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We use the Unruh effect to investigate how the teleportation of quantum states is affected when one of the
entangled qubits used in the process is under the influence of some external force. In order to reach a
comprehensive understanding, a detailed analysis of the acceleration effect on such entangled qubit system is
performed. In particular, we calculate the mutual information and concurrence between the two qubits and
show that the latter has a “sudden death” at a finite acceleration, whose value will depend on the time interval
along which the detector is accelerated.
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I. INTRODUCTION

The teleportation of quantum states is undoubtedly one of
the most interesting effects unveiled in the last decade. In the
original work by Bennett et al. �1� the system is considered
to be isolated from external forces and the maximally en-
tangled qubit pair is unitarily evolved. As a natural develop-
ment, Alsing and Milburn analyzed the case when the system
is not quite isolated �2�. In their setup, Bob is replaced by a
uniformly accelerated observer named Rob. Alice and Rob
each hold an optical cavity at rest in their local frames, which
are assumed to be initially free of Minkowski photons. Each
cavity supports two orthogonal Minkowski modes Ai and
Ri�i=1,2� with the same frequency, where hereafter A and R
will be used to label Alice and Rob, respectively. At the
moment that Alice and Rob overlap, they create an entangled
pair

�0�M � �0�M + �1�M � �1�M �1.1�

where

�0�M = �1�X1
� �0�X2

, �1�M = �0�X1
� �1�X2

and X=A and R for the first and second qubits in Eq. �1.1�,
respectively. Then it is argued that as Rob is accelerated, his
cavity would be populated by thermally excited Rindler pho-
tons as it would be predicted by the Unruh effect �3� �see
also Ref. �4� for a recent review on the Unruh effect and its
applications� and is concluded that the teleportation fidelity
would be reduced. We note however, that the set up proposed
above presents some conceptual difficulties �5�. In particular,
the relationship between the Minkowski and Rindler modes
as used in Ref. �2� is valid in the Minkowski spacetime with-
out boundary conditions imposed by the presence of cavities.
In order to circumvent these difficulties, we present here a
distinct set up which avoids the use of cavities. For this
purpose the qubits are modeled by a two-level semiclassical
detector coupled to a massless scalar field. The detector is
classical in the sense that it has a well-defined world line but
quantum because of the nature of its internal degrees of free-

dom. A complementary analysis to ours can be found in Ref.
�6�, where the entanglement of free fields under the influence
of no external forces is investigated from the point of view of
inertial and uniformly accelerated observers.

The paper is organized as follows: in Sec. II we introduce
our qubit and its interaction with the Klein-Gordon field. In
Sec. III we entangle a pair of those qubits and use the Unruh
effect to calculate its final state when one of them is uni-
formly accelerated for some fixed amount of proper time
while the other one is inertial. Next, we investigate the cor-
responding mutual information and concurrence as a func-
tion of the noninertial qubit acceleration. In particular, we
verify that the qubit system experiences a sudden death of
entanglement �see, e.g., Refs. �7,8� and references therein� at
a finite proper acceleration. In Sec. IV we revisit the original
teleportation protocol �1� when the inertial Bob is replaced
by the accelerated Rob and calculate how the teleportation
fidelity diminishes as the acceleration grows. We dedicate
Sec. V for our closing remarks and to establish a relationship
between our theoretical model and a possible experimental
physical set up. We adopt spacetime signature �−+++� and
assume natural units c=�=G=1 unless stated otherwise.

II. TWO-LEVEL DETECTOR QUBIT MODEL

We model our qubit in Minkowski spacetime �R4 ,gab�
through a two-level detector with energy gap � as intro-
duced by Unruh and Wald �9�. Here, we briefly revisit the
corresponding detector theory and derive the necessary re-
sults for the forthcoming sections. The detector proper
Hamiltonian is defined as

HD = �D†D , �2.1�

where D�0�=D†�1�=0, D�1�= �0� and D†�0�= �1�, and �0� , �1�
are the corresponding unexcited, excited energy eigenstates,
respectively. We couple the detector to a massless scalar field
� satisfying the Klein-Gordon equation �10�

�a�
a� = 0 �2.2�

through the Hamiltonian
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Hint�t� = ��t��
�t

d3x�− g��x����x�D + �̄�x�D†� , �2.3�

where ��x� is the free Klein-Gordon field operator, g
	det�gab� and x are coordinates defined on the Cauchy sur-
face �t=const associated with some suitable timelike isometry.
For our present purposes we assume that the detector follows
either the inertial or the uniformly accelerated isometry of
the Minkowski spacetime. Here ��C0

��R� is a smooth
compact-support real-valued function, which keeps the de-
tector switched on for a finite amount of proper time 	 �for
more details on finite-time detectors see, e.g., Ref. �11�� and
��C0

C���t� is a smooth compact-support complex-valued
function, which models the fact that the detector only inter-
acts with the field in a neighborhood of its world line. The
same detector model was recently used by Kok and Yurtsever
to analyze the decoherence of an accelerated qubit due to the
Unruh effect �12�. Using Eqs. �2.1�–�2.3� we cast the total
Hamiltonian as

HD� = H0 + Hint, �2.4�

where H0=HD+HKG is the combined detector-field free
Hamiltonian. In the interaction picture the state �
t

D�� de-
scribing the system at moment t can be written as

�
t
D�� = T exp
− i�

−�

t

dt�Hint
I �t����
−�

D�� , �2.5�

where T is the time-ordering operator and

Hint
I �t� = U0

†�t�Hint�t�U0�t� , �2.6�

with U0�t� being the unitary evolution operator associated
with H0�t�. By using Eq. �2.5�, we write �
�

D��= �
t�	
D� � as

�
�
D�� = T exp
− i� d4x�− g��x��fD + f̄D†���
−�

D�� ,

�2.7�

where f 	��t�e−i�t��x� is a compact support complex func-
tion defined in Minkowski spacetime and we have used that
DI=e−i�tD. In first perturbation order, Eq. �2.7� becomes

�
�
D�� = �I − i���f�D + ��f�†D†���
−�

D�� , �2.8�

where �13�

��f� 	 � d4x�− g��x�f = i�a�KEf̄� − a†�KEf�� �2.9�

is an operator valued distribution obtained by smearing out
the field operator by the testing function f above. Here a�ū�
and a†�u� are annihilation and creation operators of u modes,
respectively, the K operator takes the positive-frequency part
of the solutions of Eq. �2.2� with respect to the timelike
isometry, and

Ef =� d4x��− g�x���Gadv�x,x�� − Gret�x,x���f�x�� ,

�2.10�

where Gadv and Gret are the advanced and retarded Green’s
functions, respectively. Next, by imposing that ��t� is a very
slow-varying function of time compared to the frequency �
and that 	��−1, we have that f is an approximately

positive-frequency function, i.e., KEf �Ef and KEf̄ �0 �see
Appendix�. Now, by defining


 	 − KEf , �2.11�

we cast Eq. �2.9� as

��f� � ia†�
� �2.12�

and Eq. �2.8� as

�
�
D�� = �I + a†�
�D − a�
̄�D†��
−�

D�� . �2.13�

The expression above carries the well-known physical mes-
sage that the excitation and de-excitation of an Unruh-
DeWitt detector following a timelike isometry is associated
with the absorption and emission, respectively, of a particle
as “naturally” defined by observers co-moving with the de-
tector, i.e., in our case, Minkowski and Rindler particles for
inertial and uniformly accelerated observers, respectively.

