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The paper proposes a new switched control design method for some classes of uncertain nonlinear plants described by Takagi-
Sugeno fuzzy models. This method uses a quadratic Lyapunov function to design the feedback controller gains based on linear
matrix inequalities (LMIs). The controller gain is chosen by a switching law that returns the smallest value of the time derivative of
the Lyapunov function. The proposed methodology eliminates the need to find the membership function expressions to implement
the control laws. The control designs of a ball-and-beam system and of a magnetic levitator illustrate the procedure.

1. Introduction

There has been much interest in recent years to study
switched systems, mainly linear systems, as can be seen in
[1-8]. This interest has also increased for nonlinear systems
and several papers have been published on switched Takagi-
Sugeno fuzzy systems. In general, these studies use switching
rules based on regions that depend on the premise variables
and/or membership functions and/or state variables [9-18].
Results on switching laws based on the premise variable
can be seen in [9, 10, 17]. In [9, 10], a switched fuzzy system
was used to represent the nonlinear dynamical model of a
hovercraft vehicle and to design a switching fuzzy controller.
Then, in [10] smoothness conditions were established, which
avoid the phenomenon of discontinuity in the control signal.
The problem of dynamic output feedback 7, control was
addressed in [17]. Switching laws based on the values of
the membership functions are considered in [11, 12, 14-16],
where the switched control scheme presented in [14] is an

extension of the parallel distributed compensation (PDC).
A dynamic output feedback controller, which is based on
switched dynamic parallel distributed compensation, was
proposed in [15].

Switching laws based on the plant state vector were pro-
posed, for instance, in [13, 18]. The control design presented
in [13] uses local state feedback gains obtained from the
solution of an optimization problem that assures a guaranteed
cost performance. LMIs conditions for robust switched fuzzy
parallel distributed compensation controller design and a
H , criterion were obtained in [18]. The procedure to design
switching controllers described in [18] was based on the
switched quadratic Lyapunov function proposed in [19].

This paper proposes a new method of switched control
for some classes of uncertain nonlinear systems described by
Takagi-Sugeno fuzzy models. This new control law, which
also depends on the state variables, generalizes the results
given in [8], which considered only linear plants. The pro-
posed controller chooses a gain from a set of gains by means
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of a suitable switching law that returns the smallest value
of the Lyapunov function time derivative. The proposed
methodology enables us to design the set of gains based
on LMIs and on the parallel distributed compensation, as
proposed, for instance, in [20-26].

The main advantage of this new procedure is its practical
application because it eliminates the need to find the explicit
expressions of the membership functions, which can often
have long and/or complex expressions or may not be known
due to the uncertainties. Furthermore, for certain classes of
nonlinear systems, the switched controller can operate even
with an uncertain reference control signal. Additionally, with
the proposed methodology the closed-loop systems usually
present a settling time that is smaller than those obtained with
fuzzy controllers, without using switching, that are widely
studied in the literature. Moreover, performance indices such
as decay rate and constraints on the plants input and output
can be added in the control design procedure.

Simulation results of the control of a ball-and-beam
system and of a magnetic levitator are presented to com-
pare the performance of the proposed control law with
the traditional PDC fuzzy control law [20, 22]. The com-
putational implementations were carried out using the
modeling language YALMIP [27] with the solver LMILab
[28].

The paper is organized as follows. Section 2 presents the
preliminary results on Takagi-Sugeno fuzzy model, fuzzy
regulator design, and stability of the Takagi-Sugeno fuzzy
systems via LMIs. Section 3 offers a new switching control
method for some classes of nonlinear systems described by
Takagi-Sugeno fuzzy models. Some examples to illustrate
the performance of the new proposed method are given in
Section 4. Finally, Section 5 draws the conclusions.

For convenience, in some places, the following notation
is used:

K, =1{1,2,...,r}, reN, x(t) = x,
G =0  VE®) =V,  Ixl, = VaTx,
(A B,CK) (@) = Yot (4,,B,C, K, M
i=1
a; >0, Zr:cxizl, af = [ag,ap...,0,].

