e incubados a 37 °C por 20 h. Ao extrato tripsinizado foram adicionados 25–50 μ L da solução 50% de ACN e 5% de TFA (ácido trifluoracético) para a extração dos peptídeos, agitados por 30 min e centrifugados a 10.000 g por 3 min. Após repetir esse passo por mais uma vez, o volume foi diminuído até 5-10 μ L no sistema Speed Vac e 1 μ L da mistura, 1:1 de amostra e matriz (10 mg/mL de ácido α -ciano-4-hidroxicinâmico em 50% de ACN e 0,1% de TFA), foi aplicado em uma placa de MALDI.

Os peptídeos resultantes da hidrólise foram analisados no espectrômetro de massas ABI 4700 Proteomics Analyzer com analisador TOF-TOF (Applied Biosystems). As proteínas foram identificadas a partir da lista de massas dos peptídeos hidrolisados ("peptide mass fingerprint") e de seus fragmentos (MS/MS), através do programa MASCOT (Matrix Science Ltd., London, United Kingdom, www.matrix-science.com) e do Banco de Dados local de proteínas anotadas de *Xac* total (www.lbi.ic.unicamp.br).

MudPIT – Tecnologia Multidimensional na Identificação de Proteínas

Os extratos protéicos contendo 1,5 mg de proteínas, das condições não infectantes e infectantes, foram desnaturados pela adição de 500 µL de tampão (8 M uréia em 25 mM NH₄HCO₃, pH 8.0), reduzido com 10 mM DTT a 37 °C por 1 h, e alquilado com 50 mM iodoacetamida no escuro por 1 h. A amostra foi diluída para reduzir a uréia para 1 M e então, adicionado 20 µg da enzima tripsina para digerir as proteínas a 37 °C por 22 h.

Cromatografia de troca catiônica forte (SCX)

A separação foi feita no cromatógrafo AKTA PRIME (Amersham Biosciences, Uppsala, Sweden) utilizando uma coluna SP-Sepharose HP (Amersham Biosciences, Uppsala, Sweden), na qual, os extratos de proteínas digeridos, diluídos para 0,1 M de uréia e acidificados com ácido fórmico até atingir pH 3,0, tiveram seus peptídeos fracionados. A coluna foi equilibrada com o tampão A (25 mM NH₄HCO₃, pH 3,0), e os peptídeos foram eluídos pelo tampão B (25 mM NH₄HCO₃, 500 mM KCl, pH 3,0), com uma taxa de fluxo de 1 mL por min. O gradiente descontínuo ("step wise") das frações da cromatografia SCX foi feito utilizando as concentrações de 10%, 20%, 25% e 30% do tampão B. Frações com intervalos de 1 min (1 mL) foram coletadas e concentradas por centrifugação à vácuo.

Cromatografia de fase reversa e análise por espectrometria de massas

Cada fração da SCX foi submetida a uma segunda cromatografia (fase reversa) usando o sistema capilar CapLCTM Waters (Waters, Milford, MA). Neste sistema os peptídeos foram desalinizados "on line" usando a coluna Opti-Pak C18 trap Waters e separados por coluna de fase reversa Ease C18 150 mm \times 2,1 mm (Waters, Milford, MA), usando um gradiente linear (10 a 50%) de ACN contendo 0,1% de ácido fórmico. O volume de amostra injetada foi 10 μ L.

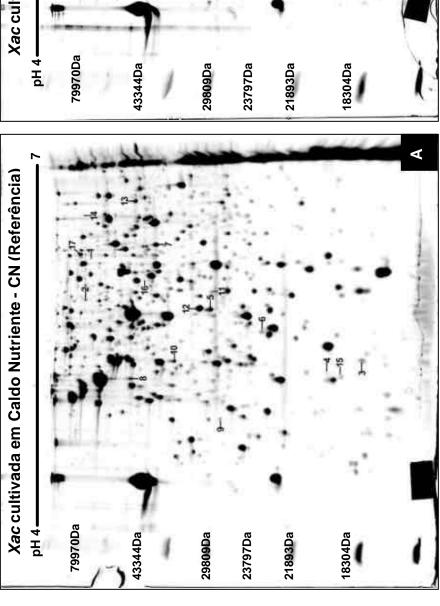
Os peptídeos eluídos da coluna foram analisados diretamente por um espectrômetro de massas com fonte de ionização eletrospray ESI com analisadores quadrupolo/tempo de vôo em série (Q-Tof Ultima da Waters, Milford, MA) acoplado ao sistema de cromatografia. Para a formação do "spray", foi aplicado no capilar uma voltagem 3500 V e a temperatura foi de 100 °C. O controle do instrumento e a aquisição dos dados foram realizados pelo sistema de dados MassLynx (Versão 4.0, Waters, Milford, MA). Os espectros de MS foram adquiridos na faixa de massa/carga (m/z) de 200 a 2000 usando um tempo de varredura de 1 s.

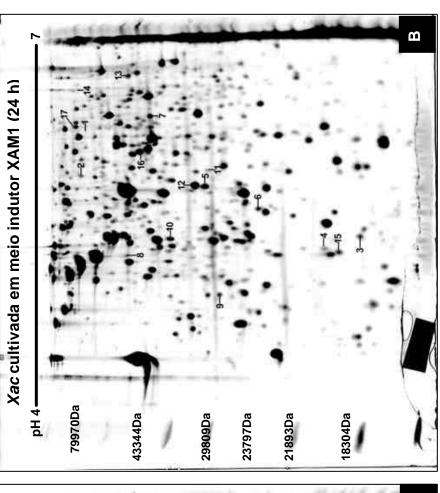
Os espectros MS/MS foram obtidos a partir da fragmentação dos íons precursores com estados de carga de 2 ou 3. No máximo 3 íons foram selecionados para MS/MS de uma única análise MS. Os espectros de MS/MS de dissociação excluídos por colisão (CID) foram obtidos usando argônio como o gás de colisão a uma pressão de 13 psi e a voltagem de colisão variando entre 18 e 45 V, dependendo da massa do precursor.

Todos os dados foram processados usando o servidor Global ProteinLynx (versão 2.0, Waters, Milford, MA). O processamento inclui a correção automática dos valores de m/z dos espectros MS e MS/MS segundo a massa do íon de referência.

A identificação das proteínas foi feita a partir do banco de dados da *Xac* (www.lbi.ic.unicamp.br/) através do programa MASCOT (versão 2.1). Os valores de massas monoisotópicos dos espectros MS/MS (MS/MS Ion Search) foram usados, considerando carbamidometilação das cisteínas como modificações fixas e oxidação da metionina como modificação variável. Na hidrólise, por tripsina, foi considerada a possível perda de um sítio de clivagem e a tolerância das massas dos peptídeos e dos fragmentos foi de ± 0,05 Da.

Para avaliar a razão dos falso positivos neste estudo, foi construído um banco de dados de seqüências reversas (um banco de dados em que as seqüências foram adicionadas em sentido contrário) contendo o mesmo número de proteínas no banco de dados de *Xac*.

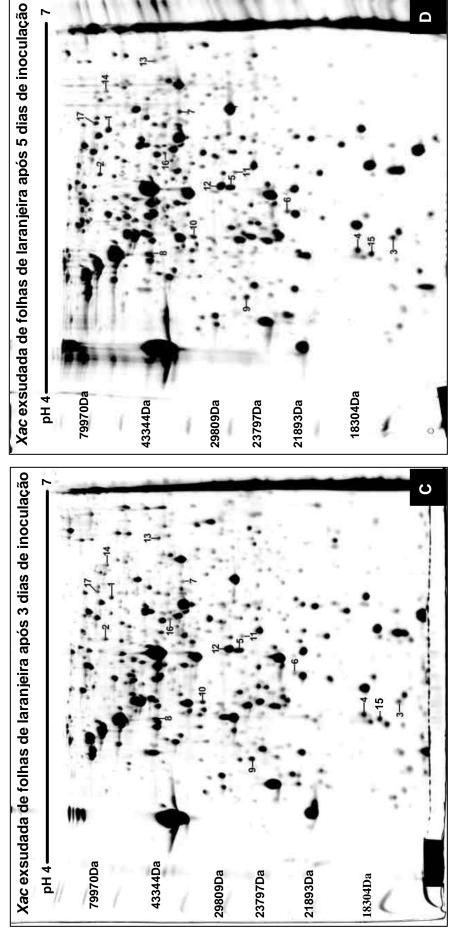

Resultados


A investigação das proteínas expressas diferencialmente da bactéria fitopatogênica *Xac* sob condição não infectante e três condições infectantes, foi realizada através de duas tecnologias proteômicas, 2D + MS e MudPIT, as quais forneceram resultados complementares, porém com diferenças inerentes a cada uma destas estratégias.

Na Figura 1 encontram-se apresentados os géis de 2D obtidos para cada uma das condições estudadas. Cada gel apresentou uma média de 600 "spots" distribuídos entre as regiões de 10-90 kDa e entre a faixa de pH compreendido entre 4 a 7. Foram identificadas 228 proteínas expressas diferencialmente durante a indução infectiva temporal da *Xac*, tanto em meio indutivo (XAM1) por 24 h, quanto em contato direto com o hospedeiro por 3 ou 5 dias após inoculação, utilizando como padrão a bactéria cultivada em meio nutritivo (CN). Das 228 proteínas expressas diferencialmente, 17 proteínas que estão diretamente relacionadas a patogenicidade e virulência da *Xac* são discutidas em maiores detalhes neste trabalho.

Na Figura 1A encontra-se apresentado o perfil de expressão protéica de *Xac* cultivada em meio líquido CN (condição padrão), enquanto nas Figuras 1B, 1C e 1D encontra-se o mapa proteômico da *Xac* após 1, 3 e 5 dias de infecção (condições infectantes), respectivamente. Em tais géis, a região mais concentrada de "spots" foi aquela localizada acima de 23 kDa. Os números nos géis indicam os "spots" em que diferenças nos níveis de expressão de proteínas foram verificadas pela análise da imagem com o programa ImageMaster 2D V 3.01 (Amersham Biosciences, Uppsala, Sweden) e a identidade dos peptídeos foi revelada por MS.

As identidades e as expressões diferenciais das 17 proteínas selecionadas para este estudo podem ser observadas na Tabela 1.



"strips" de 13 cm). Neste estudo, 17 proteínas expressas diferencialmente relacionadas à patogenicidade são enumeradas nos géis. Os marcadores de peso molecular estão localizados no lado esquerdo de cada gel. 1A- Xac cultivada em meio CN, 1B- Xac cultivada em meio indutor de virulência (XAM1) por 24 h, 1C- Xac exsudada de folhas de laranjeira após 3 dias de inoculação, 1D- Xac exsudada de Figura 1. Géis 2D, utilizando o sistema IPGPhor (Amersham Biosciences, Uppsala, Sweden) e 1 mg de extrato protéico total da Xac em cada uma das quatro condições experimentais. Gradiente imobilizado de pH 47 foi utilizado para a separação da primeira dimensão folhas de laranjeira após 5 dias de inoculação.

Continua

Figura 1. Continuação

"strips" de 13 cm). Neste estudo, 17 proteínas expressas diferencialmente relacionadas à patogenicidade são enumeradas nos géis. Os marcadores de peso molecular estão localizados no lado esquerdo de cada gel. 1A- Xac cultivada em meio CN, 1B- Xac cultivada em meio indutor de virulência (XAM1) por 24 h, 1C- Xac exsudada de folhas de laranjeira após 3 dias de inoculação, 1D- Xac exsudada de cada uma das quatro condições experimentais. Gradiente imobilizado de pH 47 foi utilizado para a separação da primeira dimensão **Figura 1**. Géis 2D, utilizando o sistema IPGPhor (Amersham Biosciences, Uppsala, Sweden) e 1 mg de extrato protéico total da *Xac* em folhas de laranjeira após 5 dias de inoculação.

Tabela 1. Proteínas diferencialmente expressas de Xac identificadas por MALDI-TOF/TOF durante o processo de infecção temporal

<u></u>	ומושלווים									
N° do "spot"	Identidade da	PM/pl ^a	Exp diferen infec	Expressão protéica diferencial nos tempos d infecção utilizando 2D	rtéica mpos de ndo 2D	Descrição da proteína	Categoria ¹	N° de peptídeos	Cobertura (%)	PM/pl ^b
	proteina		1 dia	3 dias	5 dias				•	
Sistema	Sistema de secreção tipo III	III od								
~	XAC0415	61,832/5,8	ı	_	3,37	Proteína HrcC (HrcC)	II/	4	10	63,962/6,15
Sistema	Sistema de secreção tipo ll	ll od								
7	XAC3239	65,574/5,6	1,48	4,32	9,39	Proteína da biogênese do pilus (PilB)	≥	7	33	62,707/5,56
3	XAC1154	17,518/5,29	2,84	1,55	6,46	Proteína regulatória da família pilH (PilH)		2	24	14,304/5,16
Proteína	Proteínas relacionadas a estresse	s a estresse								
4	XAC2369	19,321/5,23	5,99	88,95	117,13	Proteína do estresse geral	=>	9	37	20,069/6,08
Poliquetídeos	deos									
2	XAC3584	27,727/5,57	1,74	2,14	2,32	Glicose-1-fosfato timidililtransferase (RmIA)	≥	9	24	34,151/5,83
9	XAC3583	22,175/5,45	8,35	ž	2,84	dTDP-4-deidroramnose 3,5-epimerase (RmIC)	≥	က	22	20,541/5,36
7	XAC3585	37,444/5,91	Ž	-27,81	-2,29	dTDP-glicose 4,6-deidratase (RmIB)	≥	4	17	38,550/5,86
∞	XAC3579	45,222/5,19	-5,28	o,'c	7,28	Fosfoglicomutase/fosfomanomutase (XanA)	 	က	10	49,337/5,19
6	XAC3491	25,895/4,98	11,6	40,49	26,48	Proteína relacionada a NonF (NonF)	=	_	10	24,295/4,48
Proteína	s relacionada:	Proteínas relacionadas a biossíntese de esteróides	de esterc	ides						
10	XAC1256	32,379/5,24	-3,84	-15,06	-39,17	Proteína de tolerância à penicilina (LytB)	=>	Œ.	24	34,954/5,13
Proteína	s que particip	am do metaboli.	smo de c	arboidrato	s relacion	Proteínas que participam do metabolismo de carboidratos relacionados à patogênese				
1	XAC3209	27,028/5,59	1,8	1,66	2,39	Trealose-6-fosfato fosfatase (OstB)	I /	Œ.	20	27,070/5,6
12	XAC2292	29,036/5,55	1,49	1,8	1,56	UTP-glicose-1-fosfato uridililtransferase (GalU)	_	80	31	32,253/5,45
13	XAC3581	43,477/6,14	N<	-3,56	-11,03	UDP-glicose deidrogenase (Ugd)		2	10	43,085/6,18
Proteína	s relacionada:	Proteínas relacionadas à carência nutricional	tricional							
14	XAC1792	64,884/5,99		_	_	Fosfatase alcalina (PhoX)	_	က	80	70,456/6,04
Outras p	roteínas expre	Outras proteínas expressas diferencialmente relacionadas à patogênese	almente r	elacionada	s à patogé	inese				
15	XAC0108	18,041/5,18	66'6	22,76	27,20	Proteína AtsE (AtsE)	I	9	62	14,433/5,06
16	XAC2504	40,438/5,73	354,7	6,19	13,16	Fator regulador de patogenicidade (RpfN)	 	9	25	41,342/5,98
17	XAC2341	70,581/5,86	Ž	-9,22	> Z	Proteína precursora glutaril-7-ACA acilase (Gaa)	 	윤	22	71,025/6,03
Ø	C. C. C. C.	(////	10001 -1	(14) 00:17	, Popular	, charge of call but I a like a comme	200100000000000000000000000000000000000		in the cast in	- //-

a – Massa em kDa (PM) e ponto isoelétrico (pl) observado em 2D. ^b – PM e pl teórico. ¹De acordo com a anotação do genoma da bactéria Xac (http://www.lbi.ic.unicamp.br); I - Metabolismo intermediário, IV - Estrutura celular, VII - Patogenicidade, virulência e adaptação. FP – "Fingerprint". "-" proteína não detectada. NV – Não variou (expressão semelhante a da Xac cultivada em meio CN).

A tecnologia de MudPIT permite a identificação de proteínas em misturas de alta complexidade (RANISH *et al.*, 2003; FOSTER *et al.*, 2003; MARELLI *et al.*, 2004; GINGRAS *et al.*, 2005).

A análise do proteoma da *Xac* por MudPIT revelou a presença de 1.162 proteínas de *Xac* quando a bactéria foi cultivada em meio CN, 1.167 proteínas de *Xac* cultivada no meio indutor XAM1 por 24 h, 1.157 proteínas do extrato de bactérias recuperadas por exsudação a partir de folhas de laranjeira 3 dias após a inoculação, enquanto 1.072 proteínas foram identificadas a partir do extrato de bactérias 5 dias após a inoculação. Um total de 1.679 proteínas de *Xac* foram identificadas por MudPIT e dessas, 518 são proteínas diferencialmente expressas na condição infectante, encontradas nos três extratos de *Xac* infectivos (1, 3 e 5 dias de infecção). Dentre as 518 proteínas expressas em condição infectante, 40 foram associadas a patogenicidade e virulência na interação *Xac*::citros e são discutidas neste trabalho. As 57 proteínas [17 (2D + MS) + 40 (MudPIT)] foram classificadas de acordo com o papel funcional conforme descrições obtidas no banco de dados de vias metabólicas Kegg (Kyoto Enciclopedia of Genes and Genomes), e encontram-se representadas na Tabela 2.

Em comparação com a previsão teórica das proteínas codificadas pelo genoma da *Xac*, o número de "spots" detectados neste trabalho (média de 600 "spots" por gel) corresponde a aproximadamente 15% das proteínas, enquanto por MudPIT, cerca de 30% das proteínas referidas pelo genoma foram identificadas, o que indica a maior sensibilidade desta técnica. Entretanto, para a quantificação da variação da expressão protéica entre condições experimentais distintas, a análise por 2D se mostra mais adequada.

Tabela 2. Proteínas diferencialmente expressas de *Xac* identificadas pelas duas tecnologias proteômicas (2D + MS e MudPIT) durante o processo de infecção temporal

Note Note	N° do "spot"	Identidade da	expre de inf	issao pro ecção (di	Expressao proteica direrencial nos tempos de infecção (dias) de acordo com a técnica proteômica	encial ordo co ca	ai nos tempos com a técnica	pos	Descrição da proteína	Categoria ¹	Dep \$	N° de peptídeos
6 ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	200	proteína		2D			MP				3	lOtals
			-	လ	2	_	က	2			2D	MΡ
	Sistem	a de secreção	tipo III									
	-	XAC0415		-	3.37		,		Proteína HrcC (HrcC)		4	ננ
	•	XAC0411	٠		; ;	٠	_	ے د	Proteina HroBA (HroBA)		-	2/2
							ם ב	1				j '
		XAC0403					ם מ		Proteina FrcQ (FrcQ)	= ;		- (
		XAC0405	1	ı	1	•	Ω		Proteina HrcV (HrcV)			7
		XAC1952	•	•	1	•	Ω	Ω	Proteína flagelar (FIiH)	>		2/6
		XAC1954		,	•		Δ		Proteína flagelar (FIIF)	>		_
		XAC0410					Ω	,	Proteína HrpB4 (HrpB4)	 		-
22 9,39 D D D D D D D D D D D D D	Proteín	as efetoras dc	sistem	a de secr	eção tipo							
2 9,39		XAC0393	,	•	•				Proteína HoaF (HoaF)	 		10/1
29,39 D D D B D		XAC2922			1	ı	ı	Δ	Proteina HroW (HroW)	×		_
2 9,39 D		XAC4333	•	,	•	٠		,	*Proteína externa O de <i>Xanthomonas</i> (XooO)	III/		8
5 9,39 D D D S S S S S S S S S S S S S S S		XAC2786	,	•	,	•	Δ	Ω	*Proteína externa N de Xanthomonas (XopN)	=		13/5
2 9,39 . NV		XAC1208					Δ	Δ	*Proteína externa P de Xanthomonas (XopP)	II /		1/1
2 9,39 . NV NV NV NV NV NV NV NV	Sistem	a de secreção	tipo II									
65 6,46 . NV	7	XAC3239	1,48	4,32	6,39		ž	ž	Proteína da biogênese do pilus (PiIB)	≥	7	4/4
35 117,13 - NV NV I	က	XAC1154	2,84	1,55	6,46	•	ž	ž	Proteína regulatória da família pilH (PilH)	_	7	4/3
- D - D D D D D D D D - D		XAC3243		•	1	•	•	Ω	Peptidase sinal da pre-pilina type IV (PiID)	≥		_
- D - D - D - D - D - D - D - D - D - D		XAC3385			•		Δ		Proteína de membrana da estrutura fimbrial (PiIM)	≥		က
D - D D D D D D D D D D D - D D D D D D D D D D D - D - D D D D D D D D D D D - D D D - D D D - D - D D - D D - D - D D - D D - D D - D D - D D - D - D D - D - D D - D - D D -		XAC2664	1	•	1	Ω			Proteína PilE (PilE)	≥		_
D D D D D D D D D		XAC3544	1		1	1	,	Δ	Proteína E da via de secreção geral (XpsE)	 		_
- D D D D D D D D D D D D D D D D D D D		XAC0696	•		•	•	Ω		Proteína E do sistema de secreção tipo II (XcsE)	=		7
- D D D D D D D D		XAC3543					ı	Δ	Proteína F da via de secreção geral (XpsF)	 		7
- D D D	Sistem	a de secreção	tipo IV									
35 117,13 - NV NV - D		XACb0037	,	•	•	Δ	Ω	Ω	Proteína VirB11 (VirB11)	I		1/1/1
95 117,13 - NV NV - D D -		XAC0435					Ω		Proteína VirK (VirK)	 		_
XAC2369 5,99 88,95 117,13 - NV NV XAC1707 D D -	Proteín	as relacionad	as a est	resse								
. 0 0	4	XAC2369	5,99	88,95	117,13		ž	\geq	Proteína do estresse geral	II/	9	7/10
		XAC1707				Ω	Ω		Proteína do estresse geral (PNPOx)	Ν		2/2
										Continua	inua	

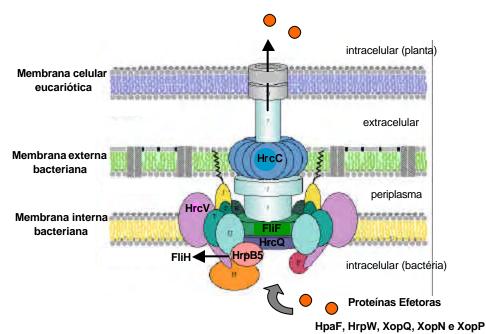
Tabela 2. Continuação

ob °N "tors"	ldentidade da	Expre de inf	ssao pro ecção (di	Expressao proteica diferencial nos tempos de infecção (dias) de acordo com a técnica proteômica	rencial ordo co ica	nos tempos om a técnica	npos :nica	Descrição da proteína	Categoria ¹	be '	N° de peptídeos
900	proteína		2D			MP				_	lotals
		-	က	2	_	က	2			2D	MP
Poliquetídeos	geos										
ע	XAC3584	1 74	2 14	2 32	Ž	ž	Ž	Glicose-1-fosfato timidililtransferase (RmIA)	≥	œ	5/7/7
) (C	XAC3583	2, 2	ž	, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	È⋛	≧≥	ž	dTDP-4-deidroramnose 3 5-enimerase (RmIC)	≥ ≥	o (1)	2/9/11
1 0	20000	2,5	1 2	, c	•	2	2 2		≥ ≥	> <) () () ()
,	XAC3585	>	-27,81	-2,29		<u>></u>	<u>></u>	d I DP-glicose 4,6-deidratase (KmIB)	2	4	2/2
∞	XAC3579	-5,28	3,9	7,28	≥	Ž	≥ Z	Fosfoglicomutase/fosfomanomutase (XanA)	=	က	72/54/46
တ	XAC3491	11,6	40,49	26,48	Ž	Ž	Ž	Proteína relacionada a NonF (NonF)	 	_	1/6/5
Proteína	Proteínas relacionadas a biossíntese de esteróides	s a bioss	síntese de	esteróia	les						
10	XAC1256	-3 84	-15.06	-39 17		,		Proteína de tolerância à nenicilina (1 vtB)	=	G	
)	XAC1722)))))	: Î '		Δ		2C-metil-D-eritritol 2.4-ciclodifosfato sintase (IspF)	=		က
Proteína	Proteínas que participam do metabolismo de carboidr	am do n	netabolis	mo de ca	rboidra	tos rela	cionac	atos relacionadas à patogênese			
7	XAC3209	1.8	1,66	2,39	Ω	Δ	Δ	Trealose-6-fosfato fosfatase (OstB)	\	G	1/5/5
12	XAC2292	1.49	, <u>1</u>	1,56	Ž	ž	ž	UTP-alicose-1-fosfato uridililtransferase (GalU)	_	∞	40/34/23
13	XAC3581	Ž	-3,56	-11,03	Ž	ž	ž	UDP-glicose deidrogenase (Ugd)	_	7	30/45/57
	XAC0030				Δ	Δ	Δ	Celulase (EgI)	II/		9/2/8
	XAC4231					Δ		Glucana 1,4-β-glicosidase	=		က
	XAC3076				•	Δ		Glucana 1,4-β-glicosidase	II/		_
	XAC2583				Δ			Proteína GumD (GumD)	II/		_
	XAC2575				•	Δ		Proteína GumL (GumL)	II/		_
	XAC2576				Δ	Δ		Proteína GumK (GumK)	II/		1,
	XAC2577					Δ		Proteína GumJ (GumJ)	II/		က
	XAC2578					Δ		Proteína Guml (Guml)	II/		_
	XAC2579				Ω			Proteína GumH (GumH)	II/		_
Proteína	Proteínas relacionadas à	s à carêi	carência nutriciona	cional							
14	XAC1792	,	_	~	٠	,	Ω	Fosfatase alacalina (PhoX)	-	က	∞
	XAC2462	,	•	•	Ω	Ω	,	Proteína de ligacão de ATP	×		2/2
	XAC4299				□	Δ		*Proteína de ligação de ATP	II /		1,
	XAC2453					•	Δ	Proteína B de carência nutricional estrita (SspB)	_		_
	XAC4229	,				Ω	Ω	Proteína sensora de carência nutricional (RspA)	_		4/3
	XAC3304	•			ı	,	Ω	Proteína reguladora de resposta à carência de enxofre (Sac1)	II/		-
									Č		

Tabela 2. Continuação

N° do	Identidade	Expres de infe	ssão prot cção (dia	Expressão protéica diferencial nos tempos de infecção (dias) de acordo com a técnica	encial ı ırdo co	nos tempos m a técnica	ipos nica	enicetes of official		aea V	N° de peptídeos
"spot"	da proteína ¹		2D	proteômica	ca	A B		Descrição da protenta 	Categoria	, T	totais
		-	က	2	_	က	2			2D	МР
Jutras pi	Outras proteínas expressas diferencialmente relacionadas à patogênese	ssas dife	erencialn	nente rela	cionada	as à pa	ogên	еѕе			
15	XAC0108	66,6	22,76	27,20	ž	ž	ž	Proteína AtsE (AtsE)	 	9	2/12 /16
16	XAC2504	354,7	6,19	13,16	Δ			Fator regulador de patogenicidade (RpfN)	>	9	13
	XAC0618				•		Ω	Proteína da biossíntese de glucana periplasmática (HrpM, MdoH, OpgH)	5		_
17	XAC2341	Ž	-9,22	Ž	Δ	,	•	Precursora de glutaril-7-ACA acilase (Gaa)	II/	단	_
	XAC0237					Δ		Proteína AMP-ligase	\		က
	XAC1368				Δ	ı	Δ	Proteína de virulência (AcvB)	II/		2/1
	XAC1567	•	,	ı	Δ		Δ	Proteína RNase R (VacB)	\		6/1

*Proteínas reanotadas. MP – MudPIT. ¹De acordo com a anotação do genoma da bactéria Xac (http://www.lbi.ic.unicamp.br); I - Metabolismo intermediário, II - Biosíntese de pequenas moléculas, IV - Estrutura celular, V - Processos celulares, VII - Patogenicidade, virulência e adaptação, VIII - Hipotéticas, IX - ORFs sem categoria. FP - "Fingerprint". NV - Não variou (expressão semelhante a da Xac cultivada em meio CN - 2D; presença das proteínas quando comparada com a da Xac cultivada em meio CN - MudPIT); "." Proteína não detectada; "D" proteína detectada somente na condição infectante por mudPIT


Discussão

Sistema de secreção tipo III (SSTT)

O SSTT é essencial para a patogenicidade de bactérias Gram-negativas patogênicas de animais ou de vegetais (CORNELIS & VAN GIJSEGEM, 2000). *A Xac* tem um SSTT que se encontra organizado no genoma como um agrupamento *hrp* semelhante ao previamente descrito em *Xcv* (ROINE *et al.*, 1997; ALFANO & COLLMER, 1997) e pertence ao Grupo II de organização.

Combinando-se os resultados obtidos por 2D + MS e MudPIT, foi possível a identificação de sete proteínas relacionadas ao SSTT (Tabela 2) (Figura 2) que são diferencialmente expressas no contato da *Xac* com o meio indutivo XAM1 por 24 h e durante a interação com a planta hospedeira após 3 e 5 dias de infecção. Destas, quatro fazem parte da estrutura do "pilus" secretório (XAC0415, XAC0411, XAC0403 e XAC0405) e duas pertencem ao aparelho flagelar (XAC1952 e XAC1954), que está diretamente ligado ao "pilus". Essas duas estruturas estão intimamente ligadas e evolutivamente relacionadas (VAN GIJSEGEM *et al.*, 1995; BLOCKER *et al.*, 2003). Foi identificada ainda a proteína HrpB4 (XAC0410) sensora com domínio de histidina quinase, e para a qual um mutante de *Xac* onde o gene *hrpB4* foi nocauteado revelouse não patogênico (DEZAJACOMO, 2005).

A identificação de apenas sete proteínas do SSTT, deve-se ao fato de que a exsudação da bactéria das folhas de laranjeira inoculadas promove a ruptura do aparato secretório aderido à célula vegetal hospedeira, e somente as estruturas e ou proteínas aderidas à membrana da bactéria são recuperadas, já que a estrutura externa do "pilus" fica aderida a parede do hospedeiro.

Figura 2. Modelo de aparelho do SSTT. O complexo protéico atravessa a membrana e a parede do patógeno, formando um longo "pilus" bacteriano que projeta-se no espaço intercelular e penetra na célula hospedeira, atravessando a parede celular da planta. Proteínas efetoras são translocadas para o citoplasma da célula vegetal. Mostram-se apresentadas na figura às proteínas detectadas neste estudo, relacionadas ao SSTT; HrcC (XAC0415), HrpB5 (XAC0411), HrcQ (XAC0403), HrcV (XAC0405), FliH (XAC1952), FliF (XAC1954) e HrpB4 (XAC0410), e seus efetores; HpaF (XAC0393), HrpW (XAC2922), XopQ (XAC4333), XopN (XAC2789) e XopP (XAC1208). Fonte da Figura: www.kegg.com, com modificações.

A única proteína do SSTT identificada pelas técnicas de 2D + MS e por MudPIT foi a proteína HrcC (XAC0415) (DENG & HUANG, 1999), detectada a 3 e 5 dias após a infecção, sendo que no quinto dia, expressou 3,37 vezes mais que no terceiro dia. Em mutante não patogênico de *Pseudomonas syringae* pv. *tomato* (*Pst*) defectivo dessa proteína foi verificado por "imunoblot" que sua expressão foi suprimida quando a bactéria foi cultivada em meio indutor de *hrp* e *in planta*, confirmando a perda da função do SSTT nesta estirpe, quando em estado infectivo (WEI *et al.*, 2000).

Por MudPIT, as outras cinco proteínas que constituem o componente estrutural da maquinaria do SSTT foram identificadas nos extratos protéicos após 3 ou 5 dias de infecção. A proteína HrpB5 (XAC0411) detectada no 3º e 5º dias de infecção é uma proteína cuja sequência de aminoácidos é totalmente hidrofílica, com duas regiões hidrofóbicas pequenas que são muito curtas para estender-se através da membrana (FENSELAU & BONAS, 1995). A proteína HrpF de *R. solanacearum* tem 70

aminoácidos a mais que HrpB5. A região C terminal de HrpF é notável em ser altamente acídica e ambos HrpB5 e HrpF contêm 22% de resíduos de alanina. Também foi constatada que HrpB5 é pouco similar a proteína LcrKc de *Yersinia* (=YscL) (FENSELAU & BONAS, 1995) e BscL (YUK *et al.*, 1998), que juntas estão relacionadas a FliH (VOGLER *et al.*, 1991) uma proteína componente da estrutura flagelar.

As proteínas HrcQ (XAC0403) e HrcV (XAC0405) são integrantes da membrana interna de *Xac* e foram detectadas somente em extratos de 3 dias de infecção. Em *Salmonella* sp. a proteína SpaO (homóloga a HrcQ) é secretada via SSTT (LI *et al.*, 1995) e mutação no *spaO* evita a exportação de todas as outras proteínas do SSTT, sugerindo que a proteína SpaO seja requerida para a exportação das outras proteínas (GALAN, 1996). A proteína HrcV é um componente essencial para secreção de proteínas dependentes de SSTT. ROSSIER *et al.* (1999) constataram que a secreção de duas proteínas de avirulência, AvrBs3 e AvrRxv de *Xcv*, foi estritamente dependente de *hrp* uma vez que um mutante que carreava uma deleção no *hrcV* não secretou tais proteínas. As interações entre homólogos de HpaB (proteína efetora) e HrcV de *Xac* foram recentemente relatadas por estudo de duplo híbridos em levedura (ALEGRIA *et al.*, 2004) e especula-se que elas formem um complexo de ligação entre o SSTT e proteínas secretadas (BÜTTNER *et al.*, 2006).

A proteína diferencial identificada nos extratos após 3 e 5 dias de infecção e que faz parte da maquinaria do SSTT e que também é formadora do sistema flagelar foi a proteína flagelar (FliH) (XAC1952), codificada pelo operon *fliFGHIJK* (MACNAB, 1992). FliH é uma proteína regulatória responsável por prevenir a proteína Flil da hidrólise de ATP até que essa energia possa ser utilizada para dirigir proteínas flagelares exportadas em *Salmonella*. Em estudos feitos por MINAMINO *et al.* (2003) usando mutantes defectivos no gene *fliH* foi constatado que houve uma diminuição da mobilidade em *Salmonella*, e concomitantemente uma superprodução de Flil, resultando em uma melhora na sua mobilidade, levando a suposição de que FliH é necessária mas não essencial.

A proteína flagelar FliF (XAC1954) foi identificada somente em extratos após 3 dias de infecção e é integrante do corpo basal da estrutura flagelar. BIGOT *et al.* (2005)

mostraram que a inativação do fliF anula a produção de flagelo e a mobilidade bacteriana, indicando que a falta deste, impede a exportação de flagelina, e o produto não exportado é rapidamente degradado no citoplasma bacteriano. Entretanto fliF é essencial para a estrutura flagelar em *Listeria monocytogenes*.

Uma outra proteína integrante do operon *hrp*, HrpB4 (XAC0410), mas que não faz parte da estrutura do "pilus", foi identificada pela técnica de MudPIT somente em extratos após 3 dias de infecção, composta de 210 aminoácidos, com região altamente conservada (90% de identidade), em *Xanthomonas sp.* É uma proteína de membrana interna com um domínio transmembrânico putativo na posição 165 a 186, mas sem seqüência de peptídeo sinal na posição Nterminal, o que confirma sua posição na membrana interna bacteriana. ZHU *et al.* (2000) mostraram que as proteínas HrpB1, HrpB2, HrpB4 e HrpB7 com base na similaridade das seqüências são únicas para *Xanthomonas* e *R. solanacearum*. Estas proteínas podem ter divergido de um SSTT ancestral de bactérias patogênicas Gram-negativas por representarem adaptações raras ou únicas do SSTT em *Xanthomonas* e *R. solanacearum*. ALEGRIA *et al.* (2004), em estudos de duplo híbrido, relataram a interação da proteína HrpB4 com a proteína codificada por XAC2054 que é uma histidina quinase de um sistema de dois componentes compostos de um sensor/regulador.

Com a identificação das proteínas diferenciais do SSTT nos períodos após 3 e 5 dias de infecção da *Xac* adimite-se que este sistema é estabelecido nas fases iniciais de infecção, e está envolvido diretamente com a sintomatologia do cancro cítrico na fase de encharcamento e hiperplasia do tecido hospedeiro infectado durante o desenvolvimento da doença, pois esse sistema transloca para o hospedeiro, fatores de patogenicidade e virulência que desorganizam o funcionamento das células atacadas favorecendo a sobrevivência e multiplicação do patógeno no local invadido.