III. ENTANGLED QUBIT PAIR AND THE UNRUH
EFFECT

Let us consider now a two-qubit system initially en-
tangled as given by

�
AR� = ��0A� � �1R� + ��1A� � �0R� , �3.1�

with ���2+ ���2=1, where 
�0X� , �1X�� is an orthonormal basis
of the internal qubit space HX and X=A ,R. The free Hamil-
tonian for each one of the detectors is given by Eq. �2.1� with
D replaced by A or R depending on the detector. Now, we
impose that Alice’s detector is kept inertial in contrast to
Rob’s one which is uniformly accelerated for a finite proper
time 	, having world line

t��� = a−1 sinh a�, x��� = a−1 cosh a�, y��� = z��� = 0,

�3.2�

where � and a are the detector’s proper time and accelera-
tion, respectively, and here �t ,x ,y ,z� are the usual Cartesian
coordinates of Minkowski spacetime. The detectors are de-
signed to be switched on only when they are accelerated.
Thus, Alice’s inertial qubit only interacts with the scalar field
indirectly through Rob’s detector. At the end of the paper we
discuss a laboratory situation which realizes these assump-
tions.

Rob’s qubit interacts with the field according to the
Hamiltonian �2.3� with the proper replacements: D→R and
t→�, where �� are spacelike hypersurfaces orthogonal to the
congruence of boost isometries to which Rob’s detector
world line belongs. The total Hamiltonian is given by
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HAR� = HA + HR + HKG + Hint. �3.3�

The corresponding Hilbert space associated with our system
can be written now as HT=HA � HR � Fs�HI � HII�, where
Fs�HI � HII� is the symmetric Fock space of HI � HII with HI
being the Hilbert space of positive-frequency solutions with
respect to � with initial data on �I which is the portion of
��=0 in the right Rindler wedge defined by x� �t�, and analo-
gously for HII and the left Rindler wedge defined by x�
−�t�.

Next by using the fact that Rob’s detector is the only one
which interacts with the field and that this is confined in the
right Rindler wedge, we use Eq. �2.13� to evolve our initial
state

�
−�
AR�� = �
AR� � �0M� , �3.4�

with �0M� being the Minkowski vacuum �i.e., the no-particle
state as defined by inertial observers�, to its asymptotic form

�
�
AR�� = �I + aRI

† �
�R − aRI�
̄�R†��
−�
AR�� , �3.5�

where the labels in aRI
† and aRI emphasize that they are cre-

ation and annihilation operators of Rindler modes in the right
wedge �I�, 
=−KEf �Ef , and here f =����e−i����x�. By us-
ing Eqs. �3.1� and �3.4� in Eq. �3.5�, we obtain

�
�
AR�� = �
−�

AR�� + ��0A� � �0R� � �aRI
† �
��0M�� + ��1A�

� �1R� � �aRI�
̄��0M�� . �3.6�

In order to proceed, we write aRI and aRI
† in terms of the

annihilation, aM, and creation, aM
† , operators of Minkowski

modes as �9�

aRI�
̄� =
aM�F1�� + e−��/aaM

† �F2��
�1 − e−2��/a�1/2 , �3.7�

aRI
† �
� =

aM
† �F1�� + e−��/aaM�F2��

�1 − e−2��/a�1/2 , �3.8�

where

F1� =

 + e−��/a
 � w

�1 − e−2��/a�1/2 , �3.9�

F2� =

 � w + e−��/a
̄

�1 − e−2��/a�1/2 , �3.10�

w�t ,x ,y ,z�= �−t ,−x ,y ,z� is the wedge reflection isometry,
and we recall that whenever ��HI then � �w�HII. For fur-
ther convenience, let us define from Eq. �2.11�

�2 	 �
�2, �3.11�

where

�Fi�,Fj��KG = �
�2�ij, i � 
1,2� . �3.12�

Here we write the Klein-Gordon internal product

�Fi�,Fj��KG 	 i�
�

d3x�h�F̄i��aFj� − ��aF̄i��Fj��na

between the positive-frequency solutions, Fi� and Fj�, with
respect to the Minkowski time t taken on a Cauchy surface �
with unit orthogonal vector na and h	det�hab� with hab be-
ing the restriction of gab on �. By assuming our detector to
be localized as given by the Gaussian ��x�= ���2��−3exp�
−x2 /2�2� with variance �=const�1, we show in the Appen-
dix that

