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ABSTRACT. The complex network theory constitutes a natural support for the study of a disease prop-
agation. In this work, we present a study of an infectious disease spread with the use of this theory in
combination with the Individual Based Model. More specifically, we use several complex network mod-
els widely known in the literature to verify their topological effects in the propagation of the disease. In
general, complex networks with different properties result in curves of infected individuals with different
behaviors, and thus, the growth of a given disease is highly sensitive to the network model used. The disease
eradication is observed when the vaccination strategy of 10% of the population is used in combination with
the random, small world or modular network models, which opens an important space for control actions
that focus on changing the topology of a complex network as a form of reduction or even elimination of an
infectious disease.

Keywords: scientific computing, complex networks, Individual Based Model, epidemic infectious
diseases.

1 INTRODUCTION

Infectious or transmissible diseases are caused by biological agents, such as viruses or bacte-
ria. Methods that may help prevent these diseases, in order to reduce their incidence, have be-
come increasingly necessary. One of the approaches that has received great attention from the
scientific community is the mathematical epidemiology [20, 22]. A better understanding of the
transmission mechanisms of infectious diseases through mathematical models allows the estab-
lishment of more effective control strategies [8]. Examples of control application techniques from
mathematical models can be seen in [28, 29].

Several strategies for modelling infectious diseases have been proposed in the literature through
the use of compartmental models by means of ordinary and partial differential equations, Markov
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chains, cellular automata, optimization methods, among others [6,9,11,37]. Recent studies have
shown that the complex networks theory constitutes a natural support for the study of a disease
propagation [24, 33, 40, 43]. A complex network is defined by sets of nodes (vertices), edges
(connections or links) and some type of interaction between their nodes [33]. From the appli-
cation of the complex network theory to infectious diseases and other ecological phenomena, it
has been developed the Individual Based Model (IBM) [16, 17, 18, 19]. Other examples of IBM
applications may be seen in [2, 30] and regarding the application of control in [28].

Two major topics can be considered in obtaining effective control strategies for infectious dis-
eases. The first topic is similar to the linearization stage to control nonlinear models. Instead of
working directly with a complex network, the technique is based on producing a similar model
based on differential equations to approximate the mean-field behavior of the complex network.
Works in this direction can be seen in [28, 30, 31]. The second topic consists in the translation
of classical control concepts, such as controllability and observability, into the field of complex
networks [1, 25]. Although these two lines are quite distinct, both investigation topics usually
make use of vaccination and isolation as control actions. Despite the major advances in these
two topics and significant attention on this issue by European and North American communi-
ties [26, 34, 35, 39], there is less attention to the effects of the network topology in the spread
of disease by South American scientists. Certainly, it is a topic that deserves to be explored for
potential control strategies.

The topological effect of networks on the spread of infectious diseases can be seen in some recent
works. It was observed, for example, that one pathogen may generate different epidemiological
dynamics depending on the network topology [41]. Along the same lines, the resilience of some
diseases may be related to the network topology, and the vaccination in the network hubs may
increase the potential to the disease eradication [23]. For the transmission of sexually transmit-
ted diseases in heterogeneous complex networks, analytical relations of the basic reproduction
number determines the dynamics of the disease in steady state [42]. In this work, we intend to
contribute for the knowledge of the complex network topology in the spread of an infectious
disease. Our approach employs the mean jump length that describes how a network is connected
and it has been used as an important indicator in the differentiation of complex networks proper-
ties [5]. The novelty of this study is the establishment of a direct relationship between the mean
jump length, the disease spread and the number of infected individuals. This perspective opens
an important space for control actions that focus on changing the topology of complex networks
as a form of reduction or even eradication of infectious diseases.

The remainder of this paper is organized as follows: after this introduction, Section 2 describes
the SIR models without and with vaccination. The Individual Based Model is presented in Sec-
tion 3. Measures for the characterization and discrimination of complex networks as well several
network models are presented in Section 4. The results are presented and discussed in Section 5,
and the conclusions are presented in Section 6.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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2 COMPARTMENTAL MODELS