2. Takagi-Sugeno Fuzzy Systems and
Fuzzy Regulator

Consider the Takagi-Sugeno fuzzy model as described in [29-
31]:

Rulei: IF z, (t) is My,...,z, (t)is MP
C ) — ()
THEN {x(t) =Ax(t)+Bul(t),
,V (t) = Cix (t) >

where M; is the fuzzy set j of the rule i,i € K, and j €
K, x(t) € R" is the state vector, u(t) € R™ is the input
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vector, y(t) € R7 is the output vector, A; € R™", B; € R™",
C; € R?", and z,(t),... ,2,(t) are premise variables that in
this paper are the state variables.

From [20], x(¢) given in (2) can be written as follows:

x(8) = Y o (x (1) (Ax (1) + Bu (1)), (3)

i=1

where o;(x(t)) is the normalized weight of each local model
system A;x(t) + B;u(t) that satisfies (1).

Assuming that the state vector x(t) is available, from
the Takagi-Sugeno fuzzy model (2), the control input of
fuzzy regulators via parallel distributed compensation has the
following structure [20]:

Rule j: IF 2, () is M},...,z, (t)is MJ,
(4)
THEN u(t) = -K;x ().
Similar to (3), one can consider the control law [20]
u(t) = uy ==y a; (x (£) K;x (£). 5)
=1
From (5), (3), and (1), one obtains
x(t) =Y Yoy (x (1) a;(x () [A; - BK;] x (1)
i=1 j=1 (6)

(A(x) - B(x) K (@)) x.

2.1. Stability of Takagi-Sugeno Fuzzy Systems via LMIs. The
following theorem, whose proof can be seen in [20], guar-
antees the asymptotic stability of the origin of the system

(6).

Theorem 1. The equilibrium point x = 0 of the continuous-
time fuzzy control system given in (6) is asymptotically stable
in the large if there exist a common symmetric positive definite
matrix X € R™" and M; € R™™ such that, for alli, j € K,,
the following LMIs hold:

XAT + A;X - B.M; - M B] <0,
T
(A;j+A;)X+X(A;+A;) -BM, (7)
T T T T . .
- B;M; - M/ B} - M[B} <0, i<j,

excepting the pairs (i,j) such that ezo; = 0, for all x. If (7) are
feasible, the controller gains are given by K; = M, X', i € K,.

Remark 2. In this paper, for simplicity, the new design
method of the controller gains was based on Theorem 1.
However, the proposed methodology does not exclude the
use of other relaxed control design methods also based on
LMIs, for plants described by Takagi-Sugeno fuzzy models,
as those presented in [20, 22, 23, 32-35].
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3. Main Result

3.1. Case I: Fuzzy System with Constant Matrix B(a) = B. In
this section the design of a switched controller for the Takagi-
Sugeno fuzzy system (3) is proposed, assuming that B(a) = B
is a constant matrix now given by

x(t)=A(x)x(t)+Bu(t). (8)

Suppose that (7) are feasible and let K; = M, X', i € K,
be the gains of the controller given in (5), and P = X' is
obtained from the conditions of Theorem 1. Then, define the
switched controller by

u(lt)=u, =

-K,x, o =arg mln( xTPBKix) - (9)

i€k,

Therefore, from (1), the controlled system (8) and (9) can
be written as follows:

x(t)=A(a)x(t) + Bu, = Zr:oci [A;-BK,]x(). (10)

i=1

Theorem 3. Assume that the conditions of Theorem 1, related
to the system (8) with the control law (5), hold and obtain
K; = M;X ', i € K, and P = X', Then, the switched control
law (9) makes the equilibrium point x = 0, of the system (8),
asymptotically stable in the large.

Proof. Consider a quadratic Lyapunov candidate function

V = xTPx. Define V and V as the time derivatives of V for
the system (8), with the control laws (5) and (9), respectively.
Then, from (10),

V,, =2x"Pi =2x"P(A(a)x+Bu,)
(11)
= 2x"PA (a) x + 2x" PB(-K,) x.