�2 =
�2�	

2�
e−�2�2

. �3.13�

Now, by using Eqs. �3.7� and �3.8� to write

aRI�
̄��0M� =
�e−��/a

�1 − e−2��/a�1/2 �1F̃2�
� , �3.14�

aRI
† �
��0M� =

�

�1 − e−2��/a�1/2 �1F̃1�
� , �3.15�

we cast Eq. �3.6� in the form

�
�
AR�� = �
−�

AR�� + ��
�0A� � �0R� � �1F̃1�

�

�1 − e−2��/a�1/2

+ ��e−��/a
�1A� � �1R� � �1F̃2�

�

�1 − e−2��/a�1/2 , �3.16�

where F̃i�=Fi� /�. Notice that the fact that every Rob’s qubit
transition demands the emission of a Minkowski particle is
codified in Eq. �3.16�.

The density matrix which describes the two-qubit state is
obtained tracing out the scalar field degrees of freedom,
namely,

��
AR = �
�

AR��−2tr��
�
AR���
�

AR�� , �3.17�

where

�
�
AR��2 = 1 +

���2�2

1 − e−2��/a +
���2�2e−2��/a

1 − e−2��/a

normalizes the final density matrix, i.e., tr ��
AR=1. By work-

ing out Eq. �3.17�, we obtain

��
AR = 2S0

���
AR��
AR� + S2
���0A� � �0R��0A� � �0R� + S1

���1A�

� �1R��1A� � �1R� , �3.18�

where

S0
�� =

�1 − e−2��/a�/2
�1 − e−2��/a� + ���2�2 + ���2�2e−2��/a ,

S1
�� =

���2�2e−2��/a

�1 − e−2��/a� + ���2�2 + ���2�2e−2��/a ,
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S2
�� =

���2�2

�1 − e−2��/a� + ���2�2 + ���2�2e−2��/a ,

and we verify that 2S0
��+S1

��+S2
��=1. For the sake of con-

venience, we cast Eq. �3.18� in matrix form as

��
AR =�

S2
�� 0 0 0

0 2���2S0
��

2��̄S0
�� 0

0 2�̄�S0
�� 2���2S0

�� 0

0 0 0 S1
��
� , �3.19�

where we have used the basis


�0A� � �0R�, �0A� � �1R�, �1A� � �0R�, �1A� � �1R�� .

A. Mutual information

In order to extract information on the correlation between
the qubits A and R, we calculate the mutual information
�14,15�

I�A:R� = S���
A� + S���

R� − S���
AR� , �3.20�

where 0� I�A :R��2. Here ��
A =trR ��

AR, ��
R =trA ��

AR, and
S���=−tr�� log2 �� is the von Neumann entropy. In Fig. 1 we
plot the mutual information for a fixed proper time interval 	
along which Rob’s detector is accelerated, assuming the two-
qubit system to be initially in a singlet state: �=−�=1 /�2.
We see that for low enough accelerations, the mutual infor-
mation keeps its value close to the maximum one, I�A :R�
�2, as expected. This is so because for very low accelera-
tions the temperature of the Unruh thermal bath is small
containing, thus, quite few particles with proper energy �
able to interact with the detector. The reason why I�A :R�
�2 for arbitrarily small a is because even inertial detectors

have a nonzero probability of spontaneously decaying with
the emission of a Minkowski particle, which carries away
information from the qubit-system. For arbitrarily large ac-
celerations, where the detector experiences high Unruh tem-
peratures, we have I�A :R�→1, indicating that the qubits are
still correlated but not entangled, as it can be seen directly
from Eq. �3.18�:

��
AR →

a→�1

2
�0A� � �0R��0A� � �0R� +

1

2
�1A� � �1R��1A� � �1R� .