2.1 SIR

The SIR model was proposed in 1927 by Kermack and Mckendrick [22]. It divides the population
into three disjoint classes: individuals who are not infected, but may become, named susceptible
(S); individuals who are infected and can infect other individuals, named infected (I), and, in-
dividuals who recovered from the infection and acquire temporary immunity, named recovered
(R). The classic SIR model, defined by a continuous system of three ordinary differential equa-
tions, considers that the distribution of individuals is spatially and temporally homogeneous. This
model (Eq. (2.1)), describes the temporal evolution of each epidemiological class, that is:

dS
dt

= µN− β IS
N
−µS, S(0) = S0 ≥ 0,

dI
dt

=
β IS
N
− γI−µI, I(0) = I0 ≥ 0,

dR
dt

= γI−µR, R(0) = R0 ≥ 0,

(2.1)

where N is the total number of individuals with constant size, N = S(t)+ I(t)+R(t) for all t ≥ 0;
β is the contact rate – also called transmission coefficient, it is the average number of contacts
of an individual per unit of time, causing the transmission of the disease; γ is the recovery rate
– it represents the rate of infected individuals per unit of time that moves to the recovered class;
µ is the renewal rate - it is the number of individuals who dies per unit of time and, in the same
number, are born other susceptible individuals.

2.2 SIR model with vaccination

The vaccination in the SIR model is considered as a way of reducing epidemic incidences. In
this model, there is a class of vaccinated individuals (V ), that is, individuals who are not in-
fected, are vaccinated and acquire temporary immunity, besides the susceptible (S), infected (I)
and recovered (R) classes. The SIR model with vaccination [7], defined by a continuous system
of four ordinary differential equations, considers that the distribution of individuals is spatially
and temporally homogeneous. This model (Eq. (2.2)), describes the temporal evolution of each
epidemiological class, that is:

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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dS
dt

= µ(1− pv)N−
β IS
N
−µS, S(0) = S0 ≥ 0,

dI
dt

=
β IS
N
− γI−µI, I(0) = I0 ≥ 0,

dR
dt

= γI−µR, R(0) = R0 ≥ 0,

dV
dt

= µ pvN−µV, V (0) =V0 ≥ 0,

(2.2)

where β , γ and µ are the same as described in Section 2.1 and pv is the percentage of the
population to be vaccinated.

3 INDIVIDUAL BASED MODEL

An IBM consists of a discrete structure in which relationships occur among a number of individ-
uals. Their behaviors are determined by a set of characteristics [21,40] that stochastically evolve
in time. It can be expressed by a Pm×n matrix, where each of its lines represents an individual and
each of its columns represents a characteristic. For each time step t, its matrix (population) can
be represented by:

Pt =



Ct
1,1 Ct

1,2 Ct
1,3 . . . Ct

1,n

Ct
2,1 Ct

2,2 Ct
2,3 . . . Ct

2,n

Ct
3,1 Ct

3,2 Ct
3,3 . . . Ct

3,n

...
...

...
. . .

...

Ct
m,1 Ct

m,2 Ct
m,3 . . . Ct

m,n


. (3.1)

In this work, the IBM for the SIR model consists of the following rules [27]:

• C1 is the state of an individual regarding to the epidemic (susceptible (0), infected (1) or
recovered (2)).

• C2 is the age of an individual (in units of time). At t = 0, C2 = 0 and for each iteration, ∆t
is added to the age.

• C3 is the maximum age an individual can live. At the birth time, this age is obtained by:

C3 =−µibm log(au), (3.2)

where µibm is the life expectancy of the population and au is a random variable uniformly
distributed between 0 and 1.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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• C4 is the time (in units of time) that an individual gets infected. At t = 0, C4 = 0.

• C5 is the maximum time that an individual remains infected and it is obtained by:

C5 =−γibm log(au), (3.3)

where γibm is the infection period.

By definition, for susceptible and recovered individuals C4 = 0 and C5 = 0 for t = 0. The number
of susceptible, infected and recovered individuals are denoted by S(t), I(t) and R(t), respectively.
The population in study has a constant size, that is, N = S(t)+I(t)+R(t) for all t ≥ 0. In addition,
the transitions between the epidemiological states are discrete and defined by the following rules:

R1. 0,1,2→ 0. A given individual dies when its maximum age is reached. Since N is constant,
this individual is replaced by a new susceptible individual. Otherwise, rule R2 or R3 is
considered.

R2. 0→ 1. It occurs when a susceptible individual becomes infected and its state changes from
0 to 1.

R3. 1→ 2. It occurs when an infected individual becomes immune to the disease and its state
changes from 1 to 2.