Thus, note that, from (1) and (9),

min {x PB(-K;) } < x"PB (—Zr:ociKi> x.  (12)
i=1

i€k,

Therefore, from (11) and the laws given in (9) and (5) observe
that

V, =2x"PA(a)x+2min {xTPB (-K;) x}
o icK,

T
< 2x"PA (a) x + 2x" PB <—Z ociKi> x

i=1

(13)
= 2x"P (A («) - BK (a)) x
= 2x"P(A () x + Bu,) =V,

Uy *

Then, V < V . Furthermore, from Theorem 1 V < 0 for
x#0. Thus, the ‘proof is concluded. O

Remark 4. Theorem 3 shows_ that if the conditions of
Theorem 1 are satisfied, then Vua(x(t)) < 0 for all x(t)+#0

and thus Vua(x(t)) < 0 for x(t)#0, ensuring that the
equilibrium point x = 0 of the controlled system (8) and
(9) is asymptotically stable in the large. Thus, Theorem 1 can
be used to project the gains K;,K,,..., K, and the matrix
P = X! of the switched control law (9). Additionally, note
that the switched control law (9) does not use the membership
functions o, i € [K,, which would be necessary to implement
the control law (5) and may thus offer a relatively simple
alternative for implementing the controller.

3.2. Case 2: Fuzzy System with Nonlinearity in the Matrix B(x).
In this case a fuzzy system similar to (3) will be considered,
with o, i € K, defined in (1); namely,

X)) =A@ +B@u(®),

(14)

Ala) = Zr:ocizi, B(a) = Zr:‘xigi‘
i=1 i=1

Let v € R™ be the time derivative of the control input
vector u € R™. Define x,,,; and v}, such that x,,,;(t) = t4(t) =
vi(t), I € K,,. Thus one obtains the following system:

xt)=A()X®)+B@)u(),

X1 () = vy,

(15)
Xpem (t) = V>
or equivalently [36]
x(t) = A(a) x (t) + Bv(t), (16)
where
x = [J?T Xne1 " xn+m] ’
o 17)
A(OC)Z [13(0‘) OB((X):|’ B= [?nim:l

After the aforementioned considerations, note that the
system (16) is similar to the system (8) and therefore the
control problem falls into Case 1. Thus, one can adopt the
procedure stated in Case 1 for designing a switched control
law v(t) = —K,x(t), K, € R™"™,

3.3. Case 3: Fuzzy System with Uncertainty in the Control
Signal. In this case, it is assumed that the plant given by X =
f(x,u) has an equilibrium point X = x, and the respective
control input is & = u,, such that f(x,,u,) = 0. Suppose that
xo is known, u, is uncertain, but 0 < u, € [uy_,u, |, where
u, and u, are known, and the plant can be described by

the Takag1 Sugeno fuzzy system (1)-(3),
x(t) = A(x) x (t) + B(x) u, (18)

where x(t) = x(t) —x,, x(t) is the state vector of the plant and
u(t) = u(t) — uy, u is the control input of the plant.



Now consider that B(«) can be written as follows:
B(«) = Bg (x (1)), (19)

where B is a known constant matrix and g(x(t)) > 0, for all x,
is an uncertain nonlinear function. Thus, the system (18) can
be written as follows:

X(t)=A(@)x(t)+B(x)u=A(x)x(t) + Bg(x (1)) u
(20)

Assume that the gains K; = M;X ', i € K,, and the
matrix P = X! have been obtained using the vertices of the
polytope of the system (18) in the LMIs (7) from Theorem 1,
as proposed in [20]. Now, given a constant & > 0, define the
control law as

U(t) = U = Uiy —thyy  Withil, 5 = ~Kox + 7y, (21)

where
K, € {Kp,Ky,..., K}, o=argmin {~x"PBK;x},
1 T
. if x"PB < -&,
_ (o, ~ o, )x"PB
Ll R T e A P P
U, if x"PB > £,
(22)

Within this context the following theorem is proposed.

Theorem 5. Suppose that the conditions from Theorem 1 hold,
for the system (18) with the control law (5), and obtain K; =
MX',i € K, and P = X' Then the switched control
law (21) and (22) makes the system (18) and (19) uniformly
ultimately bounded.