Proteínas efetoras do SSTT

As proteínas efetoras, secretadas pelo SSTT, são consideradas de grande importância no contexto das interações patógeno-hospedeiro, pois são responsáveis

por modular as vias de sinalização de defesa do hospedeiro em seu favor, promovendo a doença através da interferência em funções metabólicas da célula hospedeira. Alguns efetores agem como cisteína protease quando secretados no interior de células vegetais hospedeiras (SHAO *et al.*, 2003), outros podem agir como potentes supressores da morte celular programada da planta, que caracterizam respostas de resistência das plantas mediada por HR (TSIAMIS *et al.*, 2000). A análise proteômica, realizada neste estudo, permitiu identificar cinco proteínas efetoras supostamente translocadas pelo SSTT, as quais foram identificadas somente por MudPIT (Tabela 2) (Figura 2).

A proteína HpaF (XAC0393) foi identificada em extratos após 3 e 5 dias de infecção e é uma proteína rica em repetições de leucina (LRR), semelhante à proteína PopC de *R. solanacearum* (BOUCHER *et al.*, 2001). Proteínas contendo LRR podem ter um papel essencial na virulência de bactérias patogênicas de animais. A proteína de membrana externa YopM de *Yersinia pestis*, que consiste de 13 repetições LRR em série, é uma proteína efetora secretada pelo SSTT com envolvimento no estágio inicial de infecção (REISNER & STRALEY, 1992). Mutação no gene *hpaF* de *Xanthomonas axonopodis* pv. *glycines* leva a um atraso no desenvolvimento dos sintomas em plantas de pimenteiras hospedeiras (KIM *et al.*, 2003). Por outro lado, SUGIO *et al.* (2005), estudando um mutante defectivo no *hpaF*, relataram que esse mutante não afetou a virulência em *Xanthomonas oryzae* pv. *oryzae* (*Xoo*), ou seja, o mutante não mostrou diferenças significantes no comprimento da lesão em cultivares de arroz susceptíveis, comparada com a estirpe parental PXO99^A.

A proteína efetora HrpW, codificada por XAC2922 foi detectada somente em extratos após 5 dias de infecção. A proteína HrpW contém um domínio "harpin", com repetições ricas de glicina e possui um domínio homólogo a pectato liase, enzima pectinolítica responsável pela maceração e necrose de tecidos de plantas de tabaco atacadas por *Pst* (CHARKOWSKI *et al.*, 1998). Estudos realizados em *E. amylovora* (KIM & BEER, 1998) relataram que a produção de HrpW é controlada por HrpL e é translocada pelo SSTT. HrpW elicita a HR em plantas hospedeiras, como macieiras e pereiras, que contenham o gene de resistência específico. Mutantes *hrpW* retêm a

habilidade da estirpe selvagem em elicitar HR em não hospedeiro e a causar doença em hospedeiros, demonstrando que HrpW não é essencial para o fenótipo Hrp de *E. amylovora*. Uma interação entre as proteínas HrpW e HrpD6 de *Xac* foi verificada pelo sistema de duplo híbrido em levedura, implicando que HrpD6 possa estar envolvida no direcionamento de HrpW, e possivelmente outras proteínas efetoras, para o túnel de translocação do SSTT (ALEGRIA *et al.*, 2004). A detecção da proteína HrpW somente em extrato após 5 dias de infecção sugere uma ação desta proteína na fase prénecrótica da infecção.

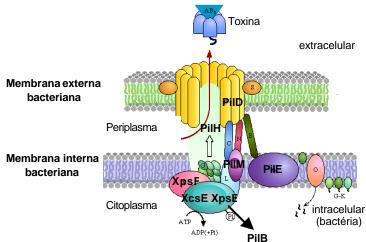
As proteínas codificadas por XAC4333, XAC2786 e XAC1208 são hipotéticas e foram reanotadas neste trabalho, utilizando o algorítimo BlastP (ALTSCHUL *et al.*, 1990). Nesta análise, a proteína codificada por XAC4333 mostrou 93% de similaridade com a proteína XopQ de Xcv. A proteína codificada por XAC2786 apresentou 93% de similaridade com a proteína XopN de Xcv, enquanto, XAC1208 codifica uma proteína com 90% de similaridade com a proteína XopP de Xcv. Estas proteínas foram detectadas em extratos após 3 e 5 dias de infecção, coincidindo como as proteínas que constituem a estrutura do sistema secretório, através do qual, os efetores translocam para dentro do hospedeiro, indicando que as prováveis proteínas efetoras relatadas neste estudo, sejam supostamente translocadas pelo SSTT.

A proteína XopQ foi encontrada em extratos após 3 dias de infecção e, provavelmente, é uma proteína com função efetora pois tem homologia com o efetor RipB de *R. solanacearum* (CUNNAC et al., 2004) e ao efetor HolPtoQ de *Pst* (GUTTMAN et al., 2002). É uma proteína conservada em muitos fitopatógenos e tem homologia estrutural a uma enzima inosina-uridina nucleosídeo N-riboidrolase (E.C.3.2.2.1), que está implicada na habilidade de muitos organismos de recuperar nucleotídeos de seus meios ambientes. Entretanto, é possível que XopQ *in planta* funcione como uma hidrolase ligando e seqüestrando nucleosídeos importantes para a sinalização da planta e/ou metabolismo (RODEN et al., 2004).

A proteína XopN foi encontrada em extratos após 3 e 5 dias de infecção e é um fator de virulência (efetor do SSTT) específico de *Xanthomonas* sp. Mutantes XopN de *Xcv* foram significativamente debilitados em ambos os hospedeiros, tomateiros e

pimenteiras, revelando que XopN é requerido para o máximo crescimento de *Xcv* nos hospedeiros citados anteriormente, e nenhum outro mutante Xop exibiu deficiência significante no crescimento de *Xcv* comparável ao XopN (RODEN *et al.*, 2004). Especula-se que XopN interaja especificamente com um conjunto de proteínas 14-3-3 e um receptor transmembrânico semelhante a quinase, com repetições ricas em leucina (LRR-RLK). Ambos 14-3-3 e LRR-RLKs são conhecidos por estarem envolvidos na sinalização durante a resposta de resistência da planta, indicando que XopN pode bloquear fisicamente a interação requerida para a ativação de defesas, permitindo a bactéria evadir-se das defesas do hospedeiro (ANDRADE *et al.*, 2001).

A proteína XopP foi detectada em extratos após 3 e 5 dias de infecção. RODEN et al. (2004) em estudos de translocação de efetores do SSTT em pimenteiras durante o processo infeccioso da *Xcv*, usando três critérios para avaliação de efetores; conteúdo de CG, distribuição nas estirpes e contexto genômico, revelaram que XopN, XopQ e XopP são conservados entre as *Xanthomnas* sp. e seus conteúdos de CG são comparáveis ao agrupamento *hrp* de *Xcv*, concluindo então, que os genes *xop* podem ser membros de um grupo central de efetores de *Xanthomonas* sp.


Provavelmente essas proteínas sejam mesmo efetoras do SSTT, pois foram identificadas em extratos da *Xac* infectivos *in vivo*, revelando ser proteínas diretamente ligadas a interação *Xac*::citros, assim como as outras proteínas efetoras descritas anteriormente, que também só foram identificadas nos extratos em que a *Xac* estava em confronto direto com o hospedeiro. Além disso, a presença dos efetores no terceiro e quinto dias de infecção coincide com o período de sintomatologia do cancro, caracterizado por encharcamento e hiperplasia do tecido infectado, ou seja, essas proteínas estão diretamente ligadas à fase pré-necrótica do cancro cítrico.

Sistema de secreção tipo II (SSTD)

O SSTD é um mecanismo sec-dependente amplamente conservado em bactérias Gram-negativas e está basicamente envolvido na secreção extracelular de enzimas degradadoras e na nutrição bacteriana (HACKER & KAPER, 2000). Em *Xac* e

Xcc dois SSTD foram identificados (DA SILVA *et al.*, 2002). Os genes que codificam esse sistema são denominados *xps* (Xanthomonas protein secretion) e *xcs* (Xanthomonas citri protein secretion) e estão organizados em agrupamentos gênicos (*xpsEFGHIJKLMN e xpsD*) bem conservados (HACKER & KAPER, 2000).

Utilizando as duas técnicas proteômicas foram identificadas oito proteínas relacionadas ao SSTD, dentre elas estão as codificadas por XAC3239, XAC1154, XAC3243, XAC3385, XAC2664, XAC3544, XAC0696 e XAC3543 (Tabela 2), sendo que duas foram identificadas por 2D + MS e seis por MudPIT e estão apresentadas na Figura 3.

Figura 3. Modelo de aparelho do SSTD. O complexo protéico secreta extracelularmente enzimas degradadoras e também participa na nutrição bacteriana. Mostram-se apresentadas na figura às proteínas detectadas neste estudo, relacionadas ao SSTD; PilB (XAC3239), PilH (XAC1154), PilD (XAC3243), PilM (XAC3385), PilE (XAC2664), XcsE (XAC0696), XpsE (XAC3544) e XpsF (XAC3543). Fonte da Figura: www.kegg.com, com modificações.

Pela técnica de 2D + MS foi identificada a proteína da biogênese do "pilus" (pilB) (XAC3239), a qual é um componente do SSTD e é requerida para a estrutura do "pilus" tipo IV. Entretanto, a sua localização exata e função ainda não estão bem claras, porém, acredita-se estar na face citoplasmática da membrana interna, onde suas regiões de ligação de nucleotídeos podem fornecer energia para a introdução de prépilina dentro da membrana interna (STROM & LORY, 1993). A expressão da proteína pilB foi aumentada 1,48; 4,33; e 9,39 vezes, respectivamente, nos extratos da *Xac* cultivada em meio XAM1 (24 h), e após 3 e 5 dias de infecção na folha de laranjeira em

comparação com a *Xac* cultivada em meio CN. Em *P. aeruginosa* as proteínas PilB, PilC e PilD são necessárias para modificações pós-traducionais e formação de monômeros de pilina dentro das organelas do "pilus". A proteína PilB parece ser restrita à biogênese do "pilus", e as estirpes que carreiam mutação no seu gene não apresentam uma exportação defeituosa (NUNN *et al.*, 1990). Foi constatado em estudos mutagênicos realizados em *P. aeruginosa* por TURNER *et al.* (1993), que mutantes defectivos na proteína PilB foram incapazes de sintetizar o "pili" e que uma simples alteração dos aminoácidos de serina por glicina no provável sítio de ligação ATP da proteína PilB elimina a formação do "pilus". Uma suposta função adicional às proteínas PilB, PilC e PilD é de que essas contribuem para a exportação de importantes toxinas e enzimas, como a exotoxina A, fosfolipase C e elastase (STROM *et al.*, 1991).

Pela técnica de 2D + MS também foi identificada a proteína codificada por XAC1154, que é uma proteína regulatória da família pilH (PilH) e teve sua expressão aumentada 2,84; 1,55 e 6,46 vezes nas condições após 1, 3 e 5 dias de infecção respectivamente, quando comparado com a Xac padrão cultivada em meio CN. A proteína PilH é um membro de uma família de regulador de resposta em sistemas sinalizadores de dois componentes, similar ao CheY, e pode ser uma parte de um sistema de transdução de sinal que regula a mobilidade contratória, controlando a função do "pilus" (extensão e retração). A CheY recebe o sinal de um sensor, geralmente uma proteína histidina quinase (WOLANIN et al., 2003). DARZINS et al. (1994) em estudos feitos para a caracterização do agrupamento de genes envolvidos na biossíntese do "pilus" e na mobilidade contratória de *P. aeruginosa*, observaram que os mutantes pilH mantinham a capacidade de produzir o "pilus" e sua mobilidade, mas apresentavam um padrão de mobilidade alterada caracterizada pela presença de muitos redemoinhos em forma de anel. No entanto, a similaridade entre as proteínas PilG, H, I e J a várias proteínas de quimiotaxia deu suporte à hipótese de que essas proteínas são parte de um sistema de transdução de sinal que controla a biossíntese do "pilus" de *P. aeruginosa* e sua mobilidade.

A enzima bifuncional peptidase sinal da pré pilina tipo IV (PiID) (XAC3243) (E.C. 3.4.23.43) foi identificada somente em extratos após 5 dias de infecção pela técnica de

MudPIT, requerida tanto para a secreção de proteínas extracelulares, como para a biogênese do "pilus" tipo IV, agindo como uma peptidase sinal e uma metil transferase (Mtase). PilD é responsável pelas clivagens endopeptídicas de um único peptídeo sinal que caracteriza os precursores de pilina tipo IV, assim como proteínas com seqüências sinais homólogas que são componentes essenciais das vias de secreção gerais encontradas em uma variedade de patógenos Gram-negativos. Após a remoção dos peptídeos sinais, a PilD é responsável por uma segunda modificação pós-traducional que caracteriza as pilinas do tipo IV e seus homólogos, ou seja, Nmetilação do Nterminal de resíduos de aminoácidos expostos recentemente (LORY & STROM, 1997). NUNN & LORY (1991), em estudos de mutação das proteínas pilB e pilD de *P. aeruginosa*, constataram um acúmulo de pré-pilina não processada na membrana e um defeito geral na excreção de enzimas extracelulares.

Diante da grande quantidade de patógenos de mamíferos e de plantas que apresentam uma via de secreção extracelular homóloga, semelhante à de *P. aeruginosa*, uma das mais estudadas, cabe aqui ressaltar que estudos envolvendo inibidores de peptidases podem ser uma ferramenta muito útil no entendimento e conseqüente controle da virulência bacteriana (STROM *et al.*, 1994).

A proteína de membrana da estrutura fimbrial (PilM), (XAC3385) foi detectada somente em extratos após 3 dias de infecção pela técnica de MudPIT, com um domínio transmembrânico putativo na região N-terminal. Essa proteína faz parte de um agrupamento de quatro genes (*pilMNOP*) que são responsáveis por produzir fímbrias do tipo IV que promovem adesão a células epiteliais e são associadas à forma de deslocamento na superfície chamada mobilidade contratória em *P. aeruginosa* (MARTIN *et al.*, 1995).

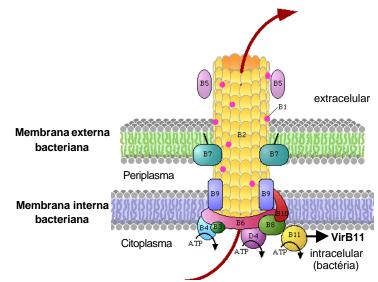
A proteína PilE codificada por XAC2664 foi identificada pela técnica de MudPIT somente em extratos após 1 dia de infecção. Essa proteína é semelhante à proteína pré-pilina do tipo IV que contém homologia ao N-terminal da proteína PilA e é requerida para a produção do "pilus" e mobilidade contratória de *P. aeruginosa* (DARZINS & RUSSELL, 1997). RUSSEL & DARZINS (1994), através de estudo de mutantes para o gene *pilE* em *P. aeruginosa* constataram que esses eram incapazes de se translocarem

através da superfície sólida pelo mecanismo de mobilidade contratória dependente do "pilus". Mutantes PilE de *Neisseria gonorrhoeae* tiveram a sua habilidade reduzida para aderirem as células epiteliais humanas, sugerindo a significância potencial da interação célula-célula bacteriana para a colonização (PARK *et al.*, 2001). Já em *Legionella pneumophila*, mutantes *pilE* foram defectivos para a expressão do "pili" longo e exibiram uma redução de 50% na aderência nas células epiteliais humanas (STONE & KWAIK, 1998). As regiões expostas de PilE são sujeitas à intensa ação minuciosa do sistema imune do hospedeiro e exibe altos níveis de variação antigênica (HAMRICK *et al.*, 2001).

As proteínas codificadas por XAC0696 e XAC3544 foram encontradas em extratos após 3 e 5 dias de infecção respectivamente, pela técnica de MudPIT. A proteína citoplasmática E do sistema de secreção tipo II (XcsE) (XAC0696) e a proteína citoplasmática E da via de secreção geral (XpsE) (XAC3544) estão envolvidas na via de secreção geral para o transporte de proteínas. A proteína GspE (Gsp — proteína de secreção geral) está localizada no lado citoplasmático da membrana sugerindo que as proteínas Gsp formam uma estrutura transmembrana, estendendo-se do lado citoplasmático da membrana interna até a membrana externa, através do periplasma (SANDKVSIT, 2001). As proteínas Gsp são chamadas Xcp em espécies de *Pseudomonas*, Xps em *Xanthomonas* e Xcs em *Xac.* SUN *et al.* (2005) construíram quatro mutantes defectivos no gene *xpsE* de *Xoo* e observaram que enzimas extracelulares como as xilanases e celulases não foram secretadas no espaço extracelular pelos mutantes, e portanto houve perda ou diminuição da virulência desta estirpe quando em confronto com seu hospedeiro, o arroz.

Outra proteína envolvida na via de secreção geral para o transporte de proteínas, identificada pela técnica de MudPIT somente em extratos após 5 dias de infecção, foi a proteína F (XpsF) (XAC3543). Trata-se de uma proteína de membrana interna citoplasmática, integral, o que sugere que a GspF é parte do aparato GEP (General Export Pathway), que ajuda na translocação de exoproteínas do citoplasma para o periplasma, antes do transporte através da membrana externa. GspF é altamente hidrofóbica e, quando intactas, são universalmente requeridas para a operação da

maquinaria molecular de secreção das quais elas são componentes (BLANK & DONNENBERG, 2001). Mutação no gene estrutural *xpsF* em *Xoo* reduziram a virulência e resultou num acúmulo de xilanases no espaço periplásmico em arroz (RAY *et al.*, 2000). Além disso, PY *et al.* (2001) utilizando sistema duplo híbrido em levedura revelou que GspF interage com GspE e GspL em *E. chrysanthemi*, formando um complexo do lado citoplasmático da membrana interna que ajuda ancorar a estrutura semelhante ao "pilus".


O SSTD, responsável pela secreção extracelular de enzimas degradadoras e da nutrição bacteriana, teve suas proteínas identificadas em todos os tempos infecciosos, revelando que este sistema está ativo pelo menos na fase pré-necrótica da interação *Xac*::citros, garantindo o estabelecimento desse patógeno no espaço apoplástico do hospedeiro através da degradação da parede celular e consequente captação de nutrientes provenientes das ações enzimáticas.

Sistema de secreção tipo IV (SSTQ)

O SSTQ é melhor estudado em *A. tumefaciens* onde é responsável pela transferência do T-DNA para as células da planta (CHRISTIE, 1997; GELVIN, 2000). Outras bactérias utilizam esse sistema para a secreção de toxinas ou outras proteínas (BURNS, 1999). Dois agrupamentos codificando componentes da maquinaria do SSTQ foram identificados em *Xac*, um localizado no cromossomo e o outro no plasmídeo, e nenhum deles está completo (DA SILVA *et al.*, 2002)

Somente uma proteína diferencial relacionada ao SSTQ foi identificada pelas duas técnicas proteômicas utilizadas neste estudo, codificada por XACb0037 (Tabela 2) (Figura 4), a proteína VirB11, cujo gene está localizado no plasmídeo da *Xac*, é hidrofílica, essencial para um complexo transmembrana, na qual acopla energia por hidrólise de ATP para transportar substrato. Ela foi encontrada em extratos após 1, 3 e 5 dias de infecção pela técnica de MudPIT. VirB11 é um membro de uma grande família de ATPases, proteínas multiméricas, que são associadas com sistemas dedicados à secreção de macromoléculas (secreção do tipo IV e transferência de substratos

cognatos do transporte complexo que pode ser uma proteína, um complexo núcleoprotéico ou DNA) (CAO, & SAIER, 2001). Em *A. tumefaciens*, mutações em vários componentes do SSTQ, incluindo VirB11 impediu a polimerização do "pilus" sem abolir a transferência do substrato (JAKUBOWSKI *et al.*, 2005).

Figura 4. Modelo de aparelho do SSTQ. O complexo protéico secreta extracelularmente toxinas ou outras proteínas, além de T-DNA para as células da planta (*A. tumefaciens*). Mostra-se apresentada na figura à proteína detectada neste estudo e relacionada SSTQ; VirB11 (XACb0037) e VirK (XAC0435). Fonte da Figura: www.kegg.com, com modificações.

A proteína VirK (XAC0435) (Tabela 2) foi identificada pela técnica de MudPIT em extratos após 3 dias de infecção. Ainda não está perfeitamente esclarecida a sua localização, porém, há especulações de que seja uma proteína de membrana interna ou externa. NAKATA *et al.* (1992) utilizando mutações com o "transposon" Tn10 para a identificação de locus de virulência, responsável pela dispersão de *Shigella flexneri*, sugeriram que a proteína VirK é um determinante de virulência essencial envolvido na expressão do produto do gene *virG* nos níveis pós-transcricionais. A caracterização da seqüência da região *vir* do plasmídio Ti de *A. tumefaciens*, realizado por HARTORY *et al.* (2001) revelaram que os genes *virK* e *virF* podem estar envolvidos na ampla gama de hospedeiros específicos do *Agrobacterium* e são regulados essencialmente pelo mesmo mecanismo que os genes *vir* principais.

Do SSTQ foram identificadas duas proteínas diferenciais, uma delas (VirB11) foi encontrada em todos os períodos infectivos da *Xac*, enquanto que a proteína VirK foi

encontrada no terceiro dia de infecção, indicando que este sistema está envolvido na secreção de moléculas ou produtos que ajudam na colonização do hospedeiro cítrico, além de contribuírem para os sintomas de encharcamento e hiperplasia, durante a fase pré-necrótica estudada neste patossistema *Xac*::citros.

Proteínas relacionadas a estresse

Quando uma bactéria é cultivada sob condições de estresse moderado, ela pode desenvolver uma resposta adaptativa, permitindo-a conviver com estresses subseqüentes mais severos. Em geral este fenômeno de adaptação parece envolver múltiplos genes codificando proteínas de estresse, que podem ser especificamente induzidas por fatores de estresse particular (proteínas de estresse específico) ou induzida por várias condições (proteínas do estresse geral).

Duas proteínas do estresse geral foram encontradas pelas técnicas proteômicas (Tabela 2). A proteína codificada por XAC2396 foi identificada pela técnica de 2D + MS e teve sua expressão aumentada 5,99; 88,95 e 117,13 vezes, concomitante aos tempos de infecção (1, 3 e 5 dias de infecção), quando comparado com a *Xac* cultivada em meio CN. A proteína codificada por XAC1707 foi identificada pela técnica de MudPIT em extratos após 1 e 3 dias de infecção. Especula-se que a XAC2369 codifique uma proteína flavodoxina, homóloga a piridoxamina 5'-fosfato oxidase (E.C.1.4.3.5), com baixa similaridade, que utiliza o cofator flavoproteína (FMN), para a sua reação. Flavodoxinas são um grupo de proteínas com uma ligação forte a monocleotídeo flavina (FMN), que media a transferência de elétrons em baixo potencial redox. A exata função desta proteína ainda é desconhecida, mas admite-se que faça parte da via de transferência de elétrons (EMBL-EBI, European Bioinformatics Institute).

A outra proteína citoplasmática do estresse geral (XAC1707) é a piridoxamina 5′fosfato oxidase (PNPOx) (E.C.1.4.3.5), a qual catalisa a oxidação de piridoxamina-5-P
(PMP) e piridoxina-5-P (PNP) (vitamina B6) a piridoxal-5-P (PLP), usando flavina
mononucleotídeo (FMN) como um aceptor de elétrons imediato, e oxigênio como um
aceptor final de elétrons. Esta reação serve como um passo final na biossíntese *de*

novo de PLP em *E. coli* e mamíferos (LAM & WINKLER, 1992). A PNPOx tem um papel chave no metabolismo de carbono porque abastece as células com 5,10-metilenotetraidrofolato, que é a fonte primária de unidade de carbono requerida tanto para a biossíntese de purina e timidilato, como para reações de metilação (SCHIRCH, 1984).

Poliquetídeos

Os poliquetídeos são uma grande família de produtos naturais estruturalmente diversos que possui uma ampla faixa de propriedades farmacológicas, e junto com seus derivados semi-sintéticos comandam um papel vital na medicina humana e veterinária, como por exemplo, eritromicina (antibacteriano), rapamicina (imunosupressor) e epotilona (agente anticâncer). Tipicamente eles são biossintetizados a partir de ácidos carboxílicos curtos por condensação seqüencial, catalisada pela poliquetídeo sintase (HOPWOOD, 1997; STAUNTON & WEISSMAN, 2001).

A via de biossíntese de poliquetídeos é representada na *Xac* por quatro proteínas, e neste estudo, foram encontradas diferencialmente expressas três proteínas codificadas por XAC3583, XAC3584 e XAC3585 (Tabela 2), e foram identificadas por 2D + MS. Em *Xac* a via de biossíntese de unidade de açúcar da síntese de poliquetídeo se inicia pela XAC3584, que codifica a enzima glicose-1-fosfato timidilitransferase (RmIA) (EC 2.7.7.24), também conhecida como dTDP-D-glicose sintase (dTDP-Deoxitimidina difosfato), a qual apresentou um aumento na expressão de 1,74; 2,14 e 2,39 vezes, respectivamente, para os tempos após 1, 3 e 5 dias de infecção. É bem caracterizada em várias espécies como a primeira das quatro enzimas envolvidas na biossíntese de dTDP-L-ramnose, um constituinte da parede celular bacteriana. A forma homotetramérica curta é encontrada em numerosas espécies bacterianas que incorporam dTDP-L-ramnose, que ajuda na síntese dentro da parede celular e está sujeita a inibição por "feedback". A forma longa é encontrada em muitas espécies das quais serve como uma enzima ativadora de acúcar para a biossíntese de antibióticos e

outras vias desconhecidas, na qual dTDP-L-ramnose não é necessariamente produzida (EMBL-EBI, European Bioinformatics Institute).

A segunda enzima desta via é a dTDP-glicose 4,6-deidratase (RmlB) (EC:4.2.1.46), codificada por XAC3585 e apresentou uma diminuição na expressão de 27,98 e 2,29 vezes, respectivamente, nos tempos após 3 e 5 dias de infecção. A expressão desta enzima no meio indutor XAM1 foi à mesma quando a *Xac* estava sendo cultivada em meio CN. Esta enzima é responsável pela conversão de dTDP-glicose em dTDP-4-ceto-6-deoxiglicose (HEGEMAN *et al.*, 2002). Esta e outras 4,6-deidratases catalisam o primeiro passo em todas as vias biossintéticas 6-deoxiaçúcar. Numerosas 6-deoxiaçúcar são usadas na produção de lipopolissacarídeo bacteriano, tão bem como, na biossíntese de diversos arranjos de metabólitos secundários.

A quarta enzima da via de biossíntese de unidade de açúcar de poliquetídeo é a dTDP-4-deidroramnose 3,5-epimerase (RmlC) (EC:5.1.3.13) (XAC3583) e sua expressão aumentou 8,35 e 2,84 vezes, respectivamente, nos tempos após 1 e 5 dias, e no terceiro dia de infecção a expressão manteve-se igual ao da *Xac* cultivada em meio CN. A Deoxitimidina difosfato (dTDP)-4-ceto-6-deoxi-d-hexulose 3, 5-epimerase é uma enzima dTDP-açúcar isomerase envolvida na síntese de L-ramnose, um sacarídeo requerido para a virulência de algumas bactérias patogênicas (GIRAUD *et al.*, 2000), e também é um componente essencial para a parede celular bacteriana. Esta enzima age convertendo dTDP-4-ceto-6-deoxi-D-glicose a dTDP-4-ceto-L-ramnose. LI *et al.* (2006), através de mutações por nocaute dos genes *rmlB* e *rmlC*, de *Mycobacterium smegmatis*, demonstraram que esses genes são essenciais para o crescimento de micobacterias e, portanto, fornecem uma evidência direta que os genes *rmlB* e *rmlC* envolvidos na síntese de dTDP-ramnose são alvos válidos para o desenvolvimento de novas drogas antituberculose.

Outra via identificada a partir do banco de dados Kegg, para as proteínas expressas diferencialmente foi a de biossíntese de estreptomicina, também representada pelas XAC3583, XAC3584 e XAC3585 já anteriormente descritas, acrescida de mais uma proteína codificada pela XAC3579 (Tabela 2). A estreptomicina é um poliquetídeo aromático, produzido principalmente por bactérias *Streptomyces*

através do metabolismo secundário, agindo no bloqueio do crescimento bacteriano, prejudicando a membrana celular e inibindo a síntese protéica através da ligação da molécula 23S rRNA do ribossomo bacteriano.

A proteína codificada por XAC3579 é denominada enzima bifuncional fosfoglicomutase/fosfomanomutase (XanA) (E.C:5.4.2.2 e E.C:5.4.2.8), que teve sua expressão diminuída 5,28 vezes no tempo após 1 dia de infecção e aumentada 3,90 e 7,28 vezes respectivamente, nos tempos após 3 e 5 dias de infecção, identificada pela técnica de 2D + MS. A fosfoglicomutase (PGM) (E.C:5.4.2.2) é responsável pela conversão de D-glicose 1P para D-glicose 6P e participa tanto na decomposição como na síntese de glicose (DAI *et al.*, 1992). A fosfomanomutase (PMM) (E.C:5.4.2.8) está envolvida na conversão de D-manose 1P para D-manose 6P (ZIELINSKI *et al.*, 1991) e é requerida para diferentes vias biossintéticas na bactéria. As duas enzimas possuem a atividade intramolecular de transferase (fosfotransferases) e, além disso, são necessárias para a produção de goma xantana.

A proteína relacionada a NonF (NonF) (XAC3491) (Tabela 2) foi identificada pela técnica de 2D + MS e teve sua expressão aumentada em 11,61; 40,49 e 26,48 vezes nos respectivos tempos de infecção 1, 3 e 5 dias. A proteína NonF faz parte da via de biossíntese de nonactina (antibióticos ionóforos), que é originado de compostos de um grupo de metabólitos de poliquetídeos altamente atípicos e são produzidos por *Streptomyces griseus* subsp. *griseus*. A nonactina tem mostrado possuir uma atividade antitumor e inibidor efetivo de glicoproteína P170, responsável por resistência a drogas em múltiplas linhagens de células cancerígenas (BORREL *et al.*, 1994).

Os poliquetídeos são freqüentemente fatores de virulência em bactérias patogênicas. O estudo dos composto poliquetídicos tem aumentado a compreensão dos fatores de virulência na interação planta – bactéria e seus mecanismos essenciais de controle biológico (BENDER et al., 1999). Provavelmente os compostos poliquetídicos são inibidores do crescimento de microorganismos que venham competir pelos mesmos nutrientes, no seu microambiente onde o primeiro já está estabilizado, e dessa maneira podem também ser tóxicos às plantas hospedeiras. Tal observação mostra-se adequada, pelo fato que a maioria das proteínas diferencialmente expressas,

relacionadas aos compostos poliquetídicos, e analisadas no presente estudo, se mostraram super expressas nas condições infectantes. Assim, tal fato implica que a *Xac* no ambiente onde está instalada, protege-se de outros microorganismo patogênicos que possam competir com seus nutrientes que já são escassos.

Proteínas relacionadas a biossíntese de esteróides

Os esteróides são terpenos hidrofóbicos que passam através da membrana celular e se ligam aos receptores intracelulares. Os terpenos estão presentes em um grande grupo de produtos naturais que incluem compostos como vitaminas, colesterol e carotenóides. A biossíntese de todos os terpenóides inicia com um ou ambos os precursores C5 na via: IPP (isopentenil difosfato) e DMAPP (dimetilalil difosfato). Em animais, fungos e em certas bactérias a síntese de IPP e DMAPP ocorre na via bem conhecida de mevalonato. Entretanto uma segunda via de terpenóide não mevalonato foi identificada (CUNNINGHAM et al., 2000).

No presente trabalho, pelas técnicas proteômicas utilizadas, foram identificadas duas proteínas expressas diferencialmente, relacionadas à biossíntese de esteróides codificadas por XAC1256 e XAC1722 (Tabela 2). A proteína de tolerância à penicilina (LytB) (XAC1256), conhecida como 4-hidroxi-3-metilbut-2-enil difosfato redutase (EC:1.17.1.2), foi identificada pela técnica de 2D + MS e sua expressão diminuiu 3,81; 15,06 e 39,17 vezes após 1, 3 e 5 dias de infecção, quando comparado com a *Xac* cultivada em meio CN, indicando que essa proteína não está diretamente relacionada aos processos infectivos no período que sucede 1 dia de infecção. A LytB não teve sua expressão aumentada nos processos infectivos pois, quando a *Xac* está em contato com a planta hospedeira, essa não se utiliza de compostos tóxicos com propriedades semelhantes aos efeitos da penicilina para impedir ou diminuir a progressão da *Xac* e/ou, o desenvolvimento dos sintomas de cancro cítrico.

A outra enzima representante (XAC1722) da via de biossíntese de esteróides é a 2C-metil-D-eritritol 2,4-ciclodifosfato sintase (IspF) (E.C:4.6.1.12) a qual foi identificada pela técnica de MudPIT em extratos após 3 dias de infecção. Esta enzima catalisa o

quinto passo na via alternativa (não melanovato) da biossíntese de terpenóide, a formação de 2C-metil-D-eritritol 2,4-ciclodifosfato a partir de 4-difosfocitidil-2C-metil-D-eritritol 2-fosfato (EISENREICH *et al.*, 1998). Esta enzima é uma nova droga alvo potencial em *Plasmodium* sp., pois 2C-metil-D-eritritol 2,4-ciclodifosfato é um intermediário obrigatório na via de terpenóide não mevalonato (ROHDICH *et al.*, 2002).

Proteínas que participam do metabolismo de carboidratos, relacionadas à patogênese

A via do metabolismo de açúcar e amido também foi identificada pelo banco de dados de vias metabólicas Kegg, na qual estão diferencialmente expressas as proteínas codificadas por XAC3209, XAC2292, XAC3579, XAC3581, XAC0030, XAC4231 e XAC3076 (Tabela 2).

A enzima trealose-6-fosfato fosfatase (OstB) (EC 3.1.3.12), codificada por XAC3209 foi identificada pelas técnicas de MudPIT nos três extratos infectivos, e pela técnica de 2D + MS, na qual apresentou um aumento de expressão de 1,80; 1,66 e 2,39 vezes respectivamente, nos tempos infectivos da *Xac* após 1, 3 e 5 dias. A OstB catalisa a fosforilação de trealose-6-fosfato a trealose e ortofosfato.

A síntese de trealose, um dissacarídeo comum de bactérias, fungos e invertebrados, crucial para a sobrevivência do organismo sob condições de estresse, é dependente da trealose fosfatase. A biossíntese de trealose em *E. coli* está associada à exposição da bactéria a estresse ambiental com alta pressão osmótica (GIAEVER *et al.*, 1988). Estudos prévios tem também mostrado que *Salmonella enterica* sorotipo *typhimurium* LT2 também é capaz de sintetizar trealose em resposta a elevada pressão osmótica (CANOVAS *et al.*, 2001). A trealose acumula dramaticamente em microrganismos durante o choque térmico e estresse osmótico e ajuda a proteger as células contra, por exemplo, espécies ativas de oxigênio, uma situação a que a *Xac* se confronta ao sobrepujar os mecanismos de defesa da planta.

A enzima UTP-glicose-1-fosfato uridililtransferase (GalU) (EC:2.7.7.9), codificada por XAC2292, foi identificada pela técnica de 2D + MS e teve sua expressão

aumentada em 1,49; 1,80 e 1,56 vez, nos respectivos tempos de infecção, 1, 3 e 5 dias, quando comparado a *Xac* cultivada em meio CN. A GalU catalisa a reação α-D-glicose 1 fosfato a UDP-glicose que é um composto chave na biossíntese de polissacarídeo. DEAN & GOLDBERG (2002) mostraram que mutantes *galU* levaram à mutilação do núcleo de síntese de lipopolissacarídeo (LPS), que é o maior fator de virulência para o patógeno oportunista *P. aeruginosa*, que é composto de antígeno O, o núcleo oligossacarídeo LPS e lipídio A.

Em *Vibrio cholerae*, mutantes *galU* com o antígeno O intacto, tiveram o oligossacarídeo central alterado, o que afetou no catabolismo de galactose exógena. Além disso, foram defectivos na colonização do hospedeiro. Também foi constatado que GalU é essencial para a formação do biofilme. Esse polissacarídeo limita o acesso do fago K139 ao seu receptor, o antígeno O. Em conclusão, GalU está envolvida na virulência do *V. cholerae*, correlacionado com as mudanças na estrutura do LPS e na sobrevivência ambiental desse patógeno (NESPER *et al.*, 2001).

A proteína fosfoglicomutase/fosfomanomutase, codificada por XAC3579 (XanA) (E.C:5.4.2.2 e E.C:5.4.2.8), também faz parte da via do metabolismo de açúcar e amido e já foi descrita anteriormente neste estudo.