Figure 1 shows the IBM flowchart for the SIR model without vaccination. At each time, each
individual of the population is considered and it is verified which rule will be applied. After N
individuals are evaluated, the time step is increased by ∆t units. The algorithm ends when the
simulation time t reaches the final value t f . The IBM for the SIR model with vaccination has
the same characteristics and transition rules of the SIR model without vaccination, previously
described. Except that for the SIR with vaccination a new state is added in C1, namely vaccinated
(3). Moreover, in R1 an individual who reaches its maximum age can be replaced by a new
susceptible or vaccinated individual. Figure 2 presents the IBM flowchart for the SIR model with
vaccination.

4 COMPLEX NETWORKS

A complex network G = (N ,L ) is described by a set N = {n1,n2, . . . ,nN} of nodes, with con-
nections between them, given by a set L = {l1, l2, . . . , lM} of edges. Systems taking the form of
networks (also called “graphs” in much of the mathematical literature) have become the focus of
widespread attention in interdisciplinary research over the past decades [32]. One of the reasons
behind the growing popularity of complex networks is that almost any discrete structure can be
suitably represented as special cases of graphs, whose features may be characterized, analyzed
and, eventually, related to its respective dynamics [10]. A network can be mathematically ex-
pressed by a N×N adjacency matrix A. In this matrix its rows and columns are assigned to the

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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initial population

t > tf end

individual

m > N

die transition to 0

susceptible infected

transition to 1

infected
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transition to 2

t = 0

yes

no m = 1
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t = t + ∆t

no
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no
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no

m = m + 1

Figure 1: IBM flowchart for the SIR model without vaccination. The states 0, 1 and 2 correspond
to the susceptible, infected and recovered individuals, respectively.

nodes in the network and the presence of an edge is symbolized by a numerical value. A network
with undirected, unweighted edges will be represented by a symmetric matrix containing only
the values 1 and 0 to represent the presence and absence of connections, respectively.

4.1 Network measures

Several investigations into complex networks involve the representation of the structure of inter-
est as a network, followed by the analysis of the topological features of the obtained represen-
tation in terms of a set of informative measures, such as the density, the degree, the clustering
coefficient, the shortest path length and the mean jump length [4].

Tend. Mat. Apl. Comput., 21, N. 1 (2020)



i
i

“TEMA˙V21N1˙1299” — 2020/3/18 — 8:41 — page 101 — #7 i
i

i
i

i
i

E. R. PINTO, E. G. NEPOMUCENO and A. S. L. O. CAMPANHARO 101

initial population
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Figure 2: IBM flowchart for the SIR model with vaccination. The states 0, 1, 2 and 3 correspond
to the susceptible, infected, recovered and vaccinated individuals, respectively.

4.1.1 Density

The density d of an undirected, unweighted network is defined as the ratio between the number
of edges and the number of possible edges in a network with N nodes, that is:

d =
∑

N
i=1 ∑

N
j=1 ai j

N(N−1)
, (4.1)

where ai j (i= 1,2, . . . ,N e j = 1,2, . . . ,N) are the elements of the corresponding adjacency matrix
A and 0≤ d ≤ 1.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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4.1.2 Degree

The degree of a node, hence Ki, is the number of edges connected to that node. For undirected,
unweighted networks it can be computed as

Ki =
N

∑
j=1

ai j =
N

∑
j=1

a ji. (4.2)

The average degree of a network is the average of Ki for all the nodes in the network, that is

K =
1
N

N

∑
i=1

ki. (4.3)

4.1.3 Clustering coefficient

The tendency of a network to form tightly connected neighborhoods can be measured by the
clustering coefficient. For an undirected, unweighted network and a node ni, CCi is defined as
the ratio between all triangles that are formed by node ni and the number of all possible triangles
that ni could form, that is, Ki(Ki−1)/2 [14]. Therefore,

CCi =
1
2 ∑ j 6=i ∑h6=(i, j) ai jaiha jh

1
2Ki(Ki−1)

=
(A3)ii

1
2Ki(Ki−1)

, (4.4)

where (A3)ii is the ith element of the main diagonal of A3 = AAA. By definition, CCi = 0 for
Ki = 0 or Ki = 1. The global clustering coefficient CC, which represents the overall level of
clustering in the network, is the average of the local clustering coefficients of all the nodes.