Proof. Consider a quadratic Lyapunov candidate function
V = x'Px. Define V, and Vi, s the time derivatives of

V for the system (18), (19), with the control laws (5) and (21),
and (22), respectively. Then,

V“w,a =2x'Px = 2x'P (A (x) x + Bg (x) u(o,g))
=2x"P (A () x - B(a) K () x)
+ 2xTPBg (x) [E(o,f) —uy+ K () x]
S, (23)
=V, +2x PBg (x) [—Kax + 9 —up + K(a) x]
e [T '
=V, +2g9(x) Illélulgrrl{ X PBle}

+2g(x)x' PB [yg —uy + K («) x] .
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Remembering that o; > 0, i € K, and }|_ o = 1, g(x) >
0, and g(x)B = B(«) and noting that minieKr{—xTPBKix} <
-x"PB(Y]_, &;K;)x, from (23)

. . T "

Vi S Vu, —2x PB () (20@&) x
-

24

+2g(x) x'PB [yg—u0+K(cx)x] @4

= Vua +2g (x) x"PB (VE - uo).

Now, if |x' PB| > &, then from (22), g(x)xTPB(yE — 1) < 0.
Thus, from (24) Vu(m < Vua < 0 for x #0, since the system
(18) with the control law (5) is globally asymptotically stable.
Otherwise, if [xT PB| < &, one obtains from (24) and (22)

Vu(o,f) < Vua + 29max xTPB' ’ 'YE - u0|
< = ell Xl + 2Gmag e — 10| &
< = ellxly + 2gma (|| + o) § 25)
< —ellxl; + 4Gmay - Yo, " &
< —ellxll} + ey,

where —e < 0 denotes the maximum eigenvalue of P(A(«) —
B(a)K(«)) + (A(a) — B(a)K(«))TP for all « defined in (1),
Imax = Mmax{g(x)}, and € = 49, - Uy, - &. Therefore,
V. < 0, if x[l, > +/¢/e. Thus, according to [37] the

o)
controlled system is uniformly ultimately bounded and the

proof is concluded. O

Remark 6. Observe that the function y; given in (22) is
important to ensure the uniform ultimate boundedness of the
system and smoothness of the control input. Note that when
& is equal to zero, the function y; is a discontinuous function
and therefore the control input can also be discontinuous, as
can be seen in [8]. Thus, the designer must choose & according
to the requirements.

4. Examples

4.1. Example of Case 1. To illustrate this case, presented is the
control design of a ball-and-beam system, in Figure 1, whose
mathematical model [38, page 26] is given by the following
equations:

#(t)=Prt)0 (t) - Bgsin(O (1)),  O@)=u(t), (26)
where r is the position of the ball; 0 is the angle of the beam
relative to the ground; u is the torque applied to the beam
and the control input; g = 9.81 m/s” is the acceleration of the
gravity; and = mR?/(J, +mR?) is an uncertain parameter of
the system which depends on the mass m, the radius R, and
the moment of inertia J, of the ball.
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FIGURE 1: Ball-and-beam system.

Define the state variables x; = r(t), x, = 7(t), x; =
0(t), and x, = 6(t). Then, by defining the state vector x =
[x; X, X3 x4]T, the system (26) can be written as follows:

X = Xy,

%y = Pxix; — Pgsin (x3),

. (27)
X5 = Xy,
Xy = U,
or equivalently
01 0 0 0
X = 8 8 Ja3 ((;C’ﬁ) f24(1x,/3) X+ 8 u, (28)
00 0 0 1
where
o) =) )= e @9

Note that, for implementing the switched controller (9),
the controller gains will be designed using the generalized
form proposed in [22], and therefore the following domain
will be considered for the system (28) and (29):

D, = {xeR4:—1£xlsl,——3x3g%,
—2<x4<2, 0.60Sﬁ£0.7143}.

After the calculations the following maximum and mini-
mum values of the functions f,; and f,, were obtained:

@y, = 1max {fy; (x, p)} = ~4.8492,

%3, = min {f (xB)} = -5.0053,

(3D
a1, = o, {oa (5. B)} = 1.0204,
Ay, = (xl:[l;l)lerlDl {fo4 (x, B)} = —1.0204.