A enzima UDP-glicose deidrogenase (Ugd) (EC:1.1.1.22), codificada por XAC3581, foi identificada pela técnica de 2D + MS e teve sua expressão diminuída em 3,56 e 11,03 vezes nos tempos após 3 e 5 dias de infecção. A expressão da Ugd no tempo de um dia de infecção foi igual a da *Xac* cultivada em meio CN. A Ugd catalisa a formação de UDP-glucoronato a partir de UDP-glicose e tem uma ampla gama de funções. Em plantas, Ugd é importante para a síntese de hemicelulose e pectina, que são componentes formadores da parede celular (JOHANSSON *et al.*, 2002) e em *X. campestris* é requerida para a virulência (CHANG *et al.*, 2001).

Em 1995, LIN e colaboradores, relataram que mutantes de *Xcc* defectivos da enzima Ugd não possuíam a habilidade de produzir a goma xantana. CHANG, *et al.* (2001) demonstraram que mutação no gene *ugd* em *Xcc* e *Xcv* fizeram com que essas bactérias fitopatogênicas perdessem a sua virulência, pois as mesmas não produziam mais a goma xantana, que contribui para a habilidade destes organismos em causar

doença, assim como outros polissacarídeos fazem em muitas bactérias fitopatogênicas. O fato de a proteína Ugd ter sua expressão diminuída no terceiro e quinto dia de infecção, correlaciona com a possibilidade da *Xac* não mais precisar da goma xantana para a sua fixação no hospedeiro uma vez que ela encontra-se estabelecida e se utilizando de outros artifícios para a sua sobrevivência no espaço apoplástico do mesmo.

A enzima celulase (Egl) (E.C:3.2.1.4), codificada por XAC0030, foi identificada pela técnica de MudPIT em todos os extratos infectivos da *Xac*. Pectinases e celulases são secretadas em um processo de dois passos, envolvendo a transferência inicial Secdependente através da membrana citoplasmática e enovelamento no espaço periplasmático (PUGSLEY *et al.*, 1991; PY *et al.*, 1993). Acredita-se que as enzimas extracelulares das Xanthomonads, incluindo celulase, pectinases, quitinases e proteases têm uma parte importante na fitopatogênese (DANIELS *et al.*, 1984). Entretanto, o papel individual dessas enzimas na patogênese permanece obscuro. Há indícios que essas enzimas destroem a parede celular da planta infectada por digestão dos constituintes da mesma.

Quando *X. campestris* é cultivada na presença de oligossacarídeos-xanto, ela apresenta uma inibição do crescimento celular e todas estas enzimas extracelulares têm sua atividade diminuída, revelando uma atividade multi-inibitória. Portanto, os oligossacarídeos-xanto são uma estratégia promissora para a proteção das plantas (QUIAN *et al.*, 2006). KAZEMI-POUR *et al.* (2004), em estudo do secretoma de *E. chrysanthemi*, pela técnica de 2D + MS, relataram a presença de três proteases e uma celulase sob condições não indutoras de cultivo, que são secretadas pelo SSTD por um novo substrato AvrL, que é homóloga a proteína de avirulência de *X. campestris*.

A celulase se mostrou aqui expressa nas condições infectantes da *Xac*, o que corroboram com os dados da literatura, pois essa fitobactéria inicialmente se encontra nos espaços apopláticos das células do hospedeiro, necessitando de nutrientes para a sua sobrevivência, visto que esse espaço é nutricionalmente pobre. Daí a necessidade da *Xac* se utilizar da degradação da parede do hospedeiro para a obtenção de nutrientes como polissacarídeos, açucares, lipídios, aminoácidos e tantos outros mais.

As glucanas 1,4-β-glicosidases (EC:3.2.1.74), codificadas por XAC4231 e XAC3076, foram identificadas pela técnica de MudPIT em extratos após 3 dias de infecção. Essa enzima é responsável pela hidrólise das ligações 1,4 em 1,4-β-D-glucanas para remover unidades de glicose sucessivas (RIGDEN *et al.*, 2004), e também tem ação na degradação da celulose da parede celular da planta (BHAT *et al.*, 2000), fato este, que comprova a utilização dessa enzima na degradação da parede do hospedeiro cítrico na fase pré-necrótica do patossistema *Xac*::citros.

Outro grupo de proteínas diferenciais relacionadas ao metabolismo de carboidrato, foi identificado neste estudo, e estão envolvidas na síntese de goma xantana, que são polissacarídeos extracelulares produzidos pela família das *Xanthomonadaceae*. Este composto tem alto valor comercial e está envolvido na formação do encharcamento durante a colonização do tecido pelas *Xanthomonas* (RUDOLPH, 1993).

Seis proteínas (XAC2583, XAC2575, XAC2576, XAC2577, XAC2578 e XAC2579) (tabela 2) detectadas neste estudo como diferencialmente expressas fazem parte da família de proteínas Gum, que são requeridas para a síntese da goma xantana. As proteínas Gum diferenciais neste estudo foram todas identificadas pela técnica de MudPIT em extratos após 1 e 3 dias de infecção, admitindo que a goma xantana é requerida nos momentos iniciais de infecção, corroborando com o encharcamento do tecido do hospedeiro, visto que é um dos primeiros sintomas ocasionados pela *Xac* na patogênese *Xac*::citros e protegendo o patógeno como uma barreira física contra as respostas de defesa do hospedeiro vegetal.

Em *X. campestris*, o agrupamento do gene *gum* é composto de 12 genes distribuídos de *gumB* a *gumM*, e é expresso pelo comando de um promotor localizado anteriormente ao primeiro gene, gumB (KATZEN *et al.*, 1996), podendo também ser regulado por fatores reguladores de patogenicidade (TANG *et al.*, 1996), e pela concentração de açúcar no meio ambiente (VOJNOV *et al.*, 2001). Além disso, mutações desses genes podem diminuir a patogenicidade *in vivo* (CHOU *et al.*, 1997; KATZEN *et al.*, 1998). Resumindo, os genes *gum* estão envolvidos nas etapas biossintéticas de um polissacarídeo extracelular (EPS), que está relacionado à

patogênese bacteriana. Os produtos desses genes catalisam reações de adição de açúcares, e polimerização e exportação do EPS através da membrana da bactéria.

A proteína GumD codificada por XAC2583, detectada somente em extratos após 3 dias de infecção, é uma glicosiltransferase I que catalisa o primeiro passo da produção de xantana e é responsável pela adição da primeira molécula de glicose a molécula aceptora isoprenóide (lipídio carreador glicosil isoprenóide) (KATZEN *et al.*, 1998). Mutantes *gumD* de *Xcc* não possuem a habilidade de produzir goma xantana, possuem uma pigmentação alterada e a sua virulência reduzida (CHOU *et al.*, 1997; KATZEN *et al.*, 1998). Em *X. axonopodis* pv. *manihotis* (*Xam*) o gene *gumD* é essencial para a produção de EPS e conseqüente patogenicidade, e na intensificação da sobrevivência epífita na mandioca. Mutantes *gumD* de *Xam* tiveram sua virulência severamente atenuada (KEMP *et al.*, 2004).

A proteína GumL codificada por XAC2575 foi detectada somente em extratos após 3 dias de infecção. A GumL é uma enzima cetal piruvato transferase, que é responsável pela adição do grupo piruvato ao polissacarídeo. Mutações no gene *gumL* de *Xcc* na presença de PEP (fosfoenolpiruvato) inativa a enzima cetalase que catalisa a piruvilação da manose externa ou seja, é incapaz de sintetizar o intermediário piruvilatado *in vitro* (KATZEN *et al.*, 1998). Em contrapartida, a inativação de *gumL* não afetou a polimerização de polissacarídeos, pois produziram quantidades similares de polímeros, se comparadas com as produzidas pela estirpe selvagem (KATZEN *et al.*, 1998). Esses dados corroboram com o fato de *X. fastidiosa* não possuir os genes *gumL* e *guml* o que não a impede de ter produção de EPS regular, ou a produção de EPS diferente da goma xantana (SILVA *et al.*, 2001).

A proteína GumK codificada por XAC2576 foi detectada nos extratos após 1 e 3 dias de infecção. A GumK é uma enzima glicosiltransferase IV, que é responsável pela adição de um resíduo de ácido glucurônico do ácido UDP-glucurônico para manosil- (α -1,3)-celobiose difosfopoliprenol com formação de glucuronil-(β -1,2)-manosil-(α -1,3)-celobiose difosfopoliprenol (KATZEN *et al.*, 1998). Em *Xcc*, mutantes defectivos no gene *gumK* sintetizaram *in vitro* um trissacarídeo ligado ao lipídio, mas produziram uma

quantidade muito menor de polímeros de polissacarídeos *in vivo*, quando comparado com a estirpe selvagem. Tal produto foi denominado politrímero (KATZEN *et al.*, 1998).

A proteína GumJ codificada por XAC2577 parece estar envolvida na polimerização e transporte da goma xantana e foi detectada somente em extratos após 3 dias de infecção. Mutação no gene *gumJ* de *X. campestris* são letais, a menos que a síntese da goma seja bloqueada por uma mutação na primeira transferase de açúcar ou no gene necessário para a síntese de UDP-glicose (VANDERSLICE *et al.*, 1988).

A proteína Guml codificada por XAC2578, detectada em extratos após 3 dias de infecção, é uma enzima glicosiltransferase V que é responsável pela transferência de um resíduo de β -manosil de GDP-manose para glucoronil-(β -1,2)-manosil-(α -1,3)-celobiose difosfopoliprenol, com a formação de manosil-(β -1,4)-glucuronil-(β -1,2)-manosil-(α -1,3)-celobiose difosfopoliprenol (KATZEN *et al.*, 1998). KATZEN *et al.* (1998) relataram que os mutantes de *Xcc* defectivos dos genes *gumK* e *guml* tinham um efeito menos drástico na quantidade de polissacarídeo produzido *in vitro*, quando comparado aos mutantes *gumD* e *gumH* que aboliram completamente a formação do polímero *in vitro*. Mutantes *guml* são incapazes de adicionar a segunda manose ao tetrassacarídeo ligado ao lipídio, o que não afeta severamente o índice de virulência dessa estirpe mutante.

A proteína GumH codificada por XAC2579, detectada somente em extratos após 3 dias de infecção, é uma enzima glicosiltransferase III, que catalisa a adição de um resíduo α-manosil de GPD-manose a celobiose difosfopoliprenol para produzir manosil-(α-1,3) celobiose difosfopoliprenol. Em estudos envolvendo mutações nos genes *gumD* e *gumH*, que codificam as primeiras glicosiltranferases de *Xcc*, verificou-se que esse fitopatógeno perdeu a capacidade de produzir tal polímero *in vitro*, mostrando que esses genes são requeridos para a polimerização de subunidades de lipídios ligados (KATZEN *et al.*, 1998).

A goma xantana deve ter sua expressão máxima durantes períodos de infecção precoces, na qual a *Xac* se lança de artifícios para conquistar o seu mais novo meio ambiente celular do hospedeiro, através do encharcamento e hiperplasia do tecido atacado, na necessidade de se fixar, colonizar e se adaptar a essa nova condição

infectante. Os resultados obtidos com o proteoma da *Xac* neste estudo, corroboram com esta hipótese, pois proteínas da goma só foram detectadas após 24 h de indução em meio XAM1 e após 3 dias de infecção em folhas de laranjeira.

Proteínas relacionadas à carência nutricional

A enzima fosfatase alcalina (PhoX) (XAC1792) é uma proteína dimérica com duas subunidades idênticas e foi identificada pelas duas técnicas proteômicas, em extratos após 3 e 5 dias de infecção, sendo que, pela técnica de 2D + MS apresentou expressão similar nesses dois extratos (Tabela 2). A enzima hidrolase PhoX é usada pelas bactérias para gerar grupos fosfatos livres para captação e uso, e é suportado pelo fato que a Phox é produzida somente pela bactéria durante a carência de fosfato (VILLAREJO et al., 1983; GAUTHIER et al., 1990). Esta enzima é responsável pela remoção de grupos fosfatos nas posições 5` e 3` de muitos tipos de moléculas, incluindo nucleotídeos, proteínas e alcalóides. Além da sua produção em resposta à carência de fosfato inorgânico (P_i) no meio de cultivo ou no ambiente, a PhoX também é produzida em resposta a outras formas de estresse, como choques térmico e osmótico e pode ser um importante componente efetor de resposta a estresses globais (VILLAREJO et al., 1983; GAUTHIER et al., 1990). Consequentemente, a enzima pode estar envolvida na sobrevivência da bactéria sob condições de estresse, através do seu papel na captação de fosfato ou através de funções não específicas, como no favorecimento da permeabilidade da célula por meio da ação de proteínas porinas cosintetizadas com a fosfatase alcalina.

LIM et al. (1996), investigando os efeitos do estresse osmótico na sobrevivência e atividade da fosfatase alcalina de Aeromonas hydrophila, cultivada em meio com alta e baixa quantidade de fosfato, relataram um aumento dramático na atividade da fosfatase alcalina das células cultivadas em altas concentrações de fosfato, quando expostas ao estresse osmótico na presença de betaína, o que confirma a importância da fosfatase alcalina e outras proteínas do agrupamento pho nas repostas globais dos microorganismos ao estresse.

CHANG *et al.* (2005) isolaram e caracterizaram um mutante de *Chlamydomonas reinhardtii* que mostrou-se menos viável do que as células do tipo selvagem, durante a limitação de fósforo. Além disso, sobre a privação de fósforo, o mutante *lpb1*, como as células do tipo selvagem, exibiu aumento nos níveis de RNAm codificador de PhoX, do transportador de fosfato PTB2 e no elemento regulatório PSR1.

O "regulon" Pho integra a percepção da disponibilidade de P_i no ambiente, com a co-regulação da expressão de genes mediante uma resposta adaptativa de limitação de P_i. Estudos mutacionais em *P. fluorescens* Pf0-1 feitos por MONDS *et al.* (2006) relataram que PhoB/PhoR e o sistema Pst possuem funções conservadas na regulação das atividades fosfatases induzidas por P_i, tão bem como a expressão de outros genes regulados por P_i. Eles também identificaram a PhoX e PhoD (fosfatases reguladas pelo Pho) que são enzimas exportadas pelo sistema Tat (proteínas atravessam a membrana citoplasmática usando o gradiente de próton transmembrânico). Os genes *phoX* e *phoD* foram mostrados serem membros do "regulon" Pho por RT PCR, tão bem como por avaliação funcional dos sítios de ligação PhoB putativos (Pho "boxes"). A PhoX foi declarada ser a principal enzima responsável pela atividade fosfatase em *P. fluorescens* Pf0-1.

A proteína citoplasmática de ligação de ATP (XAC2462) e a proteína codificada por XAC4299 (conserved hypothetical protein) (Tabela 2) que foi reanotada, neste estudo, como sendo uma proteína de ligação de ATP (94% de similaridade) à proteína de ligação de ATP putativa de *Xcv*, e foram detectadas em extratos após 1 e 3 dias de infecção pela técnica de MudPIT. Especula-se que a proteína de ligação de ATP seja homóloga a PhoH que possui a função predita de uma ATPase na qual é induzida por carência de fosfato, pertencente ao "regulon" fosfato (Pho) em *E. coli* e é controlada por dois promotores, o promotor P1, que é induzido por limitação de fosfato e dependente de PhoB, e o promotor P2, que é constitutivo (KIM *et al.*, 1993).

A proteína B de carência nutricional estrita (SspB) (XAC2453) (Tabela 2) foi encontrada somente em extratos após 5 dias de infecção pela técnica de MudPIT. A SspB é codificada por um agrupamento cuja síntese é estimulada por restrição de fonte de carbono, aminoácidos e fosfato e, portanto, parece ter um papel especial durante o

estresse nutricional, por exemplo, assegurando uma rápida degradação dos produtos de parada de tradução, sem causar um aumento global na degradação de todos os substratos ClpXP (protease que degrada RNAmt alvos de proteínas - ssrA). O SsrA é um peptídeo alvo de 11 aminoácidos adicionados ao C-terminal de proteínas não sintetizadas por completo durante a tradução e são proteínas alvos para a degradação pelas proteases ClpXP e ClpAP. As células com mutações no *sspB* são defectivas na degradação de proteínas SsrA alvos, demonstrando que SspB é um fator que aumenta a especificidade para ClpXP que controla a escolha do substrato (LEVCHENKO *et al.*, 2000).

Esse mecanismo fornece um caminho para regular o desenovelamento e a degradação de proteínas alvos específicas, em resposta a mudanças celulares ambientais. Fato este que pode ser observado durante a mudança e adaptação ambiental quando a *Xac* inicia o seu processo de infecção do hospedeiro, pois ela deixa de ter todos os nutrientes necessários presentes no meio nutriente e passa a habitar um ambiente nutricionalmente escasso, o que levaria à expressão acentuada de SspB nos processos temporais infecciosos da *Xac*.

A proteína sensora de carência nutricional (RspA) codificada por XAC4229 (Tabela 2) foi identificada pela técnica de MudPIT em extratos após 3 e 5 dias de infecção. A RspA provavelmente está envolvida na degradação de homoserina lactona (HSL) ou de metabólitos de HSL que sinalizam a carência de nutrientes. Em $E.\ coli$ HUISMAN & KOLTER (1994) relataram que a subunidade δ s da RNA polimerase (media o processo de adaptação à carência de nutrientes) foi induzida por HSL (metabólito sintetizado de intermediários na biossíntese de treonina) e a HSL foi inibida pela super produção da proteína RspA. Entretanto, HSL é um efetor positivo do δ s, e uma redução dos níveis de HSL pela super expressão de RspA leva a uma diminuição dos níveis do δ s.

Assim, como todas as outras proteínas relatadas neste trabalho e relacionadas a estresse por carência nutricional, a RspA, também teve sua evidente expressão detectada nos processos infecciosos da *Xac*, e mais uma vez corroborando que o ambiente habitado pela *Xac* durante a patogênese é de limitados nutrientes, dai a

necessidade desse fitopatógeno possuir outros mecanismos de geração e captação de nutrientes, como por exemplo, através da degradação de parede celular vegetal, que é rica em compostos nutrientes.

A proteína reguladora de resposta à carência de enxofre (Sac1) (XAC3304) foi detectada somente em extratos após 5 dias de infecção pela técnica de MudPIT. O gene *sac1* codifica uma proteína com domínio hidrofóbico similar ao transportador de íon Na⁺/SO₄²⁻ encontrado em membranas celulares de vários organismos (DAVIES *et al.*, 1996), mas não está bem estabelecido se sua função é de transportador de enxofre em *Chlamydomonas* (IRIHIMOVITCH & STERN, 2006).

Um mutante de *C. reinhardtii* (alga verde) para a proteína Sac1 é anômalo a maioria das repostas normais a limitação de enxofre (elemento essencial presente em proteínas, lipídios e vários metabólitos), e pode sintetizar arilsulfatase, mas não pode captar sulfato tão rapidamente quanto às estirpes selvagens. Além disso, não sintetiza proteínas periplasmáticas que normalmente acumulam durante o cultivo limitado de enxofre. O mutante *sac1* morre mais rapidamente do que as estirpes selvagens durante a privação de enxofre. Tal fato, enfatiza o papel vital do processo de adaptação.

Durante a limitação de enxofre, a estirpe selvagem reprime a fotossíntese e portanto, a morte do mutante *sac1* é conseqüência dessa inabilidade de reprimir a fotossíntese (DAVIES *et al.*, 1996). Além disso, o RNAm de adenosina trifosfato (ATP) sufurilase (pATS1) (catalisa a ativação de enxofre pela adição de ATP) estava presente quando a célula era cultivada em meio repleto de enxofre, mas acumulava em altos níveis quando as células eram expostas a condições limitantes de enxofre. No entanto, o acúmulo de *ATS1* transcrito foi reduzido em estirpes defectivas no *sac1*, visto que esse gene é responsável pela adaptação a condições limitantes de enxofre (YILDIZ *et al.*, 1996).

Além da escassez do elemento fosfato, provavelmente também ocorra para o elemento enxofre, pois uma vez que a proteína Sac1 está presente nos tempos infectivos tardios da *Xac*, comprova-se que esse fitopatógeno utiliza outros artifícios para conseguir se adaptar e desenvolver nesse ambiente nutricionalmente pobre durante a patogênese *Xac*::citros.

Outras proteínas expressas diferencialmente relacionadas à patogênese

A proteína AtsE (XAC0108) foi identificada pela técnica de 2D + MS e sua expressão foi aumentada 9,92; 22,76 e 27,20 vezes respectivamente, nos tempos após 1, 3 e 5 dias de infecção quando comparado com a *Xac* cultivada em meio CN (Tabela 2). Esta proteína é similar a AtsE em *A. tumefasciens*, que é codificada na região do cromossomo, onde é importante para o ataque a célula hospedeira e virulência. Não são encontradas informações na literatura a respeito dessa proteína.

O fator regulador de patogenicidade (RpfN) (XAC2504) foi identificado pela técnica de 2D + MS e teve sua expressão aumentada em 354,74; 6,19 e 13,16 vezes nos respectivos tempos de infecção, 1, 3 e 5 dias. Pela técnica de MudPIT ela foi detectada somente em extratos após 1 dia de infecção (Tabela 2). Essa proteína, quando a *Xac* estava sendo cultivada em meio indutivo XAM1, teve um aumento exuberante, o que mais uma vez comprova a eficiência deste meio utilizado neste estudo e da sua reprodutibilidade das condições oferecidas pelo hospedeiro cítrico.

A proteína RpfN está envolvida na regulação negativa dos fatores de patogenicidade. Mutantes defectivos da RpfN apresentam uma produção aumentada de enzimas extracelulares. Esta proteína foi descrita como uma possível porina de membrana externa ou porina sensível à glicose, com grande similaridade à proteína OprB de *P. aeruginosa*. Sua função está relacionada à captação de carboidratos, principalmente frutose (WYLIE & WOROBEC, 1995). Mutação no gene *rpfN* de *Xcc* levou a um aumento na poligalacturonato liase, mas os níveis de outras enzimas também aumentaram coordenadamente. Estas alterações nos níveis de enzimas extracelulares que foram relativamente modestas não afetaram a patogenicidade de *Xcc* em nabo (DOW *et al.*, 2000).

A proteína da biossíntese de glucana periplasmática (HrpM, MdoH e OpgH) (E.C:2.4.1_), codificada por XAC0618 (Tabela 2), foi identificada somente em extratos após 5 dias de infecção, pela técnica de MudPIT. Estudos de indução da expressão gênica em estado infectivo da *Xac*, também demonstraram que o gene que codifica para a proteína OpgH foi induzido neste tempo de infecção (3 e 5 dias de infecção em

folhas de laranjeira), corroborando com os dados obtidos em nosso estudo, comprovando neste caso, que os níveis de expressão gênica foram condizentes com os níveis de expressão protéica (CARVALHO, 2006).

A proteína OpgH está envolvida na biossíntese de glucanas periplamáticas osmorreguladoras (OPGs) relacionada ao metabolismo de parede celular, já que são encontrados nos espaços periplasmáticos de bactérias Gram-negativas. Especula-se que seja um fator de patogenicidade requerido para a expressão de sintomas da doença na planta hospedeira e o desenvolvimento da reação de hipersensibilidade em plantas não hospedeiras (MILLS & MUKHOPADHYAY, 1990). Em proteobactérias, as OPGs estão envolvidas na osmoproteção, ou seja, a concentração deste glucano bacteriano aumenta em resposta ao decréscimo de osmolaridade do ambiente em que a bactéria se encontra (BOHIN, 2000; DANESE *et al*, 2000), assim como, também na formação de biofilme (PARSEK & SINGH, 2003), virulência (MAHAJAN-MIKLOS *et al.*, 1999) e resistência a antibióticos. Esta condição de baixa osmolaridade possivelmente ocorre nos espaços intercelulares do vegetal durante o estabelecimento da bactéria (início da infecção), período este em que há pouca disponibilidade de nutrientes para o fitopatógeno.

Mutantes defectivos no gene *opgH* de *E. chrysanthemi* aboliram a síntese de OPG e exibiram um fenótipo pleiotrópico, incluindo super produção de exopolissacarídeos, redução na mobilidade, hipersensibilidade ao sal bílico, redução na produção de protease, celulase e pectato liase e a perda completa da virulência (PAGE *et al.*, 2003). Em *E. chrysanthemi*, mutação no gene homólogo a *opgH* atenuou a virulência em plantas susceptíveis e debilitou a sua habilidade em induzir uma resposta de hipersensibilidade em plantas resistentes, que é afetado pela alteração no potencial osmótico no espaço periplasmático (MINSAVAGE *et al.*, 2004).

A proteína precursora de glutaril-7-ACA acilase ou glutaril-7-ácido-aminocefalosporânico acilase (Gaa) (EC:3.5.1.93), codificada por XAC2341 (Tabela 2), foi identificada pela técnica de 2D + MS e teve sua expressão diminuída em 9,22 vezes em extratos após 3 dias de infecção. Por outro lado, a expressão nos extratos após 1 e 5 dias de infecção foi semelhante a da *Xac* cultivada em meio CN. Pela tecnologia de

MudPIT ela foi detectada somente em extratos após 1 dia de infecção. A Gaa pertence à família de peptidases S45 e é responsável pela formação do ácido aminocefalosporânico (7-ACA), que é um intermediário chave na síntese de antibióticos cefem.

Em *Pseudomonas* sp. estirpe GK16, o polipeptídio nascente da enzima é sintetizado como um polipeptídio de 74 kDa contendo um peptídeo sinal no seu N terminal. Após a remoção do peptídeo sinal, o polipeptídio precursor de 70 kDa enzimaticamente inativo é ativado por clivagens proteolíticas nas duas subunidades, a 16 kDa α e a 54 kDa β no periplasma (MATSUDA & KOMATSU, 1985; LEE & PARK, 1998).

A proteína AMP-ligase, codificada por XAC0237 (Tabela 2), pertencente à família de enzimas ligadoras de AMP dependentes de ATP, foi identificada pela técnica de MudPIT em extratos após 3 dias de infecção. As AMP ligases são componentes chaves na biossíntese de antibióticos e sideróforos, em que substratos específicos são ativados por adição de AMP. O composto ativado conduz ligações ao grupo tiol de enzimas biossíntéticas ou a uma proteína acil carreadora (DE CRÉCY-LAGARD *et al.*, 1997; QUADRI *et al.*, 1999; KEATING *et al.*, 2000; SILAKOWSKI *et al.*, 2000; FIEDLER *et al.*, 2001).

O gene fadD32 de M. tuberculosis codifica uma acil-CoA sintase, pertencente à família das enzimas acil-AMP ligases, envolvidas na ativação de ácidos graxos como acil adenilatos antes de transferir para poliquetídeos sintases (TRIVEDI et al., 2004). A proteína FadD32, uma acil-CoA carboxilase, pertencente à classe de enzimas que catalisam a formação de acil-CoA carboxilatado, são importantes na biossíntese de ácido micólico que são essenciais para a formação do envelope celular de vários patógenos humanos e representa um alvo atrativo para o desenvolvimento de novas drogas antituberculose. Mutante defectivo no gene fadD32 foi deficiente na produção de ácido micólico e exibiram a morfologia da colônia que tipifica mutantes sem micolato, indicando que fadD32 seja essencial para a sobrevivência de micobactérias (PORTEVIN et al., 2005).

A proteína de virulência (AcvB) (XAC1368) (Tabela 2) foi detectada pela técnica de MudPIT somente nos extratos após 1 e 5 dias de infecção e especula-se que seja homóloga a proteína de virulência AcvB de *A. tumefaciens*, componente do SSTQ em *A tumefaciens*, localizada no cromossomo principal, é requerida para transferir T-DNA dentro das células das plantas hospedeiras (KANG *et al.*, 1994; PAN *et al.*, 1995). Em *Rhizobium tropici*, o gene *atvA* é transcricionalmente super expresso por choque ácido e é homólogo ao gene *acvB* de *A. tumefaciens*. Ambos os mutantes (*atvA* e *acvB*) são sensíveis ao ácido, indicando que esses dois genes são requeridos para tolerância a ácidos (VINUESA *et al.*, 2006).

A proteína RNase R (VacB) (XAC1567) é uma 3'-5' exorribonuclease e foi encontrada em extratos após 1 e 5 dias de infecção pela técnica de MudPIT (tabela 2). Em *S. flexineri*, a Rnase R é essencial para a expressão de genes de virulência localizados no plasmídeo maior (CHENG *et al.*, 1998), pois capacitam a produção de proteínas Vir e assim modulam a habilidade da bactéria aderir e a penetrar nas células do hospedeiro (TOBE *et al.*, 1992).

Em estirpes de *Burkholderia* (bactéria endossimbiôntica que coloniza o citoplasma do fungo *Gigaspora margarita*) a proteína VacB é responsável pela capacidade em estabelecer uma interação simbiôntica com o fungo *G. margarita* (RUIZ-LOZANO & BONFANTE, 2000). Em *E. coli*, mutantes desta proteína e da polinucleotídeo fosforilase não são viáveis, indicando que RNase R participa na função celular essencial (metabolismo de RNA), em adição ao seu papel na virulência (CHENG *et al.*, 1998). Recentemente foi comprovado que Rnase R afeta a expressão gênica na fase estacionária de cultivo de *E. coli*, através da regulação pós-transcricional de RNAm de OmpA (proteína de membrana externa A), que tem um importante papel estrutural na resistência ao estresse e na patogenicidade. Tal proteína constitui-se no alvo na defesa de células hospedeiras de mamíferos, e portanto, implica-se que a RNase R neste caso, pode funcionar como um modulador na expressão de genes na fase celular estacionária (ANDRADE *et al.*, 2006).

Os resultados do proteoma da *Xac* infectante mostram processos de adaptação ao hospedeiro e indução de proteínas de virulência da *Xac* no contato patógeno-planta

cítrica. As proteínas do SSTT identificadas e seus efetores foram detectadas no terceiro e quinto dias de infecção, o que corresponde ao período de ataque do patógeno ao hospedeiro, revelando que o sistema secretório está ativado e seus efetores sendo translocados para dentro da célula hospedeira cítrica com o intuito de sobrepujar os mecanismo de defesa da planta cítrica, levando aos sintomas de encharcamento e a hiperplasia, e posteriormente à necrose do tecido infectado, característicos do cancro cítrico.

Os SSTD e SSTQ tiveram as suas proteínas diferenciais identificadas em todos os tempos estudados (1, 3 e 5 dias de infecção), mostrando que estes sistemas estejam ativos desde o início do processo infeccioso e pelo menos até a fase pré-necrótica da interação *Xac*::citros, garantindo o estabelecimento desse patógeno no espaço apoplástico do hospedeiro através da degradação da parede celular e consequente captação de nutrientes provenientes das ações enzimáticas, cujo produto são liberados por esses sistemas.

A goma xantana teve suas proteínas Gum diferenciais encontradas no primeiro e terceiro dias de infecção, coincidindo com os sintomas de encharcamento do tecido hospedeiro atacado, implicando que a sua presença está relacionada aos processos iniciais de fixação, colonização e adaptação da *Xac* no hospedeiro cítrico, possível indução do encharcamento pela captação de água promovida pela força osmótica criada pela goma, além de proteger o patógeno na forma de uma barreira física contra as respostas de defesa da planta.

Conclusões

As tecnologias proteômicas, 2D + MS e MudPIT, utilizadas neste estudo, identificaram proteínas de *Xac* diferenciais durante o processo de infecção, sendo que, a tecnologia 2D + MS, permitiu a quantificação da variação de expressões protéicas ao longo do processo infeccioso de *Xac*, enquanto a tecnologia de MudPIT identificou a presença ou ausência das proteínas detectadas nos extratos em estudo.

A tecnologia de MudPIT se mostrou mais sensível na identificação de proteínas se comparada a 2D + MS, visto que 71% das proteínas, neste estudo, (40/57), foram identificadas por MudPIT. Além disso, a tecnologia de MudPIT identificou uma média de 1100 proteínas por extrato protéico, o que representa 30% das proteínas preditas no genoma da Xac, já por, 2D + MS foi possível detectar uma média de 600 "spots" por gel (extrato) compreendidos entre uma faixa de pH de 4 a 7 e PM entre 10 a 90 kDa, correspondente a 15% das proteínas preditas. E ainda, os resultados revelaram que 93% das proteínas identificadas por 2D + MS foram também identificadas por MudPIT.As proteínas diferencialmente expressas, identificadas neste estudo, nos forneceram uma cronologia de como e quando os mecanismos de ataque e defesa desse fitopatógeno são ativados (SSTT e seus efetores são expressos no terceiro e quinto dias de infecção, SSTD e SSTQ estão expressos em todos os tempos infectivos da Xac estudados, Goma xantana é expressa no primeiro e terceiro dias de infecção), corroborando com a literatura, que a Xac quando em estado infectivo ativa os SSTT, SSTD e SSTQ, garantindo o seu estabelecimento no espaço apoplástico do hospedeiro cítrico através da liberação de efetores (HpaF, HrpW, e as proteínas Xop) que subvertertem o metabolismo das células atacadas do hospedeiro em favor do patógeno, e enzimas degradadoras (celulases e Glucana 1,4-b-glicosidase) que geram nutrientes através da degradação da parede do hospedeiro cítrico.

REFERÊNCIAS

ALEGRIA, M. C. et al. New protein-protein interactions identified for the regulatory and structural components and substrates of the type III secretion system of the phytopathogen *Xanthomonas axonopodis* pv. *citri*. **J. Bacteriol**, Washington, v.186, p.6186-6197, 2004.

ALFANO, J. R.; COLLMER, A. The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, avr proteins, and death. **J. Bacteriol,** Washington, v.179, p.5655-5662, 1997.

ALTSCHUL, S. F. et al. Basic local alignment search tool. **J. Mol. Biol,** London, v.215, n.3, p. 403-410, 1990.

ANDRADE, J. M.; CAIR RÃO, F.; ARRAIANO, C. M. RNase R affects gene expression in stationary phase: regulation of *om*pA. **Mol. Microbiol**, Salem, v.60, p.219-228, 2006.

ANDRADE, M. A. et al. Comparison of ARM and HEAT protein repeats. **J. Mol. Biol,** London, v.309, p.1-18, 2001.

ARAI, M.; IKEDA, M.; SHIMIZU, T. Comprehensive analysis of transmembrane topologies in prokaryotic genomes. **Gene**, Amsterdam, v.304, p.77–86, 2003.

BARBER, C. E. et al. A novel regulatory system required for pathogenicity of *Xanthomonas campestris* is mediated by a small diffusible signal molecule. **Mol. Microbiol**, Salem, v.24, p.555-566, 1997.

BENDER, C.; RANGASWAMY, V.; LOPER, J. Poliketide production by plant-associated *Pseudomonas*. **Annu Rev Phytopathol**, Palo Alto, v.37, p.175-196, 1999.

BHAT, M. K. Cellulases and related enzymes in biotechnology. **Biotechnol. Adv**, Oxford, v.18, p.355-383, 2000.

BIGOT, A. Role of FliF and Flil of *Listeria monocytogenes* in Flagellar Assembly and Pathogenicity. **Infect. Immun**, Bethesda, v.73, p.5530–5539, 2005.

BLANK, T. E.; DONNENBERG, M. S. Novel topology of BfpE, a cytoplasmic membrane protein required for type IV fimbrial biogenesis in enteropathogenic *Escherichia coli.* **J. Bacteriol**, Washington, v.183, p.4435-4450, 2001.

BLOCKER, A.; KOMORIYA, K.; AIZAWA, S. Type III secretion systems and bacterial flagella: insights into their function from structural similarities. **Proc. Natl. Acad. Sci. USA**, Washington, v.100, p.3027–3030, 2003.

BOHIN, J. P. Osmoregulated periplasmic glucans in Proteobacteria. **FEMS Microbiol Lett**, Oxford, v.186, p.11-19, 2000.

BONAS, U. Hrp genes of phytopathogenic bacteria. **Curr. Top. Microbiol. Immunol**, Berlin, v. 192, p.79-98, 1994.

BONAS, U.; VAN DEN ACKERVEKEN G. Recognition of bacterial avirulence proteins occurs inside the plant cell: a general phenomenon in resistance to bacterial diseases? **Plant J**, Oxford, v.12, p.1-7, 1997.

BORREL, M. N. et al. Mobile ionophores are a novel class of P-glycoprotein inhibitors. The ejects of ionophores on 4 P -O-tetrahydropyranyl-adriamyic incorporation in K562 drug-resistant cells. **Eur. J. Biochem**, Oxford, v.223, p.125-133, 1994.

BOUCHER, C.; GENIN, S.; ARLAT, M. Current concepts on the pathogenicity of phytopathogenic bacteria. **C R Acad Sci III**, Paris, v.324, p.915-22, 2001.

BRADFORD, M. A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein dye binding. **Anal Biochem,** Orlando, v.72, p.248-254, 1976.

BROWN, K. Florida fights to stop citrus canker. **Science,** Washington, v.292, p.2275-2278, 2001

BURNS, D. L. Biochemistry of type IV secretion. **Curr. Opin. Microbiol**, London, v.2, p.25-29, 1999.

