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Resumo

Os aglomerados de galáxias são os maiores objetos ligados que observamos no

universo. Dado que as galáxias são consideradas traçadores de matéria escura, os

aglomerados de galáxias nos permitem estudar a formação e a evolução de estruturas

em grande escala. As contagens do número de aglomerados de galáxias são senśıveis

ao modelo cosmológico, portanto são usadas como observáveis para restringir os

parâmetros cosmológicos. Nesta tese estudamos os aglomerados de galáxias óticos.

Iniciamos o trabalho analisando a degradação da precisão e a exatidão no desvio para

o vermelho fotométrico estimado através de métodos de aprendizagem de máquina

(machine learning) ANNz2 e GPz. Além do valor singular do desvio para o vermelho

fotométrico clássico (isto é, valor médio ou máximo da distribuição), implementa-

mos um estimador baseado em uma amostragem de Monte Carlo usando a função

de distribuição cumulativa. Mostramos que este estimador para o algoritmo ANNz2

apresenta a melhor concorância com a distribuição do desvio para o vermelho espec-

troscópico, no entanto, uma maior dispersão. Por outro lado, apresentamos o bus-

cador de aglomerados VT-FOFz, o qual combina as técnicas de Voronoi Tessellation

e Friends of Friends. Estimamos seu desempenho através de catálogos simulados.

Calculamos a completeza e a pureza usando uma região de cilindrica no espaço 2+1

(ou seja, coordenadas angulares e desvio para o vermelho). Para halos maciços e

aglomerados com alta riqueza, obtemos valores elevados de completeza e pureza.

Comparamos os grupos de galáxias detectados através do buscador de aglomera-

dos VT-FOFz com o catálogo RedMaPPer SDSS DR8. Recuperamos ∼ 90% dos

aglomerados de galáxias do catálogo RedMaPPer até o desvio para o vermelho de

z ≈ 0.33 considerando galáxias mais brilhantes com r < 20.6. Finalmente, reali-

zamos uma previsão cosmológica usando um método MCMC para um modelo plano

de wCDM por meio da abundância de aglomerados de galáxias. O modelo fiducial

é um universo ΛCDM plano. Os efeitos devidos à massa observável estimada e aos

deslocamentos para o vermelho fotométricos são inclúıdos através de um modelo de

auto-calibração. Empregamos a função de massa de Tinker para estimar o número

de contagens em uma faixa de massa e um bin de deslocamento para o vermelho.

Assumimos que a riqueza e a massa do aglomerado estejam relacionadas através de
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uma lei de potência. Recuperamos os valores fiduciais com ńıvel de confiança de até

2σ para os testes considerados.

Palavras Chaves: Desvio para o vermelho fotométrico, estrutura em grande escala,

restrição de parâmetros cosmológicos.

Áreas do conhecimento: Cosmologia e astrof́ısica
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Abstract

The galaxy clusters are the largest bound objects observed in the universe. Given

that the galaxies are considered as tracers of dark matter, the galaxy clusters allow

us to study the formation and evolution of large-scale structures. The cluster num-

ber counts are sensitive to the cosmological model, hence they are used as probes to

constrain the cosmological parameters. In this work we focus on the study of optical

galaxy clusters. We start analyzing the degradation of both precision and accuracy

in the estimated photometric redshift via ANNz2 and GPz machine learning methods.

In addition to the classical singular value for the photometric redshift (i.e., mean

value or maximum of the distribution), we implement an estimator based on a Monte

Carlo sampling by using the cumulative distribution function. We show that this

estimator for the ANNz2 algorithm presents the best agreement with the distribution

for spectroscopic redshift, nonetheless a higher scattering. On the other hand, we

present the VT-FOFz cluster finder, which combines the techniques Voronoi Tessel-

lation and Friends of Friends. Through mock catalogs, we estimate its performance.

We compute the completeness and purity by using a cylindrical region in the 2+1

space (i.e., angular coordinates and redshift). For massive haloes and clusters with

high richness, we obtain high values of completeness and purity. We compare the

detected galaxy clusters via the VT-FOFz cluster finder with the redMaPPer SDSS

DR8 cluster catalog. We recover ∼ 90% of the galaxy clusters of the redMaPPer

catalog until the redshift z ≈ 0.33 considering brighter galaxies with r < 20.6.

Finally, we perform a cosmological forecasting by using a MCMC method, for a

flat wCDM model through galaxy cluster abundance. The fiducial model is a flat

ΛCDM Universe. The effects due to the estimated observable mass and the photo-

metric redshifts are included via a self-calibriation model. We employ the Tinker’s

mass function to estimate the number counts in a range of mass and a redshift bin.

We assume that the richness and the cluster mass are related through a power law.

We recover the fiducial values at 2σ confindence level for the considered tests.
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Chapter 1

Introduction

From the Maya civilization passing through the Egyptians and arriving to the ancient

Greeks, humanity became interested in understanding and explaining the Universe.

Several theories were developed to describe the cosmic events which are observed

from the Earth. Initially, the underlying nature of these phenomena were inter-

preted as divine intervention. Nicolaus Copernicus (1473-1543), in his book “De

revolutionibus orbium coelestium”, broke the classical model of planetary motion.

In his work, he proposed that the Sun is placed at the center of the Universe and the

planets revolved around it in perfect orbits and not around the Earth. Later, Jo-

hannes Kepler (1571-1630), by using the observations of Tycho Brahe (1546-1601),

described the laws which govern the planetary orbits in a heliocentric model with

great accuracy. Galileo Galilei (1564-1642) discovered the existence of satellites

around planets. He also observed the four largest moons of Jupiter (i.e., Io, Europa,

Ganymede, and Callisto) thanks to a telescope he constructed himself. In addi-

tion, he observed that the Moon has craters and that Venus presents phases such

as the Moon, among other important contributions. He is considered the father of

observational astronomy.

Celestial mechanics was mathematically described with high accuracy by Sir

Isaac Newton (1643-1727) thanks to the laws of motion and universal gravitation

presented in his book “PhilosophiæNaturalis Principia Mathematica”. He showed

that the dynamics of the objects on Earth and in the Universe in general should

be described by the very same principles. Through his theory of gravity, he derived

Kepler’s laws of planetary motion. His theory is also able to estimate the trajectories

of comets, the tides, the equinoxes and other cosmic events. His ideas on mechanics

and gravitation remain to date. Nevertheless, it was not until the early 20th century

that the Newtonian principle of gravity was replaced by a more general concept. In

1
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1915, Albert Einstein (1879-1955) presented his theory of general relativity, which

describes the gravity not as force or action at a distance, but rather as a consequence

of the curvature of spacetime, which is due to the energy-momentum of the objects in

the Universe. Einstein’s equations generalized the Newton’s equations of gravitation

allowing to predict several phenomena (e.g., gravitational waves, light deflection,

gravitational time delay, gravitational lensing, black holes, among others).

The theory of general relativity laid down the foundations of modern cosmology.

Despite the fact that Einstein’s field equations describe an expanding Universe,

according to solutions found by Alexander Friedmann (1888-1925) in 1922 and later

independently by Georges Lemâıtre (1894-1966) in 1927, Albert Einstein favored

a theory of a static Universe. Hence, he introduced a constant term in his field

equations, which is mathematically allowed to force a static solution. It was not until

that Edwin Hubble (1889-1953) set a linear relationship between the recession speed

of distant galaxies and their distances through observational evidence in Hubble

(1929). The model of the expanding Universe enables the hypothesis of a early stage

in the lifetime of the Universe, here the Universe was in a hot, dense state, the so-

called the Big Bang. After Hubble’s observations, the static model was abandoned,

and Albert Einstein stated that the cosmological constant was his “biggest blunder”

(perhaps he was referring to his failure to notice the solution for a static Universe

was instable). The Einstein-de Sitter model (i.e., a flat expanding Universe full of

matter) was generally accepted to describe the evolution of the Universe until the

discovery performed at the end of the 90’s, in which it is shown that currently we

inhabit in an accelerated expanding Universe, see Riess et al. (1998); Perlmutter et

al. (1999).

The study of the evolution of the Universe depends on its geometry as well as

its components (i.e., photons, neutrinos, baryons, dark matter and dark energy).

Several observations suggest that the Universe is currently formed by ∼ 70% of

dark energy, ∼ 25% of dark matter, ∼ 5% of baryonic matter and a negligible

fraction of radiation, see Allen et al. (2011); Planck Collaboration (2016). Note

that currently the Universe is composed by ∼ 95% of energy density of unknown

nature. Therefore, one of the key objectives of modern cosmology is to understand

these exotic components and thus able us to understand the past history of the

Universe and to predict its evolution.

In order to understand the formation of the large structures observed in the

Universe, it is necessary to model the evolution of the density of the matter field. The
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observed galaxies and galaxy clusters contain information that enables us to analyze

the nature of this large scale structure. Zwicky (1933) suggested the existence of

dark matter in the Coma Cluster via the observation of the velocity dispersions of

galaxies in that same structure. Abell (1958) assembled the first large sample of

clusters in the Northern sky. Abell et al. (1989) presented a large galaxy cluster

catalog including the Southern sky. The detection of galaxy clusters is a hard task

which is in constant development. Among the methods currently used to detect

clusters are: X-ray observations, the Sunyaev-Zeldovich effect, gravitational lensing

and optical observations, see Allen et al. (2011); Kravtsov & Borgani (2012). Galaxy

cluster abundances are extremely sensible to the cosmological model, hence they

allow us to constrain cosmological parameters, see Battye & Weller (2003); Mantz

et al. (2010); Allen et al. (2011); Mana et al. (2013).

The main aim of this work is to attempt to perform a complete analysis of

optical galaxy clusters as cosmological probes. To detect clusters we need to have

an accurate and precise measurements of redshifts. To measure this, the ideal would

be to use the Doppler shift in the wavelengths of known features in the spectrum of

the galaxies, spectroscopically. Nonetheless, the above process is quite costly, due

to long integration times. Hence, an alternative solution to this problem is to use

the multi-band photometry of the galaxies. We estimate the photometric redshift

of the galaxies in the Sloan Digital Sky Survey Data Release 12 (SDSS DR12) by

using the following machine learning methods: ANNz2 (Sadeh et al. (2016)) and

GPz (Almosallam et al. (2016b)). We analyze the degradation of both precision

and accuracy in the estimated photometric redshift for several samples obtained

from a mock catalog with a representative and non-representative training data

set in magnitude space. Moreover, we perform an analysis about the impact in the

detection of galaxy cluster in these cases. The following step in this investigation is to

detect the galaxy clusters from a photometric redshift survey of galaxies. To achieve

it, we use the VT-FOFz cluster finder which combines two popular techniques,

Voronoi Tessellation (VT) (Voronoi (1907)) and Friends of Friends (FOF) (Huchra

& Geller (1982)) on photometric redshift survey. We verify the performance of the

cluster finder by computing the completeness and purity on a mock catalog. We

compare the obtained clusters when applying the VT-FOFz on SDSS DR12 galaxy

survey with the clusters in the redMaPPer SDSS DR8 catalog from Rykoff et al.

(2014). To finish this work we perform a cosmological forecasting using the galaxy

cluster abundance. We assume a flat ΛCDM fiducial model and we constrain the
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cosmological parameters for a flat wCDM model. We employ the mass-richness

relation given in Rozo et al. (2010); Mana et al. (2013); Simet et al. (2017). In

addition, we utilize the self-calibration method proposed by Lima & Hu (2005);

Lima & Hu (2007) to consider the effects of both the mass-observable relation and

the photometric redshifts.

This thesis is split in 6 chapters, as following: In this chapter, Chapter 1, we

perform a historical review of astronomy and physical cosmology, in addition we per-

form a general introduction to our work. In Chapter 2 we present the basic concepts

of modern cosmology, we describe background evolution and linear perturbations so-

lution in the case of standard cosmology. In Chapter 3 we analyze the accuracy and

precision of photometric redshifts estimated by machine learning methods with non-

representative training sets. We estimate the photometric redshift of the galaxies in

the SDSS DR12 survey. In Chapter 4 we present the VT-FOFz cluster finder, we

assess its performance through a mock catalog. We present a galaxy cluster catalog

from the SDSS DR12 survey. In Chapter 5 we perform a cosmological forecasting

using the abundance of galaxy clusters. In Chapter 6 we draw conclusions to our

work.



Chapter 2

Basic concepts of modern cosmology

The cosmological principle of modern cosmology proposes that the observable Uni-

verse looks homogeneous and isotropic at large scales. Observations of the large

scale structure (LSS) of the Universe and the cosmic microwave background (CMB)

show that the Universe looks isotropic. Assuming that we are not privileged ob-

servers of the Universe, we can infer that the Universe is homogeneous and isotropic

in all its extension. Both properties together imply that the Universe can be seem

as a manifold which is maximally symmetric. The observations indicate that the

Universe is homogeneous and isotropic in space, but not in all of spacetime.

2.1 Metric of the Universe

In order to describe the observations, we see that the Universe is maximally sym-

metric, but it evolves in time. In other words, we consider that the Universe can

be described on spacelike slices each being three-dimensional, which are maximally

symmetric. Therefore, we can say that the spacetime is a manifold (IR× Σ), where

IR represents time and Σ is a maximally symmetric 3-manifold. The spacetime

metric is given by

ds2 = −dt2 + R2(t)dσ2, (2.1)

where t is the timelike coordinate. This is commonly known as cosmic time. R(t)

is called scale factor and dσ2 is the metric in Σ, which can be expressed as

dσ2 = γij(u)duiduj. (2.2)

Here (u1, u2, u3) are comoving coordinates on Σ and γij is a maximally symmetric

3-dimensional metric. The information about the size of the spacelike slice in a

5
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t time is contained whitin the scale factor. An observer who is motionless in ui

coordinates is said to be comoving. Only comoving observers see the Universe as

being isotropic.

By using Riemannian geometry, we know that the Riemann tensor for a 3-

dimensional manifold maximally symmetric can be written as

(3)Rρσµν = κ (γikγjl − γilγjk) , (2.3)

where k is a normalized measure of scalar curvature

κ =
(3)R

n(n− 1)
, n = 3, (2.4)

here R is constant over the manifold. The Ricci tensor is given by

(3)Rjl = (3)Ri
jil = 2κγjl. (2.5)

A maximally symmetric space is spherically symmetric, it can be shown that its

metric has the following form:

dσ2 = γijdu
iduj = exp (2β(r)) dr2 + r2dΩ2, (2.6)

where r is the radial coordinate and dΩ2 = dθ2 + sin2(θ)dφ2 is the metric on a 2-

sphere. For more details about spherically symmetric, see the Schwarzschild solution

in Carroll (2004). The components of the Ricci tensor, using equation (A.9), are

given by

(3)R11 =
2

r

∂β

∂r
, (3)R22 = exp(−2β)

(
r
∂β

∂r
− 1

)
+ 1, (3)R33 = R22 sin2 θ. (2.7)

Using equation (2.5) we have

(3)R11 = 2κ exp(2β), (3)R22 = 2κr2, (3)R33 = 2κr2 sin2 θ. (2.8)

Combining equation (2.7) and equation (2.8) we obtain the following equations

2κ exp(2β) =
2

r

∂β

∂r
, (2.9)

2κr2 = exp(−2β)

(
r
∂β

∂r
− 1

)
+ 1. (2.10)
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Then the expression for the β function is given by:

β(r) = −1

2
ln
(
1− κr2

)
, (2.11)

therefore the metric on Σ can be written as:

dσ2 =
dr2

1− κr2 + r2dΩ2. (2.12)

The parameter κ establishes the curvature and the size of spatial surfaces. In cos-

mology it is common to normalize this parameter, so

κ ∈ {+1, 0,−1}, (2.13)

and we have made the choice that the scale factor R(t) absorbs the physical size of

the manifold. The geometry of the 3-manifold Σ is determined by κ. For κ = +1

the curvature is positive and Σ has a close geometry. For κ = −1 the curvature is

negative and Σ has an open geometry. For κ = 0 the curvature is zero and Σ has a

flat geometry. Therefore, the spacetime metric is given by

ds2 = −dt2 + R2(t)

[
dr2

1− κr2 + r2dΩ2

]
. (2.14)

The above expression is known as Friedmann-Lemâıtre-Robertson-Walker (FLRW)

metric. In modern cosmology it is common to work with a dimensionless scalar

factor a, thus we perform the following substitutions

a =
R(t)

R0

, r = R0r, κ =
k

R2
0

, (2.15)

where R0 is a parameter with distance units and k can take any value. Hence the

metric (2.14) can be rewritten as

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
. (2.16)

Henceforth the dimensionless scale factor will be called scale factor only. The Chris-
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toffel symbols (A.6) for the above metric are given by

Γ0
ij =

ȧ

a
gij, Γk0i =

ȧ

a
δki , Γ1

11 =
kr

1− kr2
, (2.17)

Γ1
22 = −r

(
1− kr2

)
, Γ2

12 =
1

r
, Γ1

33 = −r
(
1− kr2

)
sin2 θ,

Γ2
33 = − sin θ cos θ, Γ3

13 =
1

r
, Γ3

23 = cot θ.