Thus, the nonlinear function f,; can be represented by
a Takagi-Sugeno fuzzy model, considering that there exists
a convex combination with membership functions 0,; =

033, (x, B) and 0,3, = 053 (x, B) and constant values a,; and
ay3, given in (31) such that [22]

fos (% B) = 033, (x, B) a3, + 03 (x,B) a3, (32)

with
0<0y, 03, <1, 053 +053 =1 (33)

Therefore, from (32) note that

o, (x, ) = fos (%, B) = “232,

@3, ~ a3, (34)

033, (x.p)=1- 033, (x. ).

Similarly, from (31), there exist &, = &, (x, B)and &y, =
5242 (x, B) such that

fou (% B) = 5241 (x. B) Gpg, t 5242 (x, B) A4, (35)
with
08, &, <1,

Soa, +80, = 1. (36)

Hence, from (35) observe that

B fou (% B) — Ay,

o (o f) = oy, = Oy, (37)
5242 (x,p)=1- 5241 (x. ).

Recall that &, (x, ) + &4 (x,8) = 1 and 0y3 (x, ) +
0232(x, B) = 1, from (33) and (36), respectively. Then, it
follows that

fos (2. B) = ‘72315241 s + ‘723152426’231

+ 023, 5241 ays, + ‘72325242 A3,

fra(x,B) = 02315241 Gy, t 52315242‘7242 o
+ 023, 524l apg, t ‘72325242 Ay,-
Now, define
a (x,p) = (72315241) a (x,B) = 02315242’ (39)

oz (x, ) = 62325241, ay (x, B) = ‘72325242>

as the membership functions of the system (28) and (29), and
their local models:

01 0 0] 01 0 0]
_ 100 ay ay _ 10 0 ay ay
4A=loo 0o 10 “Tloo o 1|
00 0 o0 00 0 o0
01 0 0] 01 0 0]
_ 100 ay ay _ 10 0 ay; ay
A=1o0 0o 10 “Aloo o 1|
00 0 0 | 00 0 0 |
T
B,=B,=By=B,=[00 0 1]".
(40)



x; (m)

x, (m/s)

10 15

t(s)

Mathematical Problems in Engineering

-0.05 -

-0.1¢

x5 (rad)

—0.15 |f

-0.2 ¢

0.4 f

x4 (rad/s)

10 15
t(s)

FIGURE 2: State variables of the ball-and-beam system (28) using the switched controller (9) (solid line) and the fuzzy controller (5) (dotted
line), considering 3 = 0.7 and the initial condition x(0) = [0.2 -1 -0.2 O]T.

u (N-m)
=

[=TN)]
o

t(s)

FIGURE 3: Control signal of the ball-and-beam system (28) using
the switched controller (9) (solid line) and the fuzzy controller (5)
(dotted line), considering 8 = 0.7 and the initial condition x(0) =

[02 -1 -0.2 0]

Thus, using the LMIs (7) from Theorem 1, one obtains
the following controller gains and symmetric positive definite
matrix:

K, = [-17.6809 —35.4033 252.2903 18.5316],
K, = [-26.9467 —62.7180 360.9879 26.9307],
K, = [-17.6320 —35.2593 251.7173 18.4873],
K, = [-26.8979 —62.5740 360.4149 26.8865], (41

0.0022  0.0032 -0.0170 —0.0012
0.0032  0.0095 -0.0380 -0.0029
-0.0170 -0.0380 0.2302 0.0170
-0.0012 -0.0029 0.0170 0.0020

P =

The goal of the simulation is to keep the ball at the origin
(r,0) = (0,0). Considering, f = 0.7, the initial condition
Xy = [0.2 =1 —0.2 0]", and the equilibrium point x, =

[0 0 0 0]", the simulation of the controlled systems (28),
(29), (9), (41) and (28), (29), (5), (31)-(41) presented the
responses shown in Figures 2 and 3.