BÜTTNER, D. et al. Targeting of two effector protein classes to the type III secretion system by a HpaC- and HpaB-dependent protein complex from *Xanthomonas campestris* pv. *vesicatoria*. **Mol. Microbiol**, Salem, v.59, p.513-527, 2006.

BUTTNER, D.; BONAS, U. Getting across—bacterial type III effector proteins on their way to the plant cell. **EMBO J**, Oxford, v.21, p.5313-5322, 2002a.

BUTTNER, D.; BONAS. U. Port of entry—the type III secretion translocon. **Trends Microbiol**, Cambridge , v.10, p.186-192, 2002b.

CANOVAS, D. et al. Role of trehalose in growth at high temperature of *Salmonella* enterica serovar typhimurium, **J. Bacteriol**, v.183, p.3365-3371, 2001.

CAO, T. B.; SAIER, M. H. JR. Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: organismal distribution, structural constraints and evolutionary conclusions. **Microbiol**, Reading, v.147, p.3201-3214, 2001.

CARVALHO, F. M. S., Expressão gênica em *Xanthomonas axonopodis* pv. *citri* controlada por promotores induzidos pela planta hospedeira. Ribeirão Preto, 2006. 177f. Tese (Doutorado em genética). Faculdade de Medicina de Ribeirão Preto,

Universidade de São Paulo. Ribeirão Preto.

CHANG, C. W. et al. The LPB1 Gene Is Important for Acclimation of *Chlamydomonas reinhardtii* to Phosphorus and Sulfur Deprivation **Plant Physiol**, Lancaster, v.138, p.319–329, 2005.

CHANG, K. W.; WENG, S. F.; TSENG, Y. H. UDP-glucose dehydrogenase gene of *Xanthomonas campestris* is required for virulence. **Biochem. Biophys. Res. Commun,** San Diego, v.287, p.550-555, 2001.

CHARKOWSKI, A. O. et al. The *Pseudomonas syringae* pv. *tomato* HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. **J. Bacteriol**, Washington, v.180, p.5211-5217, 1998.

CHENG, Z. F. et al. The vacB gene required for virulence in *Shigella flexneri* and *Escherichia coli* encodes the exoribonuclease RNase R. **J. Biol. Chem,** Baltimore, v.273, p.14077-14080, 1998.

CHOU, F. L. The *Xanthomonas campestris* gumD gene required for synthesis of xanthan gum is involved in normal pigmentation and virulence in causing black rot. **Biochem. Biophys. Res. Commun**, San Diego, v.233, p.265-269, 1997.

CHRISTIE, P. J. *Agrobacterium tumefaciens* T-complex transport apparatus: A paradigm for a new family of multifunctional transporters in eubacteria. **J. Bacteriol**, Washington, v.179, p.3085-3094, 1997.

CHRISTIE, P. J.; VOGEL. J. P. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. **Trends Microbiol**, Cambridge, v.8, p.354-360, 2000.

CORNELIS, G. R.; VAN GIJSEGEM, F. Assembly and function of type III secretory systems. **Annu. Rev. Microbiol**, Palo Alto, v.54, p.735-774, 2000.

CUNNAC, S. et al. Inventory and functional analysis of the large Hrp regulon in *Ralstonia solanacearum*: identification of novel effector proteins translocated to plant host cells through the type III secretion system, **Mol. Microbiol**, Salem, v. 53, p.115-128, 2004.

CUNNINGHAM, F. X.; LAFOND, T. P.; GANTT, E. Evidence of a role for LytB in the nonmevalonate pathway of isoprenoid biosynthesis. **J. Bacteriol**, Washington, v.182, p.5841-5848, 2000.

DA SILVA, A. C. et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. **Nature**, London, v.417, p.459-463, 2002.

DAI, J. B. et al. The crystal structure of muscle phosphoglucomutase refined at 2.7-angstrom resolution. **J. Biol. Chem**, Baltimore, v.267, p.6322-6337, 1992.

DANESE, P. N.; PRATT, L. A.; KOLTER, R. Exopolysaccharide production is required for development of *Escherichia coli* K-12 biofilm architecture. **J. Bacteriol**, Washington, v.182, p.3593-3596, 2000.

DANIELS, M. J. et al. Cloning of genes involved in pathogenicity of *Xanthomonas campestris* pv. *campestris* using the broad-host-range cosmid pLAFR1. **EMBO J**, Oxford, v.3, p.3323-3328, 1984.

DARZINS, A. Characterization of a *Pseudomonas aeruginosa* gene cluster involved in pilus biosynthesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium *Myxococcus xanthus*. **Mol. Microbiol**, Salem, v.11, p.137-53, 1994.

DARZINS, A.; RUSSELL, M. A. Molecular genetic analysis of type-4 pilus biogenesis and twitching motility using *Pseudomonas aeruginosa* as a model system - a review. **Gene,** Amsterdam, v.192, p.109-115, 1997.

DAVIES, J. P.; YILDIZ, F. H.; GROSSMAN, A. Sacl, a putative regulator that is critical for survival of *Chiamydomonas reinhardtii* during Sulfur deprivation. **EMBO J**, Oxford, v.15, p.2150-2159, 1996.

DE CRÉCY-LAGARD, V. et al. Pristinamycin I biosynthesis in *Streptomyces* pristinaespiralis. **J. Bacteriol.** Washington, v.179, p.705-713, 1997.

DEAN, C. R.; GOLDBERG, J. B. *Pseudomonas aeruginosa* galU is required for a complete lipopolysaccharide core and repairs a secondary mutation in a PA103 (serogroup O11) wbpM mutant. **FEMS Microbiol. Lett**, Oxford, v.210, p.277-283, 2002.

DENG, W. L.; HUANG, H. C. Cellular locations of *Pseudomonas syringae* pv. syringae HrcC and HrcJ proteins, required for harpin secretion via the type III pathway. **J. Bacteriol,** Washington, v.181, p.2298-2301, 1999.

DEZAJACOMO, J. **Análise do banco de mutantes de** *Xanthomonas axonopodis* **pv.** *citri* **por inoculação em planta hospedeira**. Jaboticabal, 2005. 52f. Dissertação

(Mestrado em Genética e Melhoramento de Plantas). Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista. Jaboticabal.

DOW, J. M. et al. Novel genes involved in the regulation of pathogenicity factor production within the *rpf* gene cluster of *Xanthomonas campestris*. **Microbiol**, Reading, v.146, p.885-891, 2000.

DOW, M.; NEWMAN, M.; VON ROEPENACK, E. The induction and modulation of plant defense responses by bacterial lipopolysaccharides. **Annu. Rev. Phytopathol**, Palo Alto, v.38, p.241-261, 2000.

EISENREICH, W. et al. The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. **Chem. Biol,** London, v.5, p.221-233, 1998.

EYMANN, C. et al. A comprehensive proteome map of growing *Bacillus subtilis* cells. **Proteomics,** Weinheim, v. 4, p.2849–2876, 2004.

FENSELAU, S.; BONAS, U. Sequence and expression analysis of the *hrpB* pathogenicity operon of *Xanthomonas campestris* pv. *vesicatoria* which encodes eight proteins with similarity to components of the Hrp, Ysc, Spa and Fli secretion systems. **Mol Plant Microbe Interact**, London, v.8, p.845-854, 1995.

FIEDLER, H. P. et al. Enterobactin: the characteristic catecholate siderophore of *Enterobacteriaceae* is produced by *Streptomyces* species. **FEMS Microbiol. Lett**, Oxford, v.196, p.147-151, 2001.

FOSTER, L. J.; DE HOOG, C. L.; MANN, M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. **Proc. Natl. Acad. Sci. U.S.A,** Washington, v.100, p.5813–5818, 2003.

FUNDECITRUS, **Fundo de Defesa da Citricultura**. Disponível em: http://www.fundecitrus.com.br>. Acesso em: 2 de dezembro de 2006.

GALAN, J. E. Molecular genetic bases of Salmonella entry into host cells. **Mol. Microbiol,** Salem, v.20, p.263-271, 1996.

GAUTHIER, M. J.; FLATAU, G. N.; CLEMENT, R. L. Influence of phosphate ions and alkaline phosphatase activity of cells on the survival of *Escherichia co/i* in sea water. **Microb. Ecol,** New York, v.20, p.245-251, 1990.

GELVIN, S. B. *Agrobacterium* and plant genes involved in T-DNA transfer and integration. **Annu. Rev. Plant Biol. Plant Mol. Biol**, Palo Alto, v.51, p.223-256, 2000.

GIAEVER, H. M. et al. Biochemical and genetic characterisation of osmoregulatory trehalose synthesis in *Escherichia col*i, **J. Bacteriol**, Washington, v.170, p.2841-2849, 1988.

GINGRAS, A. C.; AEBERSOLD, R.; RAUGHT, B. Advances in protein complex analysis using mass spectrometry. **J. Physiol**, Oxford, v.563, p.11–21, 2005.

GIRAUD, M. F. et al. RmlC, the third enzyme of dTDP-L-rhamnose pathway, is a new class of epimerase. **Nat. Struct. Biol,** New York, v.7, p.398-402, 2000.

GUERREIRO, N.; DJORDJEVIC, M. A.; ROLFE, B. G. Proteome analysis of the model microsymbiont *Sinorhizobium meliloti*: Isolation and characterization of novel proteins. **Electrophoresis,** Weinheim, v.20, p.818-825, 1999.

GUTTMAN, D. S. et al. A Functional Screen for the Type III (Hrp) Secretome of the Plant Pathogen *Pseudomonas syringae*. **Science**, Washington, v.295, p.1722-1726, 2002.

HACKER, J.; KAPER. J. B. Pathogenicity islands and the evolution of microbes. **Ann. Rev. Microb**, Palo Alto, v.54, p.641-679, 2000.

HAMRICK, T. S. et al. Antigenic variation of gonococcal pilin expression *in vivo*: analysis of the strain FA1090 pilin repertoire and identification of the *pilS* gene copies recombining with *pile* during experimental human infection. **Microbiol**, Reading, v.147, p.839-849, 2001.

HATTORI, Y. Sequence characterization of the *vir* region of a nopaline type Ti plasmid, pTi-SAKURA. **Genes Genet. Syst**, Mishima, v.76, p.121-130, 2001.

HEGEMAN, A. D.; GROSS, J. W.; FREY, P. A. Concerted and stepwise dehydration mechanisms observed in wild-type and mutated *Escherichia coli* dTDP-glucose 4,6-dehydratase. **Biochem,** Washington, v.41, p.2797-2804, 2002.

HOPWOOD, D. A. Genetic contributions to understanding polyketide synthases. **Chem. Rev,** Washington, v.97, p.2465-2497, 1997.

HUECK, C. J. Type III protein secretion systems in bacterial pathogens of animals and plants. **Microbiol. Mol. Biol. Rev**. New York, v.62, p.379-433, 1998.

HUISMAN, G. W.; KOLTER. R. Sensing starvation: a homoserine lactone--dependent signaling pathway in *Escherichia coli*. **Science**, Washington, v.265, n.5171, p.537-539, 1994.

HYUN-HAM, J. et al. A. A cloned *Erwinia chrysanthemi* Hrp (type III protein secretion system) functions in *Escherichia coli* to deliver *Pseudomonas syringae* Avr signals to plant cell and to secrete Avr proteins in culture. **Proc. Natl. Acad. Sci. USA**, Washington, v.95, p.10206-10211, 1998.

IRIHIMOVITCH, V.; STERN, D. B. The sulfur acclimation SAC3 kinase is required for chloroplast transcriptional repression under sulfur limitation in *Chlamydomonas reinhardtii*. **Proc. Natl. Acad. Sci. USA**, Washington, v.103, p.7911-7916, 2006.

JAKUBOWSKI, S. et al. *Agrobacterium tumefaciens* VirB9, an outer-membrane-associated component of a type IV secretion system, regulates substrate selection and T-pilus biogenesis. **J. Bacteriol**, Washington, v.187, p.3486-95, 2005.

JOHANSSON, H. et al. Molecular cloning and characterization of a cDNA encoding poplar UDP-glucose dehydrogenase, a key gene of hemicellulose/pectin formation. **Biochim. Biophys. Acta,** Amsterdam, v.1576, p.53-58, 2002.

JONES, P. G.; INOUYE, M. The cold shock response – a hot topic. **Mol. Microbiol**, Salem, v.11, p.811-818, 1994.

KANG, H. W.; WIRAWAN, I. G.; KOJIMA, M. Cellular localization and functional analysis of the protein encoded by the chromosomal virulence gene (acvB) of Agrobacterium tumefaciens. **Biosci. Biotechnol. Biochem**, Tokyo, v.58, p.2024-2032, 1994.

KATZEN, F. et al. Promoter Analysis of the *Xanthomonas campestris* pv. campestris *gum* Operon Directing Biosynthesis of the Xanthan Polysaccharide. **J. Bacteriol**, Washington, v.178, p.4313-4318, 1996.

KATZEN, F. *Xanthomonas campestris* pv. *campestris gum* Mutants: Effects on Xanthan Biosynthesis and Plant Virulence. **J. Bacteriol,** Washington, v.180, p.1607-1617, 1998.

KAZEMI-POUR, N.; CONDEMINE, G.; HUGOUVIE UX-COTTE-PATTAT, N. The secretome of the plant pathogenic bacterium *Erwinia chrysanthemi*. **Proteomics**, Weinheim, v.4, p.3177-3186, 2004.

- KEATING, T. A.; MARSHALL, C. G.; WALSH, C. T. Vibriobactin biosynthesis in *Vibrio cholerae*: VibH is an amide synthase homologous to nonribosomal peptide synthetase condensation domains. **Biochem,** Washington, v.39, p.15513-15521, 2000.
- KEMP, B. P. et al. *Xanthomonas axonopodis* pv. *manihotis* gumD gene is essential for EPS production and pathogenicity and enhances epiphytic survival on cassava (*Manihot esculenta*) **Physiol. Mol. Plant Pathol**, London, v.64, p.209-218, 2004.
- KIM, J. F.; BEER, S. V. HrpW of *Erwinia amylovor*a, a new harpin that contains a domain homologous to pectate lyases of a distinct class. **J. Bacteriol**, Washington, v.180, p.5203-5210, 1998.
- KIM, J. G. Characterization of the *Xanthomonas axonopodis* pv. *glycines* Hrp Pathogenicity Island **J. Bacteriol**, Washington, v.185, p.3155-3166, 2003.
- KIM, S. K. Molecular analysis of the phoH gene, belonging to the phosphate regulon in *Escherichia coli*. **J. Bacteriol**, Washington, v.175, p.1316-1324, 1993.
- KOLKER, E. et al. Initial Proteome Analysis of Model Microorganism *Haemophilus influenzae* Strain Rd KW20, **J. Bacteriol**, Washington, v.185, p.4593-4602, 2003.
- KOLLER, O. C. Citricultura: laranja, limão e tangerina. Editora Rígel, Porto Alegre, 1994. 446p.
- LAEMMLI, U. K. Cleveage of structural proteins during the assembly of the head of bacteriophage T₄. **Nature,** London, v.227, p.680-685, 1970.
- LAM, H. M.; WINKLER, M. E. Characterization of the complex pdxH-tyrS operon of Escherichia coli K-12 and pleiotropic phenotypes caused by pdxH insertion mutations. **J. Bacteriol**, Washington, v.174, p.6033–6045, 1992.
- LEACH, J. E.; WHITE, F. F. Bacterial avirulence genes. **Annu. Rev. Phytopathol**, Palo Alto, v.34, p.153-179, 1996.
- LEE, Y. S.; PARK, S. S. Two-Step Autocatalytic Processing of the Glutaryl 7 Aminocephalosporanic Acid Acylase from *Pseudomonas* sp. Strain GK16. **J. Bacteriol,** Washington, v.180, p.4576-4582, 1998.
- LEVCHENKO, I. et al. A specificity-enhancing factor for the ClpXP degradation machine. **Science,** Washington, v.289, p.2354-2356, 2000.

LI, J. et al. Relationship between evolutionary rate and cellular location among the Inv/Spa invasion proteins of *Salmonella enterica*. **Proc. Natl. Acad. Sci. USA**, Washington, v.92, p.7252-7256, 1995.

LI, W. et al. *rmlB* and *rmlC* genes are essential for growth of mycobacteria. **Biochem. Biophys. Res. Commun,** San Diego, v.342, p.170-178, 2006.

LIM, C. H.; OZKANCA, R.; FLINT, K. P. The effects of osmotic stress on survival and alkaline activity of *Aeromonas hydrophila* phosphatase. **FEMS Microbiol. Lett**, Oxford, v.137, p.19-24, 1996.

LIN, C. S. et al. Nucleotide sequence and expression of UDP-glucose de-hydrogenase gene required for the synthesis of xanthan gum in *Xanthomonas campestris*. **Biochem. Biophys. Res. Commun**, San Diego, v.207, p.223–230, 1995.

LINDGREN, P. B. The role of hrp genes during plant-bacterial interactions. **Annu. Rev. Phytopathol,** Palo Alto, v.35, p.129-152, 1997.

LOPEZ-CAMPISTROUS, A. et al. Localization, Annotation, and Comparison of the *Escherichia coli* K-12 Proteome under Two States of Growth. **Mol. Cell. Proteomics,** Bethesda, v.4, p.1205–1209, 2005.

LORY, S.; STROM, M. S. Structure-function relationship of type-IV prepilin peptidase of *Pseudomonas aeruginosa* – a review. **Gene,** v.192, p.117-121, 1997.

MACNAB, R. M. Genetics and biogenesis of bacterial flagella. **Annu. Rev. Genet**, Palo Alto, v.26, p.131-158, 1992.

MAHAJAN-MIKLOS, S., et al. Molecular mechanisms of bacterial virulence elucidated using a *Pseudomonas aeruginosa-Caenorhabditis elegans* pathogenesis model. **Cell,** Cambridge, v.96, p.47-56, 1999.

MARELLI, M. et al. Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane. **J. Cell Biol**, New York, v.167, p.1099–1112, 2004.

MARTIN, P. R. et al. Characterization of a five-gene cluster required for the biogenesis of type 4 fimbriae in *Pseudomonas aeruginosa*. **Mol. Microbiol,** Salem, v.16, p.497-508, (1995)

MATSUDA, A.; KOMATSU, K-I. Molecular Cloning and Structure of the Gene for 73-(4-Carboxybutanamido) cephalosporanic Acid Acylase from a *Pseudomonas* Strain. **J. Bacteriol,** Washington, v.163, p.1222-1228, 1985.

METHA, A.; ROSATO, Y. B. A simple method for in vivo expression studies of *Xanthomonas axonopodis* pv. *citri*. **Curr. Microbiol**, New York, v.47, p.400-403, 2003.

METHA, A.; ROSATO, Y. B. Differentially expressed proteins in the interaction of *Xanthomonas axonopodis* pv. *citri* with leaf extract of the host plant. **Proteomics,** Weinheim, v.1, p.1111-1118, 2001.

MILLS, D.; MUKHOPADHYAY, P. Organization of the *hrpM* locus of *Pseudomonas* syringae pv. syringae and its potential function in pathogenesis, In: SILVER, S. (ed.), **Pseudomonas: biotransformation, pathogenesis, and evolving biotechnology**. American Society for Microbiology, Washington, D.C. 1990. p. 47–57.

MINAMINO, T. et al. The ATPase Flil Can Interact with the Type III Flagellar Protein Export Apparatus in the Absence of Its Regulator, FliH. **J. Bacteriol**, Washington, v.185, p.3983-3988, 2003.

MINSAVAGE, G. V. et al. Importance of $opgH_{Xcv}$ of $Xathomonas\ campestris\ pv.$ vesicatoria in host-parasite interactions. **Mol. Plant-Microbe Interact**, London, v.17, p.152-161, 2004.

MONDS, R. D. et al. Conservation of the Pho regulon in *Pseudomonas fluorescens* Pf0-1. **Appl. Environ. Microbiol**, Washington, v.72, p.1910-1924, 2006.

NAKATA, N. et al. Identification and characterization of virK, a virulence-associated large plasmid gene essential for intercellular spreading of *Shigella flexneri*. **Mol. Microbiol**, Salem, v.6, p.2387-95, 1992.

NATERA, S. H. A.; GUERREIRO, N.; DJORDJEVIC, M. A. Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis. **Mol. Plant-Microbe Interact**, London, v.13, p.995-1009, 2000.

NESPER, J. et al. Characterization of *Vibrio cholerae* O1 El Tor *galU* and *galE* Mutants: Influence on Lipopolysaccharide Structure, Colonization, and Biofilm Formation. **Infect. Immune**, Bethesda, v.69, p.435-445, 2001.

NUNN, D. N.; LORY, S. Product of the *Pseudomonas aeruginosa* gene pilD is a prepilin leader peptidase (tpe IV pilin/protein export). **Proc. Natl. Acad. Sci. USA**, Washington, v.88, p.3281-3285, 1991.

NUNN, D.; BERGMAN, S.; LORY. S. Products of three accessory genes, *pilB*, *pilC*, and *pilD*, are required for biogenesis of *Pseudomonas aeruginosa* pili. **J. Bacteriol**, Washington, v.172, p.2911-2919, 1990.

O`FAREL, P. H. High resolution two-dimensional electrophoresis of proteins. **J. Biol. Chem,** Baltimore, v.250, p.4007-4021, 1975.

OH, M. K. et al. Global expression profiling of acetate-grown *Escherichia coli.* **J. Biol. Chem,** Baltimore, v.277, p.13175-13183, 2002.

PAGE, F. et al. Osmoregulated Periplasmic Glucan Synthesis Is Required for *Erwinia chrysanthemi* Pathogenicity. **J. Bacteriol,** Washington, v.183, p.3134-3141, 2001.

PAN, S. Q. et al. An *Agrobacterium* virulence factor encoded by a Ti plasmid gene or a chromosomal gene is required for T-DNA transfer into plants. **Mol. Microbiol**, Salem, v.17, p.259-269, 1995.

PARK, H-S. M. et al. Structural alterations in a type IV pilus subunit protein result in concurrent defects in multicellular behaviour and adherence to host tissue. **Mol. Microbiol,** Salem, v.42, p.293–307, 2001.

PARSEK, M. R.; SINGH, P. K. Bacterial biofilms: an emerging link to disease pathogenesis. **Annu. Rev. Microbiol,** Palo Alto, v.57, p.677-701, 2003.

PENG, J. et al. Evaluation of Multidimensional Chromatography Coupled with Tandem Mass Spectrometry (LC/LC-MS/MS) for Large-Scale Protein Analysis: The Yeast Proteome, **J. Proteome Res**, Washington, v.2, p.43-50, 2003.

PLANO, G. V.; DAY, J. B.; FERRACCI. F. Type III export: new uses for an old pathway. **Mol Microbiol**, Salem, v.40, p.284-293, 2001.

PORTEVIN, D. et al. The Acyl-AMP Ligase FadD32 and AccD4-containing Acyl-CoA Carboxylase Are Required for the Synthesis of Mycolic Acids and Essential for Mycobacterial Growth. Identification of the carboxylation product and determination of the acyl-CoA carboxylase components. **J. Biol. Chem**, Baltimore, v.280, p.8862-8874, 2005.

PUGSLEY, A. P.; POQUET, I.; KORNACKER, M. G. Two distinct steps in pullulanase secretion by *Escherichia coli* K-12. **Mol. Microbiol**, Salem, v.5, p.865-873, 1991.

PY, B.; CHIPPAUX, M.; BARRAS, F. Mutagenesis of cellulase EGZ for studying the general protein secretory pathway in *Erwinia chrysanthemi*. **Mol Microbiol**, Salem, v.7, p.785-793, 1993.

PY, B.; LOISEAU, L.; BARRAS, F. An inner membrane plataform in the type II secretion machinery of Gram-negative bacteria. **EMBO reports,** London, v.21, p.244-248, 2001.

QUADRI, L. E. et al. Assembly of the *Pseudomonas aeruginosa* nonribosomal peptide siderophore pyochelin: in vitro reconstitution of aryl-4,2-bisthiazoline synthetase activity from PchD, PchE, and PchF. **Biochem**, Washington, v.38, p.14941-14954, 1999.

QUIAN, F. et al. Antibacterial activity of xantho-oligosaccharide deaved from xanthan against phytopathogenic *Xanthomonas campestris* pv. *campestris*. **Process Biochem,** Barking, v.41, p.1582-1588, 2006.

RANISH, J. A. et al. The study of macromolecular complexes by quantitative proteomics. **Nat. Genet**, New York, v.33, **p.**349–355, 2003.

RAY, S. K.; RAJESHWARI, R.; SONTI, R. V. Mutants of *Xanthomonas oryzae* pv. *oryzae* deficient in general secretory pathway are virulence deficient and unable to secrete xylanase. **Mol. Plant-Microbe Interact**, London, v.13, p.394-401, 2000.

REISNER, B. S.; STRALEY. S. C. *Yersinia pestis* YopM: thrombin binding and overexpression. **Infect. Immun**, Bethesda, v.60, p.5242-5252, 1992.

RIGDEN, D. J.; MELLO, L.V.; GALPERIN, M. Y. The PA14 domain, a conserved all-beta domain in bacterial toxins, enzymes, adhesins and signaling molecules. **Trends Biochem. Sci,** Cambridge, v.29, p.335-339, 2004.

RITTER, C.; DANGL, J. L. The *avrRpm1* gene of *Pseudomonas syringae* pv. *maculicola* is required for virulence on *Arabidopsis*. **Mol. Plant-Microbe Interact**, London, v.8, p.444-453, 1995.

RODEN, J. A. et al. A genetic screen to isolate type III effectors translocated into pepper cells during *Xanthomonas* infection. **Mol. Plant-Microbe Interact,** London, v.101, p.16624-16629, 2004.

ROHDICH, F. Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. **Proc. Natl. Acad. Sci. USA,** Washington, v.99, p.1158-63, 2002.

ROINE, E. et al. Hrp pilus: An *hrp*-dependent bacterial surface appendage produced by *Pseudomonas syringae* pv. *tomato* DC3000. **Plant Biol**, Stuttgart, v. 94, p.3459-3464, 1997.

ROSSETTI, V.; MULLER, G. W.; COSTA, A. S. Doenças dos citros causada por algas, fungos, bactérias e vírus., Fundação Cargill, 1993. p.1-84.

ROSSIER, O. et al. The *Xanthomonas* Hrp type III system secretes proteins from plant and mammalian bacterial pathogens. **Proc. Natl. Acad. Sci. USA,** Washington, v.96, p.9368-9373, 1999.

RUDOLPH, K. Infection of the plant by *Xanthomonas*. In: SWINGS, J. G., CIVEROLO, E. L. **Xanthomonas**. Chapman and Hall, New York, NY, 1993. p.193-264.

RUIZ-LOZANO, J. M.; BONFANTE, P. A *Burkholderia* Strain Living Inside the Arbuscular Mycorrhizal Fungus *Gigaspora margarita* Possesses the *vacB* Gene, Which Is Involved in Host Cell Colonization by Bacteria. **Microb Ecol,** New York, v.39, p.137-144, 2000.

RUSSEL, M. M.; DARZINS, A. The *pilE* gene of *Pseudomonas aeruginosa*, required for pilus biogenesis, shares amino acid sequence identity with the N-termini of type 4 prepilin proteins. **Mol Microbiol**, Salem, v.13, p.973-985, 1994.

SANDKVSIT, M. Type II Secretion and Pathogenesis. **Infect. immun,** Bethesda, v.69, p.3523–3535, 2001.

SCHIRCH, L. Folates and Pterins. In: BLAKLEY, R. L.; BENKOVIC, S. J., Eds, 1, Wiley, New York, 1984. p.399.

SHAO, F. et al. Cleavage of *Arabidopsis* PBS1 by a bacterial type III effector. **Science**, Washington, v.301, p.1230-1233, 2003.

SILAKOWSKI, B. et al. The myxochelin iron transport regulon of the myxobacterium *Stigmatella aurantiaca* Sg a15. **Eur. J. Biochem,** Oxford, v.267, p.6476-6485, 2000.

SILVA, F. R. et al. Fastidian gum: the *Xylella fastidiosa* exopolysaccharide possibly involved in bacterial pathogenicity. **FEMS Microbiol. Lett,** Oxford, v.203, p.165-171, 2001.

SIMPSON, A. J. et al. The genome sequence of the plant pathogen *Xylella fastidiosa*. **Nature**, London, v.406, p.151-157, 2000.

SMOLKA, M. B. et al. Proteome analysis of the plant pathogen *Xylella fastidiosa* reveals major cellular and extracellular proteins and a peculiar codon bias distribution. **Proteomics,** Weinheim, v.3, p.224-237, 2003.

STALL, R. E.; CIVEROLO, E. L. *Xanthomonas campestris* pv. *citri*: cause of citrus canker, In: SWINGS, J. G., CIVEROLO, E. L. **Xanthomonas**. Chapman and Hall, New York, NY, 1993. p.48-50.

STAUNTON, J.; WEISSMAN, K. J. Polyketide synthases: a millennium review. **Nat. Prod. Rep**, London, v.18, p.380-416, 2001.

STONE, B. J.; KWAIK, Y. A. Expression of Multiple Pili by *Legionella pneumophila*: Identification and Characterization of a Type IV Pilin Gene and Its Role in Adherence to Mammalian and Protozoan Cells. **Infect Immun**, Bethesda, v.66, p.1768-1775, 1998.

STROM, M. S.; NUNN, D.; LORY, S. Multiple Roles of the Pilus Biogenesis Protein PilD. Involvement of PilD in Excretion of Enzymes from *Pseudomonas aeruginosa* **J. Bacteriol**, Washington, v.173, p.1175-1180, 1991.

STROM, M. S.; LORY. S. Structure-function and biogenesis of the type IV pili. **Annu. Rev. Microbiol**, Palo Alto, v.47, p.565–596, 1993.

STROM, M. S.; NUNN, D. N.; LORY, S. Posttranslational processing of type IV prepilin and homologs by PilD of *Pseudomonas aeruginosa*. **Methods Enzymol**, New York, v.235, p.527-40, 1994.

SUGIO, A.; YANG, B.; WHITE, F. F. Characterization of the *hrpF* Pathogenicity Peninsula of *Xanthomonas oryzae* pv. *oryzae*. **Mol. Plant-Microbe Interact**, London, v.18, p.546-554, 2005.

SUN, Q. H. et al. Type-II secretion pathway structural gene *xps*E, xylanase- and cellulase secretion and virulence in *Xanthomonas oryzae* pv. *oryzae*. **Plant Pathol**, Oxford, v.54, p.15-21, 2005.

SWORDS, K. M et al. Spontaneous and induced mutations in a single open reading frame alter both virulence and avirulence in *Xanthomonas campestris* pv. *vesicatoria avrBs*2. **J. Bacteriol**, Washington, v.178, p.4661-4669, 1996.

TAM, L. T. et al. Proteome signatures for stress and starvation in Bacillus subtilis as revealed by a 2-D gel image color coding approach. **Proteomics**, Weinheim, v.6, p.4565-4585, 2006.

TANG, J. L. Cloning and characterization of the rpfC gene of *Xanthomonas oryzae* pv. *oryzae*: involvement in exopolysaccharide production and virulence to rice. **Mol. Plant Microbe Interact**, London, v.9, p.664–666, 1996.

TOBE, T. et al. *vacB*, a novel chromosomal gene required for expression of virulence genes on the large plasmid of *Shigella flexneri*. **J Bacteriol**, Washington, v.174, p.6359-6367, 1992.

TRIVEDI, O. A. et al. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria **Nature**, London, v.428, p.441–445, 2004.

TSIAMIS, G. Cultivar-specific avirulence and virulence functions assigned to avrPphF in *Pseudomonas syringae* pv. *phaseolicola*, the cause of bean halo blight disease. **EMBO J,** Oxford, v.19, p.3204-3214, 2000.

TURNER, L. R. et al. Mutations in the consensus ATP-binding sites of XcpR and PilB eliminate extracellular protein secretion and pilus biogenesis in *Pseudomonas aeruginosa*. **J. Bacteriol**, Washington, **v.175**, p.4962-4969, 1993.

VAN GIJSEGEM, F. et al. The *hrp* gene locus of *Pseudomonas solanacearu*m, which controls the production of a type III secretion system, encodes eight proteins related to components of the bacterial flagellar biogenesis complex. **Mol. Microbiol,** Salem, v.15, p.1095-1114, 1995.

VAN GIJSEGEM, F. In planta regulation of phytopathogenic bacteria virulence genes: relevance of plant-derived signals. **Eur. J. Plant Pathol**, Dordrecht, v.103, p.291-301, 1997.

VANDERSLICE, R. W. et al. Genetic engineering of polysaccharide structure in *Xanthomonas campestris*, In: CRESCENZI, V. et al. (ed.), **Biomedical and**

biotechnological advances in industrial polysaccharides. Gordon and Breach Science Publishers, New York, 1988. p.145-156.

VILLAREJO, M.; DAVIES, J. L.; GARNETT, S. Osmoregulation of alkaline phosphatase synthesis in *Escherichia coli* K12. **J. Bacteriol**, Washington, v.156, p.975-978, 1983.

VINUESA, P. et al. Genetic analysis of a pH-regulated operon from *Rhizobium tropici* CIAT899 involved in acid tolerance and nodulation competitiveness. **Mol. Plant-Microbe Interact**, London, v.16, p.159-168, 2003.

VOGLER, A. P. et al. *Salmonella typhimurium* mutants defective in flagellar filament regrowth and sequence similarity of Flil to F0F1, vacuolar, and archaebacterial ATPase subunits. **J. Bacteriol,** Washington, v.173, p.3564-3572, 1991.

VOJNOV, A. A. Expression of the gum operon directing xanthan biosynthesis in *Xanthomonas campestris* and its regulation in planta. **Mol. Plant Microbe Interact**, London, v.14, p.768-774, 2001.

VOLKER, U. et al. Analysis of the induction of general stress proteins of *Bacillus subtilis*. **Microbiol**, Reading, v.140, p.741-752, 1994.

WASHBURN, M. P.; WOLTERS, D.; YATES, J. R., III. Large-scale analysis of the yeast proteome by multidimensional protein identification technology, **Nat. Biotechnol**, New York, v.19, p.242-7, 2001.

WEI, W. et al. The gene coding for the Hrp pilus structural protein is required for type III secretion of Hrp and Avr proteins in *Pseudomonas syringae* pv. *tomato.* **Proc. Natl. Acad. Sci. USA,** Washington, v.97, p.2247–2252, 2000.

WENGELNIK, K. et al. Expression and localization of HrpA1, a protein of *Xanthomonas campestris* pv. *vesicatoria* essential for pathogenicity and induction of the hypersensitive reaction. **J. Bacteriol**, Washington, v.178, p.1061-1069, 1996a.

WENGELNIK, K.; BONAS, U. HrpXv, an AraC-type regulator, activates expression of fiver of the six loci in the *hrp* cluster of *Xanthomonas campestris* pv. *vesicatoria*. **J. Bacteriol**. Washington, v.178, p.3462-3469, 1996.

WENGELNIK, K.; VAN DEN ACKERVEKEN, G.; BONAS, U. HrpG, a key *hrp* regulatory protein of *Xanthomonas campestris* pv. *vesicatoria* is homologous to two-component response regulators. **Mol. Plant-Microbe Interact,** London, v.9, p.704-712, 1996b.

WHITESIDE, J. O.; GARNSEY, S. M; TIMMER, L. W. Compendium of citrus diseases, APS Press, Saint Paul, 1988. p.1-80.

WOLANIN P. M.; WEBRE D. J.; STOCK, J. B. Mechanism of phosphatase activity in the chemotaxis response regulator CheY. **Biochemistry**, Washington, v.42, p.14075-14082, 2003.

WYLIE, J. L.; WOROBEC, E. A. The OprB porin plays a central role in carbohydrate uptake in *Pseudomonas aeruginos*a. **J. Bacteriol**, Washington, v.177, p.3021-3026, 1995.

YILDIZ, F. H.; DAVIES, J. P.; GROSSMAN, A. Sulfur Availability and the *SAC7* Gene Control Adenosine Triphosphate Sulfurylase Gene Expression in *Chlamydomonas reinhardtii*. **Plant Physiol**, Lancaster, v.112, p.669-675, 1996.

YUK, M. H.; HARVILL, E. T.; MILLER, J. F. The BvgAS virulence control system regulates type III secretion in *Bordetella bronchiseptica*. **Mol. Microbiol**, Salem, v.28, p.945-959, 1998.

YURA, T.; NAGAI, H.; MORI, H. Regulation of the heat-shock response in bacteria. **Ann. Rev. Microbiol**, Palo Alto, v.47, p.321-350, 1993.

ZHU, W. M.; MAGBANUA, M. M.; WHITE, F. F. Identification of two novel *hr*p-associated genes in the *hrp* gene cluster of *Xanthomonas oryzae* pv. *oryzae*. **J. Bacteriol**, Washington, v.182, p.1844-1853, 2000.