In order to get a better understanding of the physical content
codified in Fig. 1, this is interesting to analyze the entangle-
ment between the two-qubit system and the field. Since
�
�

AR�� is a pure state, the entanglement between the qubits
and the field is given by �14�

EAR� = S���
AR� = S���

�� , �3.21�

where ��
AR was defined in Eq. �3.17� and ��

� is the density
matrix obtained analogously by taking the partial trace on the
qubits degrees of freedom. In Fig. 2 we plot the qubit
system-field entanglement for the situation described in Fig.
1. The qubit system-field entanglement EAR� is small for low
enough accelerations, since �
�

AR�� is approximately sepa-
rable �but not exactly separable because again of the nonzero
probability of spontaneous de-excitation of inertial detectors�
in contrast to the case of arbitrarily large accelerations where
EAR� approaches the unity. As for the mutual information,
the qubit system-field entanglement has a nontrivial behavior
acquiring its maximum value at a=a0, which is precisely
where I�A :R� has its minimum �see Fig. 1�. For a�a0, the
qubit system recovers part of its correlations after some time
�=�e�	 as shown in Fig. 3.
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FIG. 1. �Color online� The graph exhibits the mutual informa-
tion I�A :R� for a singlet initial state as a function of acceleration
a /�, with �2=8�2 ·10−6, �=100, 	=1000, and �=0.02. The most
interesting feature is related with the fact that the curve is not
monotonic, acquiring its minimum value at a0 /��545.75. We note
that the dimensionless quantity a /� reflects the temperature of the
Unruh thermal bath as experienced by Rob’s detector per its energy
gap �up to a 1 / �2�� factor�.
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FIG. 2. �Color online� The graph shows the entanglement, EAR�,
between the qubit system and field as a function of acceleration
a /� assuming the same initial state and �, �, 	, and � parameters
as in Fig. 1. We note that the entanglement takes its maximum
value, Emax

AR��1.58, at a0 /��545.75, precisely where I�A :R� has
its minimum. This is interesting to note that because the normalized
�
�

AR�� is Schimidt decomposed �14� �see Eq. �3.16��, the corre-
sponding Schimidt number is 3 and the maximum entanglement
Emax

AR�=log 3�1.58.
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B. Concurrence

Now, we show that the qubit-system entanglement expe-
riences a sudden death for accelerations smaller than the one
necessary for the mutual information to acquire its minimum.
For this purpose, we calculate the concurrence �16�

C���
AR� = max
0,�
1 − �
2 − �
3 − �
4� , �3.22�

associated with our mixed state ��
AR, where 
i�i=1, . . . ,4� are

the eigenvalues of ��
AR��y � �y��̄�

AR��y � �y� with 
1�
2
�
3�
4 and �̄�

AR is obtained by taking the complex conju-
gate of every term in Eq. �3.19�. In Fig. 4 we see that for
arbitrarily small a, the qubit system has C���

AR��1 which is
in agreement with I�A :R��2 found in the low acceleration
regime. Now, as the acceleration increases the entanglement
between the qubits decreases monotonically vanishing at a
definite value

a/� = asd/� = �/ln��2/2 + �1 + �4/4� .

Thus for a fixed acceleration time interval 	, the two qubits
lose their entanglement for every acceleration a�asd.

IV. TELEPORTATION AND THE UNRUH EFFECT

Now, let us use our previous results to revisit the telepor-
tation protocol when Alice and Rob initially share the en-
tangled qubit system �3.1� in a singlet state, �=−�=1 /�2,
and calculate how the corresponding fidelity is affected as a
function of Rob’s qubit acceleration. The state to be tele-
ported by Alice is given by

��C� = ��0C� + ��1C� , �4.1�

which combined with �
AR� given in Eq. �3.1� and the
Minkowski vacuum lead to the following total initial state

�
−�
CAR�� = ��C� � �
AR� � �0M� . �4.2�

By using now that

�0C� � �0A� =
1
�2

���CA
+ � + ��CA

− �� ,

�0C� � �1A� =
1
�2

���CA
+ � + ��CA

− �� ,

�1C� � �0A� =
1
�2

���CA
+ � − ��CA

− �� ,

�1C� � �1A� =
1
�2

���CA
+ � − ��CA

− �� , �4.3�

where ��CA
+ � , ��CA

− � , ��CA
+ � , ��CA

− � are the Bell states �14�, we
cast Eq. �4.2� as

�
−�
CAR�� =

1

2
���CA

+ � � ���1R� − ��0R�� � �0M� + ��CA
− �

� ���1R� + ��0R�� � �0M� + ��CA
+ � � �− ��0R�

+ ��1R�� � �0M� − ��CA
− � � ���0R� + ��1R�� � �0M�� .