Note that the controller gains have been found using the
generalized form proposed in [22]. However, the switched
controller 1, given in (9) does not use the membership func-
tions and therefore it is not necessary to find and implement
such functions. Thus, an advantage of this new methodology
is that one can eliminate all the steps of the project given in
(32)-(39) that are needed to find the membership functions,
which can sometimes have long and/or complex expressions
or may not be known due to the uncertainties and so their
practical implementations are not possible, as is the case of
this example.

4.2. Example of Case 2. To illustrate this case, consider the
control system design of a magnetic levitator presented in
Figure 4, whose mathematical model [38, page 24] is given

by

Aui®

mj = -ky +mg - ———,
T )

(42)

where m = 0.05Kg is the mass of the ball; g = 9.8 m/s” is
the gravity acceleration; A = 0.460H, y = 2 m, and k =
0.001 Ns/m are positive constants; i is the electric current; and
y is the position of the ball.

Define the state variables x; = y and X, = y. Then, (42)
can be written as follows [39]:

2

_ 43
m? 2m(1+[4§1)2 (43)
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i(t)
yol————om 49
|

FIGURE 4: Magnetic levitator.

. . : .= =T
Consider that during the required operation, [X; X,] =
(x,,%,) € D,, where

D, ={(%,%,) € R?: 0 <X, <0.15}. (44)

The objective of the paper is to design a controller that
keeps the ball in a desired position y = x; = y,, after a
transient response. Thus, the equilibrium point of the system
(43)isx, =[x, 22E]T =% O]T

From the second equation in (43), observe that, in the
equilibrium point, X, = 0 and i = i,, where

2 _ 2mg 2
iy = W(l + 1) (45)
Note that the equilibrium point is not in the origin
[%, %]" = [0 0]". Thus, for the stability analysis the
following change of coordinates is necessary:

= _ = _ 2 .2.
X; =X1 = Yoo Xy = Xy, u=1i —ig  (46)

that is,
Pf=utiy,  (47)

Xy =X+ Yo Xy = Xy

Therefore, X, = x, and %, = X, and from (45), i* = u +

2mg(1 + uy,)* /M.
Hence, the system (43) can be written as

X = Xy,

g (puxy + 2uy, +2) k
X, = X1~ —X,
(1+p(x; + 3)) m (48)
Ay

- S U.
2m(1 + p (x; + )
Finally, from (48) it follows that

Bl k) e o
m

where
gp (px, +2uy, +2)
(1 p (e + )"
—A‘M
2m(1+ p (x, + )

fa = fa (xp)’o) =
(50)

921 = 9 (xl’)’o) =

Now, define x; and v such that x; = & = v; that s, x; = u.
Thus, considering (50), the system (49) can be given by

0o 1 0
0
2 =15 -5 4 2 “lofv. 1)
X3 m X3 1
0 0 o0

After this adjustment it is seen that the problem falls into
Case 1. Thus, the procedure stated in Case 1 can be used for
designing a switched control law v(t) = -K, x(t), K, € R>.

Thus, to find the local models, the maximum and mini-
mum values of functions f,; and g,, must be obtained. In this
case the methodology proposed in [39] will be used. Then,
suppose that the desired position is known and belongs to the
set y, € [0.04,0.11] and consider y, as a new variable for the
specification of the domain Dj of the nonlinear functions f,;
and g,, [39]:

Dy = {(x),x, ) € R*: =0.11 < x; < 0.11,
(52)
0.04 < y, < 0.11}.

As expected, after the calculations, considering (50) and
(52), one obtains

aﬂl - (x1{§’13)€(D3 {f21 (xl)yO)} = 514116,
@, = min {fo (a1, y0)} = 251427,
1>0 3
(53)
by, = max_{gy (x, )} = —4.4367,
(x1,¥0)€D;
by, = min_{gy (x, )} = —12.4392.

(x1,%0)€D;5

Therefore, from (53) one has the following local models:

0 1 0 0 1 0

Ay =|ay, =002 by |,  A,=|ay, -0.02 by |,
0o 0o 0 | L0 0o 0 |
[0 1 0] [0 1 0]

Ay=lay, —0.02 by |,  Ay=|ay 002 by |,
L0 0o 0 | 0 0o 0 |

B,=B,=B;=B,=[0 0 1]".