ZIELINSKI, N. A.; CHAKRABARTY, A. M.; BERRY, A. Characterization and regulation of the *Pseudomonas aeruginosa* algC gene encoding phosphomannomutase. **J. Biol. Chem,** Baltimore, v.266, p.9754-63, 1991.

APÊNDICE

Tabela suplementar I: Proteínas identificadas de Xanthomonas axonopodis pv. citri.

Identidade da proteína	Descrição da proteína	PM	pl
Metabolismo		27672.75	6 225
XAC0031	alcohol dehydrogenase	37672,75	6,225
XAC0075 XAC0083	xylose repressor-like protein short chain dehydrogenase	41111,59 25273,78	9,6374 7,517
XAC0063 XAC0118	methanol dehydrogenase regulator	35779.86	6,6088
XAC0116 XAC0124	fructose-1	36653.51	6,0005
XAC0133	L-lactate dehydrogenase	41830	7,789
XAC0135	two-component system sensor protein	44117,15	8,5339
XAC0154	alpha-amylase	75359,02	6,5499
XAC0158	L-fucose dehydrogenase	37982.05	8,5863
XAC0166	transcriptional regulator lacl family	37191,39	9,0167
XAC0174	phenylalanine hydroxylase	33466.74	4,873
XAC0189	indolepyruvate ferredoxin oxidoreductase chain alpha	129320.10	7,4956
XAC0207	two-component system, sensor protein	38630,74	6,1174
XAC0208	two-component system, regulatory protein	47823,51	6,1514
XAC0213	acyl-CoA thiolase	45560.04	7,8887
XAC0235	haloalkane dehalogenase	34158,95	8,6461
XAC0257	isocitrate lyase	46854,6	6,0517
XAC0265	acyl-CoA dehydrogenase	41355,18	6,2438
XAC0273	cytochrome C5	17906,47	9,0666
XAC0288	oxidoreductase	34757,88	4,8404
XAC0302	transcriptional regulator lysR family	35188,43	9,5284
XAC0307	nucleoside hydrolase	42765,63	5,9237
XAC0321	FMN oxidoreductase	39094,18	6,1237
XAC0322	dehydrogenase	30452.83	6,2329
XAC0326	two-component system, sensor protein	50231,74	8,6042
XAC0334 XAC0358	NADH-dependent FMN reductase	21289.50 55509.76	7,0234 4,8782
XAC0356 XAC0360	glycerol kinase glycerol-3-phosphate dehydrogenase	55917,35	7,3203
XAC0300 XAC0371	4-carboxymuconolactone decarboxylase	15122.03	6,5116
XAC0371 XAC0373	transcriptional regulator	31761,77	10,2005
XAC0373	oxidoreductase	26751,35	7,0573
XAC0427	maltooligosyltrehalose trehalohydrolase	63913.46	5,2871
XAC0429	maltooligosyltrehalose synthase	96044,71	7,8967
XAC0431	glycogen debranching enzyme	80893,6	6,6169
XAC0443	dihydrolipoamide acyltransferase	51779,94	5,9784
XAC0445	pyruvate dehydrogenase E1 beta subunit	35381,55	5,0972
XAC0446	pyruvate dehydrogenase E1 alpha subunit	39660.64	5,2502
XAC0452	4-hydroxyphenylpyruvate dioxygenase	39905,82	4,7823
XAC0454	homogentisate 1	50431.44	6,3402
XAC0462	NADH dehydrogenase subunit 5	101082,52	9,9657
XAC0494	two-component system	83667.74	6,367
XAC0495	two-component system	63164.59	4,8689
XAC0550	glutamine synthetase adenylyltransferase	102805,86	6,804
XAC0557	phosphoanhydride phosphorylase; 6-phytase	43277,87	8,7687
XAC0568	transcriptional regulator mdcY family	26468,33	7,3235
XAC0570	anti-sigma F factor antagonist	15233,59	6,521
XAC0576 XAC0581	pyruvate dehydrogenase transcriptional regulator araC family	99533,52	6,141
XAC0581 XAC0583	oxidoreductase	33269,23 58952,8	10,5689 6,9651
XAC0608	histidine kinase/response regulator hybrid protein	36904.88	4,9044
XAC0648	methanol dehydrogenase heavy chain	70408,29	6,5175
XAC0654	transcriptional regulator acoR	72630,4	7,1227
XAC0680	6-phosphogluconate dehydrogenase	32891,47	5,7953
XAC0683	two-component system	69541.41	7,6217
XAC0684	two-component system	16261.65	4,2843
XAC0711	transcriptional regulator gntR family	28442,33	8,6456
XAC0713	transcriptional regulator lacl family	38446,36	6,6347
XAC0714	glucosaminefructose-6-phosphate aminotransferase	34401.24	6,6288
XAC0734	alcohol dehydrogenase C	39038,79	6,1262
XAC0737	transcriptional regulator	50649,08	10,6364
XAC0738	oxidoreductase	27995,06	6,3529
XAC0759	two-component system	96912,48	8,7614
XAC0762	D-lactate dehydrogenase	47742.36	5,4233
XAC0794	quinone reductase	34204,29	7,433
XAC0804	adenosylhomocysteinase	52799.14	5,6067
XAC0806	phosphoenolpyruvate carboxylase	98331.20	6,6207
XAC0813	methionine adenosyltransferase	43662.41	8,0145 5,7561
XAC0818	ribokinase	32113.06	5,7561

Identidade da proteína	Descrição da proteina	PM	pl
XAC0834	two-component system	28136,23	6,3117
XAC0882	aldehyde dehydrogenase	52459,89	6,5147
XAC0898 XAC0902	two-component system regulatory protein transaldolase B	25165,97 34629,33	10,4477 4,9001
XAC0902 XAC0903	regulator of nucleoside diphosphate kinase	15070.03	6.8915
XAC0903 XAC0917	transcriptional regulator	21417,67	7,6993
XAC0936	tryptophan repressor binding protein	20332,12	7,2141
XAC0941	transcriptional regulator	30162,54	8,0655
XAC1006	malate dehydrogenase	34850,97	5,225
XAC1010	2,4-dienoyl-CoA reductase	73074,44	9,3108
XAC1028	phosphoglycerate mutase	23580,73	6,4209
XAC1039	exopolyphosphatase	55937,44	9,3657
XAC1040	polyphosphate kinase	78462,01	7,3111
XAC1046	isocitrate dehydrogenase	35589,61	5,2386
XAC1074	sensor histidine kinase	40081,01	10,0018
XAC1137	carboxyphosphonoenolpyruvate phosphonomutase	31800,98	4,9425
XAC1138 XAC1139	citrate synthase 2 aconitate hydratase 1	42381.09 93707.29	7,1201 5,2298
XAC1159 XAC1154	regulatory protein pilH family	14313,43	4,9411
XAC1160	oxidoreductase	24577,9	6,6879
XAC1214	glycine decarboxylase	104698.70	6,2824
XAC1221	two-component system	26702,6	6,0954
XAC1228	two-component system, sensor protein	43982,86	7,2757
XAC1229	two-component system	23222.91	4,7752
XAC1258	cytochrome O ubiquinol oxidase	34458.85	7,3783
XAC1259	cytochrome O ubiquinol oxidase	74268.49	8,5033
XAC1269	positive regulator of sigma-B	31451.10	4,9211
XAC1270	negative regulator of sigma-B	12885,18	4,5069
XAC1279	two-component system	41114,8	5,7919
XAC1283	two-component system	115457.49	4,8276
XAC1284	two-component system	13402.41	4,4238
XAC1287 XAC1290	aldose 1-epimerase 2-nitropropane dioxygenase	40114,97 36714,82	6,2244 5,3386
XAC1290 XAC1312	methylmalonate-semialdehyde dehydrogenase	57329.69	5,7505
XAC1313	acyl-CoA dehydrogenase	42278,69	6,6057
XAC1314	enoyl-CoA hydratase	28145,83	6,6283
XAC1318	3-hydroxyacyl-CoA dehydrogenase	73782,24	9,568
XAC1334	N-acetyl-beta-glucosaminidase	35002.57	5,4991
XAC1362	GTN reductase	39389,17	5,2553
XAC1400	PHB depolymerase	49665.67	6,9697
XAC1419	uridylate kinase	25832.82	7,0765
XAC1448	beta-glucosidase	80097,83	7,8131
XAC1458	ferredoxin-NADP reductase	29471.50	5,9691
XAC1460	fumarate hydratase	54637.50	5,708
XAC1462	carbonic anhydrase	27646.80	9,3393
XAC1472 XAC1481	glutaryl-CoA dehydrogenase dehydrogenase	41956,8 28277,61	41956,8 10,661
XAC1481 XAC1484	short chain dehydrogenase	25992,56	6,4206
XAC1488	sensor histidine kinase	61468,11	6,8951
XAC1517	ferric uptake regulator	15739.73	6,3697
XAC1520	heat-inducible transcriptional repressor	37440.95	5,7188
XAC1533	dihydrolipoamide dehydrogenase	50209.72	6,1569
XAC1534	dihydrolipoamide S-succinyltransferase	42323.16	6,0878
XAC1535	oxoglutarate dehydrogenase	107079.83	6,5392
XAC1542	fumarate hydratase	49233.23	9,3336
XAC1551	UDP-glucose dehydrogenase	48806.30	5,9227
XAC1557	fructokinase	37510.63	5,1803
XAC1562	acyl-CoA dehydrogenase	41037.85	5,7853
XAC1587 XAC1604	thiosulfate sulfurtransferase carbonic anhydras e	30599.58 25023.27	6,604 6,2222
XAC1612	transcriptional regulator	25720.80	9,8185
XAC1633	glucose dehydrogenase	71402.10	6,3645
XAC1635	urocanate hydratase	60120.15	5,5764
XAC1636	formylglutamate amidohydrolase	31724.58	7,0331
XAC1637	histidine ammonia-lyase	53160.94	5,4137
XAC1639	atrazine chlorohydrolase	48339.89	6,7949
XAC1643	poly(hydroxyalcanoate) granule associated protein	19920.63	5,1485
XAC1655	transcriptional regulator	37049.40	8,0332
XAC1669	histidine kinase-response regulator hybrid protein	74098.74	4,9346
XAC1685	cytochrome C CTP synthetase	48426.22 61481.87	9,1281 6,2544
XAC1716			

Identidade da proteína	Descrição da proteina	РМ	pl
XAC1719	enolase	45905.49	4,7273
XAC1739	LexA repressor	23239.53	5,7738
XAC1743	carbon storage regulator	7565.55	6,8001
XAC1767	galactose binding protein regulator	35388.10	9,5002
XAC1773	alpha-xylosidase	116221.50	8,1137
XAC1776	xylose isomerase	48334.74	5,2746
XAC1778	sensor kinase	57881.11	9,6543
XAC1788	glucose-6-phosphate isomerase	54453.40	5,7212
XAC1792	alkaline phosphatase	70310.86	6,5093
XAC1797	two-component system	20597.51	5,6874
XAC1798	two-component system	44032.81	5,7135
XAC1808	aldehyde dehydrogenase	54032.50	5,1913
XAC1845	oxidoreductase	50959.78	5,1634
XAC1853	enoyl-CoA hydratase	27572.65	5,6992
XAC1885	aconitate hydratase 2	92904.87	5,0309
XAC1939	GGDEF family protein	104792.32	6,4321
XAC1940	GGDEF family protein	107908.39	7,4403
XAC1962	short chain dehydrogenase	23653.33	9,6992
XAC1967	transcriptional regulator	54313.59	5,2712
XAC1991	histidine kinase	45723.78	5,1934
XAC2012	3-ketoacyl-CoA thiolase	41959.10	6,4079
XAC2013	3-hydroxyacyl-CoA dehydrogenase	85179.35	6,7191
XAC2035	non-heme chloroperoxidase	29956.76	6,9221
XAC2037	iron dependent repressor	16284.45	5,662
XAC2041	phosphoenolpyruvate synthase	85817.52	4,9034
XAC2053	transcription-related protein	84960.45	6,8032
XAC2054	two-component system	123340.48	5,7026
XAC2055	two-component system	13270.29	4,2296
XAC2067	KDPG and KHG aldolase	22775.57	4,973
XAC2068	6-phosphogluconate dehydratase	67413.32	6,3704
XAC2069	6-phosphogluconolactonase	25996.53	6,1486
XAC2070	glucose kinase	35517.41	6,6031
XAC2071	glucose-6-phosphate 1-dehydrogenase	52785.95	5,7397
XAC2077	succinate dehydrogenase	65298.69	6,3718
XAC2078	succinate dehydrogenase iron-sulfur protein	29395.95	8,3091
XAC2110	transcriptional regulator luxR/uhpA family	23275.86	6,5289
XAC2141	two-component system, regulatory protein	25902.71	6,0381
XAC2149	nodulation protein	49515.39	11,7103
XAC2158	histidine kinase/response regulator hybrid protein	55366.05	12,0352
XAC2167	two-component system sensor protein	111898.59	9,632
XAC2168	two-component system, regulatory protein	23192.67	7,1302
XAC2229	NAD(P)H dehydrogenase	21575.25	6,2273
XAC2232	repressor binding protein	37539.65	8,8207
XAC2292	UTP-glucose-1-phosphate uridylyltransferase	32101.74	5,4242
XAC2328	C-type cytochrome biogenesis membrane protein	69674.02	9,88
XAC2331	C-type cytochrome biogenesis protein	35881.28	6,5413
XAC2336	cytochrome D ubiquinol oxidase subunit I	59876.92	7,2066
XAC2366	ethanolamine ammonia-lyase light chain	29153.13	7,3491
XAC2376 XAC2382	phosphoglycolate phosphatase	24503.23 76829.24	4,3371
	GGDEF family protein		6,6486
XAC2385	extragenic supressor protein SuhB stringent starvation protein A	30050.27	7,9136
XAC2454 XAC2455		23883.64 27334.26	7,5711 8,0507
	ubiquinol cytochrome C oxidoreductase succinate-semialdehyde dehydrogenase		8,0507 5,3378
XAC2469 XAC2486		48776.26	5,3378
	formate dehydrogenase a chain	85962.80 150282.54	6,6286
XAC2492	two-component system sensor protein transcriptional regulator lacl family	150282.54	6,0442
XAC2500		35756.90	8,1814
XAC2502	1-phosphofructokinase (fructose 1-phosphate kinase)	32976.52	6,3975
XAC2516	L-lysine 6-aminotransferase	53569.75 54756.84	6,3981
XAC2546 XAC2548	ketoglutarate semialdehyde dehydrogenase oxidoreductase	54756.84 45577.41	6,5122 8,7277
		45577.41	8,7277
XAC2549	D-amino acid oxidase	39958.70	7,7182
XAC2551	transcriptional regulator	25700.59 58800.67	8,9893 5.106
XAC2555	sensor histidine kinase	58899.67	5,106
XAC2565	deoxyxylulose-5-phos phate synthase	68479.23	6,8031
XAC2599	alpha-glucosidase	77934.23	6,5738
XAC2692	NADH-ubiquinone oxidoreductase	54370.51	7,8122
XAC2693	NADH-ubiquinone oxidoreductase	78375.26	7,4952
XAC2696	NADH-ubiquinone oxidoreductase	18781.81	8,2017
XAC2698 XAC2699	NADH-ubiquinone oxidoreductase NADH-ubiquinone oxidoreductase	79164.16	6,6688 6,7744
	NAME - INTRODUCTOR OVIGOROGUETOCO	48162.81	h ////

dentidade da proteína	Descrição da proteína	PM	pl
XAC2700	NADH-ubiquinone oxidoreductase	19594.24	6,0795
XAC2701	NADH-ubiquinone oxidoreductase	49412.39	6,653
XAC2702	NADH-ubiquinone oxidoreductase	27788.95	4,6554
XAC2703	NADH-ubiquinone oxidoreductase	21004.30	6,5013
XAC2707	triosephosphate isomerase	26187.69	4,9603
XAC2713	oxidoreductase	35578.01	6,3209
XAC2714 XAC2736	phosphohexose mutase	47208.50 23861.78	6,4429
XAC2759	carboxymethylenebutenolidase alkaline phosphatase	60087.69	5,2738 6,1221
XAC2739 XAC2804	two-component system, sensor protein	44395.08	8,499
XAC2838	transcriptional regulator lysR family	33885.67	9,5872
XAC2845	transcriptional regulator	22411.35	4,6713
XAC2846	transcriptional regulator fur family	18303.86	7,0839
XAC2874	phosphoglycerate mutase	27953.54	7,3468
XAC2893	oxidoreductase	77730.57	7,5418
XAC2918	transcriptional regulator	20141.52	4,1501
XAC2972	RNA polymerase sigma -54 f actor	52185.88	4,8081
XAC2973	sigma-54 modulation protein	12093.82	9,635
XAC3028	histidine kinase/response regulator hybrid protein	135092.51	6,779
XAC3036	L-serine dehydratase	49582.46	6,257
XAC3052	transcriptional regulator	22626.64	6,8077
XAC3054	acyl-CoA dehydrogenase	89429.68	8,1579
XAC3061	glycine cleavage T protein	40360.94	5,9415
XAC3066 XAC3072	sulfite synthesis pathway protein alpha-L-fucosidase	28817.42 62138.79	4,9128 7,6033
XAC3072 XAC3075	beta-mannosidase	100375.20	6,312
XAC3080	ribokinase	31789.09	5,0533
XAC3081	6-phospho-beta-glucosidase	50807.51	5,9655
XAC3113	ATP:GTP 3'-pyrophosphotranferase	80606.06	9,3017
XAC3136	two-component system	37676.59	5,8458
XAC3212	glucose dehydrogenase	88250.42	7,8292
XAC3235	succinyl-CoA synthetase	29558.04	6,8678
XAC3236	succinyl-CoA synthetase	41397.33	4,5879
XAC3238	two-component system	52448.16	7,2351
XAC3250	two-component system	24989.44	5,1627
XAC3254	glycogen debranching enzyme	80248.85	4,72
XAC3273	histidine kinase/response regulator hybrid protein	45201.08	6,151
XAC3292	histidine kinase/response regulator hybrid protein	45169.08	5,3189
XAC3300	lipase/esterase	62192.02	4,7696
XAC3307 XAC3335	fumarylacetoacetate hydrolase sensor histidine kinase	25227.76 49880.51	5,931 8,5699
XAC3333	transcriptional regulator lysR family	35499.50	6,7291
XAC3344	fructose-bisphosphate aldolase	36275.42	4,6949
XAC3345	pyruvate kinase type II	53837.48	5,5588
XAC3347	phosphoglycerate kinase	40788.58	4,6763
XAC3352	glyceraldehyde-3-phosphate dehydrogenase	35957.01	6,302
XAC3372	transketolase 1	72518.35	5,8833
XAC3379	methanol dehydrogenase regulatory protein	37641.29	5,6794
XAC3388	citrate synthase	47800.44	6,3988
XAC3393	pentaphosphate guanosine-3'-pyrophosphohydrolase	80847.38	8,3336
XAC3411	ribose-5-phosphate isomerase A	24492.13	5,3077
XAC3421	transcriptional regulator	101984.93	7,3447
XAC3438	6-phosphofructokinase	44535.90	9,3737
XAC3442	inorganic pyrophosphatase	19713.48	4,6858
XAC3443	response regulator	40642.55	4,6954
XAC3454 XAC3469	threonine dehydratase catabolic	39296.78 123215.66	9,5998
XAC3469 XAC3470	alpha-1 NADP-dependent malic enzyme	85820.52	7,0408 5,9361
XAC3470 XAC3473	phosphomethylpyrimidine kinase	97199.85	8,0163
XAC3480	transcriptional regulator luxR/uhpA family	22565.95	6,511
XAC3487	transcriptional regulator	37007.15	6,8095
XAC3575	flavoprotein-ubiquinone oxidoreductase	59453.52	6,3475
XAC3581	UDP-glucose dehydrogenase	42997.09	6,5436
XAC3586	electron transfer flavoprotein beta subunit	26465.60	6,5357
XAC3587	electron transfer flavoprotein alpha subunit	31779.20	4,6771
XAC3591	short chain dehydrogenase	25408.38	10,6165
XAC3609	fumarylacetoacetate hydrolase	35508.09	4,5698
XAC3637	glucosaminefructose-6-phosphate aminotransferase	65875.00	6,1848
XAC3643	histidine kinase/response regulator hybrid protein	99301.02	8,1443
XAC3648	ATP synthase, epsilon chain	15152.37	5,7171
XAC3649	ATP synthase	50896.59	4,9777

Identidade da proteína	Descrição da proteína	PM	pl
XAC3650	ATP synthase	31983.88	10,1113
XAC3651	ATP synthase	55284.74	5,0746
XAC3652	ATP synthase	18217.75	5,198
XAC3659	dihydrolipoamide dehydrogenase	63213.76	6,0552
XAC3661	dihydrolipoamide acetyltranferase	60389.74	4,935
XAC3683	sensor histidine kinase	70228.55	5,6622
XAC3688	D-amino acid dehydrogenase subunit	46674.92	5,7589
XAC3710	oxidoreductase	35828.48	5,6302
XAC3721	D-amino acid oxidase	44187.13	9,4558
XAC3740	UDP-glucose 4-epimerase	42847.70	8,7964
XAC3788	RNA polymerase sigma-70 factor	70084.18	4,6085
XAC3811	tropinone reductase	28154.50	4,5696
XAC3822	NADH dehydrogenase	46443.29	9,884
XAC3833	B-lactamase regulatory protein	34448.30	10,8225
XAC3835	isocitrate dehydrogenase	80296.94	5,4378
XAC3854	hydrolase	27501.06	4,6355
XAC3862	chloromuconate cycloisomerase	38384.33	6,0993
XAC3868	dehydrogenase	41655.04	8,8714
XAC3869	beta-glucosidase	77499.76	4,8533
XAC3890	bifunctional PutA protein	114558.13	6,2557
XAC3919	oxidoreductase	26399.97	6,9735
XAC3929	nitrogen regulatory protein P-II	11984.87	5,1975
XAC3960	oxidoreductase	38734.60	9,1795
XAC3961	transcriptional regulator tetR family	23459.99	7,0964
XAC3993	two-component system regulatory protein	21903.21	5,8584
XAC4009	arginase	33180.77	4,9305
XAC4022	two-component system	52395.50	6,1484
XAC4023	two-component system	25387.11	4,9441
XAC4064	transcriptional regulator araC family	36497.77	10,0635
XAC4066	phenol hydroxylase	39537.47	6,6751
XAC4081	glucose-6-phosphate 1-dehydrogenase	67612.88	10,1751
XAC4116	serine/threonine kinase	131780.45	7,9622
XAC4157	4-oxalomesaconate hydratase	38009.11	6,3702
XAC4182	cytochrome C biogenesis protein	22091.61	10,0688
XAC4187	2-hydroxyhepta-2	30714.05	5,3783
XAC4191	transcriptional regulator kdgR	27122.18	6,125
XAC4191 XAC4193	two-component system, sensor protein	126567.97	9,2175
XAC4225	xylose isomerase	49585.16	5,2753
XAC4248	gluconolactonase precursor	37086.10	•
			6,1498
XAC4277	acid phosphatase	33669.51	5,0244
XAC4326	urea amidolyase	131832.85	5,7051
XAC4359	sugar diacide regulator	44503.20	7,075
XAC4364	oxidoreductase	43332.46	8,2317
	e pequenas moléculas	=0004.00	4.00=0
XAC0032	glutamate synthase beta subunit	52681.66	4,8972
XAC0033	glutamate synthase alpha subunit	162825.63	
XAC0051	asparagine synthase	67521.17	8,0443
XAC0059	asparagine synthetase like protein	70471.48	9,831
XAC0125	aromatic-amino-acid aminotransferase	43105.85	5,9383
XAC0195	cardiolipin synthase	73848.89	9,3819
XAC0204	glutamine synthetase	51845.68	4,9572
XAC0214	porphyrin biosynthesis protein	45832.93	6,3806
XAC0233	3-oxoacyl-[ACP] synthase III	36541.94	5,6671
XAC0242	ubiquinone biosynthesis protein	62633.38	9,4819
XAC0248	asparaginase	32570.49	6,516
XAC0263	biotin carboxylase	72466.81	6,4477
XAC0264	acyl-CoA carboxyltransferase beta chain	57516.59	7,3262
XAC0300	serine-pyruvate aminotransferase	44728.16	6,2388
XAC0308	adenosine deaminase	42874.79	6,795
XAC0336	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase	38320.48	5,4663
XAC0382	aspartyl/asparaginyl beta-hydroxylase	34719.18	10,1479
XAC0382 XAC0388	biotin synthase		6,6212
		37779.06	
XAC0433	3-oxoacyl-[ACP] reductase	26351.66	6,3479
XAC0470	phosphoribosylaminoimidazole-succinocarboxamide synthase	34557.28	5,0073
XAC0477	threonine aldolase	37735.70	6,7998
XAC0480	anthranilate synthase component II	36639.08	6,1836
XAC0481	indole-3-glycerol phosphate synthase	28811.86	4,4373
XAC0484	S-adenosyl methionine decarboxylase proenzyme	30773.98	5,8447
XAC0486	ubiquinone biosynthesis protein	23963.00	5,9341
AAC0400			- 400-
XAC0400 XAC0511	phosphoribosylamine-glycine ligase	44872.08	5,4265

entidade da proteína	Descrição da proteína	PM	pl
XAC0530	biotin carboxylase subunit of acetyl CoA carboxylase	49435.73	7,4048
XAC0532	biotin carboxyl carrier protein of acetyl-CoA carboxilase	17067.65	4,5009
XAC0622	porphobilinogen deaminase	32505.15	6,0459
XAC0639	cytosine deaminase	16559.52	4,7505
XAC0643	ubiquinone/menaquinone transferase	28007.93	8,6253
XAC0668	lipoic acid synthetase	36863.93	7,5961
XAC0673	bifunctional NMN adenylyltransferase/nudix hydrolase	39458.10	7,2755
XAC0728	glutamate-cysteine ligase precursor	50715.14	5,041
XAC0743	serine hydroxymethyltransferase	44997.04	6,8474
XAC0748 XAC0749	riboflavin synthase alpha chain GTP cyclohydrolase II/3	20913.62 41175.80	4,7946
XAC0749 XAC0750	6,7-dimethyl-8-ribity llumazine synthase	16241.45	5,4486 4,9419
XAC0730	acyl-CoA thioesterase I	22021.82	10.281
XAC0833	thymidylate synthase	30097.16	6,2814
XAC0861	diadenosine tetraphosphatase	34940.74	9,4467
XAC0872	2-octaprenyl-6-methoxyphenol hydroxylase	42616.46	8,8667
XAC0887	gluconolactonase precursor	30483.09	8,4091
XAC0927	branched-chain amino acid aminotransferase	39000.20	5,924
XAC0932	asparaginase	17641.24	7,6083
XAC0942	molybdopterin biosynthesis protein B	18735.33	6,1006
XAC0950	phosphoribosyl pyrophosphate synthetase	33603.73	5,9178
XAC1000	family II 2-keto-3-deoxy-D-arabino-heptulosonate 7-phosphate synthase	51598.30	6,3296
XAC1016	2-amino-3-ketobutyrate CoA ligase	43363.51	5,9306
XAC1022	threonine 3-dehydrogenase	37125.91	6,4297
XAC1029	folylpolyglutamate synthase/dihydrofolate synthase	45410.22	4,9152
XAC1032	amidophosphoribosyltransferase	54269.76	7,044
XAC1044	glutaredoxin	13159.92	6,0836
XAC1123	beta-ketoacyl-[ACP] synthase III	34817.48	4,7683
XAC1126	malonyl CoA-ACP transacylase	32725.24	5,7975
XAC1127	3-oxoacyl-[ACP] reductase	25270.89	7,8953
XAC1128	acyl carrier protein	8802.81	3,8609
XAC1129	3-oxoacyl-[ACP] synthase II	42880.54	5,772
XAC1130	anthranilate synthase component I	48479.05	5,9959
XAC1150	peroxiredoxin	17554.13	6,2343
XAC1158	adenylosuccinate synthetase	46199.60	5,3102
XAC1182	thioredoxin reductase	37877.80	5,0928
XAC1237	phosphoribosylglycinamide formyltransferase 2	42898.63	5,8276
XAC1277	thioredoxin	15664.25	8,9017
XAC1335 XAC1336	hypoxanthine-guanine phosphoribosyltransferase purine nucleoside phosphorylase	20177.01 26179.80	4,9811 6,1474
XAC1336 XAC1348	acetoacetyl-CoA thiolase	39853.40	6,7921
XAC1346 XAC1405	acetyl-coenzyme A carboxylase carboxyl transferase	35270.48	9,2001
XAC1410	(3r)-hydroxymyristoyl ACP dehydrase	17064.02	6,9432
XAC1415	1-deoxy-D-xylulose 5-phosphate reductoisomerase	40977.78	6,6754
XAC1416	phosphatidate cytidylyltransferase	28918.70	10,0712
XAC1430	2,3,4,5-tetrahydropyridine-2-carboxylate N-succin	27561.29	6,6253
XAC1432	succinyl-diaminopimelate desuccinylase	40297.38	5,7053
XAC1433	asparagine synthase B	62585.56	5,6252
XAC1475	asparagine synthase	70805.52	6,9114
XAC1524	pyridoxine kinase	31920.47	5,522
XAC1539	adenylosuccinate lyase	49811.54	6,1507
XAC1559	5-methyltetrahydrofolate-homocysteine methyltransferase	102050.87	5,1668
XAC1560	5-methyltetrahydrofolate-homocysteine methyl transferase	38799.41	4,8283
XAC1584	3-hydroxybutyryl-CoA dehydratase	27648.10	6,9375
XAC1596	5'-nucleotidase	34899.97	6,0123
XAC1600	kynurenine 3-monooxygenase	50839.48	6,2932
XAC1626	aminotransferase	39625.62	10,5048
XAC1648	phosphoserine aminotransferase	38679.86	6,314
XAC1649	P-protein	43708.63	7,8364
XAC1650	3-phosphoshikimate 1-carboxyvinyltransferase	45685.61	6,0143
XAC1738	ubiquinone biosynthesis protein	61908.42	6,6555
XAC1760	dihydroxydipicolinate synthase	31000.28	5,8886
XAC1762	ferredoxin	11805.49	3,8966
XAC1786	pantoate-beta-alanine ligase	30472.58	5,1408
XAC1787	aspartate 1-decarboxylase precursor	13623.32	6,5077
XAC1805	dihydroorotate dehydrogenase	37529.96	9,5428
XAC1820	bifunctional aspartokinase/homoserine dehydrogenase I	89135.75	5,8659
XAC1821	homoserine kinase	31415.77	5,2872
XAC1828	ATP phosphoribosyltransferase histidinol-phosphate aminotransferase	32909.91 38701.23	5,2591 5,2391
XAC1830			

ldentidade da proteína	Descrição da proteína	PM	pl
XAC1835	phosphoribosyl-AMP cyclohydrolase/phosphoribosyl-ATP pyrophosphatase bifunctional enzyme	22262.14	5,297
XAC1838	enolase-phosphatase	25848.01	4,9705
XAC1839	dioxygenase	21229.88	5,132
XAC1844	D-3-phosphoglycerate dehydrogenase	43912.01	5,9824
XAC1858	valine-pyruvate aminotransferase	45894.61	6,5281
XAC1861	carbamoyl-phosphate synthase small chain	41668.15	5,4103
XAC1862	carbamoyl-phosphate synthase large chain	118352.94	4,6478
XAC1964	3-oxoacyl-[ACP] synthase	36457.74	4,9673
XAC2005	thioredoxin reductase	34323.63	6,0765
XAC2015	nucleoside diphosphate kinase	15257.23	5,6995
XAC2022	molybdopterin biosynthesis	42954.16	5,8834
XAC2023	molybdopterin biosynthesis protein	40180.67	6,5787
XAC2048	poly (3-hydroxybutyric acid) synthase	40188.90	4,7467
XAC2097	ATP-dependent serine activating enzyme	174399.34	6,0379
XAC2098	ATP-dependent serine activating enzyme	217470.83	6,2427
XAC2129	3-ketoacyl-acyl carrier protein reductase	28198.12	4,5486
XAC2287	glutamine amidotransferase	57126.21	5,5742
XAC2288	inosine-5'-monophosphate dehydrogenase	51690.33	6,8703
XAC2289	bifunctional methylenetetrahydrofolate dehydrogenase/ methenyltetrahydrofolate cyclohydrolase	31773.44	7,1313
XAC2299	cytidylate kinase	24095.43	5,1473
XAC2322	succinyldiaminopimelate transaminase	42121.00	6,3762
XAC2342	gamma-glutamyl phosphate reductase	44150.68	6,145
XAC2346	N-acetyl-gamma-glutamyl-phosphate reductase	34189.98	6,6034
XAC2348	acetylglutamate kinase	49379.10	5,9172
XAC2349	acetylornithine deacetylase	38711.50	5,2058
XAC2351	argininosuccinate synthase	44900.78	5,5195
XAC2352	ornithine carbamoyltransferase	38290.60	6,586
XAC2360	dihydroorotase	49110.62	5,4438
XAC2377	3-demethylubiquinone-9 3-methyltransferase	26059.76	7,1959
XAC2391	adenine phosphoribosyltransferase	20098.06	4,8469
XAC2401	acetoacetyl-CoA reductase	26648.07	8,4898
XAC2521	uracil phosphoribosyltransferase	22579.23	6,364
XAC2547	dihydrodipicolinate synthetase	31937.94	5,9568
XAC2678	phosphoribosylaminoimidazole carboxylase	40208.64	5,3879
XAC2679	phosphoribosylaminoimidazole carboxylase catalytic subunit	17097.63	6,9699
XAC2715	acetyl-coenzyme A carboxylase carboxyl transferase	32011.65	6,7742
XAC2717	tryptophan synthase beta chain	43192.58	6,2307
XAC2719	N-(5'-phosphoribosyl) anthranilate isomerase	24148.41	8,5026
XAC2723	aspartate semialdehyde dehydrogenase	36555.15	4,7249
XAC2725	chorismate synthase	39139.05	6,4267
XAC2728	phosphatidylserine decarboxylase	30509.88	9,5337
XAC2740	deoxycytidine triphosphate deaminase	21280.08	6,1132
XAC2762	geranyltranstransferase (farnesyl-diphosphate synthase)	30484.55	6,2821
XAC2783	thioredoxin	31328.42	4,3653
XAC2824	phosphodiesterase-nucleotide pyrophosphatase	46476.42	7,5676
XAC2906	octaprenyl-diphosphate synthase	35621.37	4,9529
XAC2911	bifunctional diaminopimelate decarboxylase/asparta	94085.52	5,9092
XAC2916	aspartate carbamoyltransferase	33629.38	6,5137
XAC2926	pyrroline-5-carboxylate reductase	28856.68	4,8161
XAC2952	succinyl-diaminopimelate desuccinylase	53306.79	4,7799
XAC2959	phosphoribosylformylglycinamide cyclo-ligase	35870.05	4,698
XAC3009	pyridoxamine 5'-phosphate oxidase	22199.88	6,976
XAC3011	3-dehydroquinate synthase	38815.41	6,1846
XAC3013	uroporphyrinogen decarboxylase	38459.90	6,6385
XAC3068	adenosylmethionine-8-amino-7- oxononanoate aminotransferase	51303.52	6,5805
XAC3103	glutathione synthetase	34321.35	5,8414
XAC3114	pyrroloquinoline quinone biosynthesis protein G	32540.88	6,433 6,0856
XAC3170 XAC3189	cytochrome P-450 hydroxylase cobalamin biosynthetic protein	43941.50 35432.62	,
XAC3189 XAC3220		35432.62	8,2567
	NH3-dependent NAD synthetase	59280.83	4,6535 5,4225
XAC3341 XAC3390	cysteine synthase inosine-uridine preferring nucleoside hydrolase	34085.75 33651.22	5,4225 6,066
XAC3390 XAC3420	glutamate-1-semialdehyde 2	45044.04	5,0698
XAC3423	histidinol-phosphate aminotransferase flavin monoamine oxidase-related protein	42621.85 58089.74	9,2439
XAC3426 XAC3429	acetylornithine aminotransferase	58089.74 42972.09	8,7274 6,8604
AA(A)4/3	accignomicinic anniholianoreiase	72312.03	
XAC3437	adenylate kinase	19954.79	5,1072