The Ricci tensor (A.9) and the scalar curvature (A.10) are given by

R00 = −3
ä

a
, Rij =

gij
a2

(
aä+ 2ȧ2 + 2k

)
, R = 6

[
ä

a
+

(
ȧ

a

)2

+
k

a2

]
. (2.18)

Another way to write the FLRW metric is by defining a new radial coordinate. Let

χ be defined by equation

dχ =
dr√

1− kr2
. (2.19)

By integrating the above equation, we have

r = Sk(χ) ≡



sin(
√
|k|χ)√
|k|

for k > 0,

χ for k = 0,

sinh(
√
|k|χ)√
|k|

for k < 0.

(2.20)

The FLRW metric can be written as

ds2 = −dt2 + a2(t)
(
dχ2 + S2

k(χ)dΩ2
)
. (2.21)

Another way to write the FLRW metric is

ds2 = a2(t)
[
−dη2 +

(
dχ2 + S2

k(χ)dΩ2
)]
, (2.22)

where

dη ≡ dt

a(t)
(2.23)

is called conformal time. In perturbation theory it is more convenient to use this

definition rather than the cosmic time.
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2.2 Dynamic equations in the background

The scale factor contains the information about the dynamics of the Universe. In

this section we will solve the field equations which allow us to describe the behavior

of the scale factor as a function of time.

2.2.1 Fluid equation

The cosmological principle implies that the matter distribution in the Universe can

be described by a perfect fluid. For an isotropic fluid, in a reference frame, the fluid

is at rest in comoving coordinates. Here, the fluid 4-velocity of the fluid is given by:

Uµ = (1, 0, 0, 0), (2.24)

and the energy-momentum tensor is given by

Tµν = (ρ+ P )UµUν + Pgµν , (2.25)

where P is the pressure and ρ is the fluid density. By using the Christoffel sym-

bols (2.17) and the energy conservation equation (A.22), we obtain

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0. (2.26)

This equation is known as fluid equation. We note that the expansion of the Universe

can lead to local changes in the energy density. To solve the fluid equation it

is necessary to establish how the pressure and energy density are related to each

other. For a perfect fluid we assume that

P (ρ) = wρ, (2.27)

where the parameter w can depend on a scalar factor in isotropic models of dark

energy and inflation, see Dodelson (2003); Mukhanov (2005). However, in the sim-

plest models it is constant. The above expression is known as the equation of state.

The general solution for equation (2.26) is

ρi(a) = ρi exp

(
−3

∫ a

1

dã

ã
(1 + wi(ã))

)
, (2.28)
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where the index i indicates the type of component (non-relativistic matter, radiation,

dark energy or some exotic component). If wi is constant we have that

ρi(a) = ρia
−3(1+wi). (2.29)

Note that to indicate whether a parameter evolves with the factor scale we write

p(a), otherwise we write only p. By convention we set the scalar factor today a0 to

one.

Non-relativistic matter is characterized by having P ≈ 0, therefore wm = 0. In

this component we includ the visible matter (i.e. baryons), which also has negligible

pressure in comparison with its energy density, and cold dark matter (i.e. non-visible

matter which does not interact with baryons). When the energy density is mainly

due to this component, we say that the Universe is matter-dominated. The energy

density of non-relativistic matter is given by

ρm(a) = ρma
−3. (2.30)

The relativistic component includes electromagnetic radiation (i.e. photons), mass-

less neutrinos and massive particles with relativistic velocities (e.g. relativistic mas-

sive neutrinos, hot dark matter and warm one). The energy-momentum tensor for

electromagnetic field is given by

(EM)T µν = F µλF ν
λ −

1

4
gµνF λσFλσ, (2.31)

where F µν is the electromagnetic tensor. It is straightforward to show that the trace

of tensor (2.31) is zero. On the other hand, this component is a perfect fluid in the

Universe, then

T µµ = −ρ+ 3P = (EM)T µµ = 0, (2.32)

therefore we have wr = 1/3 for electromagnetic radiation (we show later on that

the relativistic particles satisfy the same equation of state). If the energy density is

mainly given by this component, we say that the Universe is radiation-dominated.

Here the energy density is

ρr(a) = ρra
−4. (2.33)

In addition to these cosmological fluids, the observations of type Ia supernova per-

formed by Riess et al. (1998) and Perlmutter et al. (1999) suggest that the Universe
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is expanding at an accelerated rate. To explain this phenomenon one includes an

exotic fluid called dark energy. We will discuss this in more detail later on.

2.2.2 Friedmann equations

The Friedmann equations are derived from the Einstein field equations given in (A.25),

the fluid tensor given in (2.25), the metric given in (2.16) and the results obtained

for the Ricci tensor given in (2.18):(
ȧ

a

)2

=
8πG

3

∑
i

ρi(a)− k

a2
, (2.34)

ä

a
= −4πG

3

∑
i

(ρi(a) + 3Pi(a)) . (2.35)

The first equation relates the expansion rate to the total energy density and the

geometry of the Universe. The second equation, also known as the acceleration

equation, allows us to compute the acceleration rate of the Universe regardless its

geometry. The Friedmann equations are a differential set of equations that, together

with the equation of state for each component, describe the evolution of the scale

factor with the time.

As we mentioned above, the Universe has currently a positive acceleration, so

according to equation (2.35) it is necessary that there exists at least one component

with negative pressure and its equation of state must satisfy

PDE

ρDE

= wDE < −
1

3
. (2.36)

A candidate for this component is the vacuum energy which has an equation of state

wΛ = −1 with a constant energy density. Vacuum energy appears as a modification

of Einstein field equations (see equation (A.27)) and the Friedmann equations take

the following form: (
ȧ

a

)2

=
8πG

3

∑
i

ρi(a)− k

a2
+

Λ

3
, (2.37)

ä

a
= −4πG

3

∑
i

(ρi(a) + 3Pi(a)) +
Λ

3
, (2.38)

where Λ is known as cosmological constant. There are however alternative theo-

ries to explain dark energy. We can consider a minimally coupled scalar field, see
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Copeland et al. (2006) which satisfies condition (2.36), or we can modify the laws of

gravity by introducing a general function f(R) in the Einstein-Hilbert action (A.14),

see Amendola et al. (2007). In order to understand the nature of the dark energy

Chevallier-Polarski-Linder (CPL) proposed in Chevallier & Polarski (2001); Linder

(2003); an empirical parameterization for the dark energy equation of state

wDE(a) = w0 + (1− a)wa, (2.39)

where w0 and wa are constants. If w0 = −1 and wa = 0 we obtain to vacuum energy

model. We define here some useful parameters:

• Hubble parameter:

H ≡ ȧ

a
. (2.40)

This parameter characterizes the expansion rate of the Universe. The current

value is H0 = 100h km/s Mpc−1, where h ∼ 0.67, see Planck Collaboration

(2016).

• Critical density:

ρcr(a) =
3H2

8πG
. (2.41)

• Density parameter:

Ωi(a) =
ρi(a)

ρcr(a)
, (2.42)

where the index i may be non-relativistic matter, radiation, dark energy or

another exotic component.

• Deceleration parameter:

q(a) = −aä
ȧ2
. (2.43)

• Curvature density:

ρk = − 3k

8πG
. (2.44)

• Vacuum energy density:

ρΛ =
Λ

8πG
. (2.45)

By using these definitions and equation (2.30) and equation (2.33) we can write

equation (2.37) as

H2 = H2
0

(
Ωr

a4
+

Ωm

a3
+

Ωk

a2
+ ΩΛ

)
. (2.46)
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Table 2.1: Values for the total density parameter in each possible geometry.

Ωk > 0 k < 0 Ω < 1 ρ < ρcr Hyperbolic
Ωk = 0 k = 0 Ω = 1 ρ = ρcr Flat
Ωk < 0 k > 0 Ω > 1 ρ > ρcr Spherical

Therefore, for a = a0 the above equation is given by

Ωr + Ωm + ΩΛ + Ωk = 1. (2.47)

Let Ω = Ωm + Ωr + ΩΛ be the total density parameter, we have:

Ωk = 1− Ω. (2.48)

This equation relates the geometry with the total energy. Table 2.1 shows the

values of Ω for each scenario. Here we observe that the critical density determines

the geometry of the Universe.

2.2.3 Solution of Friedmann equations

We note that the Friedmann equation (2.46) cannot be solved analytically for all

cosmological models. In fact there are few models that enable us to obtain an

analytical solution. Here we show solutions for three scenarios which occurred during

the history of the Universe.

• Radiation-dominated Universe: a Universe composed by radiation and

relativistic particles. This scenario is similar to the early Universe where the

photons interact strongly with the baryons. Here all particles have speeds

close to the light speed. The Friedmann equation is given by(
ȧ

a

)2

=
H2

0

a4
, so a ∝ t1/2. (2.49)

• Matter-dominated Universe: a Universe composed by non-relativistic mat-

ter. This is another scenario in the history of the Universe. It is in this period

that the first neutral atoms are formed as well as the structures that we observe

today. This solution is known as Einstein-de Sitter Universe. The Friedmann
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equation is given by (
ȧ

a

)2

=
H2

0

a3
, so a ∝ t2/3. (2.50)

• Vacuum-dominated Universe: According to current observations this is

the currently preferred scenario. Here the Universe has an accelerated ex-

pansion. This solution is known as a de Sitter Universe where the density

parameter is constant. The Friedmann equation is given by(
ȧ

a

)2

= H0, so a ∝ exp(H0t). (2.51)

The ΛCDM model is widely accepted to describe the Universe in the modern cos-

mology. This model tell us that we live in a flat Universe dominated by cold dark

matter (CDM) and vacuum energy. {H0,Ωr,Ωm,ΩΛ} are free parameters which

may be constrained via a cosmological observable (e.g. distance of type Ia super-

novae, CMB, galaxy clusters, among others). The Friedmann equation (2.46) for

the ΛCDM model is given by(
ȧ

a

)2

= H2
0

(
Ωr

a4
+

Ωm

a3
+ ΩΛ

)
. (2.52)

Currently the value of the free parameters according to Planck collaboration (2016)

are H0 = 67.74 ± 0.46, Ωm = 0.3089 ± 0.0062, ΩΛ = 0.6911 ± 0.0062 at the 1σ

confidence level. The density parameter of radiation is also negligible. From this

point forwards, we shall consider the Universe as flat, unless otherwise stated.

2.3 Radiation in the background

Photons are particles which can provide us information to understand the Universe,

therefore it is very important to understand their nature and their behavior in the

cosmological background. Here we are going to show the properties of the photons

and relativistic particles in a homogeneous and isotropic Universe.
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2.3.1 Geodesic equation for the photons

The geodesic equation (A.11) for a particle in a homogeneous and isotropic Universe

is given by

E
dPν

dt
+ ΓναβP

αPβ = 0. (2.53)

Here Pν is the 4-momentum and it is defined as

Pν ≡ dxν

dλ
= (E, px, py, pz), (2.54)

where E is the energy. We know that the photon is a massless particle, thus we

have the following condition for the 4-momentum

gµνP
µPν = −E2

γ + gijP
iPj = −m2

γ = 0. (2.55)

So that the zero component of equation (2.53) for photons is given by

Eγ
dEγ
dt

+ E2
γ

ȧ

a
= 0. (2.56)

The above equation allows us to observe that the photon energy is inversely propor-

tional to the scale factor

Eγ ∝
1

a
. (2.57)

The energy density of photons may be seen as the product between their energy and

the number density nγ, therefore

ργ = Eγnγ. (2.58)

Moreover, the number density is inversely proportional to the volume. Thus nγ ∝
a−3, then

ργ ∝
1

a4
. (2.59)

The above result has already been derived, see equation (2.33).
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2.3.2 Redshift

Equation (2.57) indicates that photons lose energy as they propagate from any

emitter to any observer, so we have

E
(emit)
γ

E
(obs)
γ

=
a(obs)

aemit

. (2.60)

By using the relation between energy and frequency we can rewrite equation (2.60)

as
a(obs)

aemit

=
νemit

νobs

= 1 + z, (2.61)

where z is the cosmological redshift of the emitter. If we place the observer aobs = 1

and the emitter is any observed object in the Universe aemit = a, we have

1 + z =
1

a
. (2.62)

The redshift is an useful property in modern cosmology, as it allows us to measure

distances of distant objects. In addition, we can obtain measure by observing the

spectrum of an object. This quantity is often used instead of time. In chapter 3 we

focus on this property in detail.

2.3.3 Thermal description of the radiation

From statistical mechanics we know that the particle number between the position

~x and ~x+ d~x, and between the momentum ~p and ~p+ d~p are given by

dN = fi(~x, ~p, t)
d3xd3p

(2π)2
, (2.63)

where fi(~x, ~p, t) is the distribution function and i indicates the nature of the particles,

bosons (Bose-Einstein statistics) or fermions (Fermi-Dirac statistics). Therefore, the

number density can be written as

ni(~x, t) = gi

∫
d3p

(2π)3
fi(~x, ~p, t), (2.64)

where gi is the degeneracy of the species. The energy density can be written as

ρi(~x, t) = gi

∫
d3p

(2π)3
fi(~x, ~p, t)E(p), (2.65)
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and the pressure can be written as

P (~x, t) = gi

∫
d3p

(2π)3
fi(~x, ~p, t)

p2

3E(p)
. (2.66)

At equilibrium, the distribution function only depends on ‖~p‖, so that for bosons

we have

fBE =
1

exp [(E − µ)/T ]− 1
, (2.67)

and for fermions

fFD =
1

exp [(E − µ)/T ] + 1
, (2.68)

where µ is the chemical potential and it is related to particle interactions.

The energy density for photons at equilibrium is given by the Bose-Einstein

distribution with zero chemical potential. We can therefore write that

ργ = gγ
1

2π2

∫
p3dp

exp (p/Tγ)− 1
, (2.69)

where gγ = 2 is the degeneracy for a given state, and we use E = p for photons.

Solving the above integral we obtain

ργ ∝ T 4
γ , (2.70)

which combined with equation (2.59) gives us

Tγ ∝
1

a
. (2.71)

For the case of relativistic particles at equilibrium with negligible chemical po-

tential (in most astronomical cases, the chemical potential is much smaller than the

temperature), the pressure is given by

P = gi

∫
d3p

(2π)3
fi(E/T )

p2

3E
. (2.72)

As p � m the energy satisfies E =
√
p2 +m2 ≈ p, thus equation (2.72) can be

rewritten as

P = gi

∫
d3p

(2π)3
fi(E/T )

p

3
=

1

3
gi

∫
d3p

(2π)3
fi(E/T )E =

1

3
ρ. (2.73)
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Therefore, the equation of state w = P/ρ for the relativistic particles is the same

that for the photons independently of their nature.