4.1.4 Shortest path length

The average shortest path length, which is a measure of the efficiency of information flow on a
network, is defined as the average number of steps along the shortest paths for all possible pairs
of network nodes [32]. The average shortest path length is defined as follows. Let dist(n1,n2)

denote the shortest distance between n1 and n2 (n1,n2 ∈ N ). Assume that dist(n1,n2) = 0 if
n1 = n2 or n2 cannot be reached from n1, has path(n1,n2) = 0 if n1 = n2 or if there is no path
from n1 to n2, and has path(n1,n2) = 1 if there is a path from n1 and n2. Then, L is given by:

L =
∑

N
i, j dist(ni,n j)

∑
N
i, j has path(ni,n j)

, (4.5)

where N denotes the number of nodes in G, ∑
N
i, j dist(ni,n j) is the all-pairs shortest path length

of G, and ∑
N
i, j has path(ni,n j) is the number of paths in G [4]. Therefore, the value of L is given

by the average of the shortest path lengths between all pairs of nodes in the network.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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4.1.5 Mean jump length

From the adjacency matrix A it is possible to compute the transition matrix W , in which each of
its elements is given by wi, j = ai j/∑

N
j=1 ai j. With W it is possible to perform a random walk on

the network G and compute the mean jump length ∆, which is defined as follows:

∆ =
1
S ∑

s=1
δs(i, j), (4.6)

where s = S are the jumps of length δs(i, j) = |i− j|, with i, j = 1, . . . ,N being the node indices,
as defined by W . Previous work has provided an approach that is less time-consuming for the
calculation of the mean jump length ∆ [4], given by:

∆ =
1
N

tr(PW )T , (4.7)

where W T is the transpose of W , P is a N×N matrix with elements pi, j = |i− j|, and tr is the
trace operation.

4.2 Complex network models

Several complex networks models have been proposed in the literature with the aim of reproduc-
ing patterns of connections found in real networks [32]. In this work, random, small world, scale-
free, modular and hierarchical models were used to generate undirected, unweighted networks to
better understand the implications of these patterns in the propagation of a disease.

Random model (RAN)

In a random model, given a network with N nodes totally disconnected, each pair of nodes is
connected with probability 0 ≤ p ≤ 1. Thus, for p = 0, all the nodes will be disconnected and,
on the other hand, for p = 1 the network will be fully connected (called “complete graph” in the
graph theory). The networks produced by this model for any 0 < p < 1 are known as random
networks [13]. In this work, random networks were obtained for p = 0.1.

Small world model (SW)

Watts and Strogatz found that the connections of several real networks were not completely
regular or random, but between both. That is, real networks could be highly clustered, as regular
networks, but with a short path length between their nodes, as random graphs – well known as
a “small world” property [43]. In the small world model, each node in a circular and regular
network is connected to its k nearest neighbors. With probability p, a node is randomly chosen
and an edge that connects it to its closest neighbor is connected to one of its other neighbors.
This process is repeated over all the network nodes until all edges are rewritten. Thus, for p = 0
the network remains regular and for p = 1 the resulting network is totally random. The networks
produced by this model for any 0 < p < 1 are known as small world networks [43]. In this work,
small world networks were obtained for p = 0.01 and k = 100.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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Scale-free model (SF)

Barabási and Albert [3] mapped the connections between the World Wide Web pages and found
the occurrence of few nodes with high degree (called “hubs”) and several nodes with low degree.
They proposed a model able to generate networks with such characteristics, based on the growth
property, where a network with a few number of disconnected nodes receives at each step a
new node with N0 edges, and the preferential attachment property, where each new node gets
connected to the more connected nodes in the network. In this work, scale-free networks were
obtained for N0 = 105.

Modular model (MOD)

In a modular network the edges are densely distributed between nodes belonging to the same
group (module) and sparsely distributed between nodes belonging to different groups [10]. In
this model, a modular network with N nodes and M modules is obtained by connecting each pair
of nodes with probability 0≤ p≤ 1 and ratio 0≤ r ≤ 1, which defines whether the connections
occur inside or outside of each module, respectively [38]. The distribution of edges within each
module follows the Erdõs-Rényi model. In this work, modular networks were obtained for M =

10, p = 0.1 and r = 0.95.

Hierarchical model (HIE)

A hierarchical model creates networks which are able to reproduce the unique scale-free property
and the high clustering of the nodes at the same time – a behavior found in many social and
biological networks [10]. A network produced by this model has a tree-like structure, that is,
it is hierarchically organized from nodes with higher degree to nodes with lower degree [36].
Considering a network with b0 nodes at the first layer, each node connects to its distinct sons (not
more than b) which belong to the next layer. This procedure is repeated l times and a skeleton is
obtained. Despite the local links, additional m long-range direct connections (shortcuts) between
nodes in the same layer are added with probability λ to make the average path length short [12].
In this work, hierarchical networks were obtained for b0 = 1, b = 2, l = 10, m = 197,901 and
λ = 0.9.