Identidade da proteína	Descrição da proteína	РМ	pl
XAC3455	2-isopropylmalate synthase	56256.35	5,4954
XAC3456	3-isopropylmalate dehydrogenase	38198.81	5,0904
XAC3494	aminotransferase	46135.63	7,0942
XAC3500	glutaredoxin-like protein	29693.33	4,3776
XAC3549	phosphoribosylformylglycinamidine synthetase	144661.07	5,0118
XAC3594	phytoene desaturase	48675.99	7,1852
XAC3602	cystathionine gamma-lyase-like protein	42538.30	6,0107
XAC3603	cystathionine beta-synthase	49678.62	4,932
XAC3623	beta-hydroxydecanoyl-ACP dehydratase	19020.89	8,0586
XAC3625	beta-ketoacyl-[ACP] synthase I	41869.25	5,7882
XAC3628	cysteine synthase	40441.66	6,5783
XAC3830	thioredoxin	12165.02	5,6538
XAC3903	orotate phosphoribosyl transferase	22813.77	5,0263
XAC3903 XAC3923	biosynthetic arginine decarboxylase	70982.88	5,3718
XAC3923 XAC3924	spermidine synthase	31552.71	4,7027
XAC4040	delta-aminolevulinic acid dehydratase	36517.64	
	truntanhan halagangan		5,2805
XAC4051	tryptophan halogenase	56844.29	6,9909
XAC4068	2-dehydropantoate 2-reductase	32971.72	6,2324
XAC4074	ribonucleoside-diphosphate reductase beta chain	39520.32	4,7176
XAC4075	ribonucleoside-diphosphate reductase alpha chain	94160.95	6,2672
XAC4089	halogenase	60763.33	5,7234
XAC4102	hydroxylase	49808.96	9,332
XAC4109	coproporphyrinogen III oxidase	34382.32	6,1143
XAC4153	cardiolipin synthase	52809.97	8,3229
XAC4179	acetyl coenzyme A synthetase	71276.70	5,8935
XAC4213	shikimate kinase	313977.09	7,6684
XAC4214	GMP synthase	27451.19	8,6777
XAC4220	ferrochelatase	35446.56	6,7836
XAC4251	hexuronic acid isomerase	52895.54	6,511
XAC4275	tryptophan halogenase	56267.87	7,1326
XAC4276	orotidine 5'-phosphate decarboxylase	25779.50	5,597
XAC4302	GTP cyclohydrolase I	23108.20	6,7929
	de macromoléculas	20100.20	0,7020
XAC0001	chromosomal replication initiator	49538.59	8,4441
XAC0001 XAC0002	DNA polymerase III	40752.39	5,142
XAC0002 XAC0004		89657.38	,
	DNA gyrase subunit B		5,7984
XAC0023	carboxyl-terminal protease	52873.54	5,1606
XAC0120	TIdD protein	48641.14	5,7598
XAC0121	TIdD protein	56857.09	7,9455
XAC0122	TldD protein	56656.54	7,555
XAC0155	trehalose synthase	125382.47	4,8111
XAC0156	1,4-alpha-glucan branching enzyme	80068.65	6,4501
XAC0222	glycerol-3-phosphate dehydrogenase	35825.05	6,1277
XAC0247	acyltransferase	23692.47	11,4761
XAC0249	peptidyl-dipeptidase	76924.13	5,2311
XAC0274	nuclease	64510.46	7,7099
XAC0428	4-alpha-glucanotransferase	69504.13	5,9667
XAC0487	50S ribosomal protein L13	16080.58	10,4276
XAC0488	30S ribosomal protein S9	14522.59	11,5047
XAC0526	ribosomal protein L11 methyltransferase	33124.34	4,0378
XAC0541	10kDa chaperonin	9979.43	5,8753
XAC0542	60kDa chaperonin	57166.16	4,7764
XAC0591	dipeptidyl peptidase IV	91636.29	8,4684
XAC0609	zinc protease	103176.78	6,723
XAC0615	aminopeptidase	59278.37	7,0459
XAC0628	prolyl oligopeptidase	77070.99	6,7627
XAC0631	protease II (oligopeptidase B)	78197.42	5,3016
XAC0638	ATP-dependent HsIUV protease ATP-binding subunit HsIU	50712.65	5,1447
XAC0645	aminopeptidase	67193.07	5,1245
XAC0669	tail-specific protease	80067.15	6,3352
XAC0722	thiol:disulfide interchange protein	28578.45	6,9324
XAC0723	disulfide oxidoreductase	23791.51	8,4293
XAC0751	transcription termination factor NusB	17757.88	7,1832
XAC0865	peptidyl-prolyl cis-trans isomerase	50113.80	5,266
XAC0893	glutaminyl-tRNA synthetase	65872.22	5,8945
XAC0900	peptide methionine sulfoxide reductase	23471.03	5,7911
XAC0900 XAC0909	proline imino-peptidase		6,1531
		35473.71	
XAC0911	MutT-like protein	23817.92	6,5179
XAC0947	outer membrane lipoprotein precursor	23200.94	8,5353
	50S ribosomal protein L25	23350.45	4,9141
XAC0951 XAC0957	elongation factor Tu	43143.25	5,4634

Identidade da proteína	Descrição da proteína	PM	pl
XAC0960	transcription antitermination factor	21174.01	5,4492
XAC0961	50S ribosomal protein L11	14840.29	10,7524
XAC0962	50S ribosomal protein L1	23966.69	10,2811
XAC0963	50S ribosomal protein L10	18351.09	5,8176
XAC0964	50S ribosomal protein L7/L12	12515.41	4,4532
XAC0965	RNA polymerase beta subunit	154197.75	5,3359
XAC0966	RNA polymerase beta' subunit	155135.64	7,9137
XAC0967	30S ribosomal protein S12	13752.85	11,6171
XAC0968	30S ribosomal protein S7	17273.92	10,9863
XAC0969	elongation factor G	77603.06	4,9756
XAC0971	30S ribosomal protein S10	11716.50	9,9703
XAC0972	50S ribosomal protein L3	22871.14	10,9098
XAC0973	50S ribosomal protein L4	21769.06	10,3175
XAC0974	50S ribosomal protein L23	11043.58	10,8933
XAC0975	50S ribosomal protein L2	29898.34	11,507
XAC0976	30S ribosomal protein S19	9752.43	11,4082
XAC0977	50S ribosomal protein L22	12305.46	11,3805
XAC0978	30S ribosomal protein S3	27466.49	10,7598
XAC0979	50S ribosomal protein L16	15499.01	11,3695
XAC0980	50S ribosomal protein L29	7238.35	11,0209
XAC0981	30S ribosomal protein S17	10125.52	9,9816
XAC0982	50S ribosomal protein L14	13523.89	10,7158
XAC0983	50S ribosomal protein L24	11225.76	10,9342
XAC0984	50S ribosomal protein L5	20128.46	10,5068
XAC0986	30S ribosomal protein S8	14274.70	10,1877
XAC0987	50S ribosomal protein L6	18278.38	10,605
XAC0988	50S ribosomal protein L18	12801.68	11,3169
XAC0989	30S ribosomal protein S5	19182.01	11,0558
XAC0990	50S ribosomal protein L30	6090.08	11,7879
XAC0991	50S ribosomal protein L15	15333.73	11,3423
XAC0993	30S ribosomal protein S13	13374.67	11,9756
XAC0994	30S ribosomal protein S11	13915.02	11,5613
XAC0995	30S ribosomal protein S4	23280.76	10,4223
XAC0996	RNA polymerase alpha subunit	36363.42	5,6706
XAC0997	50S ribosomal protein L17	14316.70	11,2451
XAC1005	peptidyl-prolyl cis-trans isomerase	17456.51	5,1547
XAC1077	peptidyl-prolyl cis-trans isomerase	48245.44	4,9295
XAC1078	ATP-dependent Clp protease proteolytic subunit	22796.08	5,2971
XAC1079	ATP-dependent Clp protease ATP binding subunit	47134.88	5,1991
XAC1080	ATP-dependent serine proteinase La	90638.81	9,4378
XAC1081	histone-like protein	9327.65	10,5494
XAC1085	peptidyl-prolyl cis-trans isomerase	71194.43	5,5068
XAC1109	DNA polymerase III tau and gamma subunits	71900.23	4,6406
XAC1111	recombination protein RecR	21488.40	6,5086
XAC1122	50S ribosomal protein L32	7129.97	10,9857
XAC1155	integral membrane protease subunit	40592.71	10,1957
XAC1156	integral membrane proteinase subunit	31940.27	8,699
XAC1159	aminopeptidase N	96863.14	6,4751
XAC1204	alanyl dipeptidyl peptidase	79365.73	6,6768
XAC1217	dipeptidyl carboxypeptidase	74632.04	6,2119
XAC1247	excinuclease ABC subunit A	109142.45	7,9053
XAC1248	50S ribosomal protein L21	11797.64	10,5971
XAC1249	50S ribosomal protein L27	9101.39	11,434
XAC1251	30S ribosomal protein S20	9672.34	12,3791
XAC1254	isoleucyltRNA synthetase	104706.83	6,219
XAC1263	DNA repair protein	48686.73	7,1063
XAC1292	30S ribosomal protein S16	9545.93	11,0109
XAC1294	tRNA (guanine-N1-)-methyltransferase	27778.44	5,0353
XAC1295	50S ribosomal protein L19	14753.91	10,8304
XAC1321	periplasmic protease	53853.26	8,4067
XAC1322	GTP binding protein	66329.25	5,8462
XAC1386	methionyl-tRNA synthetase	75337.60	5,9912
XAC1418	ribosome recycling factor	20352.23	7,6828
XAC1421	elongation factor Ts	31047.48	4,9637
XAC1422	30S ribosomal protein S2	29235.40	8,9331
XAC1441	topoisomerase IV subunit A	82207.67	7,5861
XAC1456	peptidyl-dipeptidase	80510.78	7,9152
XAC1519	recombination protein N	59539.68	5,2164
XAC1522	DnaK protein	68737.98	4,7157
XAC1523	DnaJ protein FKBP-type peptidyl-prolyl cis -trans isomerase (rotamase)	40317.09	6,3766
XAC1550		31677.69	6,9917

Identidade da proteína	Descrição da proteína	PM	pl
XAC1569	tRNA/rRNA methyltransferase	26298.85	7,4438
XAC1585	peptidyl-prolyl cis-trans isomerase	24955.40	9,9478
XAC1599	exodeoxyribonuclease I	54734.78	5,6694
XAC1618	asparaginyl-tRNA synthetase	51810.73	5,3502
XAC1620	30S ribosomal protein S6	16355.11	4,8091
XAC1621	30S ribosomal protein S18	8959.37	10,8029
XAC1622	50S ribosomal protein L9	15698.70	4,9894
XAC1623	chromosome segregation protein	134801.67	5,1608
XAC1630	initiation factor eIF-2B	37255.38	5,9472
XAC1631	DNA gyrase subunit A	98938.03	4,9057
XAC1653	seryl-tRNA synthetase	47118.19	5,3826
XAC1713	carboxypeptidase related protein	55225.28	5,8518
XAC1714	topoisomerase IV subunit B	69480.97	6,4742
XAC1732	cell division protein	70776.97	5,9198
XAC1736	GTP-binding protein	48723.15	6,3151
XAC1740	RecA protein	37166.52	4,9762
XAC1742	alanyl-tRNA synthetase	95258.84	5,5476
XAC1783	polynucleotide adenyltransferase	51009.85	8,8716
XAC1826	histidyl-tRNA synthetase	52597.85	4,9496
XAC1849	elongation factor P	20667.09	4,2453
XAC1863	transcriptional elongation factor	17357.61	4,8177
XAC2001	ATP-dependent Clp protease subunit	83382.99	5,6666
XAC2008	outer-membrane lipoproteins carrier protein precursor	22955.83	8,8305
XAC2111	ribonuclease E	128315.92	5,537
XAC2112	pseudouridylate synthase	35963.23	10,363
XAC2297	integration host factor	11373.01	9,1197
XAC2298	30S ribosomal protein S1	61738.61	4,7836
XAC2318	pseudouridylate synthase	57729.23	11,223
XAC2354	cysteinyl-tRNA synthetase	51740.35	6,2334
XAC2361	peptidase	29470.47	10,4333
XAC2380	elongation factor P	20879.60	4,5238
XAC2437	type II restriction enzyme Xaml	33326.72	5,4806
XAC2528 XAC2537	heat shock protein G	70781.69	4,9746
XAC2537 XAC2541	peptidase peptidase	51371.60 86908.13	4,9495 6,7329
XAC2541 XAC2545	proline dipeptidase	43019.94	5,5043
XAC2545 XAC2588	integration host factor	11213.72	10,3966
XAC2589	phenylalanyl-tRNA synthetase beta chain	85092.53	5,2334
XAC2591	50S ribosomal protein L20	13354.82	12,2626
XAC2591 XAC2593	initiation factor IF-3	18310.24	9,546
XAC2594	threonyl-tRNA synthetase	71864.50	6,136
XAC2683	polynucleotide phosphorylase	75402.21	5,3189
XAC2684	30S ribosomal protein S15	10096.63	10,9683
XAC2687	protein chain initiation factor IF-2	96180.40	7,5029
XAC2688	N utilization substance protein A	55124.91	4,1917
XAC2726	adenine-specific methylase	33709.99	4,4454
XAC2745	metallopeptidase	77527.48	6,4389
XAC2747	metallopeptidase	72695.48	9,3792
XAC2754	peptidyl-prolyl cis-trans isomerase	17443.60	5,929
XAC2770	ribonuclease G	55857.86	5,076
XAC2781	leucyl-tRNA synthetase	98506.18	5,5768
XAC2789	peptidyl-prolyl cis-trans isomerase	35139.70	6,2568
XAC2813	ATP-dependent RNA helicase	69120.69	9,3676
XAC2847	glutamyl-tRNA synthetase	51859.87	4,9302
XAC2872	metallopeptidase	76837.63	5,5818
XAC2875	endonuclease V	25508.38	9,7365
XAC2880	pirin	31092.25	5,9417
XAC2898	type I restriction-modification system endonuclease	119381.03	6,9091
XAC2900	type I restriction-modification system DNA methylase	76570.53	5,5645
XAC2905	single-stranded DNA binding protein	19095.89	5,3118
XAC2927	histone-like protein	14714.66	11,5138
XAC3042	peptide chain release factor 3	59029.25	6,2136
XAC3058	histone H1	16124.23	12,7836
XAC3122	ATP-dependent RNA helicase	149943.35	8,8842
XAC3123	DNA-binding related protein	20346.89	6,0116
XAC3149	holliday junction binding protein	20845.87	6,0122
XAC3154	aspartyl-tRNA synthetase	65032.08	5,5353
XAC3195	ATP-dependent Clp protease subunit	96587.76	5,2457
XAC3303	DNA mismatch repair protein	29539.05	7,5038
XAC3309	aminopeptidase	48788.75	6,2958
XAC3318	aminopeptidase N	96367.18	8,4011

ldentidade da proteína	Descrição da proteina	PM	pl
XAC3389	50S ribosomal protein L31	9363.57	9,752
XAC3392	translation initiation inhibitor	13179.94	4,3708
XAC3397	ribonuclease PH	25926.33	6,9266
XAC3403	proline dipeptidase	48551.85	5,8744
XAC3462	L-isoaspartate protein carboxylmethyltransferase	24173.76	4,6146
XAC3550	disulfide isomerase	28261.22	9,1084
XAC3556	aminopeptidase A/I	51181.15	4,9728
XAC3559	valyl-tRNA synthetase	106433.35	5,5607
XAC3567	prolyl-tRNA synthetase	63557.21	5,9816
XAC3568	DNA-binding protein	15994.69	11,9751
XAC3627	oligopeptidase A	74992.96	5,117
XAC3678	ribosomal small subunit pseudouridylate synthase	25766.50	6,9701
XAC3679	ribosomal RNA small subunit methyltransferase C	38847.00	8,336
XAC3730	methyltransferase	107442.08	6,026
XAC3800	10-Formyltetrahydrofolate:L-methionyl-tRNA(fMet) N-formyltransferase	32696.67	9,589
XAC3801	polypeptide deformylase	19139.04	5,9297
XAC3807	DNA topoisomerase I	92015.65	9,6772
XAC3807 XAC3813	protease IV	68245.67	8,162
XAC3813 XAC3829	ATP-dependent RNA helicase	62076.76	9,887
	·		
XAC3831	transcription termination factor Rho	47776.88	8,7212
XAC3872	30S ribosomal protein S21	8613.99	11,7235
XAC3897	tyrosyl-tRNA synthetase	44312.76	6,4404
XAC3902	exodeoxyribonuclease III	30253.64	5,741
XAC3914	DNA/pantothenate metabolism flavoprotein	44016.11	6,4097
XAC3916	arginyl-tRNA synthetase	62544.21	5,8925
XAC3956	outer membrane lipoprotein Blc	20993.56	4,9019
XAC3979	histone H1 homolog	28914.62	11,8159
XAC3980	protease DO	49964.83	8,874
XAC3987	leucine aminopeptidase	49362.19	6,3207
XAC4004	peptidase	57628.47	6,0392
XAC4006	tryptophanyl-tRNA synthetase	47044.17	5,4726
XAC4106	dipeptidyl peptidase	89374.11	6,5244
XAC4110	DNA polymerase I	101069.64	5,5978
XAC4151	DNA helicase II	81718.88	6,3297
XAC4159	50S ribosomal protein L28	9091.43	12,3166
XAC4171	exodeoxyribonuclease III	29158.88	6,3462
XAC4171 XAC4210			5,1634
XAC4210 XAC4270	glycyl-tRNA synthetase beta chain	79463.51	
	glycerol-3-phosphate acyltransferase	98467.49	9,6151
XAC4344	lipoprotein	37410.81	5,73
XAC0078	ATP-dependent RNA helicase	87681.07	6,2741
XAC0106	MutT/nudix family protein	16022.40	5,6069
XAC0262	dipeptidyl anminopeptidase	75067.38	5,7835
XAC0293	ATP-dependent RNA helicase	90983.70	9,8961
XAC0306	Glu-tRNAGIn amidotransferase A subunit	48299.86	7,0193
XAC0372	hydrolase	30145.97	6,6368
XAC0425	glycogen synthase	50851.32	8,2145
XAC0540	ribonuclease	36802.26	6,2467
XAC0637	ATP-dependent HsIUV protease peptidase subunit HsIV	19278.93	6,6833
XAC0655	sugar kinase	33964.27	4,7734
XAC0709	N-acetylglucosaminidase	89715.50	8,7389
XAC0881	acid-CoA ligase	52874.25	5,4571
XAC0970	elongation factor Tu	43143.25	5,4634
XAC0985	30S ribosomal protein S14	11499.39	11,6763
XAC1091	protein phosphatase	25116.21	4,5607
XAC1091 XAC1132	DNA polymerase III	34756.44	9,3506
XAC1152 XAC1151	low molecular weight heat shock protein	17851.87	6,9762
XAC1131 XAC1199	DNA polymerase III, alpha chain	118617.44	8,1559
XAC1200	prolyl oligopeptidase family protein	71287.34	6,898
XAC1213	carboxylesterase, type B	57705.22	8,2627
XAC1323	signal peptidase I	29942.62	8,6428
XAC1325	ribonuclease III	24588.91	6,8824
XAC1340	helicase-related protein	91688.03	10,6782
XAC1341	DNA ligase	60039.68	6,9315
XAC1349	serine protease	98413.15	5,8671
XAC1375	cyclopropane-fatty-acyl-phospholipid synthase	49955.94	8,898
XAC1406	DNA polymerase III alpha chain	132416.54	5,931
XAC1407	ribonuclease HII	26525.23	7,7685
XAC1428	methionine aminopeptidase	28196.27	6,9998
XAC1463	phospholipase	45502.93	8,0677
	photolyase	54752.25	8,4747
XAC1478			

lentidade da proteína	Descrição da proteína	PM	pl
XAC1521	heat shock protein GrpE	18938.23	4,5214
	acetylhydrolase	52537.46	7,1018
	endonuclease III	24752.56	9,2059
	DNA ligase	90483.69	5,5973
	L-isoaspartate protein carboxylmethyltransferase type II	24226.78	7,094
XAC1728	lipoprotein	26691.33	10,751
	N-acetylmuramoyl-L-alanine amidase	40953.51	8,6528
	peptide chain release factor 2	36347.37	4,6193
	lysyl-tRNA synthetase heat inducible	56881.34	5,5232
	c-di-GMP phosphodiesterase A	82981.38	5,7649
	7,8-dihydro-8-oxoguanine-triphosphatase	17174.48	5,5413
	oligoribonuclease	21889.47	5,2922
			,
	DNA uptake/competence protein	90597.97	10,368
	RadC family protein	18779.25	6,7289
	50S ribosomal protein L36	4871.89	12,527
	DNA mismatch repair protein MutL	67620.97	6,9117
	ribonuclease D	40928.89	6,195
XAC2414	ATP-dependent DNA ligase	96305.85	9,9738
XAC2450	ATP-dependent DNA helicase	162091.70	7,3493
XAC2514	S-adenosylmethionine:tRNA ribosyltransferase-isomerase	39560.26	8,0274
	A/G-specific adenine glycosylase	39724.71	9,1862
	phenylalanyl-tRNA synthetase alpha chain	37224.96	6,095
	50S ribosomal protein L35	7560.87	12,21
	ribosomal-binding factor A	14537.17	6,2394
XAC2763	· · · · · · · · · · · · · · · · · · ·		8,5355
	extracellular protease	38658.69	
	TIdD protein	50707.93	5,103
	6-O-methylguanine-DNA methyltransferase	19397.06	9,9532
XAC2833	extracellular serine protease	61529.66	5,7318
XAC2899	type I restriction-modification system specificity determinant	48153.22	9,8517
XAC2932	protease	19411.84	4,4953
XAC2987	proline imino-peptidase	34538.11	6,672
XAC2999	peptidase	79113.70	6,1824
	ATP-dependent helicase	72822.73	5,4616
	DNA helicase	66542.58	7,3769
	ribosomal large subunit pseudouridine synthase D	36327.34	7,506
	acetyltransferase	22985.34	8,3318
	endonuclease	29007.83	
			6,6999
	ATP-dependent DNA helicase	77560.41	9,8064
XAC3490	amylosucrase or alpha amylase	70470.22	5,913
XAC3510	peptide deformylase	19141.74	4,543
	serine protease	57682.09	5,263
	cellulose synthase subunit C	159723.55	6,7197
XAC3558	DNA polymerase III holoenzyme chi subunit	15904.10	4,2423
XAC3622	DNA polymerase IV	39930.77	9,549
XAC3704	DNA polymerase related protein	54411.83	8,804
XAC3712	metallopeptidase	75734.19	6,319
	methionine aminopeptidase	27949.71	6,435
	N-acyl-L-amino acid amidohydrolase	44481.65	6,515
	O-sialoglycoprotein endopeptidase	36807.95	5,826
	DNA primase	65319.08	6,919
	50S ribosomal protein L33	6405.63	10,850
	ATP-dependent DNA helicase	73242.12	6,9557
	cardiolipin synthetase	45697.13	7,0186
	exodeoxyribonuclease V alpha chain	71984.72	6,8613
	exodeoxyribonuclease V beta chain	135544.64	6,317
	exodeoxyribonuclease V gamma chain	125006.09	6,244
XAC4374	50S ribosomal protein L34	5310.24	12,933
strutura celu	lar		
XAC0197	acetyltransferase	28369.21	11,633
	rod shape-determining protein	37396.88	5,700
	penicillin-binding protein 6	43568.56	8,189
	UDP- N-acetylmuramoylalanyl-D-glutamyl-2	51470.23	5,7517
	UDP-N-acetylmuramatealanine ligase	50560.47	5,6398
	D-alanineD-alanine ligase B	33687.10	4,713
	UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase	34331.09	5,422
	outer membrane protein	39447.36	4,3689
	outer membrane protein Slp	18060.31	6,557
	UDP-N-acetylglucosamine acyltransferase	27864.46	7,108
	outer membrane antigen	87704.96	5,326
	undecaprenyl pyrophosphate synthetase	28341.02	8,504

entidade da proteína	Descrição da proteína	PM	pl
XAC1479	OmpA family protein	25471.30	9,3728
XAC1717	2-dehydro-3-deoxyphosphooctonate aldolase	29771.27	6,1377
XAC2138	L-sorbosone dehydrogenase	46255.29	8,3452
XAC2406	N-acetylmuramoy-L-alanine amidase	57723.38	10,3437
XAC2526	lipopolysaccharide synthesis enzyme	18269.83	6,9738
XAC2665	PilY1 protein	118406.84	4,999
XAC2666	PilX protein	19470.17	7,9257
XAC2672	Oar protein	117359.65	4,8809
XAC2743	Oar protein	111437.96	4,9916
XAC2908	UDP-N-acetylmuramoylalanineD-glutamate ligase	49355.95	6,7617
XAC2923	twitching motility protein	42044.15	6,8584
XAC2965	UDP-N-acetylglucosamine 1-carboxyvinyltransferase	44440.97	5,2631
XAC2967	polysialic acid capsule expression protein	34913.87	6,5127
XAC3098	PilL protein	258097.32	4,1089
XAC3099	pilus biogenesis protein	71389.77	4,6623
XAC3100	pilus biogenesis protein	20054.77	6,5496
XAC3101	PilH protein	13283.21	4,8953
XAC3102	pilus protein	14666.99	7,2577
XAC3141	outer membrane protein P6 precursor	19530.81	7,8398
XAC3194	outer membrane receptor for transport of vitamin B	67611.44	5,2536
XAC3225	transglycosylase	46143.74	6,1591
XAC3239	pilus biogenesis protein	62517.46	5,4539
XAC3241	fimbrillin	15279.51	8,3152
XAC3354	outer membrane protein W	23029.14	6,6037
XAC3381	fimbrial assembly protein	67724.64	9,0993
XAC3386	penicillin-binding protein 1A	91711.63	8,2181
XAC3436	UDP- N-acetylmuramate-L-alanine ligase	48391.03	6,4095
XAC3472	polyphosphate-selective porin O	43305.26	6,7526
XAC3582	dTDP-4-keto-L-rhamnose reductase	32033.89	6,6018
XAC3583	dTDP-4-dehydrorhamnose 3	20408.07	5,2589
XAC3584	glucose-1-phosphate thymidylyltransferase	33944.59	6,1668
XAC3585	dTDP-glucose 4	38370.03	6,2718
XAC3589	integral membrane protein	52904.25	9,6072
XAC3605	outer membrane protein	31458.67	10,2714
XAC3607	type II secretion system protein-like protein	41763.00	6,1462
XAC3644	UDP-N-acetylglucosamine pyrophosphorylase	48358.93	6,3557
XAC3667	outer membrane protein	29097.06	6,2904
XAC3687	alanine racemase	39723.53	6,8669
XAC3912	phosphomannomutase	50301.92	4,6775
XAC4049	SapC protein	25873.38	5,8979
XAC4084	ankyrin-like protein	115169.19	6,2939
XAC4372	60kDa inner-membrane protein	63297.27	9,8584
XAC0047	galactosyltransferase	38634.76	9,7839
XAC0329	outer membrane protein	51802.06	5,4721
XAC0657	rod shape-determining protein	46334.11	10,3626
XAC0659	penicillin-binding protein 2	74770.37	7,9368
XAC0775	UDP-N-acetylmuramoylalanyl-D-glutamate2	51392.53	6,5932
	UDP-N-acetylglucosamineN-acetylmuramyl-(pentapeptide) pyrophosphoryl-		
XAC0779	undecaprenol	44084.63	10,7131
XAC0841	prolipoprotein diacylglyceryl transferase	32741.79	9,6363
XAC0999	colicin I receptor	76500.97	4,6713
XAC1094	saccharide biosynthesis regulatory protein	38542.15	9,9594
XAC1133	type IV fimbriae assembly protein	12430.41	9,5782
XAC1148	bifunctional penicillin-binding protein 1C	86823.90	10,3976
XAC1146 XAC1176	glycosyl hydrolase	50464.80	6,9734
XAC1516	outer membrane protein	14921.95	10,3568
XAC1510 XAC1693	glycosyl transferase	35611.87	9,6399
XAC1893 XAC1866	wall associated protein	164086.39	8,1899
XAC1866 XAC1957		129866.41	6,1606
XAC1957 XAC1966	O-antigen biosynthesis protein nucleotide sugar transaminase	40686.69	6,5049
XAC1966 XAC2017	fimbrial biogenesis protein	27125.45	9,3316
XAC2458	soluble lytic murein transglycosylase	34343.85	10,0609
XAC2709	cyanoglobin Fim\/ protoin	14607.73	7,0422
XAC2722	FimV protein	72523.24	5,1638
XAC2729	membrane-bound lytic murein transglycosylase D precursor	50900.44	8,3127
XAC2772	outer membrane protein	25600.13	9,5555
XAC2773	Oar protein	111626.16	5,3207
XAC2829	outer membrane hemin receptor	74280.45	4,674
XAC3074	beta-hexosaminidase	90422.41	7,3591
XAC3109	penicillin-binding protein 1B	87768.13	9,5534
XAC3242	fimbrial assembly protein	45374.60	10,2799

Identidade da proteína	Descrição da proteína	РМ	pl
XAC3355	outer membrane protein	21598.06	6,3479
XAC3418	Oar protein	106553.93	4,8977
XAC3561	soluble lytic murein transglycosylase	77185.32	9,6201
XAC3577	IpsJ protein	22158.39	4,6411
XAC3578	IpsJ protein	25825.25	5,8932
XAC3598	O-antigen biosynthesis protein (truncated)	67923.66	6,4709
XAC3664	outer membrane protein	23811.22	4,7799
XAC3742	UDP-galactopyranose mutase	45573.06	6,5178
XAC3756	ferrichrome-iron receptor 3	77667.47	8,3687
XAC3805	fimbrial protein	17753.11	4,6475
	dolichyl-phosphate mannose synthase related protein		
XAC4088		29984.22	10,1953
XAC4093	membrane protein	83575.31	9,3653
XACb0007	lytic murein transglycosylase	46185.90	5,88
Processos ce		02426.62	E 40E0
XAC0176	ferripyoverdine receptor	82136.62	5,1353
XAC0192	partition protein	22806.98	9,888
XAC0304	gas vesicle protein	14106.63	4,6137
XAC0422	ABC transporter substrate binding protein	63405.10	7,504
XAC0611	chemotaxis protein	72238.72	4,8705
XAC0716	TonB-dependent receptor	93020.72	4,7682
XAC0741	ABC transporter ATP-binding protein	61732.85	5,1832
XAC0757	potassium-transporting ATPase	70592.93	7,793
XAC0782	cell division protein	31006.97	11,0134
XAC0782 XAC0783	cell division protein	43994.41	6,0966
XAC0783 XAC0784	cell division protein	41664.00	4,5401
XAC0788	preprotein translocase SecA subunit	102462.31	5,341
XAC0823	outer membrane hemin receptor	86021.50	6,6425
XAC0832	ABC transporter ATP-binding protein	21284.09	6,0106
XAC0953	GTP-binding protein	38924.14	4,723
XAC0992	preprotein translocase SecY s ubunit	47994.49	10,4118
XAC1004	GTP-binding elongation factor protein	67333.64	5,1301
XAC1017	ABC transporter sulfate binding protein	37832.77	7,3176
XAC1224	cell division topological specificity factor	9597.99	5,1358
XAC1225	septum site-determining protein	28851.04	4,9648
XAC1226	cell division inhibitor	26488.41	6,7926
XAC1220 XAC1289	signal recognition particle protein	49341.73	10,5403
XAC1326	GTP-binding protein	32771.63	8,9303
XAC1389	ABC transporter ATP-binding protein	32650.60	8,2198
XAC1435	iron receptor	78988.86	5,6076
XAC1530	ABC transporter ATP-binding protein	60660.04	8,1071
XAC1624	cell division protein	26761.66	6,6969
XAC1904	chemotaxis response regulator	12990.96	5,137
XAC2085	biopolymer transport protein	23414.60	9,7786
XAC2334	ABC transporter ATP-binding protein	59165.28	8,7286
XAC2335	transport protein	60511.39	10,1048
XAC2510	protein-export membrane protein	35262.14	6,8199
XAC2511	protein-export membrane protein	65889.06	9,4681
			,
XAC2531	TonB-dependent receptor	103060.17	5,0487
XAC2600	TonB-dependent receptor	102870.45	5,2575
XAC2742	TonB-dependent receptor	108512.06	5,5589
XAC2915	osmotically inducible protein	15295.23	5,6778
XAC2936	ABC transporter ATP-binding protein	27689.62	5,8609
XAC2941	TonB-dependent receptor	83911.51	4,8606
XAC2975	HPr kinase/phosphatase	35170.30	7,3689
XAC2980	Mg++ transporter	49290.67	4,3443
XAC3050	TonB-dependent receptor	105220.68	4,514
XAC3071	TonB-dependent receptor	97165.57	4,923
XAC3168	ferric enterobactin receptor	87263.41	4,9902
XAC3100 XAC3207	ferric enterobactin receptor	87744.39	4,8737
	large-conductance mechanosensitive channel		
XAC3308	· ·	15392.32	10,0587
XAC3311	TonB-dependent receptor	107056.92	4,7313
XAC3334	TonB-dependent receptor	75675.64	8,4598
XAC3358	molybdate-binding periplasmic protein; permease	27234.23	9,9786
XAC3370	outer membrane receptor for ferric iron uptake	80498.66	4,6658
XAC3444	TonB-dependent receptor	102604.41	4,5498
XAC3498	outer membrane receptor for ferric iron uptake	80711.18	5,8872
XAC3560	TonB-dependent receptor	103412.61	4,5579
XAC3600	ABC transporter ATP-binding protein	45043.51	6,3247
XAC3620	siderophore receptor protein	80066.88	5,3059
XAC3905	chromosome partitioning protein	28514.59	5,0081
XAC3906	chromosome partitioning protein	33328.25	8,9438

Identidade da proteína	Descrição da proteína	PM	pl
XAC4036	iron-uptake factor	95050.15	10,0563
XAC4036 XAC4048	TonB-dependent receptor	108835.86	4,9832
XAC4065	ABC transporter ATP-binding protein	36103.63	6,1781
XAC4176	solute:Na+ symporter	58274.50	9,9257
XAC4354	amino acid transporter	48992.89	9,7666
XAC0126	iron transporter	76528.37	5,5777
XAC0144	TonB-dependent receptor	100299.25	4,7077
XAC0162	C4-dicarboxylate transport system	36950.03	8,9532
XAC0182	ABC transporter ATP-binding protein	26697.82	7,4167
XAC0102 XAC0313	type V secretory pathway protein	30170.06	6,6481
XAC0313 XAC0317	MFS transporter	47646.56	10,1878
XAC0317 XAC0438	component of multidrug efflux system	38221.48	11,4612
		111778.42	
XAC0439 XAC0493	cation efflux system protein bacterioferritin	_	9,6386
XAC0493 XAC0604	trehalase	18226.88	4,4982 6,035
		63261.02	
XAC0642	MFS transporter	59350.70	9,8956
XAC0690	TonB-dependent receptor	75968.40	7,0985
XAC0772	cell division protein	36026.56	7,0448
XAC0778	cell division protein	49322.14	9,4269
XAC0821	voltage-gated potassium channel beta subunit	35655.16	6,512
XAC0888	glucosefructose oxidoreductase	41618.69	9,0956
XAC1143	TonB-dependent receptor	87340.02	5,0342
XAC1149	bacterioferritin	21130.45	4,4198
XAC1215	MFS transporter	45400.87	11,3342
XAC1276	TonB-dependent receptor	83088.69	4,7906
XAC1281	chemotaxis protein	31439.73	7,0618
XAC1438	bacterioferritin	18751.25	4,6845
XAC1444	outer membrane efflux protein	52431.97	6,6981
XAC1547	ABC transporter ATP-binding protein	32409.52	7,148
XAC1549	ABC transporter vitamin B12 uptake permease	20276.35	9,6433
XAC1593	ABC transporter ATP-binding protein	57375.21	9,971
XAC1704	ABC transporter ATP-binding protein	58867.74	10,6452
XAC1711	transport protein	39103.33	10,0015
XAC1746	chemotaxis protein	75000.06	6,6907
XAC1777	MFS transporter	50312.95	9,2119
XAC1892	chemotaxis protein	69891.08	5,0331
XAC1896	chemotaxis protein	74114.19	5,3495
XAC1900	chemotaxis protein	69881.41	4,9783
XAC1902	chemotaxis protein	74683.90	5,4392
XAC1931	chemotaxis related protein	22740.55	4,71
XAC1935	flagellar protein	60423.76	6,2462
XAC1937	flagellar protein	41333.41	9,9748
XAC1944	flagellar biosynthetic protein	27608.08	4,9434
XAC1951	flagellar protein	48710.52	5,8709
XAC1954	flagellar protein	61740.60	6,2426
XAC1988	flagellar protein	32945.62	11,494
XAC2006	cell division protein	84956.56	9,1947
XAC2064	cation efflux system protein	39025.50	8,7926
XAC2087	ABC transporter ATP-binding protein	64108.37	10,0896
XAC2169	methyl-accepting chemotaxis protein	38125.20	8,9421
XAC2185	ferrichrome-iron receptor	79730.95	9,4732
XAC2103 XAC2193	TonB-dependent receptor	102700.54	7,0333
XAC2133	ABC transporter sugar binding protein	50924.79	5,9188
XAC2310 XAC2389	ABC transporter ATP-binding protein	69767.79	4,9885
XAC2369 XAC2466	polar amino acid transporter	32161.04	4,2283
XAC2466 XAC2476	periplasmic putrescine-binding protein; permease protein	40349.87	4,2263 4,9074
XAC2476 XAC2501	multiphosphoryl transfer protein	88368.96	4,9974
XAC2501 XAC2503		58568.12	
	PTS system, fructose-specific IIBC component		9,332
XAC2512	preprotein translocase YajC subunit	12277.45	10,2113
XAC2520	TonB-dependent receptor	92062.94	4,5673 5.746
XAC2535	TonB-dependent receptor	101432.69	5,746
XAC2552	cell division protein	56419.56	6,8344
XAC2797	ABC transporter ATP-binding protein	67187.86	9,3511
XAC2825	chloride channel	47828.97	11,0752
XAC2830	TonB-dependent receptor	86334.35	4,739
XAC2865	chemotaxis histidine protein kinase	71393.10	4,5562
XAC2866	chemotaxis protein	70837.30	4,8334
XAC2869	response regulator for chemotaxis	31289.76	9,5311
XAC2937	ABC transporter permease	44902.57	6,467
XAC2957	permease	42241.48	9,4994
XAC2971	ABC transporter ATP-binding protein	26217.34	5,4726