Using the LMIs (7) from Theorem 1, the following con-
troller gains and symmetric positive definite matrix were
obtained:

K, = [-636.9216 -109.3352 15.6269],

K, = 10° [-2.2199 -0.3851 0.0535],

K, = [-784.7978 -135.0930 19.1611],
(55)
K, = 10° [-2.3678 —0.4108 0.0570],
57404 0.8178 —0.1420
P=| 08178 01424 -0.0195

—-0.1420 -0.0195 0.0077

For numerical simulation, at t = 0s the initial condition
was X(0) = [0.04 1]" and y, = 0.1m. Since x; = u =
i - ié and ig = 1.5339 A? (assuming that i2(0) = 0, the
initial condition for the system (51) is x, = [0.04 1 O]T -
[0.1 0 1.5339]" = [-0.06 1 —1.5339]"; that is, x;(0) =
—-1.5339), att = 1s, from Figure 5, the system is practically at
the point X(1) = [%,(1) %,(1)]" = [0.1 0]" and x,(1) = 0.
After changing y, from 0.1 m to 0.04 m at¢ = 2 s, one can see
that the system is practically at the point x(2) = [0.04 O]T
and x;(2) = 0, which will be the new initial condition. Finally,
¥, changes from 0.04 m to 0.08 m at t > 2. Thus, as shown
in Figure 5, X(c0) = [0.08 0] and x;(co) = 0. Figures 5 and
6 illustrate the system response.

4.3. Example of Case 3. Consider the magnetic levitator from
Section 4.2 given in (43) and (49)-(50), where the mass m is
uncertain and define D, as the operation domain [39]:

D, = {(x), ypm) € R® : -0.08 < x, < 0.1,
(56)
0.05 < y, < 0.08, 0.08 <m < 0.1}.

Thus, as described in Section 4.2, the system (49) can be
written as follows:

R P S P

gu (px, +2py, +2)
(1 +u (xl + )’0))2

where

for = for (X1, 30) =

k
S22 = fr(m) = o (58)
—Au
2m(1+p(x; + )’0))2

921 = 9u (xl’y()’m) =

Observe that the system (57) can be rewritten as in (20);
that is, x = A(a)x + Bg(x)u, where B = [0 —I]T and g(x) =

g(x1, yoom) = Au/2m(1 + u(x; + y,))*. Note that g(x) > 0,
forall x € D,.
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FIGURE 5: State variables of the magnetic levitator (43) and state x;,
given in (51) using the switched controller (9) (solid line) and the
fuzzy controller (5) (dotted line), considering y, = 0.1m, y, =
0.04m, and y, = 0.08m, fort € [0, 1),¢t € [1, 2),and ¢t > 2,
respectively.
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FIGURE 6: Switched control signal v(¢) (9) and electric current i(t)
(solid line) and fuzzy control signal (5) and electric current i(t)
(dotted line), for y, € [0.04,0.11], considering y, = 0.1m, y, =
0.04m, and y, = 0.08m, fort € [0, 1),¢t € [1, 2),and t > 2,
respectively.
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FIGURE 7: Position (y(t) = X,(t)), velocity (x,(t)), and electric
current (i, (t)) of the controlled system, considering y, = 0.08 m
and m = 0.09Kg, y, = 0.05m and m = 0.08 Kg, and y, = 0.07m
andm = 0.1Kg, fort € [0, 1), t € [1, 2),and t > 2, respectively.
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After the calculations, the maximum and minimum
values of the functions f;, fs,, g;, and if, in the domain D,
were obtained as follows:

ay, = max {fy (x;, )} = 452512,
(x1,)9)€Dy
ay, = min_{fy (x;, )} = 26.7042,

(x1,0)€Dy

ay,, = max { f,, (m)} = -0.0100,
meD,

Ay, = ,{21& {22 (m)} = -0.0125,

(59)
by, = max {gy (x5, yp,m)} = ~2.4870,
(x1,)0,m)€D,
by, = min_{gy (x5, yp,m)} = 65075,
(x1,)0-m)€D,