2.4 Distances

In order to identify the precise position of an object in the Universe it is necessary

to measure its distance from us. Here we outline the different definitions of distance

between two observers in cosmology.

2.4.1 Proper distance

The physical distance or proper distance is the simplest distance definition in cos-

mology. Here we measure the distance between an object and an observer in the

3-manifold Σ for an specific time, see above discussion of equation (2.1). Taking

equation (2.21) we define the proper distance as

dp(t) ≡
∫
c

dσ a(t), with dσ2 = dχ2 + S2
k(χ)dΩ2, (2.74)

where c is the spacelike geodesic. Given the isotropy of space we have that θ and φ

constant along the geodesic, therefore equation (2.74) can be rewritten as

dp(t) =

∫ χ

0

dχ̃ a(t) = a(t)χ, (2.75)

where χ̃ = 0 is the position of the observer and χ̃ = χ is the radial position of

the object. We note that the proper distance is the scale factor times the radial

coordinate, so that χ is the distance measured by a comoving observer. This is

called the comoving distance, Dc. In order to compute χ, we assume that the object

emits a photon which travels along a null geodesic towards the observer, therefore

ds2 = −dt2 + a2(t)dχ2 = 0. (2.76)

Integrating the above equation, we have

Dc = χ =

∫ 1

a

dã

ã2H(ã)
=

∫ z

0

dz̃

H(z̃)
. (2.77)
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The velocity for an object is given by

v =
ddp
dt

= aχ̇+ ȧχ = aχ̇+Hdp. (2.78)

Figure 2.1: Left: The original Hubble diagram presented in Hubble (1929). The two lines

use a different correction for the movement of the sun. Right: Velocity against distance for

galaxies until 400 Mpc calibrated by Cepheid distance scale, see Freedman et al. (2001).

An adjustment to the slope yields a value of H0 = 72 km/sMpc−1.

The term aχ̇ is known as peculiar velocity and it is due to the individual speed

of objects relative to the background expansion. The term Hdp is known as Hubble

flow and it is due to the expansion of the Universe. In Hubble (1929) measured the

recession velocity of nearby galaxies in low redshift and he showed that the velocities

of galaxies are proportional to their distances, see figure 2.1. The relation between

velocity and distance is known as Hubble’s law and it is given by

v = H0dp, (2.79)

where H0 is the Hubble’s constant. The velocity satisfies the above equation if we

neglect the peculiar velocity in equation (2.78) and we consider object in low redshift

(i.e., this condition assumes that the variation between the 3-manifolds Σ1 and Σ2

is neglected for a dt = t2 − t1 very small).

The comoving horizon or just horizon is defined as the maximum comoving
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distance traveled by photons from the beginning of the Universe, thus we have

DH =

∫ t

0

dt̃

a(t̃)
=

∫ ∞
z

dz̃

H(z̃)
. (2.80)

Therefore, regions separated by distances greater than DH are not causally con-

nected. The comoving horizon is also identified with the conformal time (2.23). The

physical horizon is defined as the scale factor times the comoving horizon, then

dH = a(t)DH . (2.81)

2.4.2 Angular diameter distance

The angular diameter distance dA is defined as the ratio between the transverse

physical length δl of an object and its angular separation δα. Figure 2.2 is a diagram

which shows these amounts for an object. Therefore, we have

Figure 2.2: Diagram that represents the geometric relation between the angular separation

(δα), the transverse physical length (δl) and the angular diameter distance (dA). Here o

is the observer position.

dA =
δl

δα
. (2.82)

We can compute the transverse physical length for an object assuming that its

extremities are localized in (χ, θ, φ) and (χ, θ + δα) according to the coordinates
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defined in the metric (2.21), therefore we have

δl = a(t)Sk

∫ θ+δα

θ

dθ̃ = a(t)Skδα. (2.83)

The angular diameter distance is related with the comoving distance via

dA = a(t)Sk(χ) =
Sk(χ)

1 + z
. (2.84)

Note that for a flat Universe the angular diameter distance is the proper distance.

We define the angular comoving distance or transverse comoving distance as

DA =
dA
a(t)

= Sk(χ). (2.85)

In the flat Universe case we have that DA = χ. By using the definition of angular

comoving distance, the FLRW metric (2.21) can be rewritten as

ds2 = −dt2 + a2(t)
[
dχ2 +D2

AdΩ2
]
. (2.86)

2.4.3 Comoving volume

We can define the volume in the 3-manifold Σ which describes the space. Riemannian

geometry tells us that the volume element in a manifold is given by

dV =
√
|g|dx1...dxn. (2.87)

The metric for the comoving space is given by the expression between the brackets

of equation (2.86), so the comoving volume element can be written as

dVc = D2
AdχdΩ =

D2
A

H(z)
dzdΩ. (2.88)

The physical volume element is defined as

dVp = a3(t)dVc =
a3(t)D2

A

H(z)
dzdΩ. (2.89)
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2.4.4 Luminosity distance

The luminosity distance is defined by using the flux from an object with known

luminosity. The observed flux F from the source with luminosity L at distance d is

given by:

F =
L

4πd2
L

, (2.90)

since the total luminosity through of a spherical shell with area 4πd2 is constant.

Here dL is called luminosity distance. Equation (2.90) is consistent with other

distance definitions if we are in a static Universe, but our Universe is expanding.

Therefore, this distance does not equal to the proper and angular distances. The

expression between the brackets of equation (2.21) is the metric for a comoving

sphere with radius Sk(χ). In order to generalize the flux concept, we assume a

source at center of comoving coordinate system, it emits photons with the same

energy. They travel through a spherical shell with radius Sk(χ). The observer is

on the shell. Figure 2.3 shows a diagram with the above “Gedanken-experiment”.

Since the photons emitted are redshifted in an expanding Universe we have

Figure 2.3: Diagram that represents the path of the photons from emission source to

spherical shell in which the observed is. Here γe are the emitted photons, γo are the

observed photons, Sk(χ) is the radius of the comoving spherical shell and o is the observer

position.
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dte
a(te)

=
dto
a(to)

, (2.91)

where the subindex (e) is referred to the emission time and the subindex (o) is

referred to the observation time. On the other hand, the luminosity is defined as

the product between the photon energy and the number of photons which crosses the

spherical shell by unity of time. Therefore the luminosity perceived by the observer

is given by

Lo = Eo
dNo

dto
. (2.92)

Equation (2.57) allows us to assert that Eoao = Eeae, hence by using equation (2.91)

we obtain

Lo = Ee
ae
ao

dNe

dte

ae
ao

= Ee
dNe

dte
a2 = Lea

2. (2.93)

Here we assume that ao = 1 and ae = a. Therefore, the flux observed is given by

F =
Lo

4πSk(χ)2
=

Lea
2

4πSk(χ)2
=

Le
4πd2

L

, (2.94)

where dL is given by

dL = (1 + z)Sk(χ). (2.95)

Note that according to equation (2.85) the luminosity distance is related with the

angular diameter distance via

dL = (1 + z)2dA. (2.96)

2.5 The Universe beyond background

In order to explain the formation and evolution of the large scale structure, we need

a perturbative description of the Universe. The primordial inhomogeneities were

generated by perturbations which were relatively small in the scales of interest for

this chapter. We focus here on linear perturbations.

2.5.1 Metric perturbations

In the above sections we considered that the metric in the background is characteri-

zed by a single function a(t), which depends only on time and not on space. Here we

will consider perturbations around a smooth Universe, therefore the metric needs to
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be characterized by functions which depend on both space and time.

The decomposition theorem tells us that perturbations in the metric can be

divided up into three types: scalar, vector and tensor perturbations. Each of these

types of perturbations evolves independently, see Dodelson (2003). In order to study

fluctuations to linear order, we need to consider all perturbations in the metric.

For early Universe physics (i.e., inflation), it is necessary to consider also tensor

perturbations, in addition there are cosmological theories where vector perturbations

are important. For more details, see Dodelson (2003); Mukhanov (2005). Here

we consider scalar perturbation to the background, given that these are the most

important elements in the coupling of matter and radiation perturbations. The

metric, with perturbations, is given by

ds2 = − (1 + 2A) dt2 − a(t)∂iBdxidt+ a(t)2 (δij [1 + 2ψ]− 2∂ijE) dxidxj, (2.97)

where A(xµ), B(xµ), ψ(xµ) and E(xµ) are scalar perturbations to the metric. We

can write the metric (2.97) in a more convenient way by choosing other coordinate

system, or gauge. Let x and x̃ be two coordinate systems, then the metric satisfies

the following transformation law:

g̃αβ(x̃)
∂x̃α

∂xµ
∂x̃β

∂xν
= gµν(x). (2.98)

The most general coordinate transformation is

t → t̃ = t+ ξ0(xµ), (2.99)

xi → x̃i = xi + δij∂jξ(x
µ), (2.100)

where ξ0 and ξ are small linear perturbations. By using the above expressions and

the transformation law (2.98) it is straightforward to show that the scalar pertur-

bations of the metric (2.97) satisfy

A → Ã = A− ξ̇0, (2.101)

ψ → ψ̃ = ψ −Hξ0, (2.102)

B → B̃ = B − ξ0

a
+ aξ̇, (2.103)

E → Ẽ = E + ξ. (2.104)
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Note that the scalar perturbations depend on two functions which characterize the

coordinate transformations, so we really need only two functions to characterize the

metric (2.97). Bardeen (1980) proposed two gauge invariant variables which remain

unchanged under a general coordinate transformation. These variables are given by

ΦA ≡ A+
∂

∂t

[
a
(
aĖ −B

)]
, (2.105)

ΦH ≡ −ψ + aH
(
B − aĖ

)
. (2.106)

The Bardeen variables are useful to compute scalar perturbations in different gauges.

Here we are going to use the conformal Newtonian gauge in which E = B = 0,

so the metric (2.97) can be rewritten as

ds2 = − (1 + 2Ψ(xµ)) dt2 + a(t)2 (1 + 2Φ(xµ)) δijdx
idxj, (2.107)

where A = Ψ and ψ = Φ. The Christoffel symbols for the metric (2.107) are given

by

Γ0
00 = Ψ̇, Γi0j = Γij0 = δij(H + Φ̇), Γ0

ij = δija
2
[
H + 2H(Φ−Ψ) + Φ̇

]
, (2.108)

Γi00 =
1

a2
∂iΨ, Γ0

0i = Γ0
i0 = ∂iΨ, Γijk = δki∂jΦ− δjk∂iΦ + δij∂kΦ.

The components of Ricci tensor are given by

R00 = −3
ä

a
+

1

a2
∇2Ψ + 3H(Ψ̇− 2Φ̇)− 3Φ̈, (2.109)

R0i = −2∂i(Φ̇−HΨ),

Rij = δij

[(
aä+ 2a2H2

)
(1 + 2(Φ−Ψ)) + a2H

(
6Φ̇− Ψ̇

)
+ a2Φ̈

− ∇2Φ
]
− ∂i∂j(Φ + Ψ),

and the scalar curvature is given by

R = 6

(
ä

a
+H2

)
− 2

a2
∇2 (Ψ + 2Φ)− 6H

(
Ψ̇− 4Φ̇

)
+ 6Φ̈ (2.110)

−12Ψ

(
ä

a
+H2

)
.
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2.5.2 Boltzmann equation

In order to find the equations for the perturbations of each species in the Universe

(i.e., photons, baryons, dark matter and neutrinos) we use the Boltzmann formalism,

see chapter 4 of Dodelson (2003). The Boltzmann equation describes the evolution

of distribution function of a particular species, and it is given by

df

dt
=
∂f

∂t
+

dxi

dt

∂f

∂xi
+

dp

dt

∂f

∂p
= C[f ], (2.111)

where f = f(t, ~x, ~p) is the distribution function and C[f ] are the collision terms

which describe the interaction process between species in the Universe (e.g., Comp-

ton scattering which is due to the interaction between photons and free electrons).

Here we have neglected the angular term p̂ in equation (2.111), since that this pro-

duce a second order term and we consider only first order terms.

Radiation

The photon distribution can be written as

f(t, ~x, p, p̂) =

[
exp

(
p

T (t) [1 + Θ(t, ~x, p̂)]

)
− 1

]−1

, Θ =
δT

T
. (2.112)

The above expression can be expand to first order, thus we have

f ≈ f (0) − p∂f
(0)

∂p
Θ, (2.113)

where f (0) is the photon distribution in the background which is given by the Bose-

Einstein distribution (2.67) with zero chemical potential. The photon distribution is

mainly affected by the interaction with free electrons through the Compton scatte-

ring

e−(~q) + γ(~p)↔ e−(~q ′) + γ(~p ′), (2.114)

thus the collision term is given by this interaction. The equation for the temperature

perturbation of photons Θ by using the Boltzmann equation in Fourier space is given

by

Θ′ + ikµΘ = −Φ′ − ikµΨ− τ ′
[
Θ0 −Θ + µ vb −

1

2
P2(µ)Θ2

]
, (2.115)
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where ′ indicates the derivative over conformal time. µ is defined as the cosine of

the angle between the wavenumber ~k and the photon direction p̂:

µ ≡
~k · p̂
k
. (2.116)

vb is the baryon velocity which is defined as irrotational, so ~vb = vbk̂. τ is the optical

depth and it is defined as

τ(η) ≡
∫ η0

η

dη′neσTa, (2.117)

where ne is the number density of free electrons and σT is the Thomson cross-

section. The optical depth characterizes the Compton scattering experienced by

electrons due to their interactions with photons. At late times, the electron density

is small, so τ � 1, while at early times, it is very large. Θl(k, η) for l = {0, 2} are

called monopole and quadrupole respectively, in general the photon perturbations

are characterized by the lth multipole moments of the temperature field. These are

defined as

Θl(k, η) ≡ 1

(−i)l

∫ 1

−1

dµ

2
Pl(µ)Θ(k, µ, η), (2.118)

where Pl is the Legendre polynomial of order l. The higher moments describe the

small scale structure of the temperature field. Here we drop the polarization terms

in equation (2.115).

For neutrinos, we have a similar equation to that of photons, but there is no

collision term because neutrinos only interact weakly. The distribution function for

neutrinos is given by

fν = f (0)
ν +

∂f
(0)
ν

∂Tν
TνN, N =

δTν
Tν

, (2.119)

where f
(0)
ν is the Fermi-Dirac distribution (2.68) with zero chemical potential. The

equation for N , using the Boltzmann equation in Fourier space is given by

N ′ + ikµ
p

E
N + Φ′ + ikµ

E

p
Ψ = 0. (2.120)

Note that for neutrinos with negligible mass, which are relativistic, we have that

E = p, therefore equation (2.120) can be rewritten as

N ′ + ikµN + Φ′ + ikµΨ = 0. (2.121)
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The above equation is similar as equation (2.115) for Θ, but without the interaction

term.

Dark matter

For dark matter it is not necessary to consider the collision term, because dark

matter has a tiny and negligible cross-section. In order to obtain the equations

which describe the perturbation in the dark matter density field it is necessary to

consider the first two moments of the Boltzmann equation, thus we have

d

dt

(∫
d3p

(2π)3
fDM

)
= 0, (2.122)

d

dt

(∫
d3p

(2π)3
fDM

pp̂i

E

)
= 0, (2.123)

since the treatment is linear, we neglect second-order terms in p/E. Therefore, the

term p/E ∼ v is a linear perturbation. Recall that the dark matter density is defined

as

nDM ≡
∫

d3p

(2π)3
fDM (2.124)

and its velocity is given by

vi ≡ 1

nDM

∫
d3p

(2π)3
fDM

pp̂i

E
. (2.125)

The dark matter density can be written as the sum of the dark matter density in

the background and a small perturbation, thus

nDM = n
(0)
DM + δnDM = n

(0)
DM [1 + δ(t, ~x)] , δ(t, ~x) =

δnDM

n
(0)
DM

, (2.126)

since ρDM = mnDM then δ = δρDM/ρDM is also identified with the perturbations in

the energy density of dark matter. The equations for the dark matter overdensity δ

and its velocity ~v are given by

δ′ + ikv + 3Φ′ = 0, (2.127)

v′ +
a′

a
v + ikΨ = 0, (2.128)
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by using the Boltzmann equation in Fourier space. Here the velocity is assumed

irrotational so ~v = vk̂.