Identidade da proteína	Descrição da proteina	PM	pl
XAC3027	MFS transporter	50771.70	10,1826
XAC3132	chemotaxis protein	70344.94	5,3013
XAC3158	TonB-dependent receptor	86853.79	4,6902
XAC3165	ABC transporter ATP-binding protein	69695.67	6,0322
XAC3180	iron transporter	64906.07	8,2885
XAC3427	TonB-dependent receptor	83170.78	4,3424
XAC3430	ion transporter	32549.05	9,1207
XAC3481	periplasmic iron-binding protein	35982.28	10,2403
XAC3489	TonB-dependent receptor	88715.67	4,7826
XAC3694	chemotaxis MotB protein	39618.84	9,8701
XAC3699	ABC-2 type transporter	27663.91	9,2115
XAC3717	amino acid transporter	56823.52	9,2186
XAC3768	chemotaxis protein	75390.18	5,233
XAC3827	cell division protein	33675.98	6,7305
XAC4054	sodium ABC transporter ATP-binding protein	26600.36	8,2534
XAC4062	TonB-dependent receptor	78455.13	7,0271
XAC4368 Elementos ge	TonB-dependent receptor references móveis	84252.07	5,5299
XACb0052	partition gene repressor	12672.56	5.57
XAC1504	ISxcd1 transposase	10062.60	9,9822
XAC2100	ISxac2 transposase	10093.77	10,3216
XAC2261	plasmid-related protein	78866.13	6,0167
XAC2426	ISxcd1 transposase	10062.60	9,9822
XAC2890	ISxac2 transposase	10093.77	10,3216
XAC3283	ISxac2 transposase	10093.77	10,3216
XAC3764	ISxac2 transposase	10093.77	10,3216
XAC3944	ISxac2 transposase	10093.77	10,3216
XACa0041	partition protein A	21572	5,44
XACa0042	KfrA protein	25753	5,05
XAC0089	abortive infection phage resistance protein	35678.27	10,1984
XAC1054	integrase	38051.18	9,8559
XAC1063	phage-related lysozyme	16350.85	10,4342
XAC1510	phage-related integrase	56957.27	10,2865
XAC1662	phage-related protein	129267.64	8,3932
XAC1735	host factor-I protein	10146.42	5,7973
XAC1872	transposase	25942.58	10,1291
XAC2215	phage-related protein	55772.00	6,216
XAC2286	phage-related integrase	46726.49	10,3458
XAC2418	shufflon-specific recombinase	35961.99	10,8005
XAC2422	plasmid-related protein	35982.36	8,9009
XAC2423	IS1478 transposase	37775.85	11,7691
XAC2430	Tn5044 transposase	46859.54	8,5871
XAC2433	resolvase	32974.68	9,3175
XAC2628	phage-related integrase	46051.45	10,6479
XAC2645	phage-related terminase	25382.90	6,1545
XAC2650	aldehyde dehydrogenase	23331.52	11,0784
XAC3226	Tn5044 transposase	112910.35	8,2754
XAC3233	transposase	41947.34	10,6241
XAC3298	integrase	55945.02	10,3477
XACa0004	ISxac2 transposase	10093.80	9.67
XACa0018	partition protein A	22240.62	5.17
XACa0029	transposase	21647.85	9.82
XACa0033	ISxac1 transposase	46096.73	11.13
XACb0008	Tn5044 transposase	112266.93	8.39
XACb0010	cointegrate resolution protein T	39637.03	6.49
XACb0014	ISxac2 transposase	10093.80	9.67
XACb0019	partition protein A	22240.62	5.17
XACb0031	TrwC protein	109734.93	9.68
XACb0051	ISxac2 transposase	10094.78	9.52
XACb0053	partition protein B	37680.88	7.71
XACb0052	partition gene repressor	12672.56	5.57
XACb0054	partition protein A	27874.73	5.30
XACb0067	Tn5045 transposase	95005.00	8.91
Patogenicida XAC0008	de, virulência e adaptação TonB protein	23587.15	8,9765
XAC0008 XAC0009	biopolymer transport ExbB protein	26696.38	6,0059
XAC0108	AtsE	14442.18	4,9136
XAC0108 XAC0209	superoxide dismutase like protein	15822.58	6,5026
	superoxide districtase like protein	10022.30	
	CAP-like protein	25621 10	9 05//
XAC0209 XAC0483 XAC0863	CAP-like protein dimethyladenosine transferase	25621.19 28553.99	9,0544 9,1245

Identidade da proteína	Descrição da proteína	PM	pl
XAC0907	alkyl hydroperoxide reductase subunit C	20462.27	6,6283
XAC1007	glutathione S-transferase	23334.64	7,0721
XAC1256	penicillin tolerance protein	34690.19	4,9292
XAC1267	Hsp90xo protein	68654.61	6,2922
XAC1301	catalase/peroxidase	82795.30	5,753
XAC1337 XAC1461	cold shock protein glutathione S-transferase	7293.01 23147.54	5,7094 7,3905
XAC1401 XAC1495	virulence regulator	14734.51	10,1012
XAC1709	hemolysin	48802.06	4,5071
XAC1725	survival protein	27334.60	5,0412
XAC1793	glucan 1	91702.90	6,5301
XAC1877	response regulator	42199.36	5,2073
XAC1880	RpfB protein	61383.91	8,619
XAC1882	aconitase	99072.12	5,3301
XAC2151 XAC2341	YapH protein glutaryl-7-ACA acylase precursor	307040.33 70899.02	3,9711 6,4638
XAC2386	superoxidase dismutase	22717.32	5,5484
XAC2395	major cold shock protein	7549.50	9,32
XAC2416	virulence regulator	14789.56	9,9362
XAC2498	multidrug resistance protein	44959.29	6,1073
XAC2522	cellulase	63714.84	6,9629
XAC2584	GumC protein	50381.43	8,9434
XAC2585 XAC2614	GumB protein VirB4 protein	23346.87 91053.06	5,3199 6,2892
XAC2614 XAC2618	VirB11 protein	38708.92	6,2092
XAC2619	VirB10 protein	41497.52	5,081
XAC2620	VirB9 protein	29321.33	9,4959
XAC2621	VirB8 protein	37344.36	9,7449
XAC2806	beta-lactamase	58516.31	6,5214
XAC2881	carbon starvation protein A	74064.84	9,3394
XAC3048	heat shock protein	31957.93	4,4458
XAC3091 XAC3142	copper homeostasis protein TolB protein	27794.68 47056.02	7,6199 9,6017
XAC3142 XAC3144	TolR protein	15745.57	10,3529
XAC3145	TolQ protein	28495.56	5,8909
XAC3211	trehalose-6-phosphate synthase	50812.72	7,243
XAC3218	competence lipoprotein	33523.65	9,6344
XAC3256	virulence regulator	14586.41	10,1281
XAC3327	RND efflux membrane fusion protein	38211.45	9,116
XAC3463 XAC3491	ToIC protein NonF-related protein	49604.16 24253.16	5,5284 4,5426
XAC3534	general secretion pathway protein D	79494.51	7,991
XAC3579	phosphoglucomutase/phosphomannomutase	49121.44	5,0184
XAC3580	phosphomannose isomerase/GDP-mannose pyrophosphorylase	50960.47	5,7386
XAC3848	membrane fusion protein precursor	43893.35	9,8664
XAC4052	TonB-like protein	35660.12	9,3677
XAC4105	AMP-ligase	52920.02	8,3653
XAC4273 XAC4274	OmpA-related protein OmpA-related protein	109181.72 109807.46	5,0119 5,0982
XAC4274 XAC4284	periplasmic glucan biosynthesis protein	59860.56	6,9599
XAC4340	toluene tolerance protein	26279.73	7,5072
XAC4341	toluene tolerance protein	18432.86	5,0773
XAC4342	toluene tolerance protein	23397.58	10,1269
XAC0030	cellulase	39308.76	9,9026
XAC0129	chloroacetaldehyde dehydrogenase	55490.01	5,3208
XAC0159 XAC0237	carboxylesterase type B AMP-ligase	53743.63	9,6079
XAC0237 XAC0393	HpaF protein	59266.59 71157.80	8,3338 9,4628
XAC0394	HrpF protein	88460.67	5,5754
XAC0405	HrcV protein	69940.60	7,1316
XAC0406	HrcU protein	38880.36	6,8032
XAC0412	HrcN protein	47658.63	4,7759
XAC0447	nuclease	115716.22	4,3261
XAC0618	periplasmic glucan biosynthesis protein	68775.07	9,0729
XAC0641 XAC0695	multidrug resistance efflux pump type II secretion system protein D	39124.04 72938.04	10,6404 6,2235
XAC0695 XAC0696	type II secretion system protein E	72938.04 52805.57	6,7452
XAC0906	alkyl hydroperoxide reductase subunit F	56908.67	5,0631
XAC1211	catalase	76612.00	7,0523
XAC1368	virulence protein	48599.40	5,4412
XAC1445	multidrug resistance efflux pump	42429.92	8,7527

entidade da proteína	Descrição da proteína	PM	pl	
XAC1446	multidrug resistance membrane translocase	56553.19	8,4566	
XAC1474	glutathione S-transferase	23113.10	6,237	
XAC1482	RND multidrug efflux membrane fusion protein	42939.49	9,4596	
XAC1483	RND multidrug efflux transporter MexF	113893.66	6,9217	
XAC1527	RND efflux membrane fusion protein	38370.84	10,3003	
XAC1707	general stress protein	18069.36	4,6871	
XAC1815	filamentous haemagglutinin	471490.27	4,6899	
XAC1864	regulatory protein	33321.85	6,8728	
XAC1918 XAC2145	hemolysin related protein cation efflux system protein	66274.39 44539.30	4,7464	
XAC2145 XAC2197	hemolysin- type calcium binding protein	224768.58	10,505 4,0455	
XAC2197 XAC2201	hemolysin secretion protein D	53916.21	8,0283	
XAC2230	glutathione S-transferase	23276.49	5,2719	
XAC2369	general stress protein	20049.78	6,5266	
XAC2460	glutathione S-transferase	23103.23	5,0641	
XAC2499	multidrug efflux transporter	113620.91	5,5947	
XAC2504	regulator of pathogenicity factors	41253.87	6,4015	
XAC2513	Queuine tRNA -ribosyltransferase	42125.74	7,0299	
XAC2575	GumL protein	29376.66	6,8874	
XAC2576	GumK protein	32276.46	6,1194	
XAC2623	VirD4 protein	62034.70	9,4906	
XAC2800	RND efflux membrane fusion protein	38392.60	8,7745	
XAC2986	pectate lyase II	37456.77	8,3872	
XAC3057	beta-lactamase	48590.22	9,3139	
XAC3076	glucan 1,4-beta-glucosidase	94700.50	6,7685	
XAC3104	TonB protein	31754.88	9,7452	
XAC3143	TolA protein	37479.13	5,6012	
XAC3326	acriflavin resistance protein	112474.30	5,2298	
XAC3357	beta-lactamase	30128.74	5,7124	
XAC3516	cellulase	41509.45	9,9036	
XAC3535	general secretion pathway protein N	27783.53	8,5312	
XAC3537	general secretion pathway protein L	41543.21	9,8924	
XAC3544	general secretion pathway protein E	58870.46	4,8402	
XAC3630	copper resistance protein A precursor	65707.15	6,9727	
XAC3849	acriflavin resistance protein	116987.49	6,872	
XAC4005	beta-lactamase related protein	37128.42	6,9799	
XAC4209	colicin V secretion ABC transporter ATP-binding protein	57405.62	6,8884	
XAC4212	general secretory pathway related protein	64392.84	6,8623	
XAC4231	glucan 1,4-beta-glucosidase	98511.80	6,8995	
XAC4339	toluene tolerance protein	27597.96	8,5593	
XAC4370	thiophene and furan oxidation protein	47511.52	5,4487	
XACa0022	avirulence protein	118659.98	8.48	
XACa0039	avirulence protein	115411.03	7.69	
XACb0015	avirulence protein	115420.04	7.92	
XACb0038	VirB10 protein	42934.03	6.78	
XACb0040	VirB8 protein	25023.27	8.92	
XACb0065	avirulence protein	122359.07	8.06	
potéticas		00404.44	0.0074	
XAC0006	conserved hypothetical protein	28401.11	8,8674	
XAC0007	conserved hypothetical protein	43442.06	7,5819	
XAC0024	conserved hypothetical protein Xanthomonas conserved hypothetical protein	44337.02	10,8459	
XAC0025		22170.81	5,7364	
XAC0026 XAC0036	conserved hypothetical protein	64174.42	5,2838 4,9501	
XAC0036 XAC0141	Xanthomonas conserved hypothetical protein	11375.67 43830.55		
XAC0141 XAC0178	conserved hypothetical protein conserved hypothetical protein		5,1948	
XAC0176 XAC0185	conserved hypothetical protein	29748.86 47998.66	5,6712 6,4601	
XAC0103 XAC0199	conserved hypothetical protein	77387.96	4,972	
XAC0199 XAC0212	conserved hypothetical protein		4,5305	
XAC0212 XAC0219	Xanthomonas conserved hypothetical protein	32921.46 15886.93	9,5962	
XAC0219 XAC0223	conserved hypothetical protein		4,3829	
XAC0223 XAC0241	conserved hypothetical protein	21905.95 22885.00	5,1055	
XAC0241 XAC0258	conserved hypothetical protein	38431.28	5,645	
XAC0236 XAC0272	Xanthomonas conserved hypothetical protein	23121.37	9,0512	
XAC0272 XAC0289	conserved hypothetical protein	29598.48	9,0512	
XAC0269 XAC0292	conserved hypothetical protein	15008.86	11,6225	
XAC0292 XAC0294	conserved hypothetical protein	17855.64	8,2498	
XAC0294 XAC0335	conserved hypothetical protein	37383.79	6,8893	
XAC0335 XAC0419	Xanthomonas conserved hypothetical protein	10734.98	7,7172	
XAC0419 XAC0420	conserved hypothetical protein	89191.38	8,2837	
	oonoon tou nypounouou pi0lolli	05.151.00	0,2001	

Identidade da proteína	Descrição da proteina	PM	pl
XAC0468	conserved hypothetical protein	17716.07	4,5643
XAC0482	conserved hypothetical protein	26418.65	10,5749
XAC0555	conserved hypothetical protein	28069.73	7,636
XAC0573	Xanthomonas conserved hypothetical protein	25341.39	5,1602
XAC0574	Xanthomonas conserved hypothetical protein	46861.69	6,8846
XAC0623	conserved hypothetical protein	29142.97	5,1065
XAC0625	conserved hypothetical protein	36288.75	7,0355
XAC0635	conserved hypothetical protein	24887.45	5,3288
XAC0646	Xanthomonas conserved hypothetical protein	25922.36	9,3501
XAC0765	conserved hypothetical protein	59693.13	9,8075
XAC0766	conserved hypothetical protein	28926.92	6,8907
XAC0805	conserved hypothetical protein	91878.66	9,2083
XAC0822	Xanthomonas conserved hypothetical protein	9323.94	10,9781
XAC0836	conserved hypothetical protein	23890.18	9,2947
XAC0838	conserved hypothetical protein	23730.61	8,3933
XAC0901	conserved hypothetical protein	20124.98	4,5313
XAC0913	conserved hypothetical protein	20837.93	7,6317
XAC0946	conserved hypothetical protein	61866.98	5,1464
XAC1013	conserved hypothetical protein	17810.45	9,2286
XAC1030	conserved hypothetical protein	35610.52	10,0486
XAC1036	conserved hypothetical protein	26976.30	4,7855
XAC1045	conserved hypothetical protein	14571.42	5,6049
XAC1062	hypothetical protein	29896.73	8,295
XAC1110	conserved hypothetical protein	11382.02	4,815
XAC1121	conserved hypothetical protein	18825.55	4,1094
XAC1145	conserved hypothetical protein	178633.13	6,7445
XAC1179	conserved hypothetical protein	86195.30	6,7505
XAC1201	conserved hypothetical protein	29089.08	4,984
XAC1227	conserved hypothetical protein	25515.70	7,1951
XAC1230	conserved hypothetical protein	42743.29	7,6923
XAC1244	conserved hypothetical protein	27242.41	6,5098
XAC1262	conserved hypothetical protein	63411.31	6,1633
XAC1268	conserved hypothetical protein	86080.89	4,6966
XAC1302	conserved hypothetical protein	19738.35	6,9708
XAC1306	conserved hypothetical protein	70427.06	7,163
XAC1324	conserved hypothetical protein	15397.82	10,3309
XAC1328	conserved hypothetical protein	26095.62	6,743
XAC1346	conserved hypothetical protein	10945.95	5,9797
XAC1364	Xanthomonas conserved hypothetical protein	16385.41	5,6602
XAC1387	conserved hypothetical protein conserved hypothetical protein	15806.38	10,3811
XAC1393 XAC1453	conserved hypothetical protein	65050.69 11220.57	8,6099
			7,1612
XAC1476 XAC1492	conserved hypothetical protein	20015.65	6,1076
	conserved hypothetical protein hypothetical protein	11253.48	9,0808
XAC1497		32031.37	8,4544
XAC1503	Xanthomonas conserved hypothetical protein	26897.22	7,3335
XAC1514 XAC1541	conserved hypothetical protein conserved hypothetical protein	16087.37 48632.21	5,6966 5,664
XAC1541 XAC1543	conserved hypothetical protein	48632.21 18959.94	5,664 8,2191
XAC1543 XAC1552	conserved hypothetical protein	8843.95	4,4902
XAC1552 XAC1558	conserved hypothetical protein	46499.60	5,2412
XAC1558 XAC1590	conserved hypothetical protein	46499.60 16971.70	9,3893
XAC1619	conserved hypothetical protein	12005.32	4,483
XAC1619 XAC1671	conserved hypothetical protein	55677.74	6,2709
XAC1671 XAC1710	conserved hypothetical protein	23690.32	5,0036
XAC1710 XAC1727	conserved hypothetical protein	22286.61	10,9461
XAC1727 XAC1730	conserved hypothetical protein	11213.97	9,8847
XAC1756	conserved hypothetical protein	52337.40	4,9995
XAC1756 XAC1761	conserved hypothetical protein	17465.87	4,9995 8,462
XAC1761 XAC1779	Xanthomonas conserved hypothetical protein	16484.74	6,5062
XAC1779 XAC1799	conserved hypothetical protein	45172.51	6,6336
XAC1799 XAC1913	hypothetical protein	43491.20	5,8623
XAC1913 XAC2016	conserved hypothetical protein	45327.69	5,8623 9,1738
XAC2016 XAC2018		45327.69 30356.38	9,1738
XAC2018 XAC2019	conserved hypothetical protein	30356.38 22987.22	
	conserved hypothetical protein		5,0079
XAC2020	conserved hypothetical protein	42589.23	8,8716 6,7507
XAC2083	conserved hypothetical protein	43347.02	6,7507 5,0031
XAC2152	conserved hypothetical protein	65850.25	5,0931
XAC2154	conserved hypothetical protein	33256.06	4,7479
XAC2156 XAC2252	conserved hypothetical protein	9061.80	10,997
	hypothetical protein	42637.67	9,7979

entidade da proteína	Descrição da proteína	PM pl
XAC2290	conserved hypothetical protein	12044.39 6,7824
XAC2295	conserved hypothetical protein	44084.95 6,1475
XAC2302	conserved hypothetical protein	37966.85 4,4211
XAC2307	conserved hypothetical protein	116960.46 6,3615
XAC2317	conserved hypothetical protein	43918.05 3,929
XAC2319	conserved hypothetical protein	14551.62 9,8608
XAC2378	conserved hypothetical protein	48414.10 5,1211
XAC2398 XAC2402	conserved hypothetical protein	76014.99 4,8245 23305.21 7.7711
XAC2402 XAC2404	conserved hypothetical protein conserved hypothetical protein	23305.21 7,7711 32445.90 7,6915
XAC2404 XAC2434	conserved hypothetical protein	78224.99 6,0766
XAC2496	conserved hypothetical protein	186119.75 7,0217
XAC2525	conserved hypothetical protein	16907.23 5,2301
XAC2530	conserved hypothetical protein	87426.23 6,7737
XAC2540	conserved hypothetical protein	59787.46 7,9787
XAC2543	conserved hypothetical protein	67104.27 5,9767
XAC2544	conserved hypothetical protein	65858.37 6,1765
XAC2550	conserved hypothetical protein	32854.84 4,7431
XAC2562	conserved hypothetical protein	16809.28 10,2276
XAC2611	Xanthomonas conserved hypothetical protein	17189.43 7,9548
XAC2671	conserved hypothetical protein	49466.50 6,0669 14572.20 4.4503
XAC2721 XAC2727	conserved hypothetical protein conserved hypothetical protein	14572.20 4,4503 21393.51 7,5743
XAC2727 XAC2730	conserved hypothetical protein	53637.26 6,2829
XAC2730 XAC2737	conserved hypothetical protein	15621.84 6,5141
XAC2796	conserved hypothetical protein	72848.60 6,9223
XAC2821	Xanthomonas conserved hypothetical protein	43497.64 4,7056
XAC2827	conserved hypothetical protein	6081.17 11,7241
XAC2907	conserved hypothetical protein	26453.08 8,0342
XAC2909	conserved hypothetical protein	49288.10 6,7171
XAC2913	conserved hypothetical protein	31351.23 4,9989
XAC2925	conserved hypothetical protein	24701.12 7,2166
XAC2942	conserved hypothetical protein	25076.26 6,7999
XAC2945	conserved hypothetical protein	18251.82 9,9172
XAC2946	conserved hypothetical protein	29147.24 9,5091
XAC2954 XAC2958	conserved hypothetical protein conserved hypothetical protein	37893.37 6,0362 41005.35 9,507
XAC2963	conserved hypothetical protein	22658.89 10,156
XAC2977	conserved hypothetical protein	13564.73 5,0021
XAC3005	conserved hypothetical protein	24669.62 4,4356
XAC3007	conserved hypothetical protein	27403.82 8,9023
XAC3008	conserved hypothetical protein	20031.61 5,8507
XAC3083	conserved hypothetical protein	85489.60 6,7768
XAC3096	conserved hypothetical protein	16811.41 4,4067
XAC3097	conserved hypothetical protein	40792.20 4,248
XAC3118	Xanthomonas conserved hypothetical protein	18873.77 10,1036
XAC3130	Xanthomonas conserved hypothetical protein	7341.20 4,8897
XAC3140	conserved hypothetical protein	29583.79 6,2841 47433.13 7,0031
XAC3177 XAC3268	conserved hypothetical protein hypothetical protein	47423.12 7,0021 20320.62 8,9112
XAC3286 XAC3281	Xanthomonas conserved hypothetical protein	17207.24 5,2065
XAC3261 XAC3325	hypothetical protein	48798.22 5,7961
XAC3351	Xanthomonas conserved hypothetical protein	18686.18 9,2834
XAC3364	conserved hypothetical protein	68242.54 7,2859
XAC3396	conserved hypothetical protein	32076.85 5,5448
XAC3406	conserved hypothetical protein	19304.40 3,9963
XAC3410	conserved hypothetical protein	16547.63 4,9707
XAC3446	Xanthomonas conserved hypothetical protein	84093.82 8,3633
XAC3460	conserved hypothetical protein	108069.37 6,5203
XAC3468	conserved hypothetical protein	7827.86 5,5811
XAC3525	conserved hypothetical protein	31938.16 6,799
XAC3596	hypothetical protein	62832.39 9,5079
XAC3597	hypothetical protein	32763.80 8,8838
XAC3633	Xanthomonas conserved hypothetical protein	32019.45 4,6536
XAC3657	Xanthomonas conserved hypothetical protein	29862.28 4,4502
XAC3660	Xanthomonas conserved hypothetical protein	22906.83 7,2646 18257.70 6.0382
XAC3671	conserved hypothetical protein	18257.79 6,0382 25836.31 4.3766
XAC3695 XAC3725	Xanthomonas conserved hy pothetical protein conserved hypothetical protein	25836.31 4,3766 18297.92 4,74
XAC3725 XAC3802	conserved hypothetical protein	18297.92 4,74 41227.60 7,9184
XAC3844	Xanthomonas conserved hypothetical protein	17822.54 4,403

proteina XAC3845 XAC3851 XAC3851 XAC3926 XAC3966 XAC3981 XAC3997 XAC4007 XAC4007 XAC4107 XAC4107 XAC4104 XAC4107 XAC4107 XAC4107 XAC4107 XAC4107 XAC4107 XAC4105 conserved hypothetical protein conserved hypothetical protein Conserved hypothetical protein Xanthomonas conserved hypothetical protein Xanthomonas conserved hypothetical protein	13803.50 49990.24 15949.52 28217.19 29827.24 12179.59 42142.96 7981.74 68083.76 96563.88 27307.82 16221.83 68440.17 66644.24 31555.57 33398.26	8,5339 5,1934 5,3283 4,9257 6,1896 4,668 10,2213 4,7734 9,2712 9,073 5,0498 8,4762 6,9779 5,3514 5,9012	
XAC3851 XAC3926 XAC3966 XAC3981 XAC3997 XAC4007 XAC4044 XAC4107 XAC4107 XAC4164 XAC4204 XAC4223 XAC4223 XAC4278 XAC0015	conserved hypothetical protein Xanthomonas conserved hypothetical protein Xanthomonas conserved hypothetical protein Xanthomonas conserved hypothetical protein	49990.24 15949.52 28217.19 29827.24 12179.59 42142.96 7981.74 68083.76 96563.88 27307.82 16221.83 68440.17 66644.24 31555.57	5,1934 5,3283 4,9257 6,1896 4,668 10,2213 4,7734 9,2712 9,073 5,0498 8,4762 6,9779 5,3514
XAC3926 XAC3966 XAC3981 XAC3997 XAC4007 XAC4004 XAC4007 XAC4107 XAC4107 XAC4164 XAC4164 XAC4204 XAC4223 XAC4223 XAC4278 XAC0015	Xanthomonas conserved hypothetical protein Xanthomonas conserved hypothetical protein Xanthomonas conserved hypothetical protein Xanthomonas conserved hypothetical protein	28217.19 29827.24 12179.59 42142.96 7981.74 68083.76 96563.88 27307.82 16221.83 68440.17 66644.24 31555.57	4,9257 6,1896 4,668 10,2213 4,7734 9,2712 9,073 5,0498 8,4762 6,9779 5,3514
XAC3966 XAC3981 XAC3997 XAC4007 XAC4044 XAC4077 XAC4107 XAC4107 XAC4164 XAC4204 XAC4204 XAC4223 XAC4223 XAC4278 XAC0015	Xanthomonas conserved hypothetical protein Xanthomonas conserved hypothetical protein	29827.24 12179.59 42142.96 7981.74 68083.76 96563.88 27307.82 16221.83 68440.17 66644.24 31555.57	6,1896 4,668 10,2213 4,7734 9,2712 9,073 5,0498 8,4762 6,9779 5,3514
XAC3981 XAC3997 XAC4007 XAC4044 XAC4077 XAC4107 XAC41107 XAC4164 XAC4204 XAC4204 XAC4209 XAC4223 XAC4278 XAC0015	conserved hypothetical protein Xanthomonas conserved hypothetical protein	12179.59 42142.96 7981.74 68083.76 96563.88 27307.82 16221.83 68440.17 66644.24 31555.57	4,668 10,2213 4,7734 9,2712 9,073 5,0498 8,4762 6,9779 5,3514
XAC3997 XAC4007 XAC4044 XAC4077 XAC4107 XAC41109 XAC4164 XAC4204 XAC4204 XAC4209 XAC4223 XAC4278 XAC0015	conserved hypothetical protein conserved hypothetical protein conserved hypothetical protein conserved hypothetical protein Xanthomonas conserved hypothetical protein	42142.96 7981.74 68083.76 96563.88 27307.82 16221.83 68440.17 66644.24 31555.57	10,2213 4,7734 9,2712 9,073 5,0498 8,4762 6,9779 5,3514
XAC4007 XAC4044 XAC4077 XAC4107 XAC4149 XAC4164 XAC4204 XAC4204 XAC4219 XAC4223 XAC4278 XAC0015	conserved hypothetical protein conserved hypothetical protein conserved hypothetical protein Xanthomonas conserved hypothetical protein conserved hypothetical protein conserved hypothetical protein conserved hypothetical protein hypothetical protein conserved hypothetical protein conserved hypothetical protein conserved hypothetical protein conserved hypothetical protein	7981.74 68083.76 96563.88 27307.82 16221.83 68440.17 66644.24 31555.57	4,7734 9,2712 9,073 5,0498 8,4762 6,9779 5,3514
XAC4044 XAC4077 XAC4107 XAC4149 XAC4164 XAC4204 XAC4219 XAC4223 XAC4278 XAC0015	conserved hypothetical protein conserved hypothetical protein Xanthomonas conserved hypothetical protein hypothetical protein conserved hypothetical protein conserved hypothetical protein conserved hypothetical protein	68083.76 96563.88 27307.82 16221.83 68440.17 66644.24 31555.57	9,2712 9,073 5,0498 8,4762 6,9779 5,3514
XAC4077 XAC4107 XAC4149 XAC4164 XAC4204 XAC4219 XAC4223 XAC4278 XAC0015	conserved hypothetical protein Xanthomonas conserved hypothetical protein conserved hypothetical protein conserved hypothetical protein conserved hypothetical protein hypothetical protein conserved hypothetical protein conserved hypothetical protein conserved hypothetical protein	96563.88 27307.82 16221.83 68440.17 66644.24 31555.57	9,073 5,0498 8,4762 6,9779 5,3514
XAC4107 XAC4149 XAC4164 XAC4204 XAC4219 XAC4223 XAC4278 XAC0015	Xanthomonas conserved hypothetical protein hypothetical protein conserved hypothetical protein conserved hypothetical protein conserved hypothetical protein	27307.82 16221.83 68440.17 66644.24 31555.57	5,0498 8,4762 6,9779 5,3514
XAC4149 XAC4164 XAC4204 XAC4219 XAC4223 XAC4278 XAC0015	conserved hypothetical protein conserved hypothetical protein conserved hypothetical protein hypothetical protein conserved hypothetical protein conserved hypothetical protein conserved hypothetical protein	16221.83 68440.17 66644.24 31555.57	8,4762 6,9779 5,3514
XAC4164 XAC4204 XAC4219 XAC4223 XAC4278 XAC0015	conserved hypothetical protein conserved hypothetical protein hypothetical protein conserved hypothetical protein conserved hypothetical protein	68440.17 66644.24 31555.57	6,9779 5,3514
XAC4204 XAC4219 XAC4223 XAC4278 XAC0015	conserved hypothetical protein hypothetical protein conserved hypothetical protein conserved hypothetical protein	66644.24 31555.57	5,3514
XAC4219 XAC4223 XAC4278 XAC0015	conserved hypothetical protein hypothetical protein conserved hypothetical protein conserved hypothetical protein	31555.57	5,3514
XAC4219 XAC4223 XAC4278 XAC0015	hypothetical protein conserved hypothetical protein conserved hypothetical protein		
XAC4223 XAC4278 XAC0015	conserved hypothetical protein conserved hypothetical protein	33398.26	
XAC4278 XAC0015	conserved hypothetical protein		4,8894
XAC0015		24068.12	6,2493
		23711.99	4,3241
XAC0027	Xanthomonas conserved hypothetical protein	15715.52	5,9177
XAC0048	hypothetical protein	49264.10	10,397
XAC0046 XAC0055	hypothetical protein	49284.54	9,9242
XAC0061	conserved hypothetical protein	11787.65	6,0744
XAC0061	conserved hypothetical protein	33499.71	8,5451
XAC0072	conserved hypothetical protein	40438.60	9,2265
XAC0072 XAC0077	conserved hypothetical protein	35586.56	8,1179
XAC0077 XAC0087	hypothetical protein	11588.04	9,8192
XAC0097 XAC0092	hypothetical protein	30765.42	5,6819
XAC0107	hypothetical protein	143500.70	8,1061
XAC0107 XAC0112	conserved hypothetical protein	27399.49	10,5595
XAC0112 XAC0114	hypothetical protein	69152.53	11,7682
XAC0114 XAC0115	conserved hypothetical protein	85094.81	9,3267
XAC0113 XAC0139	Xanthomonas conserved hypothetical protein	17145.41	6,7843
	**		
XAC0145 XAC0147	conserved hypothetical protein hypothetical protein	146426.00 56767.38	6,3655
		45473.72	4,8984
XAC0149	hypothetical protein		6,0318
XAC0173	Xanthomonas conserved hypothetical protein	24290.51	5,1829
XAC0186	conserved hypothetical protein	35208.91	5,6897
XAC0190	Xanthomonas conserved hypothetical protein	28345.96	10,306
XAC0193	conserved hypothetical protein	17556.95	5,2772
XAC0198	conserved hypothetical protein	36462.43	7,8254
XAC0200	conserved hypothetical protein	21854.41	4,7679
XAC0227	hypothetical protein	25294.03	10,7222
XAC0245	conserved hypothetical protein	20080.10	9,6041
XAC0259	conserved hypothetical protein	96748.09	9,3552
XAC0270	conserved hypothetical protein	59016.53	10,2372
XAC0340	conserved hypothetical protein	15628.12	9,7465
XAC0374	conserved hypothetical protein	31551.61	5,9365
XAC0381	conserved hypothetical protein	15729.35	4,7478
XAC0450	conserved hypothetical protein	20612.32	5,0176
XAC0463	conserved hypothetical protein	31881.28	10,2325
XAC0475	conserved hypothetical protein	32428.75	4,5555
XAC0498	hypothetical protein	15239.10	4,6858
XAC0510	conserved hypothetical protein	81119.98	9,3618
XAC0515	conserved hypothetical protein	64313.32	10,333
XAC0544	conserved hypothetical protein	103188.24	4,7746
XAC0556	hypothetical protein	17784.46	12,2925
XAC0592	conserved hypothetical protein	39336.44	9,2968
XAC0594	hypothetical protein	11690.81	11,7783
XAC0603	conserved hypothetical protein	25960.73	6,3655
XAC0666	conserved hypothetical protein	10258.42	5,5515
XAC0672	conserved hypothetical protein	32632.98	7,6244
XAC0675	hypothetical protein	40845.46	8,645
XAC0678	conserved hypothetical protein	13348.95	11,6102
XAC0687	conserved hypothetical protein	45710.67	4,5794
XAC0754	hypothetical protein	47339.81	7,4547
XAC0853	hypothetical protein	26982.57	8,8925
XAC0868	hypothetical protein	28060.17	9,133
XAC0886	Xanthomonas conserved hypothetical protein	29234.53	9,133
XAC0880 XAC0890	hypothetical protein	20249.87	5,485
XAC0914 XAC0915	conserved hypothetical protein conserved hypothetical protein	81696.16 86144.72	5,8552 5,0231

