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1.  Introduction

Hybrid organic–inorganic materials (HOIMs) are among 
the most promising media for optical and photonic applica-
tions [1–3]. By combining the peculiar chemical and physi-
cal properties of such distinct compounds, it is possible to 
produce a composite material with optimized optical prop-
erties in comparison with the individual original media. 
For instance, it is possible to enhance the nonlinear optical 
responses of an organic material by adding a small number 
of inorganic nanoparticles into it; however, it is necessary to 

reduce the impact of any undesirable effects that this inclu-
sion may cause [4]. Hybrid organic–inorganic media, such 
as organic lead halide perovskite materials, present improved 
electronic and optical properties and they have been devel-
oped for use in several photonic applications [5]. By exploit-
ing the versatility of organic polymers, different strategies 
have been employed aiming the production of improved pho-
tonic hybrid devices [6].

Among the multitude of optical and photonics applica-
tions based in HOIM, the appropriate combination of organic 
dyes and inorganic structures and/or nanoparticles have been 
intensively investigated for use in random laser (RL) systems 
[7–10]. In this class of device, there is no mirror in the optical 
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Abstract
A Rhodamine B-doped 3-glycidoxypropyltrimethoxysilane (GPTS)/tetraethyl orthosilicate 
(TEOS)-derived organic/silica monolithic xerogel with excellent optical properties was 
prepared and its potential as a random laser host investigated. This hybrid material has a 
non-porous organic/inorganic morphology with silica-rich nanoparticles of less than 10 nm in 
diameter homogeneously dispersed within the matrix. Random laser emission with incoherent 
feedback, centered at 618 nm, was observed from Rhodamine B incorporated into the 
monolithic xerogel when excited by a 532 nm pulsed laser. This hybrid system is shown to be 
very promising for the development of a new class of random laser-based integrated devices, 
with applications ranging from optical bio-imaging to sensing.

Keywords: random laser, silica nanoparticles, organic–inorganic hybrid material,  
incoherent feedback

(Some figures may appear in colour only in the online journal)

Astro Ltd

IOP

Letter

5 Author to whom any correspondence should be addressed.

2017

1612-202X

1612-202X/17/065801+6$33.00

https://doi.org/10.1088/1612-202X/aa699bLaser Phys. Lett. 14 (2017) 065801 (6pp)

publisher-id
doi
mailto:marca.ufs@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1088/1612-202X/aa699b&domain=pdf&date_stamp=2017-04-20
https://doi.org/10.1088/1612-202X/aa699b


2

L M G Abegão et al

cavity. Instead, the feedback mechanism that allows light 
amplification by stimulated emission of radiation through the 
gain medium is light scattering, which is intrinsically random 
[11–13].

Interest in these systems has increased enormously over the 
past two decades, although they were proposed originally by 
Ambartsumyan and coworkers in 1966 [14]. Owing to their 
peculiar properties, RLs have been used as benchmarks for 
investigating fundamental effects. For instance, one of the 
most fundamental paradigms of statistical mechanics is rep-
lica theory, for which so-called replica symmetry breaking 
was not experimentally demonstrated until the use of RLs 
[15, 16]. Another example is the experimental observation 
of a stochastic process called the Lévy fluctuation using an 
RL [17] and the verification of light localization in amplify-
ing disordered media [18]. In addition, RLs have proven to be 
useful in several applications where their low coherence can 
be exploited for imaging applications, such as light projector 
systems [19] and time-resolved microscopy [20], due to their 
speckle suppression. An RL can also be used to measure milk 
fat content [21], to determine low concentrations of dopamine 
[22], as a tool for cancerous tissue diagnosis [23], among 
other applications [12, 13].

Furthermore, research conducted over the last few dec-
ades has focused on new sol–gel-derived organic/silica 
hybrid materials, which present several advantages for the 
design and application of materials for optics and photonics 
[24]. Different solid-state hybrid organic/inorganic systems 
have been investigated as RL media [25–29]. Nevertheless, 
the development of a low-cost RL material, with improved 
characteristics and optical integration capabilities, is a very 
important issue that must be overcome in order to make RL 
devices competitive commercial products. Indeed, combining 
the properties of the organic/inorganic hybrid matrices with 
the functionality of organic molecules yields the next genera-
tion of multifunctional materials, which have been recognized 
to possess a wide spectrum of properties with applications in 
several fields [30].