Baryons

For baryons (by convention in cosmology, we call to all objects made of normal

atomic matter as baryons, although electrons are leptons), the equations for pertur-

bation variables are similar to the equations for dark matter, but here it is necessary

to take into account a collision term. Electron and protons are coupled by Coulomb

scattering

e− + p→ e− + p. (2.129)

Since this coupling is strong we can consider that the perturbation variables for

electrons and protons have a common value, then

δρe

ρ
(0)
e

=
δρp

ρ
(0)
p

≡ δb, ~ve = ~vp ≡ ~vb. (2.130)

In order to find the equations for δb and ~vb it is important to note that there are

two collision terms involved here in addition to Coulomb scattering: The electrons

interacting with photons via Compton scattering and the interaction of protons with

photons. The collision term for photons scattering of protons is neglected because

it is much smaller than for the Compton scattering (note that the cross section

is inversely proportional to the mass squared for the above mentioned processes).

Therefore, the interaction between the photons and the set protons and electrons

is dominated by Compton scattering of electrons. The equations for perturbation

variables by using the Boltzmann equation in Fourier space are given by

δ′b + ikvb + 3Φ′ = 0, (2.131)

v′b +
a′

a
vb + ikΨ =

τ ′

R
[3iΘ1 + vb] ,

1

R
≡ 4ρ

(0)
γ

3ρ
(0)
b

, (2.132)

where R is the ratio of photon to baryon density.

2.5.3 Perturbed Einstein equations

Previously we showed the equations for the perturbation variables for each species,

here we are going to present the evolution equations for Φ and Ψ. The Einstein
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equations for perturbations can be written as

(0)Gµ
ν + δGµ

ν = 8πG
(

(0)T µν + δT µν
)
, (2.133)

where the background equation allows us to obtain the Friedmann equations, so now

we are interested in the perturbed part

δGµ
ν = 8πGδT µν . (2.134)

Considering the time-time component from equation (2.134) in Fourier space, we

obtain the following equation:

k2Φ + 3
a′

a

(
Φ′ −Ψ

a′

a

)
= 4πGa2 [ρDMδ + ρbδb + 4ργΘ0 + 4ρνN0] . (2.135)

Note that on the right hand side of the above equation, the factor 4 which appears

for photons and relativistic neutrinos is due to the relation ρ ∝ T 4, which implies

that δρ/ρ = 4δT/T . Considering now the longitudinal traceless part from space

components of equation (2.134), which can be extracted by contracting this equation

with the projection operator k̂ik̂
j − (1/3)δji , we obtain the following equation

k2(Φ + Ψ) = −32πGa2 [ργΘ2 + ρνN2] . (2.136)

The right hand side in the above equation is known as the anisotropic stress. Note

that non-relativistic particles do not contribute to this term. In practice it can

neglect the anisotropic stress, we have Φ = −Ψ. This argument is valid for pho-

tons due to strong coupling with the electrons via Compton scattering, nonetheless

neutrinos develop anisotropic stress after their decoupling. Therefore in the radia-

tion dominated era this contribution is relevant, but in the matter dominated era

the neutrino contribution becomes unimportant and the anisotropic stress can be

neglected. With equation (2.135) and equation (2.136) we close the differential equa-

tion system for the perturbation variables. However, from time-space components

of equation (2.134) and equation (2.135) we obtain the following equation

k2Φ = 4πGa2

[
ρmδm + 4ρrΘr,0 +

3aH

k
(iρmvm + 4ρrΘr,1)

]
, (2.137)
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where we define

ρmδm ≡ ρDMδ + ρbδb, ρrΘr,0 ≡ ργΘ0 + ρνN0, (2.138)

ρmvm ≡ ρDMv + ρbvb, ρrΘr,1 ≡ ργΘ1 + ρνN1. (2.139)

Note that for kη � 1, in the sub-horizon limit, equation (2.137) is reduced to the

Poisson’s equation. In summary, the equations for the perturbation variables are

Θ′ + ikµΘ + Φ′ + ikµΨ = −τ ′
[
Θ0 −Θ + µ vb −

1

2
P2(µ)Θ2

]
, (2.140)

N ′ + ikµN + Φ′ + ikµΨ = 0,

δ′ + ikv + 3Φ′ = 0,

v′ +
a′

a
v + ikΨ = 0,

δ′b + ikvb + 3Φ′ = 0,

v′b +
a′

a
vb + ikΨ =

τ ′

R
[3iΘ1 + vb] ,

k2Φ + 3
a′

a

(
Φ′ −Ψ

a′

a

)
= 4πGa2 [ρmδm + 4ρrΘr,0] ,

k2(Φ + Ψ) = −32πGa2ρrΘr,2.

2.6 Large-scale structure

In order to understand the evolution of matter perturbations we need to solve the

differential equations set out in the above section. It is not possible to find a general

analytical solution for those equations, but there are public codes which allow us to

obtain numerical solution. Here we use CAMB by Lewis et al. (2000). There are

two interesting limits to study the perturbation variables: Super-horizon fluctuations

kη � 1 where the modes are far outside the horizon, and sub-horizon fluctuations

kη � 1 where the modes are well within the horizon.

2.6.1 Power spectrum of matter

The evolution of the matter perturbations is characterized by the same equations

given in the above section, however we must define the initial condition of such

perturbations. We assume that the early Universe had a period of inflation in

which it experienced an accelerated expansion, it was cooled and then reheated

and this process produced the primordial anisotropies, see Mukhanov (2005). Here
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we suppose that the above process is adiabatic and that the initial fluctuations

given by the primordial anisotropies are Gaussian. We can characterize the matter

perturbation field by the two-point function, defined as

ξ(r) = 〈δ(~x)δ(~x+ ~r)〉, with δ(~x) ≡ n(~x)

〈n(~x)〉
− 1, (2.141)

where 〈δ(~x)〉 = 0. For non-Gaussianities it is necessary to consider higher order

correlation functions to characterize the matter fluctuation completely. Nevertheless

this is not the case for Gaussian fields. In Fourier space we can write

ξ(r) =

∫
d3k

(2π)3
P (k)ei

~k·~r, (2.142)

where P (k) is the power spectrum and it is defined as

〈δ(~k, η)δ∗(~k′, η)〉 = (2π)3P (k)δ3
D(~k − ~k′). (2.143)

Here δ3
D is the Dirac delta function. In this formalism, the power spectrum has

dimensions of [L3], we can also define the dimensionless power spectrum as

∆2(k) ≡ k3P (k)

2π2
. (2.144)

It is common to rewrite the power spectrum as

P (k, a) = P0(k)T 2(k)

(
D(a)

D(a = 1)

)2

. (2.145)

The first factor on the right hand side of the above equation, P0(k), is the pri-

mordial matter power spectrum given by the initial scalar fluctuations. Commonly,

for many inflationary scenarios, this factor obeys the following phenomenological

parameterization

P0 = As

(
k

k0

)ns+ 1
2

dns
d ln k

ln
(
k
k0

)
+ 1

6
d2ns
d2 ln k

ln
(
k
k0

)2
+...

, (2.146)

where As is the amplitude of the initial fluctuations which are related to the am-

plitude of the fluctuations seen in the large-scale structure, ns is the scalar spectral

index and the other terms in the argument of the exponential of equation (2.146) are
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the running and the running of the running of the scalar spectra index, see Planck

Collaboration (2016). The second factor on the right hand side of equation (2.145),

T (k), is known as the transfer function, describes the effects in the growth of the

perturbations from their creation until after recombination (i.e., Meszaros effect,

acoustic oscillations, Silk damping, free-streaming damping, radiation drag, see Do-

delson (2003); Mukhanov (2005). For a Universe dominated by cold dark matter
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Figure 2.4: Matter power spectrum for a flat Universe with different cosmological parame-

ters at a = 1. Note that the baryons include oscillations in the power spectrum for small

scales. The dark energy mainly affects the power spectrum in large scale. The spectra are

computed by using CAMB (Lewis et al. (2000)).

Bardeen, Bond, Kaiser & Szalay (1986) proposed the following fit for the transfer

function

T (k) =
ln(1 + 2.34q)

2.34q

(
1 + 3.89q + (16.2q)2 + (5.47q)3 + (6.71q)4

)−1/4
, (2.147)
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where

q ≡ k

ΩDMh2Mpc−1 . (2.148)

At late times the growth of matter perturbations is independent of scale. The growth

factor, D(a), describes the growth of perturbations at this period. Figure 2.4 shows

the matter power spectrum for a flat Universe with different cosmological parameters

at a = 1. Here we consider 4 examples where the first three are cases for a Universe

dominated by non-relativistic matter (i.e., baryon dominated, CDM dominated and

50% for baryons and 50% for CDM). We note that the power spectrum is highly

depedent on the cosmological parameters, so that it can be used to constrain the

model that best describes the Universe. The power spectra are computed by using

CAMB, Lewis et al. (2000).

2.6.2 Growth factor of matter perturbations

In order to compute the evolution of matter perturbations at late time, we use

equations (2.140) and the equation for the gravitational potential (2.137) in the

sub-horizon limit where kη � 1 and we neglect radiation perturbations, then we

have

δ′m + ikvm = −3Φ′, (2.149)

v′m + aHvm = ikΦ, (2.150)

k2Φ = 4πGa2ρmδm. (2.151)

In the equation for the gravitational potential we neglect the velocity term because

the perturbations are well within the horizon, therefore aH/k � 1. With equa-

tion (2.149) and equation (2.150) we obtain

δ′′m − ikvmaH = k2Φ− 3Φ′′. (2.152)

The velocity term on the left hand side of the above equation is replaced by using

equation (2.149), hence we rewrite equation (2.152) as

δ′′m + aHδ′m = k2Φ− 3Φ′′ − 3Φ′aH. (2.153)

Note that both terms 3Φ′′ and 3Φ′aH are of the order of ∼ 1/η2, therefore k2Φ −
3Φ′′ − 3Φ′aH ≈ k2Φ. On the other hand using equation (2.151) the evolution of
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matter perturbations is described by

δ′′m + aHδ′m = 4πGa2ρmδm. (2.154)

The above equation is scale independent, therefore in the sub-horizon limit all scales

grow at the same rate. We can write equation (2.154) as function of the scale factor

by using the relation dη = da/a2H, then we have

d2D

da2
+

(
d lnH

da
+

3

a

)
dD

da
=

3Ωm

2a5

(
H0

H

)2

D. (2.155)

Here we write the matter perturbations as δm(η, k) = δm(k)D(η)/D(η = η0), where

D(η) is known as growth factor, and we also use the relation ρm = Ωmρcr/a
3.

The above expression allows us to find analytic solutions for D in some cases, see

Dodelson (2003). It is straightforward to show that the solution in a Universe

dominated by matter is D ∝ a. However, for the general case we have to solve this

equation numerically. In order to do this we use the substitution y = ln a, so that

equation (2.155) is rewritten as

d2D

dy2
+ (1− q) dD

dy
=

3Ωm

2a3

(
H0

H

)2

D, (2.156)

where q is the deceleration parameter. Figure 2.5 shows the growth factor for diffe-

rent cosmologies. In appendix B we show the Newtonian treatment for matter

perturbations in a sub-horizon limit.

2.6.3 Spherical collapse model

So far we have described the linear theory of perturbations where δ � 1. However,

this theoretical framework is no longer valid when the perturbations are larger and

δ > 1. In this case, we cannot describe the evolution of density field through the

growth factor D(a) defined above. Therefore, in order to obtain information about

the nonlinear regime, we have to consider the model of spherical collapse for dark

matter.

We assume a spherical perturbation into a homogeneous Universe dominated by

a collisionless fluid (dark matter). We consider the stage of the Universe after the

recombination. Previously, we show that a Universe dominated by non-relativistic
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Figure 2.5: Growth factor for a ΛCDM model in a flat Universe without radiation. We

consider different values for Ωm and ΩΛ. Note that the dark energy slows down the growth

of the perturbations.

matter satisfies the following relations

a ∝ t2/3, ρm(t) =
1

6πGt2
, H(t) =

2

3t
, D(a) = a ∝ t2/3. (2.157)

According to Birkhoff’s theorem, we can assume a spherical perturbation as a closed

Universe. Then, for this “sub-Universe” the first Friedmann equation is given by(
ȧs
as

)2

= H2
0

(
Ω

a3
s

+
(1− Ω)

a2
s

)
, (2.158)

where as and Ω > 1 are parameters in the spherical perturbation. The parametric
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solution for the above equation is

as = A (1− cos θ) , A =
Ω

2 (Ω− 1)
, (2.159)

t = B (θ − sin θ) , B =
Ω

2H0 (Ω− 1)3/2
, (2.160)

for θ ∈ [0, 2π]. We note that the sphere reaches a maximum as,max = 2A and

tmax = πB for θ = π, then it collapses back to as,min = 0 when θ = 2π and

tc = 2πB = 2tmax. The time of maximum size is called turn-around time and this is

denoted as tta = tmax. By using the critical density definition and mass conservation

M = 4πρ/3, we show that A3 = GMB2. The density of perturbation is given by

ρ =
3M

4πa3
s

=
3M

4πA3
(1− cos θ)−3 , (2.161)

and the background density can be written as

ρ̄ =
1

6πGt2
=

1

6πGB2
(θ − sin θ)−2 , (2.162)

therefore, the overdensity of the spherical perturbation is given by

∆ = 1 + δ =
9 (θ − sin θ)2

2 (1− cos θ)3 . (2.163)

Here we have used the relation between A and B. Linear theory predicts that the

overdensity for a Universe dominated by matter is given by

δlin ∝ D(a) ∝ t2/3. (2.164)

In order to find the proper initial conditions, we use the parametric solution in the

limit θ � 1. So that, according to the Taylor series expansion, we have

(θ − sin θ)2 ≈ θ6

36

(
1− θ2

10

)
, (2.165)

(1− cos θ)3 ≈ θ6

8

(
1− θ2

4

)
. (2.166)
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Then, the initial overdensity is given by

1 + δi = 1 +
3θ2

i

20
, for θ � 1, (2.167)

therefore, we can assert that δi = 3θ2
i /20. On the other hand, in this limit we have

that ti = Bθ3/6, moreover we know that tta = πB, thus the initial condition is given

by

δi =
3

20
(6π)2/3

(
ti
tta

)2/3

. (2.168)

In the linear case, the perturbation can be rewritten as

δlin = δi

(
t

ti

)2/3

=
3

20
(6π)2/3

(
t

tta

)2/3

. (2.169)

At the turn-around time the density field for the spherical model is δta ≈ 4.55 while

for the linear case we have δlinta ≈ 1.062. In the collapse time we note that the

spherical model predicts that the density field is infinite, nevertheless in the linear

theory we obtain a finite value δc = 3(12π)2/3/20 ≈ 1.686, which is called the critical

overdensity for collapse. This parameter sets a limit for identifying the regions in

the linear density field which should have collapsed at time t.