Identidade da proteína	Descrição da proteína	PM	pl
XAC1055	hypothetical protein	22083.17	10,6577
XAC1093	conserved hypothetical protein	14492.37	5,306
XAC1105	hypothetical protein	12518.23	10,4722
XAC1117	conserved hypothetical protein	68552.70	9,3784
XAC1131	conserved hypothetical protein	38598.49	10,0934
XAC1153	hypothetical protein	13045.74	10,5361
XAC1161	conserved hypothetical protein	20845.34	6,6667
XAC1166	Xanthomonas conserved hypothetical protein	18391.09	10,4484
XAC1177	conserved hypothetical protein	66309.67	5,1272
XAC1190	conserved hypothetical protein	47508.50	9,5215
XAC1191	Xanthomonas conserved hypothetical protein	22631.72	6,9469
XAC1195	hypothetical protein	7992.41	9,1117
XAC1198	conserved hypothetical protein	53383.28	9,782
XAC1203 XAC1238	Xanthomonas conserved hypothetical protein	33268.51 47569.37	7,5527 6,4136
XAC1236 XAC1245	hypothetical protein conserved hypothetical protein	14553.81	8,817
XAC1243 XAC1246	· · · · · · · · · · · · · · · · · · ·	14958.06	-
XAC1246 XAC1278	conserved hypothetical protein conserved hypothetical protein	13530.39	7,7732 4,2392
XAC1276 XAC1330	conserved hypothetical protein	18511.79	4,8715
XAC1344	hypothetical protein	18660.88	5,3046
XAC1344 XAC1365	conserved hypothetical protein	22077.09	8,8361
XAC1369	conserved hypothetical protein	95171.14	10,0242
XAC1388	hypothetical protein	134329.55	9,6251
XAC1420	conserved hypothetical protein	55985.64	5,6677
XAC1434	conserved hypothetical protein	38195.83	6,1452
XAC1440	hypothetical protein	25946.92	12,5274
XAC1471	hypothetical protein	27747.67	8,1918
XAC1490	conserved hypothetical protein	41035.52	8,3357
XAC1508	hypothetical protein	34221.99	9,015
XAC1509	hypothetical protein	71580.55	6,5125
XAC1532	conserved hypothetical protein	21899.25	5,3044
XAC1537	hypothetical protein	54773.44	4,2322
XAC1553	conserved hypothetical protein	26521.84	10,3733
XAC1563	hypothetical protein	17119.76	12,4078
XAC1570	conserved hypothetical protein	111570.14	9,3742
XAC1594	hypothetical protein	78429.89	7,6984
XAC1598	conserved hypothetical protein	26887.32	9,5237
XAC1606	hypothetical protein	19037.40	4,3447
XAC1609	hypothetical protein	18800.40	8,3117
XAC1610	hypothetical protein	23110.93	10,5883
XAC1632	hypothetical protein	19313.24	11,4323
XAC1652	conserved hypothetical protein	23144.38	9,0634
XAC1694	hypothetical protein	42308.43	10,195
XAC1697	conserved hypothetical protein	42015.16	7,3154
XAC1712	hypothetical protein	28207.52	9,156
XAC1749	conserved hypothetical protein	35213.08	9,1479
XAC1758	Xanthomonas conserved hypothetical protein	12402.48	4,1719
XAC1791	hypothetical protein	17526.07	10,5099
XAC1806	conserved hypothetical protein	28538.04	5,3131
XAC1836	Xanthomonas conserved hypothetical protein	59559.57	6,6065
XAC1846	conserved hypothetical protein	9845.98	4,5935
XAC1847	hypothetical protein	67917.31	9,7126
XAC1868	hypothetical protein	37531.07	6,7853
XAC1869	hypothetical protein hypothetical protein	22827.17	6,6898
XAC1922 XAC1971	hypothetical protein	29320.83 20380.15	8,9873 6,0019
XAC1971 XAC1993	conserved hypothetical protein	110150.24	5,8316
XAC1993 XAC1997	conserved hypothetical protein	21918.14	10,2905
XAC1997 XAC2009	conserved hypothetical protein	140937.39	7,9866
XAC2009 XAC2091	conserved hypothetical protein	53807.72	7,4857
XAC2106	conserved hypothetical protein	45186.42	7,5558
XAC2100 XAC2117	hypothetical protein	21171.85	4,5764
XAC2117 XAC2160	hypothetical protein	15313.90	12,1156
XAC2160 XAC2163	conserved hypothetical protein	57700.44	7,0666
XAC2184	hypothetical protein	45318.11	12,079
XAC2196	hypothetical protein	68832.47	6,5576
XAC2206	hypothetical protein	59967.70	5,6229
XAC2208	conserved hypothetical protein	44215.15	10,4562
XAC2220	hypothetical protein	35127.24	8,0213
XAC2223	conserved hypothetical protein	28115.60	5,2432
		_00.00	- ,— · -

dentidade da proteína	Descrição da proteína	PM	pl	
XAC2246	hypothetical protein	23073.19	6,279	
XAC2247	conserved hypothetical protein	91615.33	5,2124	
XAC2259	hypothetical protein	61734.35	5,3912	
XAC2263	hypothetical protein	47987.88	6,0676	
XAC2266	hypothetical protein	33633.32	9,3924	
XAC2272	hypothetical protein	56893.71	12,0454	
XAC2274	hypothetical protein	100141.83	5,3116	
XAC2312	conserved hypothetical protein	108663.66	5,095	
XAC2375	conserved hypothetical protein	25716.37	10,9903	
XAC2381	conserved hypothetical protein	36890.30	7,7437	
XAC2397	conserved hypothetical protein	42052.03	8,5697	
XAC2461	hypothetical protein	49662.26	5,7607	
XAC2483	conserved hypothetical protein	17834.07	6,3406	
XAC2491	conserved hypothetical protein	49231.98	7,1422	
XAC2506	hypothetical protein	140697.27	4,8805	
XAC2527	conserved hypothetical protein	22618.97	10,9864	
XAC2534	conserved hypothetical protein	157053.92	7,5269	
XAC2554	conserved hypothetical protein	10491.80	6,2406	
XAC2605	conserved hypothetical protein	16764.59	6,0126	
XAC2638	conserved hypothetical protein	25846.35	9,7484	
XAC2636 XAC2689	conserved hypothetical protein	21226.02	4,9735	
XAC2669 XAC2735	conserved hypothetical protein	50403.50	4,7963	
XAC2735 XAC2741	hypothetical protein	33493.51	6,8763	
		24775.82	7,1708	
XAC2766 XAC2769	conserved hypothetical protein hypothetical protein	24775.82 138751.20	6,9145	
XAC2769 XAC2776		54530.70	6,7833	
XAC2776 XAC2786	conserved hypothetical protein conserved hypothetical protein	77931.65		
			9,2382	
XAC2808	conserved hypothetical protein	30646.70	7,3209	
XAC2815	Xanthomonas conserved hypothetical protein	38364.02	12,2506	
XAC2816	conserved hypothetical protein	8583.71	4,0785	
XAC2901	conserved hypothetical protein	17798.71	11,2852	
XAC2931	conserved hypothetical protein	21015.09	9,4134	
XAC2962	conserved hypothetical protein	32317.43	9,7317	
XAC2966	conserved hypothetical protein	8076.22	5,0244	
XAC2969	conserved hypothetical protein	21150.89	10,1309	
XAC2970	hypothetical protein	19701.33	9,491	
XAC2976	conserved hypothetical protein	32164.16	6,7281	
XAC3034	conserved hypothetical protein	19783.53	9,9055	
XAC3056	conserved hypothetical protein	49247.24	10,0105	
XAC3059	hypothetical protein	21256.97	11,3807	
XAC3073	hypothetical protein	40426.94	6,7262	
XAC3106	conserved hypothetical protein	24795.49	4,9138	
XAC3108	conserved hypothetical protein	21933.98	8,9123	
XAC3111	hypothetical protein	11772.44	11,4776	
XAC3112	hypothetical protein	50469.66	10,5858	
XAC3146	conserved hypothetical protein	17433.84	5,2901	
XAC3151	conserved hypothetical protein	25675.67	4,3307	
XAC3155	hypothetical protein	28161.05	8,9753	
XAC3156	hypothetical protein	10138.37	8,3259	
XAC3178	hypothetical protein	67613.12	7,1107	
XAC3182	conserved hypothetical protein	16686.05	9,192	
XAC3205	conserved hypothetical protein	42498.24	7,7251	
XAC3210	conserved hypothetical protein	67330.86	5,2335	
XAC3216	conserved hypothetical protein	28573.36	7,0251	
XAC3279	hypothetical protein	57873.48	9,0115	
XAC3333	hypothetical protein	57919.41	9,9386	
XAC3387	Xanthomonas conserved hypothetical protein	24460.48	10,2551	
XAC3408	conserved hypothetical protein	11171.55	5,1769	
XAC3400 XAC3413	conserved hypothetical protein		6,0041	
XAC3413 XAC3433	conserved hypothetical protein	32844.27 77060 50		
		77060.59 16820.27	10,5781	
XAC3439	Xanthomonas conserved hypothetical protein	16829.27	9,7749	
XAC3502	conserved hypothetical protein	21045.36	6,0215	
XAC3554	conserved hypothetical protein	40881.98	10,123	
XAC3569	conserved hypothetical protein	43603.98	10,374	
XAC3636	Xanthomonas conserved hypothetical protein	15592.73	8,7416	
XAC3691	conserved hypothetical protein	16821.87	6,1344	
XAC3698	conserved hypothetical protein	9605.69	6,5284	
XAC3754	conserved hypothetical protein	47024.62	4,4422	
XAC3755	Xanthomonas conserved hypothetical protein	48221.82	11,8012	
XAC3836	conserved hypothetical protein	69616.43	8,7928	
XAC3837	conserved hypothetical protein	85179.89	7,4284	

Identidade da proteína	Descrição da proteína	PM	pl
XAC3839	conserved hypothetical protein	58868.42	10,7238
XAC3866	Xanthomonas conserved hypothetical protein	13996.08	5,2984
XAC3898	conserved hypothetical protein	51879.31	10,5345
XAC3917	conserved hypothetical protein	29489.34	10,0576
XAC3927	hypothetical protein	20670.94	12,1888
XAC3928	conserved hypothetical protein	70956.44	8,2045
XAC3930	conserved hypothetical protein	10167.55	4,8016
XAC3951	hypothetical protein	35672.34	7,1913
XAC3952	conserved hypothetical protein	81860.93	5,2129
XAC3954	hypothetical protein	29195.21	9
XAC3992	conserved hypothetical protein	31874.12	8,4132
XAC4011	conserved hypothetical protein	12915.84	6,0942
XAC4013	conserved hypothetical protein	19577.41	4,2141
XAC4020	hypothetical protein	43540.96	9,4216
XAC4035	Xanthomonas conserved hypothetical protein	30492.00	4,5959
XAC4039	conserved hypothetical protein	35806.00	10,286
XAC4082	conserved hypothetical protein	66817.24	5,5512
XAC4119	conserved hypothetical protein	125867.72	9,1622
XAC4147	conserved hypothetical protein	18196.62	4,4939
XAC4152	conserved hypothetical protein	49546.02	8,6333
XAC4194	conserved hypothetical protein	98745.10	8,0712
XAC4205	conserved hypothetical protein	31619.19	4,9585
XAC4279	Xanthomonas conserved hypothetical protein	40862.12	6,0072
XAC4299	hypothetical protein	147854.34	8,6438
XAC4300	Xanthomonas conserved hypothetical protein	23284.60	4,5962
XAC4301	conserved hypothetical protein	55194.11	6,5311
XAC4313	conserved hypothetical protein	40336.86	9,3751
XAC4333	Xanthomonas conserved hypothetical protein	50244.21	7,2339
XAC4355	hypothetical protein	90079.99	7,1459
XACa0008	hypothetical protein	13780.79	6.95
XACa0037	conserved hypothetical protein	8808.88	4.81
XACb0035	hypothetical protein	15816.12	7.92
XACb0048	hypothetical protein	13901.21	8.67
XACb0058	hypothetical protein	9659.95	4.65
XACb0070	conserved hypothetical protein	8808.88	4.81
ORFs sem car		04040.00	0.4474
XAC0554	nitroreductase	21319.02	6,1174
XAC1968	response regulator	14141.08	4,7665
XAC2358	DnaK supressor	18941.89	4,8205
XAC4349	bifunctional oxireductase/alginate lyase	36016.05	6,407
XAC0065	microcystin dependent protein	20623.13	8,0472
XAC0066	microcystin dependent protein	19372.67	75.674
XAC0067	microcystin dependent protein	17870.26	6,0608
XAC0170	sugar-phosphate isomerase	23400.45	5,2586
XAC0280	ATPase	40888.17	5,9071
XAC0348	transferase	19189.79	6,7865
XAC0466	lytic enzyme	63173.34	7,5853
XAC0572	IcfG protein	75828.58	7,3012
XAC0619	carboxylesterase	24066.77	6,0017
XAC0644	response regulator	39423.33	9,4009
XAC0674	pre-B cell enhancing factor related protein	51827.22	5,8869
XAC0725	GTP-binding protein	23590.65	9,6695
XAC0873	VisC protein	43007.71	7,3712
XAC1399 XAC1723	sensor protein	25374.33	9,7635
X Δι:1/23	hydrogenase subunit	40356.50	7,9152
			7,5042
XAC1757	bacterioferritin comigratory protein	17484.08	
XAC1757 XAC1764	regucalcin	33578.72	5,3549
XAC1757 XAC1764 XAC1970	regucalcin response regulator	33578.72 22708.36	5,3549 7,8532
XAC1757 XAC1764 XAC1970 XAC1992	regucalcin response regulator c-di-GMP phosphodiesterase A	33578.72 22708.36 63935.70	5,3549 7,8532 5,5469
XAC1757 XAC1764 XAC1970 XAC1992 XAC2021	regucalcin response regulator c-di-GMP phosphodiesterase A GTP-binding protein	33578.72 22708.36 63935.70 51258.08	5,3549 7,8532 5,5469 8,623
XAC1757 XAC1764 XAC1970 XAC1992 XAC2021 XAC2462	regucalcin response regulator c-di-GMP phosphodiesterase A GTP-binding protein ATP-binding protein	33578.72 22708.36 63935.70 51258.08 36154.26	5,3549 7,8532 5,5469 8,623 6,2536
XAC1757 XAC1764 XAC1970 XAC1992 XAC2021 XAC2462 XAC2529	regucalcin response regulator c-di-GMP phosphodiesterase A GTP-binding protein ATP-binding protein RhsD protein	33578.72 22708.36 63935.70 51258.08 36154.26 172464.43	5,3549 7,8532 5,5469 8,623 6,2536 5,9057
XAC1757 XAC1764 XAC1970 XAC1992 XAC2021 XAC2462 XAC2529 XAC2572	regucalcin response regulator c-di-GMP phosphodiesterase A GTP-binding protein ATP-binding protein RhsD protein GumN protein	33578.72 22708.36 63935.70 51258.08 36154.26 172464.43 37071.04	5,3549 7,8532 5,5469 8,623 6,2536 5,9057 10,3742
XAC1757 XAC1764 XAC1970 XAC1992 XAC2021 XAC2462 XAC2529 XAC2572 XAC2670	regucalcin response regulator c-di-GMP phosphodiesterase A GTP-binding protein ATP-binding protein RhsD protein GumN protein alginate biosynthesis protein	33578.72 22708.36 63935.70 51258.08 36154.26 172464.43 37071.04 37777.11	5,3549 7,8532 5,5469 8,623 6,2536 5,9057 10,3742 9,6259
XAC1757 XAC1764 XAC1970 XAC1992 XAC2021 XAC2462 XAC2529 XAC2572 XAC2670 XAC2711	regucalcin response regulator c-di-GMP phosphodiesterase A GTP-binding protein ATP-binding protein RhsD protein GumN protein alginate biosynthesis protein phosphodiesterase	33578.72 22708.36 63935.70 51258.08 36154.26 172464.43 37071.04 37777.11 79853.50	5,3549 7,8532 5,5469 8,623 6,2536 5,9057 10,3742 9,6259 6,7707
XAC1757 XAC1764 XAC1970 XAC1992 XAC2021 XAC2462 XAC2529 XAC2572 XAC2670 XAC2711 XAC2765	regucalcin response regulator c-di-GMP phosphodiesterase A GTP-binding protein ATP-binding protein RhsD protein GumN protein alginate biosynthesis protein phosphodiesterase PmbA protein	33578.72 22708.36 63935.70 51258.08 36154.26 172464.43 37071.04 37777.11 79853.50 47962.50	5,3549 7,8532 5,5469 8,623 6,2536 5,9057 10,3742 9,6259 6,7707 4,9082
XAC1757 XAC1764 XAC1970 XAC1992 XAC2021 XAC2462 XAC2529 XAC2572 XAC2670 XAC2711 XAC2765 XAC2883	regucalcin response regulator c-di-GMP phosphodiesterase A GTP-binding protein ATP-binding protein RhsD protein GumN protein alginate biosynthesis protein phosphodiesterase PmbA protein hydrolase	33578.72 22708.36 63935.70 51258.08 36154.26 172464.43 37071.04 37777.11 79853.50 47962.50 24248.88	5,3549 7,8532 5,5469 8,623 6,2536 5,9057 10,3742 9,6259 6,7707 4,9082 5,1323
XAC1757 XAC1764 XAC1970 XAC1992 XAC2021 XAC2462 XAC2529 XAC2572 XAC2670 XAC2711 XAC2765 XAC2883 XAC2939	regucalcin response regulator c-di-GMP phosphodiesterase A GTP-binding protein ATP-binding protein RhsD protein GumN protein alginate biosynthesis protein phosphodiesterase PmbA protein	33578.72 22708.36 63935.70 51258.08 36154.26 172464.43 37071.04 37777.11 79853.50 47962.50	5,3549 7,8532 5,5469 8,623 6,2536 5,9057 10,3742 9,6259 6,7707 4,9082
XAC1757 XAC1764 XAC1970 XAC1992 XAC2021 XAC2462 XAC2529 XAC2572 XAC2670 XAC2711 XAC2765 XAC2883 XAC2939 XAC3002	regucalcin response regulator c-di-GMP phosphodiesterase A GTP-binding protein ATP-binding protein RhsD protein GumN protein alginate biosynthesis protein phosphodiesterase PmbA protein hydrolase acetyltransferase synthetase/amidase	33578.72 22708.36 63935.70 51258.08 36154.26 172464.43 37071.04 37777.11 79853.50 47962.50 24248.88 20153.99 43619.03	5,3549 7,8532 5,5469 8,623 6,2536 5,9057 10,3742 9,6259 6,7707 4,9082 5,1323 5,0775 4,5366
XAC1757 XAC1764 XAC1970 XAC1992 XAC2021 XAC2462 XAC2579 XAC2572 XAC2670 XAC2711 XAC2765 XAC2883 XAC2939	regucalcin response regulator c-di-GMP phosphodiesterase A GTP-binding protein ATP-binding protein RhsD protein GumN protein alginate biosynthesis protein phosphodiesterase PmbA protein hydrolase acetyltransferase	33578.72 22708.36 63935.70 51258.08 36154.26 172464.43 37071.04 37777.11 79853.50 47962.50 24248.88 20153.99	5,3549 7,8532 5,5469 8,623 6,2536 5,9057 10,3742 9,6259 6,7707 4,9082 5,1323 5,0775

Identidade da proteína	Descrição da proteína	PM	pl
XAC3139	radical activating enzyme	25286.86	6,6139
XAC3153	acetyltransferase	24224.34	7,0447
XAC3245	RhsD protein	162679.77	5,2233
XAC3315	carboxylesterase	53114.39	7,596
XAC3323	acidic amino acid rich protein	142873.66	4,7786
XAC3424	TdcF protein	17583.30	9,4516
XAC3593	NAD dependent epimerase/dehydratase/dehydrogenase	35275.66	8,902
XAC3826	response regulator protein	29142.47	5,8401
XAC3986	hydrolase	27211.88	5,455
XAC4050	Pass1-related protein	37270.51	6,4248
XAC4221	hydrolase	31027.88	6,9137
XAC4269	nuclear receptor binding factor related protein	35413.35	6,4107
XAC4280	acetyltransferase	20165.12	6,5066
XAC4371	polysac charide deacetylase	98425.57	6,3619

Tabela suplementar II: Proteínas hipotéticas identificadas de *Xanthomonas axonopodis* pv. *citri (Xac)* com funções associadas de proteínas em *Xanthomonas campestris* pv. *vesicatoria (Xcv)* utilizando o programa BLAST.

Identidade	Identidade		lala anti-da ala	0-1	
da proteína	da proteína	e_value	Identidade (%)	(%)	Função associada
(Xac)	(Xcv)	- 150			with the appearant of weather
XAC0007 XAC0015	XCV0007 XCV0016	e-152 2E-94	72 91	100 87	putative secreted protein putative secreted protein
XAC0013 XAC0024	XCV0010 XCV0025	e-166	75	100	putative secreted protein
XAC0024 XAC0025	XCV0025 XCV0026	e-100	93	100	putative peptidase putative secreted protein
XAC0026	XCV0027	0,0	91	100	putative peptidase precursor
XAC0027	XCV0028	9E-70	88	100	putative secreted protein
XAC0036	XCV0040	8,00E-48	85	100	putative secreted protein
XAC0072	XCV0048	0,0	92	100	putative secreted protein
XAC0107	XCV0078	0,0	83	100	putative membrane-associated peptidase
XAC0114	XCV0085	0,0	71	88	putative membrane protein
XAC0115	XCV0086	0,0	77	84	putative membrane protein
XAC0145	XCV0124	0,0	89	96	putative secreted protein
XAC0190	XCV0173	3,00E-87	75	83	putative secreted protein
XAC0193	XCV0176	2,00E-86	100	100	putative phosphoglycerate mutase family protein
XAC0198 XAC0200	XCV0181 XCV0184	e-178 e-113	92 96	99 100	putative hydrolase of the alpha/beta fold superfamily putative phosphatidylethanolamine-binding protein
XAC0200 XAC0219	XCV0104 XCV0204	1E-64	87	100	putative prospirationerial protein
XAC0213	XCV0204 XCV0233	1E-78	86	72	putative secreted protein
XAC0258	XCV0266	0,0	93	100	putative societed protein
XAC0259	XCV0267	0,0	54	96	putative membrane protein
XAC0270	XCV0278	0,0	91	95	putative membrane protein
XAC0272	XCV0280	e-104	95	91	putative secreted protein
XAC0289	XCV0297	e-146	94	100	putative methyltransferase
XAC0292	XCV0299	1E-56	79	100	putative membrane protein
XAC0420	XCV0445	0,0	87	96	small-conductance mechanosensitive channel
XAC0450	XCV0480	2,00E-93	87	100	putative thioredoxin
XAC0455	XCV0486	4E-86	74	101	putative secreted protein
XAC0482	XCV0518	e-134	99	100	putative phosphatase
XAC0510	XCV0544	0,0	87	100	putative efflux transporter family protein
XAC0515 XAC0544	XCV0549 XCV0573	0,0 0,0	89 96	100 100	putative esterase/lipase/thioesterase family protein TonB-dependent outer membrane receptor
XAC0544 XAC0555	XCV0573 XCV0588	3E-96	77	85	putative secreted protein
XAC0573	XCV0607	1E-99	80	95	putative secreted protein
XAC0574	XCV0608	0,0	95	100	putative lipase
XAC0592	XCV0644	0,0	92	100	putative secreted protein
XAC0594	XCV0648	1,00E-37	70	100	putative membrane protein
XAC0623	XCV0680	e-128	99	85	putative salt-induced outer membrane protein
XAC0625	XCV0681	e-170	93	100	putative DNA binding protein
XAC0666	XCV0727	8E-47	98	100	putative secreted protein
XAC0672	XCV0733	e-161	96	100	putative secreted protein
XAC0678	XCV0739	1E-34	62	100	putative secreted protein
XAC0765	XCV0817	0,0	88	100	putative lipoprotein
XAC0805	XCV0857	0,0	90	99	putative secreted protein
XAC0836 XAC0913	XCV0889 XCV0949	e-118 e-105	98 98	100 100	putative secreted protein putative nitroreductase family protein
XAC0913 XAC0946	XCV0949 XCV0977	0,0	83	99	putative secreted protein
XAC1013	XCV1043	3E-64	73	100	putative secreted protein
XAC1030	XCV1059	e-111	64	100	putative secreted protein
XAC1036	XCV1066	e-112	82	100	UDP-2,3-diacylglucosamine hydrolase
XAC1045	XCV1075	1,00E-60	88	100	carboxymuconolactone decarboxylase
XAC1062	XCV4435	2E-89	60	100	putative secreted protein
XAC1117	XCV1135	0,0	93	98	putative membrane protein
XAC1131	XCV1150	e-165	84	99	putative membrane protein
XAC1145	XCV1164	0,0	95	98	putative secreted protein
XAC1161	XCV1182	2,00E-90	86	99	putative transcriptional regulator, TetR family
XAC1177	XCV1203	0,0	88	100	glycosyl hydrolase
XAC1201	XCV1228	e-139	92	100	putative metal dependent phosphohydrolase superfamily protein
XAC1203	XCV1231	e-139	88	90	putative secreted protein
XAC1227 XAC1230	XCV1259 XCV1262	e-112	87 85	100 101	putative acetyltransferase putative membrane protein
XAC1230 XAC1244	XCV1262 XCV1280	0,0 e-128	92	101	putative memorane protein putative enoyl-CoA hydratase
XAC1244 XAC1246	XCV1280 XCV1282	2E-71	98	100	putative thioesterase
XAC1262	XCV1202	0,0	97	100	putative thoesterase putative glycyl aminopeptidase precursor
70701202	70 1011	0,0	J1	100	patativo giyoyi airiii opopiidado produtodi

Identidade da proteína	Identidade da proteína	e_value	Identidade (%)	Cobertura (%)	Função associada
(Xac)	(Xcv)	OF 50	` '	` '	
XAC1324	XCV1375	2E-53	84	93	putative membrane protein
XAC1328 XAC1330	XCV1380 XCV1382	e-120 4E-88	92 96	100 100	putative two-component system response regulator putative adenylate cyclase family protein
XAC1369	XCV1302 XCV1425	0,0	86	99	putative membrane protein
XAC1387	XCV1442	1,00E-70	87	100	putative secreted protein
XAC1393	XCV1450	0,0	96	100	putative secreted protein
XAC1420	XCV1477	0,0	99	100	putative signal transduction protein
XAC1434	XCV1491	0,0	98	100	putative secreted protein
XAC1471	XCV1528	e-120	84	100	putative secreted protein
XAC1476	XCV1534	9E-85	86	100	putative NADPH-dependent FMN reductase
XAC1490	XCV1549	1,00E-69	73	49	putative asparagine synthase (fragment)
XAC1541	XCV1584	0,0	94	95	putative HlyC/CorC family transporter
XAC1543 XAC1552	XCV1586 XCV1595	6E-66 6E-36	85 97	86 100	putative secreted protein conserved protein; SlyX family
XAC1532 XAC1570	XCV1595 XCV1610	0,0	85	100	putative sensor protein
XAC1594	XCV1635	0,0	88	100	putative RNA methylase
XAC1609	XCV1652	2,00E-90	92	100	putative secreted protein
XAC1619	XCV1660	1,00E-59	98	100	putative iron-sulfur cluster assembly accessory protein
XAC1652	XCV1693	2,00E-64	60	100	TonB-like protein
XAC1671	XCV1707	0,0	97	99	putative RecA/DnaB superfamily regulatory protein
XAC1694	XCV1727	e-163	77	96	putative membrane protein
XAC1710	XCV1744	e-109	98	100	putative pit accessory protein
XAC1712	XCV1746	e-142	98	100	putative membrane protein
XAC1727	XCV1760	e-115	100	100	putative membrane protein
XAC1749	XCV1782	e-122	74	95	putative membrane protein
XAC1756 XAC1761	XCV1787	0,0	95 70	100	PhoHlike protein
	XCV1792 XCV1811	3E-70 2E-19	78 42	100 95	putative secreted protein
XAC1779 XAC1799	XCV1811 XCV1829	0,0	94	100	putative secreted protein 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase
XAC1836	XCV1882	0,0	90	97	putative secreted protein
XAC1846	XCV1892	3,00E-24	62	100	putative secreted protein
XAC1847	XCV1893	0,0	79	95	putative secreted protein
XAC1993	XCV2041	0,0	97	94	putative signal transduction protein
XAC2009	XCV2059	0,0	85	100	putative secreted protein
XAC2016	XCV2067	0,0	98	100	radical SAM superfamily protein
XAC2019	XCV2070	1,00E-98	88	100	putative membrane protein
XAC2020	XCV2071	0,0	90	100	putative quinoprotein
XAC2083 XAC2106	XCV2250 XCV2418	0,0	98	90 100	putative secreted protein
XAC2106 XAC2117	XCV2416 XCV2429	0,0 e-110	88 99	100	putative secreted protein thioredoxin-like protein
XAC2117 XAC2152	XCV2429 XCV2102	0,0	95	100	putative signal transduction protein
XAC2247	XCV3381	e-119	34	92	large Ala/GIn-rich protein
XAC2272	XCV2370	4E-98	66	53	putative secreted protein
XAC2295	XCV2493	0,0	96	100	putative membrane protein
XAC2302	XCV2500	0,0	93	100	putative peptidylarginine deiminase
XAC2307	XCV2505	0,0	95	100	putative secreted protein
XAC2312	XCV2510	0,0	94	97	TonB-dependent outer membrane receptor
XAC2319	XCV2518	4E-66	88	100	putative secreted protein
XAC2378	XCV2575	0,0	92	100	putative amidohydrolase family protein
XAC2381	XCV2578	e-156	85	94	putative radical SAM superfamily protein
XAC2397 XAC2398	XCV2594 XCV2595	0,0 0,0	89 92	99 100	putative pyridine nucleotide-disulphide oxidoreductase putative sensor protein
XAC2398 XAC2402	XCV2595 XCV2599	0,0 1E-78	92 80	90	putative sensor protein putative regulator of polymer accumulation
XAC2402 XAC2461	XCV2599 XCV2638	0,0	94	100	2-methylthioadenine synthetase
XAC2491	XCV2670	0,0	93	100	putative membrane protein
XAC2496	XCV2674	0,0	96	100	NAD-specific glutamate dehydrogenase
XAC2506	XCV2684	0,0	76	58	large Ala/Gln-rich protein
XAC2525	XCV2708	3,00E-67	81	100	putative secreted protein
XAC2527	XCV2710	1E-95	85	100	putative methyltransferase
XAC2530	XCV2724	0,0	90	100	putative secreted protein
XAC2534	XCV2729	0,0	89	100	putative secreted protein
XAC2540	XCV2736	0,0	87	100	putative secreted protein
XAC2543 XAC2544	XCV2740 XCV2741	0,0	91 94	100 100	putative secreted protein
XAC2544 XAC2550	XCV2741 XCV2748	0,0 e-167	94 92	100	putative secreted protein proline racemase
XAC2562	XCV2746 XCV2761	3E-66	96	84	putative secreted protein
XAC2502 XAC2638	XCV2701 XCV3441	1E-48	47	91	putative membrane protein
	/\C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		77	100	
	XCV2839	8,00E-76	11	100	TribC family protein
XAC2689 XAC2721	XCV2839 XCV0259	8,00E-76 9E-28	52	86	YhbC family protein putative glyoxalase I

	Identidade da proteína	Identidade da proteína	A value	Identidade	Cobertura	Função associada
,	(Xac)	(Xcv)	e_value	(%)	(%)	runção associada
_	XAC2735	XCV2887	0,0	98	100	MiaB-family RNA modification enzyme
	XAC2741	XCV2893	e-121	80	89	putative ATP-binding protein
	XAC2776	XCV2932	0,0	90	100	putative secreted protein
	XAC2786	XCV2944	0,0	82	100	Xanthomonas outer protein N
	XAC2796	XCV 2955	0,0	88		putative secreted protein
	XAC2815	XCV2976	5E-70	66 74	63	putative membrane protein
	XAC2821 XAC2907	XCV2982 XCV3051	e-165 e-134	74 93	99 100	putative secreted protein putative carboxymethylenebutenolidase
	XAC2907 XAC2913	XCV3051 XCV3058	e-153	93 91	100	Phenazine biosynthesis PhzF family protein
	XAC2931	XCV3075	6E-98	91	100	putative secreted protein
	XAC2945	XCV3089	2E-91	96	100	putative secreted protein
	XAC2946	XCV3090	e-133	88	100	putative secreted protein
	XAC2954	XCV3099	e-174	89	99	putative phosphotransferase family protein
	XAC2958	XCV3103	e-169	82	96	putative secreted protein
	XAC2962	XCV3107	e-141	84	100	putative secreted protein
	XAC2963	XCV3108	e-111	98	100	putative secreted protein
	XAC2966	XCV3112	3E-34	94	100	BolA superfamily transcriptional regulator
	XAC2969 XAC2970	XCV3115 XCV3116	e-101 2,00E-75	94 77	100 100	putative secreted protein putative secreted protein
	XAC2970 XAC2976	XCV3116 XCV3122	e-160	99	100	putative P-loop ATPase family protein
	XAC2977	XCV3122 XCV3123	1E-66	100	100	putative enzyme II of the phosphotransferase system
	XAC3007	XCV3157	e-124	93	100	putative enzyme if of the phosphotransierase system putative PspA/IM30 family protein
	XAC3034	XCV3171	2E-92	90	100	putative secreted protein
	XAC3056	XCV3192	0,0	87	100	putative membrane protein
	XAC3096	XCV3227	2E-77	99	92	chemotaxis-related protein
	XAC3106	XCV3238	9E-90	74	100	glycoprotease family protein
	XAC3108	XCV3240	4E-66	77	84	putative secreted protein
	XAC3112	XCV3243	e-161	65 70	100	putative secreted protein
	XAC3118 XAC3140	XCV3249 XCV3270	3E-71 e-102	79 72	100 100	putative secreted protein
	XAC3140 XAC3146	XCV3276	2E-81	98	100	putative secreted protein putative thioesterase
	XAC3155	XCV3287	3E-88	78	80	putative unocaterase putative secreted protein
	XAC3178	XCV3308	0,0	83	100	putative siderophore biosynthesis protein
	XAC3205	XCV3329	0,0	85	99	putative secreted protein
	XAC3210	XCV3335	0,0	99	100	putative glycosyl hydrolase
	XAC3333	XCV3450	0,0	84	101	putative membrane protein
	XAC3351	XCV3468	2E-76	88	91	putative secreted protein
	XAC3406	XCV3523	4E-73	80	100	UPF0149 protein
	XAC3433	XCV3548	0,0	90	100	putative membrane-associated phospholipid phosphatase
	XAC3439	XCV3567	2E-84	97 97	100	putative secreted protein
	XAC3446 XAC3460	XCV3574 XCV3588	0,0 0,0	87 91	100 100	putative regulatory protein putative sensor protein
	XAC3400 XAC3525	XCV3566 XCV3651	e-160	92	100	putative secreted protein
	XAC3554	XCV3679	0,0	94	100	putative Secreted protein putative YjgP/YjgQ family permease
	XAC3569	XCV3694	0,0	85	100	putative membrane protein
	XAC3633	XCV3750	e-151	87	100	putative secreted protein
	XAC3657	XCV3775	e-154	99	100	putative secreted protein
	XAC3660	XCV3778	e-116	97	100	putative secreted protein
	XAC3691	XCV3812	2E-87	98	100	peptide methionine sulfoxide reductase
	XAC3754	XCV3872	e-162	70	100	putative membrane protein
	XAC3802	XCV3927	0,0	93	100	putative secreted protein
	XAC3844 XAC3898	XCV3961	4E-54	60 91	100 100	putative secreted protein membrane-bound metallogodopentidase
	XAC3898 XAC3917	XCV4011 XCV4030	0,0 2E-78	91 56	100	membrane-bound metalloendopeptidase putative secreted protein
	XAC3917 XAC3927	XCV4030 XCV4042	2E-78	83	100	putative kinase
	XAC3928	XCV4042 XCV4043	0,0	87	100	putative kindse putative secreted protein
	XAC3992	XCV4085	e-152	95	93	putative secreted protein
	XAC3997	XCV4090	0,0	85	100	ABC transporter permease
	XAC4011	XCV4104	1E-48	85	100	putative secreted protein
	XAC4020	XCV4113	0,0	86	99	putative secreted protein
	XAC4035	XCV4127	e-162	95	100	TolB-like protein
	XAC4044	XCV4134	0,0	90	97	putative secreted protein
	XAC4077	XCV4163	0,0	87 05	100	putative acetyltransferase (GNAT) family protein
	XAC4082 XAC4119	XCV4169 XCV4209	0,0 0,0	95 77	100 100	putative glycosyl hydrolase putative membrane protein
	XAC4119 XAC4149	XCV4209 XCV4245	0,0 3E-72	93	100	Universal stress protein family protein
	XAC4149 XAC4152	XCV4245 XCV4249	0,0	93 74	100	putative membrane protein
	XAC4164	XCV4263	0,0	94	92	putative membrane protein
	XAC4194	XCV4294	0,0	94	98	putative secreted protein
		XCV4306	0,0	97	100	putative outer membrane protein

Identidade da proteína (Xac)	Identidade da proteína (Xcv)	e_value	Identidade (%)	Cobertura (%)	Função associada
XAC4219	XCV4322	e-111	72	100	putative sec reted protein
XAC4223	XCV4327	e-155	94	100	recombination associated protein RdgC
XAC4299	XCV4399	0,0	83	101	putative ATP-binding protein
XAC4313	XCV4415	e-149	74	100	putative membrane protein
XAC4333	XCV4438	0,0	77	100	Xanthomonas outer protein Q
XAC4355	XCV4467	0,0	96	100	putative sugar hydrolase precursor