In this context, the development of HOIM via the sol–gel 
process is a promising approach for the design of RL mat
erials due to the ease of obtaining silica-based dense bulks, 
with the possibility of doping with organic and/or inorganic 
components. Laser properties have been reported for sil-
ica gel doped with Rhodamine 6G and Rhodamine B [31],  
3-glycidoxypropyltrimethoxysilane (GPTS)-based hybrids 
with Titania and Rhodamine 6G [32], and distributed-feedback 
dye-doped sol–gel silica lasers using periodic gain modula-
tion [33]. Efficient RL emission has been also demonstrated 
for di-ureasil-based hybrids incorporating Rhodamine 6G [34]. 
RL action was also reported for a silica gel containing SiO2 
nanoparticles embedding Rhodamine 6G [35]. Furthermore, 
in a recent study, the combination of tetraethyl orthosilicate 
(TEOS) and GPTS, with embedded luminescent quantum dots, 
presented enhanced emission quantum efficiency [36]. Also, 
femtosecond laser fabrication of waveguides in monolithic 
xerogels of GPTS/TEOS-derived organic/silica hybrids doped 
with Rhodamine B has been demonstrated recently [37].

In this work, we report random lasing in Rhodamine 
B-doped GPTS/TEOS-derived organic/silica monolithic 
xerogels prepared by a sol–gel process. In this system, light 
scatters are silica-rich nanometric domains within the GPTS/
TEOS-derived xerogel. The intrinsic nanometric structure 
of the material was characterized by transmission electron 
microscopy (TEM) and the light scattering mean-free path due 
to the silica-rich nanoparticles was estimated. Laser-induced 
luminescence experiments were carried out and the system’s 
RL emission was observed and analyzed.

2.  Experiments and results

By using a sol–gel process, Rhodamine B-doped GPTS/
TEOS-derived monolithic xerogel (RB-doped xerogel) 
samples were prepared by acid hydrolysis of GPTS (Aldrich 
98%) and TEOS (Aldrich 99%) compounds, dissolved in 
ethanol (EtOH). Additionally, for acid-catalyzed hydrolysis, 
a solution of HNO3 in water (0.6 M) was slowly dropped 
into the alkoxide mixtures. The molar ratio for GPTS/TEOS/
EtOH/H2O/HNO3 used in the hydrolysis was approximately 
1:1:3:7:0.1. The undoped sols were refluxed at 80 °C for 24 h 
under mechanical stirring, allowing complete hydrolyzation 
and producing a very stable and clear organic/ailica hybrid 
sol with a 1:1 GPTS/TEOS ratio. Ethanolic solutions with a 
Rhodamine B concentration of 25 mmol l−1 were prepared 
by dissolving Rhodamine B powder (for fluorescence; Sigma-
Aldrich) in ethanol. In the following step, 20 ml of GPTS/
TEOS-derived organic/silica sols were doped with 5 ml of 
Rhodamine B ethanolic solution. Bulks of RB-doped xerogel 
with a Rhodamine B concentration of 19.3 mmol l−1 were 
obtained after very slow drying of a known volume of the 
Rhodamine B-doped sol in sealed flasks at 40 °C. Density 
of the monolithic xerogels was measured (1.395 g cm−3) 
by using the Archimedes method, thereby allowing a pre-
cise determination of the Rhodamine B concentration in the 
samples. The RB-doped xerogels were optically clear, free of 
cracks and did not present any porosity when measured by 
nitrogen adsorption. The fluorescence spectra of the produced 
RB-doped xerogel sample were also recorded using a Varian 
Cary Eclipse fluorescence spectrophotometer.