In this toy model, the density tends to infinite at the time tc for the spherical

collapse case, yet this does not happen in the Universe. The system relaxes toward

virial equilibrium forming objects known as dark matter haloes. The virial theorem

sets the following relation between kinetic energy (K) and potential energy (U):

K = −U
2
. (2.170)

Therefore, the total energy of system in virial equilibrium is

Ev = Kv + Uv =
Uv
2

= −3GM2

10Rv

, (2.171)

where Rv is the physical size at the virial equilibrium. Here we define R = asX,

where X is the comoving coordinate. According to energy conservation and by using

the fact that there is no kinetic energy at turn-around time, we have

Eta = Uta = −3GM2

5Rta

= Ev = −3GM2

10Rv

, so Rv =
1

2
Rta. (2.172)
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Hence, the system is expected to virialize at half its turn-around radius. We note

that the average density in the sphere is eight times denser than at turn-around

time

ρv =
3M

4πR3
v

=
3M

4π(Rta/2)3
= 8ρta. (2.173)

If we consider that the virialization occurs at the collapse time (i.e, tv = 2tmax),

then the overdensity of a virialized dark matter halo is

∆v = 1 + δv =
ρv
ρ̄v

=
8ρta
ρ̄ta/4

= 32(1 + δta) ≈ 178. (2.174)

Here we use the fact that ρ̄ ∝ t−2 for a Universe dominated by matter. The above

result allows us to assert that the collapsed haloes have an average overdensity of

around 200 with respect to the mean density of the Universe at that epoch. The

overdensity depends on the cosmology. Bryan & Norman (1998) showed that its

value is given by

∆v ≈ (18π2 + 60x− 32x2)/Ωm(tv), (ΩΛ = 0), (2.175)

∆v ≈ (18π2 + 82x− 39x2)/Ωm(tv), (ΩΛ 6= 0), (2.176)

where x = Ωm(tv)− 1. Often the value ∆v = 200 is used in the N-body simulations

to identify the virialized dark matter haloes, see Tinker et al. (2008).

2.6.4 Halo abundance

The perturbations in the Universe grow until the linear theory ceases to be valid.

According to the spherical collapse model described above, the regions where the

linear density field is greater than δc should have collapsed to produce dark matter

haloes. Here we are going to compute the halo abundance as function of the mass

and the redshift. For a volume V with the variance of density field it is defined as

σ2 = 〈δ2〉 =
1

V

∫
d3xδ2(~x). (2.177)

By using equation (2.142) we note that

σ2 = ξ(0) =
1

2π2

∫
dk P (k)k2 =

∫
d ln k∆2(k). (2.178)
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Therefore the dimensionless power spectrum is identified with the variance of the

field as a function of k. The smoothed density field by a normalized window function

W (~x;R) is defined as a convolution integral

δ(~x;R) ≡
∫

d3x δ(~x′)W (~x− ~x′;R) ;

∫
d3xW (~x;R) = 1. (2.179)

In Fourier space, we have

δ(~k;R) = δ(~k)W̃ (kR); W̃ (kR) =

∫
d3xW (~x;R)e−i

~k·~x. (2.180)

Here, we use the top-hat filter defined as

W (~x;R) =

{
3

4πR3 r ≤ R,

0 r > R,
W̃ (kR) =

3

(kR)3
(sin(kR)− kR cos(kR)) , (2.181)

for this filter, the mass is given by

M =
4π

3
ρ̄R3. (2.182)

Note that the filter is defined by its radius R or by its mass M . The variance of the

smoothed density field is defined as

σ2(R) = 〈δ2(~x;R)〉 =
1

2π2

∫
dk P (k)W̃ 2(kR)k2. (2.183)

Usually, in cosmology, the variance of the linear density field at z = 0 filtered by a

sphere with radius R = 8h−1Mpc is used to characterize the normalization of the

power spectrum (i.e., the density field smoothed by a top-hat filter with R = 8).

This parameter is defined as σ8 and its current value is ≈ 0.81 according to the

observations of Planck Collaboration (2016). Press & Schechter (1974) postulated

that the probability of finding perturbations for a smoothed density field with mass

M above the threshold δc is equal to fraction of haloes with mass greater than M .

In addition, they assumed that the density field is a Gaussian random field with

variance σ2(M). Hence, we have

P (δM > δc) =
1√

2πσM

∫ ∞
δc

dδM exp

(
− δ2

M

2σ2
M

)
. (2.184)
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According to these assumption only half of all matter in the Universe would be

located in haloes, therefore to avoid this problem, the probability is multiplied by

an ad hoc factor of 2, thus

F (> M, z) = 2P (δM > δc) = erfc

(
ν√
2

)
, (2.185)

where erfc(x) is the complementary error function and ν = δc/σ(M, z). In order to

determinate the number of halos per comoving volume with mass between M and

M + dM we differentiate equation (2.185), we obtain:

dn(M, z) = −ρm
M

dF (> M, z)

dM
dM, (2.186)

where the minus sign is due to the fact that F (> M, z) is a decreasing function of the

mass M . From a straightforward algebraic manipulation of the above expression,

we obtain
dn

d lnM
= fPS(ν)

ρm
M

d lnσ−1

d lnM
, (2.187)

where

fPS(ν) =

√
2

π
ν exp

(
−ν

2

2

)
, ν =

δc
σ
. (2.188)

Equation (2.187) is called mass function and fPS(ν) is a functional factor, here the

subindex PS indicates the function obtained through the Press-Schechter formalism.

We consider that all mass is contained in halos, then we have∫
Mdn = ρ̄m so

∫
dν
f(ν)

ν
= 1. (2.189)

The above equation allows us to have a normalization condition for the mass func-

tion. Numerical simulations (e.g., Efstathiou et al. (1988)) showed that the PS for-

malism is was broad in agreement with the mass function computed in such cases,

nevertheless currently N-body simulations (e.g., Millennium Simulation, Springel

et al. (2005)) have showed that the PS formalism is only an approximation. By

using the ellipsoidal collapse approach Sheth et al. (2001) obtained the following

functional factor for the mass function

fSMT(ν) = 2A

(
1 +

1

ν ′ 2q

)(
ν ′ 2

2π

)1/2

exp

(
−ν

′ 2

2

)
, (2.190)
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where ν ′ =
√
aν, a = 0.707, q = 0.3, andA ≈ 0.322 is determined using the condition

(2.189). The factor a is determined by numerical simulations, and the parameter q

is determined by the shape of the mass function at the low-mass end. Jenkins et

al. (2001) find the mass function through a full fitting to N-body simulations, by

using Spherical Overdensity (SO) and Friends-of-Friends (FOF) methods in order

to detect the haloes.

The number of haloes per comoving volume for a mass bin [Mα,Mα] is obtained

integrating equation (2.187), thus we have

n̄α =

∫ Mα+1

Mα

d lnM
dn

d lnM
. (2.191)

The number counts in redshift bin [zi, zi+1] are given by

N̄α,i = ∆Ω

∫ zi+1

zi

dz
dVc

dzdΩ
n̄α(z), (2.192)

where ∆Ω is the survey sky coverage and dVc is the comoving volume, see equa-

tion (2.88).

The halo abundance in the Universe can be used as cosmological probe as we will

see in chapter 5. However, given that dark matter only interact with baryons and

photons through gravity, we cannot make direct observations of these dark matter

haloes. In order to address the above problem, we use the galaxies which are tracers

of the dark matter (since the baryons are gravitationally attracted to the structures

of dark matter). In chapter 4 we show a optical method for finding the galaxy

clusters by using a photometric redshift survey.



Chapter 3

Degradation analysis in the estimation of

photometric redshifts

The cosmological redshift of an extra-galactic object is arguably one of the most im-

portant directly observable properties. The redshift of an object provides a measure

of the recessional velocity of that object relative to an observer, which arises due

to the expansion of the Universe. In General Relativity, knowledge of the redshift

of an object allows one to connect the spatial and time-dependent components of

the space-time metric. In other words, at any given epoch, knowledge of the red-

shift allows one to relate the spatial extent of the Universe to the current expansion

rate of the Universe. A cosmological model provides us with a prediction of how to

accurately translate between the redshift of an object and the physical distance to

that object, known as the distance-redshift relation, Hubble (1929), see chapter 2.

A precise measurement of this relation would allows us to place tight constraints on

cosmological parameters and therefore on our fundamental understanding of cosmo-

logy, see Riess et al. (1998); Perlmutter et al. (1999). This is a major goal of future

cosmological missions that aim to make high precision measurements of cosmolo-

gical probes ; including measurements of Baryon Acoustic Oscillations (BAO, Hu &

Dodelson (2002); Eisenstein et al. (2005); Percival et al. (2007); Blake et al. (2011);

Anderson et al. (2014)), the weak lensing of galaxies (Massey, Kitching & Richard

(2010); Bartelmann (2010); Kilbinger et al. (2013)) and the number counts of galaxy

clusters (Battye & Weller (2003); Mantz et al. (2010); Rozo et al. (2010); Allen et

al. (2011); Mana et al. (2013)). In addition, many of the astrophysical processes

governing the growth of the large-scale structure and the formation of galaxies show

a strong time-dependence and so measurement of the redshifts of different types of

galaxies allows us to test our theories of structure formation.

43
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The redshift of a galaxy can be measured in two ways: either spectroscopically

or photometrically. Spectroscopic determination of redshift involves measuring the

Doppler shift of known features in the spectrum of a galaxy, typically absorption or

emission lines. Photometric determination of redshift is based upon the assumption

that the colors of a population of galaxies of the same type and redshift (i.e. with

very similar SEDs) will be clustered in a particular region of the color space. One

can therefore estimate the photometric redshift of a galaxy by using multi-band

photometry to compare the broad-band colors of that galaxy with the colors of set

of galaxies for which redshifts are already known, see Benitez (2000); Collister &

Lahav (2004); Ilbert et al. (2006); Almosallam et al. (2016b); Sadeh et al. (2016).

Since the measurement of the spectrum of a galaxy is much more costly, due to

the requirement of long integration times, photometric redshifts provide a cheaper

and much more rapid alternative. Therefore, photometric redshifts are a viable

and efficient option to be used in cosmological surveys that plan to observe several

billion galaxies, including as the Dark Energy Survey (DES)∗, the Large Synoptic

Survey Telescope (LSST)†, the Euclid‡ and the Wide Field Infrared Survey Telescope

(WFIRST)§; photometric redshifts are the most viable option. Note that the Euclid

and WFIRST missions will additionally measure spectroscopic redshifts for a sub-

set of galaxies. The major challenge that these surveys face is the problem that

photometric redshifts are much less precise than spectroscopic redshifts and will

need considerable calibration.

We can split the photometric techniques into two approaches: machine learning

and template fitting. Machine learning involves using machine learning methods

(MLMs) to establish the relationship between the photometric observables (e.g. co-

lors or magnitudes) and the redshift of a galaxy. This is usually done by training

these methods on dataset of galaxies with known redshifts. Among these methods

we have the artificial neural networks (ANNs) (Firth et al. (2003); Vanzella et

al. (2004); ANNz Collister & Lahav (2004); ANNz2 Sadeh et al. (2016)); nearest-

neighbour (Ball et al. (2008)), random forest (TPZ Carrasco Kind & Brunner (2013)),

and Gaussian process (GPs) (Way et al. (2009); Bonfield et al. (2010); Almosallam

et al. (2016a); GPz Almosallam et al. (2016b)). The effectiveness of these methods

depends on whether the training set is a representative sample of the photometric

∗〈http://www.darkenergysurvey.org〉
†〈http://www.lsst.org〉
‡〈http://sci.esa.int/euclid/〉
§〈https://wfirst.gsfc.nasa.gov〉

http://www.darkenergysurvey.org
http://www.lsst.org
http://sci.esa.int/euclid/
https://wfirst.gsfc.nasa.gov
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dataset. Moreover, the MLMs are reliable for the redshift range of the used training

data set. Therefore, in principle, those methods cannot be employed to estimate

high redshifts in which there are no spectroscopic data available. Template methods

are based on fitting empirical or synthetic galaxy spectra with the photometric

information available (i.e., colors or magnitudes). Specifically, they use the broad-

band photometry to estimate an approximate galaxy spectral energy distribution

(SED), which they then fit against a library of SEDs with known redshifts. Those

methods require astrophysical effects, e.g., the dust extinction in the observed galaxy

or in our galaxy to be corrected for. A non exhaustive list of codes known for

template fitting methods are HYPERZ Bolzonella et al. (2000); ZEBRA Feldmann

et al. (2006); EAZY Brammer et al. (2008) and LE PHARE Ilbert et al. (2006).

Both techniques to estimate photometric redshifts have advantages and limitations

depending on the spectroscopic data available and the photometric data set to being

evaluated. Abdalla et al. (2008); Hildebrandt et al. (2010); Abdalla et al. (2011);

Sánchez et al. (2014) have compared different photometric redshift techniques and

their efficiency in ground and space data.

The objective of this work is to analyze the degradation of both precision and

accuracy in the estimated photometric redshift for several samples obtained from

a mock catalog (constructed using a semi-analytical model of galaxy formation,

see section 3.1.1) with a non-representative training data set in magnitude space,

we then use these results to guide our choices and perform the same analogies in

real data. Here we use the ANNz2 and GPz algorithms, which belong to group of

machine learning techniques. We also perform an analysis on the impact of bias in

the detection of galaxy cluster with photometric redshifts estimated by using these

non-representatives training sets.

We organize this chapter as follows: In section 3.1 we present the mock catalog,

and the Sloan Digital Sky Survey (SDSS) and Galaxy and Mass Assembly (GAMA)

surveys which are used in this analysis. Section 3.2 describes the ANNz2 and GPz

algorithms used in this work and introduce the metrics used to assess the quality of

the derived photometric redshifts. Both of these algorithms output for each galaxy a

single redshift estimate as well as a redshift probability distribution function (PDF).

As such we also introduce two estimators to additionally compute the photometric

redshifts using the full PDF information. Section 3.3 compares, for both the mock

catalog and observed datasets, the quality of the derived photometric redshifts ob-

tained using the ANNz2 and GPz algorithms and examine the impact of building our
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training set using either magnitude-space or color-space selection criteria. We then

apply sequentially deeper r-band magnitude cuts to the mock catalog in order to

analyze the degradation in the quality and completeness of the derived photometric

redshifts when the testing set extends to r-band magnitudes significantly deeper

than the training set. In section 3.4 we discuss the impact on the detection of

galaxy clusters. Section 3.5 summarizes our conclusions. This work is presented in

the paper Rivera et al. (2017a) (I-prep.).

3.1 Data

In order to verify the robustness of our results, we use both simulated and real data

in this work. Simulated galaxies are from a lightcone mock catalog constructed from

a galaxy formation model. By using this mock data set, we can measure the precision

and accuracy of the estimated photometric redshifts, as well as performing additional

cluster detection completeness tests. To check our results against observations, we

apply our methods to a galaxy sample obtained from the SDSS DR12 data release.

We tailor a photometric GAMA-like sample going to deeper magnitudes, and train

our photometric redshifts with the GAMA survey. This allows us to perform a

comparison of photometric redshift results obtained with the mock catalog for a

depth comparable to the one in real data. Here we describe the data in more detail.

3.1.1 Mock galaxy catalog

The mock catalog¶ used in this work was constructed using the lightcone construc-

tion method presented in Merson et al. (2013). Briefly, this method involves popu-

lating the dark matter halo merger trees extracted from a cosmological N-body

simulation with galaxies generated from a semi-analytical galaxy formation model.

In this case, the merger trees were taken from the Millennium Simulation (Springel

et al. (2005)) and populated using the Lagos et al. (2012) version of the GALFORM

model, which was originally developed by Cole et al. (2000). A lightcone catalog

is then constructed by interpolating the galaxy positions between the simulation

redshift snapshots to determine when each galaxy crosses the past lightcone of the

observer. For further details we refer the reader to Merson et al. (2013). The

cosmology used in the Millennium Simulation is a ΛCDM model (Ωm, ΩΛ, Ωb, h =

¶ We use the SDSS 500 photoz catalog available from 〈http://astro.dur.ac.uk/∼d40qra/
lightcones/SDSS/〉.

http://astro.dur.ac.uk/~d40qra/lightcones/SDSS/
http://astro.dur.ac.uk/~d40qra/lightcones/SDSS/
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Table 3.1: Values for the characteristic magnitude (m?
X), the normalization coefficient

(σ?), the bright magnitude slope (γo) and faint magnitude slope (γs) used to compute

photometric noise in each photometric band (X) in the SDSS mock data. See text in

section 3.1.1 for details. The magnitude limit for the u-band is from Zou et al. (2015) and

the magnitude limits for the g-band, r-band, i-band and z-band are from Raichoor et al.