It is worth mentioning that the density of connections found in many real social networks is given
by d ≈ 0.1 [15]. With the knowledge that dRAN ≈ p, dSM = 2k/N, dSF = (2(N−N0)N0)/(N(N−
1)), dMOD ≈ p and dHIE = (2(N+m−1))(N(N−1)), all the parameters for the network models
used in this work were chosen in such way to generate networks with this value of density.
Table 1 presents the parameters used in all network models and the network measures used to
characterize the resulting networks.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)
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5 RESULTS

Considering that the IBM is discrete and, based on the parameters of the SIR models (without
and with vaccination) previously described in Sections 2.1 and 2.2, the following rules can be
established 

βibm = βsir∆t,
µibm = 1/µsir,

γibm = 1/γsir.

(5.1)

With the use of Equation (5.1), it is possible to build the equivalence between the SIR mod-
els (without and with vaccination) and the IBM, in such way that, on average, their solutions
will present similar behaviors [27]. Figure 3a presents the number of susceptibles, infected and
recovered individuals of the SIR model without vaccination (black lines) in an epidemic state
(basic reproduction number R0 > 1) for µsir = 1/70, γsir = 1/36 and βsir = 0.5 and the average
number of susceptibles, infected and recovered individuals of the IBM for µibm = 70, γibm = 36,
βibm = 0.05 and ∆t = 0.1, over 10 different realizations. Figure 3b presents the number of sus-
ceptibles, infected and recovered individuals of the SIR model without vaccination (black lines)
in a non-epidemic state (R0 < 1) for µsir = 1/70, γsir = 1/24 and βsir = 0.05 and the average
number of susceptibles, infected and recovered individuals of the IBM for µibm = 70, γibm = 24,
βibm = 0.005 and ∆t = 0.1, over 10 different realizations. Figure 4 presents the number of suscep-
tibles, infected, recovered and vaccinated individuals of the SIR model with vaccination (black
lines) in an epidemic state (Fig. 4a) and in a non-epidemic state (Fig. 4b) and the average number
of susceptibles, infected, recovered and vaccinated individuals of the IBM, with the same param-
eters values used in Figure 3. N = 2,000, S(0) = 1,700, I(0) = 300 and R(0) = 0 were considered
in all cases. Notice that for all realizations, the SIR and IBM solutions are very similar, regardless
of the set of parameters used and the infectious disease is or is not epidemic.

In the SIR model without and with vaccination and in the original IBM formulation, the rela-
tionships between individuals are represented by a complete graph, that is, all individuals are
connected to each other. However, in real contact networks this behavior is not observed. Thus,
in this work the IBM for the SIR model (without and with vaccination) was modified in order
to incorporate more realistic models of contact networks and understand the effect of the net-
work topologies on the IBM solutions. Unlike the IBM without complex networks, the IBM with
complex networks an infected individual can infect other individuals only if they are connected.

Figure 5 presents the IBM solutions (average number of infected individuals) with complex net-
works for the SIR model with vaccination, 0≤ pv ≤ 0.45 and ∆pv = 0.01, under 1,000 different
realizations. In all cases, the solutions were obtained with N = 2,000, S0 = 1,990, I0 = 10,
R0 = 0, γibm = 36, βibm = 0.05, µibm = 70, ∆t = 0.1 and final time t f = 6,000. Note that the
number of infected individuals is greater in the hierarchical and scale-free models, regardless
the value of pv. This is justified by the presence of hubs in both models, which when infected
are able to rapidly infect many other nodes, increasing the propagation speed of a disease. The
long-range connections present in the random model allow a given node to infect not only its
immediate neighbors, but also its distant neighbors. Although, in this case the propagation speed
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Figure 3: Number of susceptibles, infected and recovered individuals for the SIR model without
vaccination (black lines) and the average number of susceptibles, infected and recovered individ-
uals for the IBM with t f = 400 in (a) an epidemic (R0 = 11.8868) and (b) non-epidemic states
(R0 = 0.8936), respectively.

is lower than in the hierarchical and scale-free models, it is higher than in the small world and
modular models since in these latter models the disease preferentially spreads between closer
neighbors or to nodes belonging to the same module, respectively. The disease eradication is ob-
served when the vaccination strategy of 10%, 5%, 27%, 3% and 44% of the population is used in
combination with the random, small world, scale-free, modular and hierarchical network models,
respectively.