The asymptotic total final state after Rob has accelerated for
proper time 	 can be cast from Eq. �3.5� as

�
�
CAR�� = �I + aRI

† �
�R − aRI�
̄�R†��
−�
CAR�� . �4.4�

Let us assume that Alice makes a Bell measurement some-
where in the causal past of the event where Rob begins to
accelerate. The choice for a Bell measurement is natural
since at this point they share a maximally entangled state
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FIG. 3. �Color online� The graph follows the behavior of the
entanglement, EAR�, along the time for three distinct proper accel-
erations: a /�=100 �full line�, a /�=a0=545.75 �dashed line�, and
a /�=2000 �dotted line� assuming the same initial state and �, �, 	,
and � parameters as in Fig. 1. We note that for a�a0, EAR� in-
creases monotonically as a function of time. However, for a�a0,
the qubit system and field get maximally entangled at some time
�=�e�	, after which the qubit system recovers back part of its
correlations from the total system. Although not being visually evi-
dent, the graph is plotted in the acceleration time interval �
= �1,	�, which respects the constraint ���1 �see discussion above
Eq. �2.11��.
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FIG. 4. �Color online� The concurrence C���
AR� is plotted as a

function of the acceleration a /� assuming the same initial state and
�, �, 	, and � parameters as in Fig. 1. The sudden death of the
entanglement between the two qubits is observed at asd /�
�273.00.
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driving her to follow the original teleportation protocol. No-
tice also that at the moment of the measurement, she does
not have in principle any way to forecast whether or not Rob
will be under the influence of some external force. For the
sake of simplicity, let us assume that Alice measures ��CA

− �.
This will be eventually informed to Rob by classical means
who may use this information to decide how to act on his
qubit after his acceleration is over. Then, we obtain

�
�
CAR�� = −

1

2
��CA

− � � ���0R� + ��1R�� � �0M� +
�

2
��CA

− �

� �1R� � aRI�
̄��0M� −
�

2
��CA

− � � �0R� � aRI
† �
��0M�

= −
1

2
��CA

− � � ���0R� + ��1R�� � �0M�

+
��e−��/a

2�1 − e−2��/a�1/2 ��CA
− � � �1R� � �1F̃2�

�

−
��

2�1 − e−2��/a�1/2 ��CA
− � � �0R� � �1F̃1�

� .

Now, this is in order to note that the final result will not
depend on where Alice makes her measurement because
commuting the order of �i� projecting the result on ��CA

− � and
�ii� time evolving �
−�

CAR�� does not alter �
�
CAR��. The den-

sity matrix associated with Rob’s qubit is

��
R = �
�

CAR��−2tr�CA�
�
CAR���
�

CAR�� , �4.5�

where

�
�
CAR��2 =

1

4
�1 +

���2�2e−2��/a

1 − e−2��/a +
���2�2

1 − e−2��/a� . �4.6�

Equation �4.5� can be recast as

��
R = ����2S0

�� + ���2S2
����0R��0R� + ��̄S0

���0R��1R�

+ �̄�S0
���1R��0R� + ����2S0

�� + ���2S1
����1R��1R� ,

�4.7�

where

S0
�� =

1 − e−2��/a

1 − e−2��/a + �2���2 + �2���2e−2��/a , �4.8�

S1
�� =

�2e−2��/a

1 − e−2��/a + �2���2 + �2���2e−2��/a , �4.9�

S2
�� =

�2

1 − e−2��/a + �2���2 + �2���2e−2��/a . �4.10�

Let us choose �=�=1 /�2 in Eq. �4.1�. In this case, using the
basis 
�0R� , �1R�� we have

��
R = �S0 + S2 S0

S0 S0 + S1
� , �4.11�

with

S0 	
S0

1/�21/�2

2
, S1 	

S1
1/�21/�2

2
, S2 	

S2
1/�21/�2

2
.