(2016).

X m?
X σ? γo γs

u 22.03 0.2 −0.1 0.25
g 23.10 0.2 −0.1 0.25
r 22.70 0.2 −0.1 0.25
i 22.20 0.2 −0.1 0.25
z 20.70 0.2 −0.1 0.25

0.25, 0.75, 0.045, 0.73), with parameters consistent with the first year results from

the Wilkinson Microwave Anisotropy Probe (Spergel et al. (2003)).

The lightcone catalog spans the redshift range z = 0.0 to z = 3.0 and has a sky

footprint of approximately 500 deg2, centered on position (RA, DEC) = (303.29 deg,

-14.48 deg). An SDSS r-band selection (r ≤ 24) was applied, yielding a total of 15

823 757 galaxies. The (u, g, r, i, z) magnitudes of galaxies reported in the lightcone

are AB apparent magnitudes. For each photometric band, X, the magnitudes are

perturbed to introduce photometric noise by randomly sampling from a Gaussian

with a mean, mX , equal the AB apparent magnitude of the galaxy in that band,

and with a standard deviation, σX(mX), which is defined following the approach

described in Jouvel et al. (2009) as,

σX =

100.4(γo+1)(mX−m?X), if mX < m?
X ,

σ?

2.72
exp

(
10γs(mX−m

?
X)
)
, otherwise,

(3.1)

where m?
X is a characteristic magnitude, σ? is a normalization coefficient and γo

and γs are power-law slopes. The values adopted for these parameters are shown

in table 3.1. The power-law used in the case mX < m?
X corresponds to brighter

fluxes, dominated by object noise, whilst the exponential law in the case mX ≥ m?
X

corresponds to fainter fluxes dominated by sky background noise. For further details

see Jouvel et al. (2009). In order to obtain a sample similar to our GAMA/SDSS

data set, we apply a further i-band magnitude cut i < 21, which leaves a total of 1

876 505 galaxies, with a mean redshift of zmean ∼ 0.35.
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3.1.2 GAMA survey

The Galaxy and Mass Assembly (GAMA) survey‖ is a sample of optical spectroscopy

data for a low-redshift galaxy population. The survey was designed to investigate the

galaxy formation and evolution process, aiming at studying the galaxy distribution

on scales of 1 kpc to 1 Mpc, see Driver et al. (2009); Baldry et al. (2010); Driver et

al. (2011) and Liske et al. (2015). Observations were performed with the AAOmega

spectrograph on the Anglo-Australian Telescope (AAT), covering a sky area of ∼
286 deg2 split into five survey regions on the sky, with a total of 238 000 objects.

The regions observed were split into three equatorial regions (G09, G12, G15) and

two southern sky regions (G02 and G23).

The survey consisted of two phases, with slightly different target selection criteria

for each of them. GAMA I refers to data collected during the first three years,

while GAMA II refers to the full survey, including all of GAMA I. The first phase

extended over the three equatorial regions down to (extinction-corrected) Petrosian

magnitude of rpetro < 19.4 in G09 and G15, and rpetro < 19.8 in G12. Magnitude cuts

and target selection were based on photometry from SDSS and additional infrared

bands from the UKIRT (United Kingdom InfraRed Telescope) Infrared Deep Sky

Survey (UKIDSS), which were introduced to help improve star-galaxy separation. In

the second phase, the three existing equatorial survey regions were enlarged and the

two southern regions, G02 and G23, were added. The r-band Petrosian magnitude

limit was pushed to rpetro < 19.8 in all survey regions.

Here we use the public Data Release 2 (DR2). This includes the galaxies from

GAMA I of survey region G15 (rpetro < 19.4) and a subset of G09 and G12 survey

regions (rpetro < 19.0) with a total area of ∼ 144 deg2 for a total of 70 726 targets

with secure redshifts download from the GAMA database. For more details, see

Baldry et. al. (2010); Liske et al. (2015). To match to the selection criteria of

our photometric sample, we then use the SDSS DR12 CasJobs server∗∗ to match the

GAMA data to a clean sub-sample of SDSS DR12 galaxies with additional “GAMA-

like” cuts. Our final spectroscopic sample contains 63 226 objects with rpetro < 19.4.

‖〈http://www.gama-survey.org/〉
∗∗〈https://skyserver.sdss.org/CasJobs/〉

http://www.gama-survey.org/
https://skyserver.sdss.org/CasJobs/
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3.1.3 SDSS DR12 sample

The photometric data set is obtained from a parent sample downloaded from the

Sloan Digital Sky Survey Data Release 12 (SDSS DR12) database. Since we consider

the GAMA survey as the spectroscopic training sample, the choice of photometric

data is performed by using the GAMA target selection cuts in the SDSS DR12

according to Christodoulou et al. (2012). Here we consider two cases for our analysis.

In the first case we use the magnitude and color cuts, such that the training set is

a fully representative in the magnitude space. This sample is called GAMA MAIN.

In the second case we use a deeper magnitude limit keeping a fully representative

training set in color space. Hence, the training is performed with 4 colors unlike

the above case where we use 5 magnitudes (we use dered modelMag as magnitudes

and modelMagErr as magnitude errors). This new training criterium is chosen as to

ignore the non-representativeness of the training in magnitude space (i.e., the lack

of coverage of the training set in the r-band). This sample is called GAMA DEEP.

See Moraes et al., 2017 (in prep.) for more details about these samples.

In order to estimate the photometric redshift in the above photometric samples

we use the ANNz2 and GPz codes which are described in section 3.2.1 and section 3.2.2

respectively. We use the same training set, validation and test for GAMA MAIN

sample (with magnitudes), as well as for GAMA DEEP sample (with colors). Sec-

tion 3.3 shows the parameters used in each code to estimate the photometric redshift.

Section 3.3.1 presents the results of metrics for the testing data set by using both the

magnitude space and the color one. Furthermore we perform a comparison between

the results obtained for mock galaxy catalog and the testing data.

3.2 Estimating photometric redshifts

In order to estimate the photometric redshifts for galaxies in the GAMA and SDSS

surveys and as well as the mock catalogs, we use the ANNz2 (Sadeh et al. (2016))

and GPz (Almosallam et al. (2016b)) public photometric redshift algorithms. These

codes apply a set of machine learning methods, using a set of training redshifts to

estimate the value of redshift for galaxies without spectroscopic information from

their photometry. We briefly describe the ANNz2 and GPz codes.
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3.2.1 ANNz2

ANNz2†† (Sadeh et al. (2016)) is a updated version of the original ANNz package

developed by Collister & Lahav (2004), which used artificial neural networks (ANNs)

to estimate the photometric redshifts of galaxies. Given a training set of galaxies,

ANNz2 combines different machine learning techniques (i.e., artificial neural networks,

boosted decision/regression trees, among others) to compute a photometric redshift

probability distribution function (PDF) for each galaxy in the testing set. The

machine learning methods (MLMs) employed are implemented in the TMVA package

(Hoecker et al. (2007)).

Like all MLMs, the ANNz2 code requires training and validation samples from

a spectroscopic redshift survey. During each step of the training, the validation

sample is used to estimate the convergence of the solution. Once the mapping is

established, an independent testing set (i.e., an independent subsample from the

spectroscopic redshift survey with photometric information) is used to evaluate the

performance of the trained MLM. The methods implemented in this code allow us

to optimise the photometric redshift reconstruction, and to estimate their associated

uncertainties, which helps mitigate possible problems of non-representativeness. To

correct for inaccuracies due to unrepresentative training sets, the ANNz2 algorithm

can use training weights. This method aims to match the distribution of the inputs

from the training sample with the testing data following the approach presented in

Lima et al. (2008). If the training data set is incomplete (i.e., there are some regions

of the input phase-space where the evaluated sample has no corresponding objects

for training), this code provides a quality flag, which indicates when unrepresented

data are being evaluated.

In order to estimate the photometric redshift PDFs for galaxies, the ANNz2 algo-

rithm follows an approach called randomised regression, which ranks the different

solutions according to their performance based upon the values of various metrics

(i.e., bias, scatter, level of outliers). The entire set of solutions is used to construct

the photometric redshift PDF. Initially, each solution is folded with a distribution

of uncertainty values computed via the K-nearest neighbours (KNN) method, see

Oyaizu et al. (2008). Later, the solutions are combined with a weighting scheme.

††〈https://github.com/IftachSadeh/ANNZ〉

https://github.com/IftachSadeh/ANNZ
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3.2.2 GPz

GPz‡‡ (Almosallam et al. (2016b)) is a machine learning approach which uses sparse

Gaussian processes (GPs) to estimate a photometric redshift and its variance. The

GPs are probabilistic models for regression. The computational cost can be very

high, which can make it impractical - the cost depends of inverting an n × n co-

variance matrix for a training sample with n components. Different authors have

proposed several techniques in order to reduce this problem. Zhang et al. (2005)

showed that in some cases the covariance matrix could have a Toeplitz structure

which would relieve the cost in the inversion. Tsiligkaridis & Hero (2013) decom-

posed the covariance matrix as a sum of Kronecker products to simplify the compu-

tation of the inverse. However, these techniques cannot always be applied.

Another approach to solve the computational cost is to reduce the size of the

covariance matrix by using sparse approximations, such that a set of m� n samples

to obtain the covariance matrix, see Candela & Rasmussen (2005). The GPz method

uses basis function (BFM) models, which is classified as a sparse GP method. The

BFM is a non-linear function set Φ(xi) = {φ1(xi), ..., φm(xi)}, where xi are the

vector of inputs (i.e., magnitudes or colors) for the training sample with n objects.

The set of target outputs yi are generated by a linear combination of Φ(xi), then

yi = Φ(xi)w + εi, (3.2)

where εi is an additive noise, w are the weights, or the parameters of the model,

and m � n. This method chooses the radial basis function (RBF) kernel as basis

functions, which are defined as:

φj(xi) = exp

(
−1

2

(
xi − pj

)T
ΓTj Γj

(
xi − pj

))
, (3.3)

where pi are the set of basis vectors associated with the basis functions and ΓTj Γj, are

the covariance matrices (or bespoke precision matrices) associated with each basis

function. The code allows us different modes for different cases of the covariance

matrix,

• GPVC: Covariance matrix for each basis function (GP with variable covariance).

• GPGC: The same covariance matrix in all basis functions (GP with global co-

‡‡〈https://github.com/OxfordML/GPz/blob/master/python/demo photoz.py〉

https://github.com/OxfordML/GPz/blob/master/python/demo_photoz.py
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variance).

• GPVD: Diagonal covariance matrix for each basis function (GP with variable

diagonal covariance).

• GPGD: The same diagonal covariance matrix for all basis functions (GP with

global diagonal covariance).

• GPVL: The covariance matrix is given by Γj = Iγj, where γj is a scalar for each

basis function (GP with variable length-scales).

• GPGL: The same covariance matrix which is given by Γj = Iγj, where γj is a

scalar, for all basis functions (GP with global length-scale).

By using the yi values from training sample, the basis functions and Bayesian statis-

tic, the method infers the values of parameters w̄. With these ingredients, the

method sets the predictive distribution for a test sample x∗, which is given by

p(y∗|y) = N (µ∗, σ
2
∗), (3.4)

µ∗ = Φ(x∗)w̄, (3.5)

σ2
∗ = ν∗ + β−1, (3.6)

where N (µ, σ2) is a normal distribution, ν is the model variance and β−1 is the

noise uncertainty due to the data. Note that in this method the variance is an

input-dependent function and it is composed of two terms for different sources of

uncertainty, the intrinsic uncertainty about the mean function due to data density

and the uncertainty due to the intrinsic noise or the lack of precision in the training

set. This information is very useful to identify regions of input space where more

data is required, versus areas where additional precision or information is required,

such that it is possible to develop strategies to increase the photometric accuracy,

either by getting more photometric data in different regions or improving the quality

of input data. In this work we use the GPVC mode, which allows us to employ all

capacity of GPz code and to obtain robust results.

3.2.3 Metrics

In order to assess the quality of photometric redshifts estimated in this work, we

define the following set of metrics commonly employed for this purpose: bias, σ, σ68,

FRe.
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The bias measures the deviation of the estimated photometric redshift from the

true value (i.e., the spectroscopic redshift).

Bias =

〈
zphot − zspec

1 + zspec

〉
. (3.7)

The scatter between the true redshift and the photometric redshift is denoted as σ

and given by

σ =

〈(
zphot − zspec

1 + zspec

)2
〉1/2

. (3.8)

We define σ68, as

σ68 = max
i∈U

{∣∣∣∣∣ziphot − zispec

1 + zispec

∣∣∣∣∣
}
, (3.9)

where U is the set of the 68 percent of galaxies which have the smallest value of

|zphot − zspec|/(1 + zspec). The catastrophic outlier rate, which we call FRe, is given

by

FRe =
100

n

{
i :

∣∣∣∣∣ziphot − zispec

1 + zispec

∣∣∣∣∣ < e

}
, (3.10)

where n is the number of galaxies and e is the outlier threshold. This quantity is

the percentage of galaxies with good photometric redshift estimated in the sample

for a chosen outlier threshold value. We choose e = 0.15.

In order to compare the estimated photometric redshift distribution with the

spectroscopic redshift distribution, we also define the chi-square measure Dχ2 as

Dχ2(P,Q) =
1

2

n∑
i=1

[p(i)− q(i)]2

p(i) + q(i)
, (3.11)

where P (pi) and Q(qi) are distribution functions. Note that if the two distributions

are different, we obtain a high value for the chi-square measure. Therefore, this me-

tric allows us to determine how close is the distribution obtained from the estimated

photometric redshifts to the spectroscopic redshift distribution.

3.2.4 Further photometric redshift estimators

The ANNz2 and the GPz codes provide for each galaxy both an individual redshift

estimate as well as a full PDF. We describe here two estimators to extract a single

redshift estimate based upon the full PDF information.
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By integrating over the full PDF information we can estimate the mean photo-

metric redshift, zphot, defined as,

zphot =

∫
z PDF(z) dz. (3.12)

The corresponding uncertainty is assumed to be Gaussian and can be computed

in a similar manner as the square root of the variance. When we apply this esti-

mator to the PDFs from ANNz2 we shall denote these mean redshifts estimates by

AvgPDF-ANNz2. Note that the individual redshifts estimated directly from the

GPz code already assume a Gaussian uncertainty, and so are already equivalent to

equation (3.12). As such we do not need to apply this estimate to the PDFs from

GPz.

Secondly, we derive an estimate for the photometric redshift for each galaxy

by summing the PDF to construct the cumulative distribution function (CDF),

which we can randomly sample in a Monte-Carlo process. This process consists in

estimating the zphot by using the image of a random number between [0, 1) for the

inverse of the cumulative distribution function in each galaxy. With this method

we ensure that the redshift estimates are representative of the full underlying PDF

information. We expect that the distribution function of the single number redshift

obtained through this method is equivalent to the stacked PDF of all galaxies in

the data set. Moreover we await to reduce the systematic errors compared with any

other photometric redshift estimator according to Wittman (2009).

In summary, we have defined the following two pairs of photometric redshift

estimators for this work: AvgPDF-ANNz2 and GPz (both assuming a Gaussian

uncertainty); and CDF-ANNz2 and CDF-GPz (both estimated using the Monte-

Carlo method).

3.3 Results

Initially in section 3.3.1 we compare the quality of the photometric redshifts ob-

tained from our mock data and those from our real SDSS data. We then compare

the quality of the photometric redshifts obtained when our real data is trained

using a magnitude-selected training set and when the data is trained using a color-

selected training set. Magnitude-selected training and color-selected training are

additionally applied to the mock catalog. Subsequently, in section 3.3.2, we select
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Table 3.2: The used values for the parameters of the ANNz2 (Top) and GPz (Bottom)

codes.