Figure 6 presents the IBM solutions (average number of infected individuals) with complex net-
works for the SIR models without (Fig. 6a) and with (Fig. 6b) vaccination. In both cases, the
solutions were obtained with the same values of N, S0, I0, R0, γibm, βibm, µibm, ∆t, t f used in
Figure 5 and pv = 0.10, under 1,000 different realizations. Complex networks with different
topologies result in curves of infected individuals with different behaviors, and thus, the propa-
gation of a given disease is highly sensitive to the network topology used. In particular, the larger
the mean jump length (Table 1), the faster is the disease propagation, consequently, the highest
is the number of infected individuals. The disease eradication is observed when the vaccination
strategy of 10% of the population is used in combination with the random, small world or mod-
ular network models. For illustration purposes, Figures 7 and 8 show examples of the IBM for
the SIR model in combination with random, small world, scale-free, modular and hierarchic net-
works with N = 20 nodes and t = 0,1,2,3 and 4 (without vaccination) and t = 0,10,11,12 and
13 (with vaccination) for the disease spread. Nodes in blue, red, green and brown correspond to
susceptible, infected, recovered and vaccinated individuals, respectively.

Tend. Mat. Apl. Comput., 21, N. 1 (2020)



i
i

“TEMA˙V21N1˙1299” — 2020/3/18 — 8:41 — page 108 — #14 i
i

i
i

i
i

108 IMPACT OF NETWORK TOPOLOGY ON THE SPREAD OF INFECTIOUS DISEASES

0 100 200 300 400

t

0

500

1000

1500

2000

S
(t

),
 I

(t
),

 R
(t

),
 V

(t
)

S
I
R
V

(a)

0 100 200 300 400

t

0

500

1000

1500

2000

S
(t

),
 I

(t
),

 R
(t

),
 V

(t
)

S
I
R
V

(b)

Figure 4: Number of susceptibles, infected, recovered and vaccinated individuals for the SIR
model with vaccination (black lines) and the average number of susceptibles, infected, recovered
and vaccinated individuals for the IBM with pv = 0.10 and t f = 400 in (a) an epidemic (R0 =

10.1038) and (b) non-epidemic states (R0 = 0.7596), respectively.
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Figure 5: IBM solutions (average number of infected individuals) with complex networks for
the SIR model (with vaccination) with 0 ≤ pv ≤ 0.45, ∆pv = 0.01 and t f = 6,000, under 1,000
different realizations.
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Figure 6: IBM solutions (average number of infected individuals) with complex networks for the
SIR models without (a) and with (b) vaccination with γibm = 36, βibm = 0.05, µibm = 70, ∆t = 0.1,
t f = 6,000 and pv = 0.10, under 1,000 different realizations.

6 CONCLUSIONS

In this work, the IBM in combination with several complex network models was proposed for
modeling the propagation of an infectious disease. In general, complex networks with different
properties result in curves of infected individuals with different behaviors, and thus, the evolution
of a given disease is highly sensitive to the network model used. The disease eradication is
observed when the vaccination strategy of 10% of the population is used in combination with
the random, small world or modular network models which opens an important space for control
actions that focus on changing the complex networks topology as a form of reduction or even
elimination of the infectious diseases. Therefore, our approach can be a simple and effective tool
in the most realistic modeling of an infectious disease.
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RESUMO. A teoria de redes complexas constitui um suporte natural para o estudo
da propagação de uma doença infecciosa. Neste trabalho, apresentamos um estudo da
propagação de uma doença infecciosa com o uso de tal teoria em conjunto com o Mode-
lo Baseado em Indivı́duos. Mais especificamente, utilizamos diversos modelos de redes
complexas amplamente conhecidos na literatura para verificar seus efeitos topológicos
na propagação de uma doença. De modo geral, observamos que redes complexas com
propriedades distintas resultam em curvas de indivı́duos infectados com comportamen-
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tos também distintos, e desta forma, que a proliferação de uma dada doença é altamente
sensı́vel ao modelo de rede utilizado. Observamos a erradicação da doença quando adotada
a estratégia de vacinação de 10% da população em combinação com os modelos de redes
aleatória, mundo pequeno ou modular. Desta forma, estratégias de controle com enfoque na
topologia da rede em estudo podem ser utilizadas com êxito como forma de redução ou até
mesmo de erradicação de uma doença infecciosa.

Palavras-chave: computação cientı́fica, redes complexas, Modelo Baseado em Indivı́duos,
doenças infecciosas.
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