Finally, the teleportation fidelity F	��C���
R��C� turns out to

be

F = S0 + 1/2, �4.12�

which is plotted in Fig. 5 as a function of Rob’s qubit proper
acceleration. We see from Fig. 5 that for low enough accel-
erations F�1 and for arbitrarily large accelerations F�0.5.
This is so because of the entanglement loss between Alice
and Rob’s qubits as discussed in the previous section. In
contrast to Figs. 1 and 2 we see that F has a monotonous
decrease as a function of a /�.

V. FINAL REMARKS

Technological developments have recently provided
means to exquisite tests of quantum mechanics. This is not
only interesting in connection with information theory but
also with a number of conceptual issues. In particular the
interplay between quantum mechanics and relativity has
been a permanent source of preoccupation �17� which culmi-
nates with the long standing quest for quantum gravity. How-
ever, very interesting physics involving quantum mechanics
and relativity can be already witnessed in Minkowski space-
time as, e.g., the fact that spin entanglement and entropy are
not invariant by Lorentz transformations when the associated
particles are described by wave packets �18,19�. A conse-
quence coming out from these facts is that Bell inequalities
can be satisfied rather than violated if the spin detectors
move fast enough �20�. In the present paper, we have ana-
lyzed how the teleportation fidelity is affected when one of
the entangled qubits is uniformly accelerated for a finite time
interval under the influence of some external agent. We
model our qubit to interact with a massless scalar field as it
accelerates. An hypothetical laboratory realization of our
model can be envisaged by using as qubit a charged fermion
accelerated by an electric field pointing in the same direction
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FIG. 5. �Color online� The teleportation fidelity F is plotted as a
function of the acceleration a /� with the values of �, �, 	, and �
being the same as in Fig. 1.
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of some background magnetic field along which the fermion
spin is prepared �8�. The coupling between the spin and mag-
netic field gives rise to the qubit internal energy gap. Then,
the unexcited and excited qubit states correspond to the cases
where the spin points in the same and opposite directions
with respect to the magnetic field, respectively. We have
shown that the teleportation fidelity steadily decays as the
acceleration increases for a fixed interaction proper time �see
Fig. 5�. From the point of view of inertial observers this is
due to the fact that part of the entanglement between the
qubits is carried away by the scalar radiation which is emit-
ted when the accelerated qubit suffers a transition. This is
confirmed by the fact that the qubit-system mutual informa-
tion and the qubit system-field entanglement have a comple-
mentary behavior as a function of the acceleration magni-
tude, i.e., one decreases �increases� as the other one increases
�decreases� �see Figs. 1 and 2�. The nontriviality of these
graphs, codified by the fact that the lines do not have a mo-
notonous behavior can be understood from Fig. 3, which
shows that after some long enough time �e the entanglement
between the qubit system and field begins to decrease back.
This is obvious for the case a=2000. For a�545.75 this
behavior would also be seen if 	 were large enough. Re-
markably, the concurrence which measures the entanglement
of the qubit system experiences a sudden death for some
acceleration asd as shown in Fig. 4. Finally, this is in order to
call attention that from the point of view of uniformly accel-
erated observers the interpretation for the above results is
quite different from the one due to inertial observers, since
from their point of view the uniformly accelerated qubit in-
teracts with the very Unruh thermal bath of real �Rindler�
particles in which it is immersed in its proper frame. This is
another example of how inertial and accelerated observers
can give quite different physical interpretations concerning
the same physical phenomenon although they must of course
agree on the output measured by a given experimental set up
�see, e.g., Ref. �21��.
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APPENDIX: DERIVATION OF EQ. (3.13)

Here we calculate the � coefficient introduced in Eq.
�3.13�. For this purpose, let us consider a general smooth
compact support function f �C0

��M� defined in a globally
hyperbolic time-orientable spacetime �M ,gab� and choose a
Cauchy surface ��M −J+�supp f� outside the causal future
of its support �22�. Now, let us define