Code Parameter Definition Value
ANNz2 nMLMs Number of MLMs 100

minValZ Min. value for redshift 0.0
maxValZ Max. value for redshift 1.0
nErrKNN Near-neighbours for error 90

rndOptTypes MLM types ANN BDT
nPDFbins Number of PDF bins 200

GPz method GP method VC
m Number of BFM 25

heteroscedastic Heteroscedastic noise True
csl method Cost-sensitive Normal
maxIter Max. of iterations 500

maxAttempts Max. iterations to attempt 50

sequentially deeper r-band selected samples from the mock catalog to analyze the

degradation of the photometric redshifts recovered from each estimator when using a

non-representative magnitude-selected training set. Table 3.2 shows the used values

for the parameters of the ANNz2 and GPz codes.

3.3.1 Comparison of real data and mock catalog with a complete trai-

ning set

In this section, we apply both ANNz2 and GPz codes to real data and mock catalogs

with two different training choices, using the 5 SDSS magnitude bands in one case

and 4 colors in the other. Our aim is twofold: firstly, we want to confirm that our

analysis with mock data is qualitatively consistent with the results we obtain in real

data. Additionally, we wish to compare color and magnitude types of training and

assess their relative performance.

When considering our real data, the GAMA MAIN data will be the testing set

when training with a magnitude-selected training set and the GAMA DEEP data

will be the testing set when training with a color-selected training set. Details

of the construction of the GAMA MAIN and GAMA DEEP samples, which we

shall refer to collectively as the GAMA test data, are given in section 3.1.3. For

the photometric analysis in the GAMA test data, we take dered modelMag (i.e.

SDSS model magnitudes corrected for extinction) as the galaxy magnitudes and

modelMagErr (error in modelMag) as the magnitude errors. Since the magnitude
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Table 3.3: Number of galaxies and the threshold r-band for every used subsample in the

training of the real data and the mock data. We use the same r-band magnitude range

for both datasets.

Sample Training Validation Testing r-band range
GAMA 20 864 20 865 21 497 r < 19.4
Mock 20 220 20 222 200 288 r < 19.4

limit in the spectroscopic GAMA dataset is rpetro < 19.4 we apply a similar r-band

cut to the mock catalog, obtaining a mock training sample of 240 730 galaxies. The

GPz code provides us a function that allows us to split the spectroscopic GAMA

sample and the mock catalog in three subsamples: a training data set, a validation

data set and a test data set, the last subsample is used to test the training in each

case. Table 3.3 shows the number of galaxies in each subsample for both the real

data and the mock data.

The photometric analysis of the GAMA sample and mock catalog sample is

performed using magnitudes (u, g, r, i, z) and colors (u-g, g-r, r-i, i-z). For each

color C(m1,m2) = m2 −m1 the error on the color are obtained via standard error

propagation:

δC(δm1, δm2) =
√
δm2

1 + δm2
2, (3.13)

where δm1 and δm2 are the errors on the magnitudes m1 and m2.

In the upper grids of panels in Fig. 3.1 and Fig. 3.2 we compare for each pho-

tometric redshift estimator the recovered photometric redshifts to the spectroscopic

redshifts of the galaxies. We show the results for both a magnitude-selected training

and a color-selected training of the mock catalog and GAMA test data. We com-

pare the corresponding redshift distribution functions. In the lower grid of panels we

compare the metrics for each estimator. We note an almost insignificant difference

between training with a color-selected training set and a magnitude-selected training

set. For both the real data and the mock catalog, we note that the CDF cases show

slightly more scatter compared to the AvgPDF-ANNz2 and GPz cases. However,

when we examine the metrics we see that for both the mock catalog and the GAMA

data sets, over the redshift range 0.1 < z < 0.4 each photometric redshift estimator

yields a bias and a fraction of catastrophic outliers that is in excellent agreement

with the other estimators, further there is a good agreement between the mock and

the data.
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For the GAMA data sets, we see that compared to the two Gaussian estimators

the CDF cases are typically able to estimate photometric redshifts out to higher red-

shifts beyond zphot ∼ 0.4, though these photometric redshifts have a larger scatter,

a larger bias and a greater number of outliers (as indicated by a decreasing value

for FRe=0.15). In the mock catalog we observe the similar effect in the CDF-ANNz2

estimator compared with the AvgPDF-ANNz2 estimator. Moreover, the estimators

based on Gaussian GPz are also able to recover photometric redshifts out beyond

zphot ∼ 0.4. The quantity FRe=0.15 shows different trends in the data of the mocks, it

deviates from 1 at z ∼ 0.5 in the mock and at zphot ∼ 0.4 on the data. We also note

that for the mocks, the FRe=0.15 values for CDF-GPz and GPz estimators remain

close to unity out to zphot ∼ 0.65.

We also note some sample variance features in both the mock and data (e.g.

feature at z ∼ 0.3 in the data stack). These features disappear with some estima-

tions. The plots of the distribution functions show that those distributions based

on the single value which are obtained through the Monte-Carlo method fits better

with the stacking of galaxy PDFs than the AvgPDF-ANNz2 and GPz estimators.

In fact, the previous assertion is more noticeable in the photometric redshifts esti-

mated by the ANNz2 code than in the photometric redshifts estimated by the GPz

code. According to the chi-square measure presented in figure 3.3, for the GAMA

case, the CDF-ANNz2 distribution fits better the spectroscopic redshift distribu-

tion than the distributions obtained through the other estimators. In the case of

the mock, the CDF-ANNz2, GPz and CDF-GPz estimators have similar chi-square

measures and their distributions fit better the spectroscopic redshift distribution

than the AvgPDF distribution.

Figure 3.3 shows the global metric values of each photometric redshift estimator

by using magnitudes and colors for GAMA test data and mock catalog. In order

to identify the cases and photometric redshift estimator used here, we employ the

following notation AvgPDF-ANNz2 (A1), CDF-ANNz2 (A2), GPz (G1), CDF-GPz

(G2). The final letter indicates whether we compute the photometric redshift via

magnitude-selected training (m) or color-selected training (c). Furthermore, the

bottom panel shows the chi-square measure given by equation (3.11) in each case.

We observe that the results obtained by using magnitudes and colors for the mock

catalog and the GAMA test data are similar. The scatter and the fraction FRe=0.15

for the photometric redshifts in the mock catalog are overall better than the equiva-

lent metrics for the GAMA test data. It is clear that the mock catalog is unable to
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properly model a ∼ 0.5 per cent catastrophic failure rate and have errors that are

slightly too optimistic, though the mock catalog has managed to simulate the over-

all qualities of the real data. We would expect larger photometric errors in the real

data due to additional sources of error not included in the mock catalogs, such as

the sky background on a given night or the effects of proximity to bright objects in

the sky. This similarity gives us confidence that these mock catalogs are suitable for

examining the degradation in the next section. The results obtained from the mock

catalog show the same qualitative trends as the results for the GAMA test data,

and we therefore claim that using the mock catalog for the performance degradation

analysis of the next section is suitable to show any degradation trends that would

also be observed in real data.
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Figure 3.1: Statistical analysis of zphot computed for GAMA survey by using magnitudes

and colors. Top: The two first columns are the scatter plots zspec against zphot for

each photometric redshift estimator. The last column are the zspec/zphot distributions.

Bottom: Metrics as function of photometric redshift for each estimator (left : magnitudes,

right: colors).
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Figure 3.2: Statistical analysis of zphot computed for the mock catalog by using magnitudes

and colors. Top: The two first columns are the scatter plots zspec against zphot for

each photometric redshift estimator. The last column are the zspec/zphot distributions.

Bottom: Metrics as function of photometric redshift for each estimator (left : magnitudes,

right: colors).
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Figure 3.3: Comparison of global metrics for GAMA test data and the mock catalog for

each photometric redshift estimator by using magnitudes and colors. Here we use the

following notation A1: AvgPDF-ANNz2, A2: CDF-ANNz2, G1: GPz, G2: CDF-GPz.

The last letter indicates whether we compute the zphot via the magnitudes (m) or colors

(c). The bottom plot is the chi-square measure (Dχ2) which compares the distribution

function for every estimator with the spectroscopic distribution function.

3.3.2 Performance degradation

Having established the qualitative equivalence between the observed data and the

mock catalogs, we will use the latter to evaluate the performance of the AvgPDF-

ANNz2, CDF-ANNz2, GPz and CDF-GPz estimators for a training that is not

representative in magnitude space. The idea being that we can safely extrapolate

a certain amount in the r-band magnitude given that we have a representative set

in color space. More specifically, we define several samples from the mock catalog,

by varying the r-band limiting magnitude in the range [19.4, 20.9] in steps of 0.1

magnitudes, i.e. with dmr = 0.1. Table 3.4 shows the number of objects for each

sample used in this analysis. For each testing set we use same the training and

validation sets that were used to estimate the photometric redshifts for the previous

mock catalog analysis. These training and validation sets are selected from the mock

catalog with a magnitude cut of r < 19.4. Since the training set is not representative

in the magnitude space of the deeper testing sets, we work in color space only to

estimate the photometric redshifts. Our goal is to demonstrate that we can obtain
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Table 3.4: Number of objects for each cut in the r-band.

Cut of r-band Number of objects Cut of r-band Number of objects
r < 19.4 200 288 r < 20.2 521 375
r < 19.5 228 005 r < 20.3 581 154
r < 19.6 258 472 r < 20.4 647 349
r < 19.7 292 526 r < 20.5 719 435
r < 19.8 330 181 r < 20.6 798 152
r < 19.9 371 363 r < 20.7 884 636
r < 20.0 416 572 r < 20.8 978 533
r < 20.1 466 394 r < 20.9 1 079 851

reliable redshift distributions for fainter objects if we ensure representativeness in

color space. This can help to mitigate the impact of the non-representativeness

problem in the training set of current large-scale structure surveys, where the avai-

lable spectroscopic data sets are usually shallower than the overlapping photometric

surveys.

We estimate the photometric redshifts by applying the same four estimators,

as were used in the previous analysis, to the different r-band selected samples. In

figure 3.4 we plot, for each sample, the recovered photometric redshifts against the

corresponding spectroscopic redshifts. We note that the scatter in the photometric

redshift recovery increases with increasing magnitude depth for all methods. More-

over, for fainter flux limits the scatter appears to increase with spectroscopic redshift.

This is expected as fainter galaxies will have larger photometric errors and hence

higher scatter in the photometric redshift space. On the other hand, we can see that

the AvgPDF-ANNz2 estimator is unable to recover photometric redshifts above (i.e.

zphot > 0.5), an effect that worsens for fainter magnitude cuts. This is also expected

due to the nature of the PDF fitting in ANNz2 and the lack of training galaxies in the

sample. This estimator has a higher precision but low accuracy as we tend to fainter

magnitudes. Note that the GPz and CDF-GPz estimators also struggle to recover

many redshifts beyond zphot ∼ 0.6. Indeed for every estimator the one-to-one corres-

pondence between spectroscopic and photometric redshift breaks down for redshifts

above zphot ∼ 0.6. For z > 0.6 there is significant scatter and bias in the recovered

redshifts, particularly in the samples with fainter magnitude selection. Figure 3.5

shows the distribution functions, as a function of limiting magnitude, for each of the

photometric redshift estimators that we consider. We note that the CDF-ANNz2

estimator provides a better fit to the spectroscopic redshift distribution than the
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other photometric redshift estimators in all samples.The distributions from the two

GPz estimators show good fit with the spectroscopic redshift distribution for all

r-band cuts brighter than r < 20.0. For fainter magnitude cuts, the distributions of

the estimated photometric redshifts have a peak in zphot ≈ 0.25 which is not present

in the spectroscopic redshift distribution. This peak comes hand in hand with a

mismatch at higher redshift. The effect is more prominent for the two GPz-based

photometric redshift estimators. This peak excess is caused by galaxies that are

identified with deeper magnitude selection and have a large spectroscopic redshift,

but are estimated to have a smaller photometric redshift. These galaxies can be

seen in the lower panels of figure 3.4 as a long tail extending to high spectroscopic

redshift. We conclude that the photometric redshift distributions are very similar

for magnitude limits brighter than r < 20.0.

In cosmological measurements with photometric large-scale structure surveys,

much of the information is obtained by splitting the galaxy sample in several photome-

tric redshift bins in order to measure auto- and cross-correlations between the sub-

samples in the different bins. We are therefore interested in assessing the accuracy

of the recovery of the redshift distribution in differential redshift bins. Figure 3.6

compares the stacking of the photometric redshift PDFs estimated through ANNz2

and GPz codes with the spectroscopic distribution for slices of photometric redshift

in all r-band magnitude cuts. We consider six photometric redshift bins of width

dzphot = 0.1 between 0.0 ≤ zphot ≤ 0.6. The selection of galaxies in each redshift slice

is performed with the AvgPDF-ANNz2 estimator for the ANNz2 case and with the

GPz estimator for the GPz case. Since the specific choice of galaxies in the slices is

different for each photometric redshift estimator, we compute the z-spec distribution

associated to each algorithm. We observe that the stacking of photometric redshift

computed with the ANNz2 algorithm fits better the spectroscopic distribution than

the GPz case. In the redshift bins within the range 0.1 ≤ z ≤ 0.4, there is good

agreement between the stacking for both algorithms and the spectroscopic redshift

distribution. However, for deeper cuts the results worsen and the stacking presents

differences with the spectroscopic redshift distribution for both cases ANNz2 and GPz.

The stacking (GPz) presents the greatest differences with the z-spec distribution in

the redshift slices 0.4 ≤ z ≤ 0.6.
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Figure 3.4: Scatter plots of z-spec against z-phot for r-band cuts in the range [19.4, 20.9] by

using the mock catalog. Here the colors are used as input for the photometric methods.

The training set and validation are obtained for r < 19.4. In the horizontal axis, we

indicate the photometric redshift estimator used and in the vertical axis we indicate the

r-band cut performed on mock catalog. Note that the scatter in the photometric redshift

recovery increases with increasing magnitude depth for all methods. Moreover, for fainter

flux limits the scatter increases with spectroscopic redshift.
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Figure 3.5: z-spec and redshift estimators distributions for r-band cuts in the range

[19.4, 20.9] by using the mock catalog. Note that for fainter magnitude cuts (i.e., the

cuts in the region [20.2, 20.9]), the distributions of the estimated photometric redshifts

have a peak in zphot ≈ 0.25 which is not present in spectroscopic redshift distribution and

a tail mismatch at higher z. The effect is greater for the photometric redshift estimators

obtained via the GPz algorithm. In generally, the CDF-ANNz2 distribution fits better the

z-spec distribution than the distributions obtained through the other estimators.
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Figure 3.6: Comparison between the spectroscopic distribution and the stacking of photo-

metric redshift PDFs estimated through ANNz2 and GPz algorithms for slices of photometric

redshift in all r-band magnitude cuts. We estimate different z-spec distribution for each

used algorithm, since that the population of galaxies in the slices is different for each

photometric redshift estimator. Note that the stacking of photometric redshift computed

with ANNz2 algorithm fits better the spectroscopic distribution than the GPz case. Here

we use black solid line for z-spec (ANNz2), red dashed line for stacking (ANNz2), blue

solid line for z-spec (GPz) and green dashed line for stacking (GPz).