The GPTS/TEOS-derived organic/silica sol doped with 
Rhodamine B was prepared for TEM imaging by drying a 
drop of the respective sol on a copper grid coated with a thin 

Figure 1.  Schematic view of the luminescence RL setup.
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layer of carbon. The TEM images were made using a JEM-
1400 PLUS from JEOL, operated at an acceleration voltage of 
120 keV, and a megapixel (2048  ×  2048) bottom-mount CCD 
camera for retrieving high-resolution images, which were 
processed and analyzed by software to quantify particle size 
distribution.

For RL studies, the experimental luminescence setup pre-
sented in figure 1 was employed. The excitation source was 
the second harmonic of a Nd:YAG pulsed laser (8 ns time 
duration at 10 Hz repetition rate), model Vibrant 355 II from 
OPOTEK. The incident pulse energy over the sample was 
continuously controlled by a set of half-wavelength plates 
and two polarizers. The light beam was focused by a 20 cm 
convergent lens. We could vary the sample position along the 
light beam path. The incidence angle on the excitation beam 
was about 45°. The emitted light was collected normally to 
the sample surface by a set of lenses and coupled to an optical 
fiber which was connected to a CCD-compact spectrometer, 
model QE65000 from OceanOptics.

The bulk used to investigate RL properties was doped with 
19.3 mmol l−1 of Rhodamine B (RB). Figure  2(a) shows a 
photograph of a typical RB-doped xerogel of approximately 
3 mm in thickness produced by the sol–gel process. As can be 
observed in figure 2(a), transmitted light through the sample 
indicates that a weak light scattering process occurs inside the 
xerogel. Figure  2(b) displays the characteristic fluorescence 
spectrum of this RB as the gain medium on the hybrid system, 
measured using the 350 nm laser excitation wavelength of a 
fluorescence spectrophotometer, which presented a maximum 
intensity around 600 nm.

(b)(a)

Figure 2.  (a) Photograph of the RB-doped GPTS/TEOS-derived monolithic xerogel with a concentration of 19.3 mmol l−1 and  
(b) its fluorescence spectrum at room temperature.

(a) (b)

Figure 3.  (a) TEM image showing silica-rich particles dispersed in the RB-doped GPTS-TEOS-derived organic/silica hybrid and  
(b) particle size distribution with a Gaussian fit.

Figure 4.  Emission spectra evolution as a function of the pump 
fluence.

Laser Phys. Lett. 14 (2017) 065801
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Figure 3(a) shows the TEM image of the RB-doped hybrid 
sample revealing the presence of nanoparticles dispersed 
within the matrix. Analyzing figure 3(a), we can observe two 
phases: the brightest areas, which correspond to a lower den-
sity phase, indicate a homogeneous polymer-rich phase, while 
the nearly circular darkest areas evidence formation of nano-
particles rich in silica, which possess higher density. For com-
parison, the density of amorphous SiO2 is 2.2 g cm−3 and the 
density of the organic radical (R) propyl glycidyl ether from 
the GPTS precursor is  ≈1.0 g cm−3.

Density of the RB-doped xerogel was measured (1.395 g 
cm−3) by using the Archimedes method and the result is in 
good agreement with the calculated density (1.370 g cm−3), 
considering the density of the individual constituents of the 
organic/silica hybrid matrix and the inexistence of porosity 
as measured by nitrogen adsorption. Combining these results 
with the molar weight of the solid sample and its individual 
constituents (SiO2 and SiO3/2–R), one can estimate the volume 
fraction occupied by the SiO2 as being approximately 31%, 
while the organic phase formed from the radical R fills the 
remaining volume (around 69%).The Gaussian distribution of 
particle size was obtained by measuring particle diameters, 
revealing the center of its Gaussian fit at 8.1 nm, as shown in 
figure 3(b).

The formation of Si–O–Si bonds reduces the entropy of 
the system and promotes self-organization at a molecular 
level. Silica self-organization occurs through van der Waals 
interactions and it is favored by polycondensation, leading to 
the formation of very small primary particles which grow by 
aggregation [38, 39].