�x� 	 �
M

d4x��− g�x��Gadv�x,x��f�x�� . �A1�

Then, ��a�a−m2�
= f and we note that
supp 
�J−�supp f�. Hence, assuming ��C��M� to be any
solution of Eq. �2.2�, we have

�
M

d4x�− g�f = �
J+���

d4x�− g�f

= �
J+���

d4x�− g���a�a − m2�


= �
J+���

d4x�− g�a���a
 − 
�a��

+ �
J+���

d4x�− g
��a�a − m2��

= �
�

d3x�h���a
 − 
�a��na,

where na is a unit normal vector orthogonal to �. Now, by
using Eq. �2.10�, we see that Ef ��=
 �� and thus

�
M

d4x�− g�f = �
�

d3x�h���a�Ef� − �Ef��a��na.

�A2�

Next, let us decompose Ef in terms of positive- and
negative-frequency Rindler modes u�k�

and ū�k�
, respec-

tively, as

Ef = �
0

�

d�� dk���u�k�
,Ef�KGu�k�

− �ū�k�
,Ef�KGū�k�

� ,

�A3�

where u�k�
satisfies �a�

au�k�
=0 with k�	�ky ,kz� and is

eigenstate of i��, −i�y and −i�z with eigenvalues �, ky and kz,
respectively. Then, from Eq. �A2� we have

�u�k�
,Ef�KG = i�

M

d4x�− gfū�k�
, �A4�

�ū�k�
,Ef�KG = i�

M

d4x�− gfu�k�
. �A5�

Let us now show that Eq. �A5� vanishes. For this purpose,
we write u�k�

=e−i����k�
� ,x��, where

��k�
� ,x�� = 
 sinh���/a�

4�4a
�1/2

Ki�/a�k�ea /a�eik�·x�

with K!�z� being the modified Bessel function, x�	�y ,z�
and we are covering the right Rindler wedge with coordi-
nates �� , ,x�� in which case the corresponding line element
becomes

ds2 = e2a �− d�2 + d 2� + dx�
2 .

Then, we integrate Eq. �A5� in the � variable by using ����
��=const when the detector is switched on �and ����=0
when the detector is switched off�, obtaining
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�ū�k�
,Ef�KG = 2i���k�

sin��� + ��	/2�
�� + ��

, �A6�

where ��k�
	��d3x�−g��x���k�

. Then, by using the fact
that

sin��� + ��	/2�
�� + ��

� ���� + ��

when 	��−1, we have �ū�k�
,Ef�KG�0. Thus Ef is ap-

proximately a positive-frequency solution, i.e., KEf �Ef . An

analogous reasoning can be used to show that Ef̄ is a

negative-frequency solution, i.e., KEf̄ �0. Analogously to
Eq. �A6�, we have

�u�k�
,Ef�KG = 2i���k�

sin��� − ��	/2�
�� − ��

. �A7�

Now, by using Eqs. �3.11� and �A3�, we write

�2 	 �
�2 = �KEf�2 = �
0

�

d�� dk���u�k�
,Ef�KG�2

� 2��2	� dk����k�
�2. �A8�

In the particular case where we have a point detector, ��x�
→��x�, we end up with

�2 =
�2�	

2�
. �A9�

For small but not point detectors, let us calculate � assuming

��x� =
e−x2/2�2

���2��3

in the inertial case, where �=const is the Gaussian variance.
Then,

�in
2 =� dk��vk,Ef�KG�2

�
�2

4�
� dk

���k − ��
�k

sin���k − ��	/2�
��k − ��

��̂�− k��2

with vk=ei�kx−�t� /�16�3�k being positive-frequency

Minkowski modes and �̂�k� the Fourier transform of ��x�.
Finally, by using �k= �k� and integrating in spherical coordi-
nates we find

�in
2 =

�2�	

2�
e−�2�2

. �A10�

Because in the point detector case, �=0, Eqs. �A9� and
�A10� are identical, we shall use Eq. �A10� as an approxima-
tion for Eq. �A8� associated with the accelerated case pro-
vided that ��1. This drives us to Eq. �3.13�.
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