_ 2 _
max u, = yor,rrﬁﬁ {10 (x (t))} = 2.8667,

minu, = max {i; (x ()} = 2.0623.
Yo,meDy

From (59), define the following local models of the plant (57)

and (58):
A _[ 0 1] A _[ 0 1 ]
! Ay, Gy, |’ ’ Ay, Gy,
ASZ[O 1 , A7:[0 l], (60)
a1, G ] a1, G2,
0 ] 0
B, = |:b211_ > B, = |:b212:| >

where A, = A,,A; = A, A; = A, A; = Ag, By = B; =
B; =B,,and B, = B, = B, = B;.

Thus, using the LMIs (7) from Theorem 1, the following
controller gains and symmetric positive definite matrix were
obtained:

[-67.1269 —8.6056],

._.
I

[-39.6153 —4.9426],

K, = [-67.1260 —8.6051

ke
Il

[-39.6157 —4.9423],

¥a
I

[-65.5197 —8.7998], (6

K, = [-34.0771 -4.6633],

K, = [-65.5169 —8.7990],

Ky = [-34.0824 —4.6634],

po [30219 04500
= |0.4500  0.0827]"

Setting & = 107*, the control law (21) for the levitator is
given by
_ 2 2
u(t) =ugg (t) = og) (t) — iy,
, (62)
with iog) () = =Kox () + yp

where K;, i € [Kg, are presented in (61).

Consider
K, € {K,K,,...,Kg}, o = argmin {—xTPBKix} ,
ickK,
2.8667, if xTPB < ¢,
ye = {-4022.3x"PB + 24645, if |x"PB| <,
2.0623, if x'PB > &.

(63)

For the simulation illustrated in Figure 7, the initial
condition was x(0) = [0.05 l]T and, att = 0s, y, = 0.08m
and m = 0.09Kg. Int = Is, from Figure 7, the system is
practically at the point X(1) = [0.08 0]". After changing
¥, from 0.08 m to 0.05m and m from 0.09 Kg to 0.08 Kg at
t = 2, one can see that the system is practically at the point

%(2) = [0.05 0]", which will be the new initial condition.
Finally, the last changes occur at t = 2s: y, from 0.05m to
0.07 m and m from 0.08 Kg to 0.01 Kg. Thus, observe that in
Figure 7, x(co) = [0.07 O]T.

Note that in this case it is not possible to obtain the
membership functions, since the mass is uncertain, but the
proposed method overcomes this problem, because it does
not depend on such functions. Observe also that even with
uncertainty in the reference control signal (because u =
i* — il and i} given in (45) is uncertain considering that
m is uncertain), the proposed methodology was efficient
and provided an appropriate transient response, as shown in
Figure 7.

Remark 7. Inacontrol design it is important to assure stability
and usually other indices of performance for the controlled
system, such as the settling time (related to the decay rate),
constraints on input control and output signals. The proposed
methodology allows specifying these performance indices,
without changing the LMIs given in [40] or their relaxations
as presented, for instance, in [20, 23], by adding a new set of
LMIs.

5. Conclusions

This paper proposed a new switched control design method
for some classes of uncertain nonlinear plants described
by Takagi-Sugeno fuzzy models. The proposed controller is
based on LMIs and the gain is chosen by a switching law that
returns the smallest time derivative value of the Lyapunov
function. An advantage of the proposed methodology is that
it does not change the LMIs given in the control design
methods commonly used for plants described by Takagi-
Sugeno fuzzy models as proposed, for instance, in [20,
22, 23, 34]. Furthermore, it eliminates the need to obtain
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the explicit expressions of the membership functions, to
implement the control law. This fact is relevant in cases where
the membership functions depend on uncertain parameters
or are difficult to implement. Simulating the implementation
of this new procedure in the control design of a ball-and-
beam system and of a magnetic levitator, the controlled
system presented an appropriate transient response, as seen
in Figures 2, 3, 5, 6, and 7. Thus, the authors consider that the
proposed method can be useful in practical applications for
the control design of uncertain nonlinear systems.
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