The early stage of formation and growth of silica-rich 
domains in sols of GPTMS-TEOS-derived organic/silica 
hybrids was studied in situ during the condensation process 
by small angle x-ray scattering (SAXS) [40]. Also, dispersed 
silica-rich nanostructured domain formation was observed in 
GPTS-TEOS-epoxy-derived hybrid films [41] and in PEO-
TEOS-derived nanocomposites [40]. Furthermore, silica-rich 
nanocrystal formation was reported in a basic sol derived from 
GPTMS organosilane [42].

Regarding the silica nanoparticles in the RB-doped xero-
gel, the number of particles by volume of solid matrix can 

be estimated using the spherical volume of 8.1 nm diam-
eter and the volume fraction occupied by the SiO2. We 
have obtained that the silica nanoparticle concentration was 
ρ = × −1.11 10 cm18 3  . The sample scattering cross section  of 
one silica sphere of  ≈8.1 nm in diameter at 618 nm was calcu-
lated to be equal to × −9.46 10 cm22 2  . Using these quantities 
and considering the refractive index of silica and RB-doped 
xerogel to be 1.458 [43] and 1.492 [44], respectively, the scat-
tering mean-free path of this hybrid system could be estimated 
using Rayleigh theory as ρσ= = ×−l 9.52 10 cms s

1 2( )   .
A similar broadband spectrum, as shown in figure  2(b), 

was also obtained when RB-doped xerogel was excited at 
532 nm by a nanosecond pulsed laser, with pulse energy 
smaller than 1 mJ. As shown in figure  4, at low pumping 
energy, only spontaneous emission, characterized by the 
fluorescence spectral band with a maximum at λ  ≈  600 nm, 
can be observed. However, despite the weak scattering, as 
the incident energy was raised, the emission spectrum was 
strongly modified. One can clearly see that the second band 
around 620 nm increases faster than the remaining fluores-
cence spectrum, evolving into a dominant narrowband emis-
sion at higher excitation energies. It is worth mentioning that 
no sharp spikes were observed in the measured spectra, even 
at single pulse excitation.

Two excitation-dependent spectral features have been used 
to identify and characterize RLs which employ organic dyes 
as amplifying media: an abrupt increase in emission intensity 
and a drastic reduction on the fluorescence linewidth as the 
pump energy is raised. Both quantities were monitored and 
analyzed for the fluorescence exhibited by the RB-doped 
xerogel. In figures 5(a) and (b), the full-width half-medium 
(FWHM) and the peak intensity are presented, respectively, 
as observed for the band centered at 618 nm as a function 
of the excitation energy. From the peak intensity behavior, 
a significant change of the curve slope can be observed. At 
the same time, the FWHM of this band is reduced smoothly 
from  ≈65 nm to  ≈10 nm.

Using the value of the medium-scattering mean-free path, 
we calculated the product k  ×  ls for this system to be roughly 

×9.68 107  , which is comparable with other RL systems 

Figure 5.  (a) FWHM in log scale and (b) emission peak intensity in linear scale for RB-doped xerogel with two excitation spot sizes of 
1.66 mm (squares) and 0.74 mm (stars). The solid lines are just a guide to the eyes.

Laser Phys. Lett. 14 (2017) 065801
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investigated previously that operate in a very weak scattering 
regime [45–47]. In order to ensure that it was RL emission, the 
threshold pump intensity must have changed if the excitation 
spot size varied [48]. Figure 5(a) clearly shows a difference 
between the FWHM thresholds from two different excitation 
spot sizes. The spot size diameters used were 1.66 mm and 
0.74 mm, and the thresholds obtained were −0.4 mJ mm 2   and 

−1.7 mJ mm 2, respectively.

3.  Conclusions

In conclusion, we have demonstrated that RB-doped GPTS/
TEOS-derived organic/silica monolithic xerogel exhibits 
incoherent RL emission in a weakly scattering system. This 
system presented an FWHM of around 65 nm at low pump-
ing energies (<1 mJ) and for higher pumping energies  
(>3 mJ) the system could achieve a FWHM around 10 nm. 
The observed RL emission, as well as the good optical qual-
ity of the produced samples and the possibility of optical 
waveguide production within this medium, indicates that this 
hybrid material is a very promising platform for the develop-
ment of integrated optical systems.
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