Chapter 3. Degradation analysis in the estimation of photometric redshifts 67

0.05

0.00

0.05

0.10
B

ia
s

r<19.4

AvgPDF ANNz2

CDF ANNz2

GPz

CDF GPz

r<19.5 r<19.6 r<19.7

0.05

0.00

0.05

0.10

B
ia

s

r<19.8 r<19.9 r<20.0 r<20.1

0.05

0.00

0.05

0.10

B
ia

s

r<20.2 r<20.3 r<20.4 r<20.5

0.0 0.2 0.4 0.6 0.8

zphot

0.05

0.00

0.05

0.10

B
ia

s

r<20.6

0.0 0.2 0.4 0.6 0.8

zphot

r<20.7

0.0 0.2 0.4 0.6 0.8

zphot

r<20.8

0.0 0.2 0.4 0.6 0.8

zphot

r<20.9

0.00
0.03
0.06
0.09
0.12

σ

r<19.4

AvgPDF ANNz2

CDF ANNz2

GPz

CDF GPz

r<19.5 r<19.6 r<19.7

0.00
0.03
0.06
0.09
0.12

σ

r<19.8 r<19.9 r<20.0 r<20.1

0.00
0.03
0.06
0.09
0.12

σ

r<20.2 r<20.3 r<20.4 r<20.5

0.0 0.2 0.4 0.6 0.8

zphot

0.00
0.03
0.06
0.09
0.12

σ

r<20.6

0.0 0.2 0.4 0.6 0.8

zphot

r<20.7

0.0 0.2 0.4 0.6 0.8

zphot

r<20.8

0.0 0.2 0.4 0.6 0.8

zphot

r<20.9

Figure 3.7: Bias (Top) and σ (Bottom) for r-band cuts in the range 19.4 ≤ r ≤ 20.9 by

using the mock catalog.
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Figure 3.8: σ68 (Top) and FRe=0.15 (Bottom) for r-band cuts in the range 19.4 ≤ r ≤ 20.9

by using the mock catalog.
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Figure 3.9: Global metrics of each photometric redshift estimator as function of r-band

cut. The last figure is the chi-square measure (Dχ2) for the zspec distribution and zphot

one. We observe that the CDF-ANNz2 estimator has the best chi-square measure in all

r-band cuts. Moreover, we note that the GPz estimators present the lowest global scatter

and bias.

Figure 3.7 and figure 3.8 show the metrics in the range 0 < zphot < 1. We

see that the photometric redshift estimators have good metric values in the range

0 < zphot < 0.4 for all r-band cuts. In this redshift range the metrics slightly worse

for deeper cuts. We note that the bias and scatter computed for the estimators based

on Gaussian GPz grow faster than the CDF-ANNz2 estimator in hight redshift and

this is more evident for r > 20.0. Figure 3.9 shows the global metric values and the

chi-square measure as function of r-band cut. The metric values worsen towards

deeper magnitude limits, as we might expect. However, for each of the photometric

redshift estimators the fraction FRe=0.15 remains above 99.5 per cent until r ≈ 20.2.

The AvgPDF-ANNz2 and CDF-ANNz2 estimators have the highest scatter and bias,

though the CDF-ANNz2 estimator has the best chi-square measure for all r-band

cuts. The GPz and CDF-GPz estimators present the lowest global scatter and bias,

as well as high values for the global fraction FRe=0.15. These estimators also have a

low chi-square measure.

Here the focus has been on comparing the different redshift runs. But for the

science applications of these results, the important point is that for the best of
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the estimators (CDF-ANNz2), we can push the magnitude limit to a deeper range,

and the degradation of redshift performance is only gradual. The performed test in

slices of redshift shows us that the ANNz2 code achieves good results in high redshifts

for fainter magnitude cuts unlike to GPz code. Note that the Monte-Carlo method

allows us to improve the accuracy of the photometric redshift values if we know the

full photometric redshift PDF for every galaxy in the survey as is the ANNz2 case.

3.4 Implication for detection of galaxy clusters

The reduced cost of measuring photometric redshifts, compared to spectroscopic

redshifts, means that we are able to obtain photometric redshifts for many more

objects more rapidly. As such, we are able probe larger cosmological volumes with

photometric galaxy surveys, which is statistically beneficial for many cosmological

analyses. Galaxy clusters are statistically very rare objects, at the extreme high

mass end of the halo mass function, and so to maximize counts we need to probe

large volumes. On the other hand, for the detection of galaxy clusters we need to

ascertain with as great an accuracy as possible which galaxies are members of the

cluster and which are not For this we need as accurate and precise redshift mea-

surements as possible. Furthermore, to measure the halo mass function we need

to estimate the halo mass of clusters. One way is to estimate the mass dynami-

cally, for which we need to accurately know the positions of the cluster members

to high precision, see Borgani & Guzzo (2001); Borgani et al. (2001); Voit (2005);

Allen et al. (2011); Kravtsov & Borgani (2012). Therefore it is very important

to estimate the photometric redshifts with accuracy and precision for minimize the

impact on the systematic errors in the estimated number cluster count and subse-

quent cosmological analysis. The main aim here is to examine the implications to

use a non-representative training data set for estimating photometric redshift at the

time of detecting galaxy clusters with methods that are sensitive to the density of

galaxies in a field such as Voronoi Tessellation (VT) or kernel density estimation,

see chapter 4. In addition, we want to know the impact in each photometric redshift

estimator used in this work.

In redshift regions with higher density of galaxies we expect to find more galaxy

clusters. Therefore in order to estimate the number of galaxy clusters that we can

detect with a given redshift survey, we first compute the number density of galaxies

as a function of redshift, n(z). This is equal to the number of galaxies, N , per
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comoving volume, V , and given by,

n(z) =
dN

dV
=

dN

dz

dz

dV
=

dN

dz
fc(z), (3.14)

where

fc(z) ≡ H(z)

D2
c (z)∆Ω

. (3.15)

Here dN/dz corresponds to the galaxy redshift distribution, ∆Ω is the angular area

that the galaxy catalogue covers, H(z) is the Hubble parameter and Dc is the

comoving distance.
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Figure 3.10: Comparison of number of galaxies per comoving volume element computed

by using each photometric redshift estimator with the spectroscopic redshift case. We

compute the relative error ∆n times the function fc(z) (this function contains the cos-

mological information, see equation (3.15)) between density of galaxies for z-spec and the

density of galaxies for each redshift estimator. This process is performed for all r-band

cuts. Note that the CDF-ANNz2 estimator allows us to detect galaxy clusters agreement

with the z-spec data for deeper cuts in the r-band magnitude and highest redshifts, hence

we expect that the galaxy cluster catalog obtained by employing this photometric redshift

estimator is purer until high redshifts than in other cases.

We compare the density of galaxies estimated using the photometric redshift

distribution for each photometric redshift estimator with the density of galaxies

estimated using the spectroscopic redshift. We make this comparison for each of

our r-band magnitude cuts. To quantify this comparison, we use the function fc(z)

times the relative error between the two number densities, thus we have

fc∆n ≡
H

D2
A∆Ω

∣∣∣1− n

n̄

∣∣∣ , (3.16)



Chapter 3. Degradation analysis in the estimation of photometric redshifts 73

where n is the number density of galaxies from the photometric redshift estimators

and n̄ is the number density of galaxies from the spectroscopic redshift. This quan-

tity is relevant as we would like to have a cluster detection method based on density

estimation which is not affected by detection in the n(z) function inferring incorrect-

ly a different density of galaxies at that redshift. We note that this calculation is

not applicable to color based methods to finding galaxy clusters.

Figure 3.10 shows the amount described in equation (3.16) using AvgPDF-

ANNz2, CDF-ANNz2, GPz and CDF-GPz estimators. In each panel darker colors

correspond to smaller values for fc∆n, which indicates regions in the magnitude ver-

sus redshift space where the number densities derived from photometric redshifts are

equal to the number densities from spectroscopic redshifts. Therefore in such regions

we could robustly detect a galaxy cluster using both spectroscopic and photometric

redshifts. Note that for the CDF-ANNz2 estimator we see more darker regions at

higher redshifts suggesting that with this estimator we can more robustly detect

galaxy clusters at higher redshift with deeper r-band selected samples. Hence we

would expect that a galaxy cluster catalog obtained with this photometric redshift

estimator would be purer, out to higher redshift, compared to catalogs build with

the other estimators. In other words, this result suggests that of all of the pho-

tometric redshift estimators considered, the CDF-ANNz2 estimator would provide

the most accurate detection of galaxy clusters. The AvgPDF-ANNz2 estimator has

the best results in the region z ∼ [0.25, 0.50] and deeper r-band magnitude cuts.

The GPz estimators have good results for the initial magnitude cuts. However,

for deeper cuts, we observe that in the redshift range z ∼ [0.2, 0.3], the GPz-based

estimators have larger values for fc∆n than the ANNz2-based estimators (i.e. the

GPz-based estimators have fewer darker regions than the ANNz2-based estimators).

This is understandable as this within this redshift range where, in the lower panels

of figure 3.5, we saw a spurious peak in the photometric redshifts from the GPz-

based estimators. We conclude that the results presented here can be used to guide

parameter optimization of cluster finding algorithms.

3.5 Conclusions and remarks

Photometric redshifts allow us to probe much larger volumes of the Universe than it

is possible with spectroscopic redshifts, but they have large measurement uncertain-

ties. Machine learning methods are often used to estimate photometric redshifts, but
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these estimators must be trained using existing spectroscopically detected datasets,

which probe a limited volume. There is much uncertainty regarding the reliabi-

lity of measured photometric redshifts when the spectroscopic training set is not

representative of the photometric dataset. In this chapter we have investigated the

degradation in the accuracy and precision of the recovered of photometric redshifts

when two machine learning methods, applied to deep photometric datasets, are

trained using much shallower and brighter spectroscopic samples. We have used

the ANNz2 and GPz machine learning codes for estimating the photometric redshifts

with four colors instead of all five magnitudes as input, ensuring representativeness

only in this subspace, and evaluated the consequences, both in SDSS DR12 data

trained on GAMA spectra, and on mock catalogs. For this analysis, we also uti-

lize the Monte-Carlo random sampling for defining a photometric redshift estimator

based on the cumulative distribution function (CDF) of the redshift probability dis-

tribution function (PDF). Altogether we use four photometric redshift estimators

in this work; AvgPDF-ANNz2, CDF-ANNz2, GPz and CDF-GPz, which we define

and introduce in section 3.2.

We start by showing that, for a representative training data set in the magnitude

space, the photometric redshifts obtained using the ANNz2 and GPz algorithms dis-

play the similar quality, either using magnitude-selected or color-selected training

sets as input. We estimate the photometric redshift for the samples GAMA DEEP

and GAMA MAIN (subsamples from the SDSS DR12 data with GAMA selections,

see section 3.1.3), which are trained by the spectroscopic GAMA survey. In general,

we find that the results in the metrics obtained for the mock catalogue display si-

milar trends to the results metrics obtained for the GAMA test data. We observe

that the photometric redshift distribution obtained with the CDF-ANNz2 estimator

is the most consistent with the spectroscopic redshift distribution for the GAMA

test data. We note that the distribution of the photometric redshifts obtained with

those estimators that sample the CDF are a better fit to the photometric redshift

PDF stacking of all galaxies in the data set. Nonetheless, these estimators yield a

greater scatter than the other estimators.

We proceed to analyze samples of the mock catalog selected using progressively

deeper cuts in the r-band magnitude in order to study the degradation of the photo-

metric redshifts obtained from the AvgPDF-ANNz2, CDF-ANNz2, GPz and CDF-

GPz estimators when the training data set is non-representative of a deeper pho-

tometric testing set. In each instance we use the same training data set selected
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with r < 19.4. The AvgPDF-ANNz2 estimator fails at high redshift and worsens

for deeper cuts. We consider that this result is due to the low density of galaxies in

the training set for this region. Comparatively, the CDF-ANNz2 estimator shows

better performance at higher redshifts, albeit with larger scatter. We observe that

the CDF-ANNz2 estimator has the best chi-square measure for all r-band selections.

The GPz and CDF-GPz estimators, appear to provide more reliable results at low

redshifts. Nevertheless for deeper cuts, we observe that these estimators tend to

under-estimate the redshifts of high-redshift spectroscopic galaxies leading to an ex-

cess of photometric redshifts at the peak of the redshift distribution and a mismatch

in the tail of the distribution. For the scatter plots between spectroscopic redshifts

and photometric redshifts as well as the n(z) plots up to r < 20.0 we observe very

good results in all photometric redshift estimators, see figure 3.4 and figure 3.5.

In order to quantify the impact of the photometric redshifts in the detection

of galaxy clusters, we compute the number of galaxies per comoving volume for

each redshift estimator (i.e., the number density of galaxies). The depth of the

cut is directly related with the density of galaxies and hence the number of galaxy

clusters detected. For deeper cuts we can detect more galaxy clusters and improve

the redshift depth. However, we show that the estimated photometric redshifts

become poorer quality for deeper cuts. The density of galaxies given by CDF-

ANNz2 estimator has the least error according to the number density of galaxies

given by spectroscopic redshift data in deeper cuts and high redshifts. For lower

redshifts and cuts, the other estimators have better results, nonetheless the CDF-

ANNz2 estimator also has good results. We conclude that the results here can

improve detectability of clusters with density based detection methods.



Chapter 4

Galaxy cluster finder combining VT and FOF

techniques

Galaxy clusters are the largest gravitationally bound objects observed in the Uni-

verse. Given that galaxies are tracers of dark matter, galaxy clusters allow us to

study the formation and evolution of large-scale structure. Galaxy cluster num-

ber counts have been used to constrain cosmological parameters (Battye & Weller

(2003); Mantz et al. (2010); Allen et al. (2011); Mana et al. (2013)). George

O. Abell pioneered the observation of galaxy clusters. Abell (1958) assembled the

first large sample of clusters in the Northern sky. Abell et al. (1989) added to this

sample with a large galaxy cluster catalog including the Southern sky. The above

works marked the beginning of a whole science on detection of groups and clusters

of galaxies in the Universe. The following methods are commonly used to detect

galaxy clusters: X-ray observations of the Intra-Cluster medium (ICM), which is a

hot baryonic gas with the high kinetic energy; the Sunyaev-Zel’dovich effect, which is

a result of the inverse Compton scattering of CMB photons when they pass through

the ICM; gravitational lensing, which is associated with the high mass concentration

contained in the galaxy cluster that bends light rays passing near to it according to

general relativity; and optical and near-infrared observations, which are based on

looking for overdensities in the photometric or spectroscopic surveys of galaxies.

To find optical galaxy clusters in a photometric survey it is necessary to employ

cluster-finding algorithms that employ techniques that take into account the angu-

lar clustering of the galaxies and their photometric redshifts (Ramella et al. (2001);

Botzler et al. (2004); Lopes et al. (2004); Berlind et al. (2006); Soares-Santos et

al. (2011); Hung-Yu et al. (2014)) or by utilizing the cluster red-sequence method

(Gladders et al. (2007); Gal et al. (2009); Hao et al. (2010); Rykoff et al. (2014);

76
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Rykoff et al. (2016)). The latter technique takes advantage of the fact that generally

a giant elliptical galaxy, which is called brightest cluster galaxy (BCG), is nearby

the center of cluster. Several projects that are currently being developed, such as

the Dark Energy Survey (DES)∗, the Large Synoptic Survey Telescope (LSST)†, the

Javalambre Physics of the Accelerating Universe Astrophysical Survey (J-PAS)‡,

among others, will provide large galaxy catalogs from which we can probe the dis-

tribution of clusters in the Universe.

Commonly used geometric algorithms for detecting clusters that use the photo-

metric redshifts of the galaxies include Voronoi Tessellation (VT) (Voronoi (1907))

and Friends of Friends (FOF) (Huchra & Geller (1982)). In this work, our main aim

is to detect galaxy clusters by using the photometric redshifts from a sample of the

SDSS DR12 survey. Our cluster-finding algorithm, which we call henceforth VT-

FOFz, combines both Voronoi Tessellation and Friends of Friends techniques. The

galaxies that form part of a cluster are those that lie in overdense regions, hence we

select as potential cluster member candidates those galaxies that have small Voronoi

cell volume (i.e., galaxies with larger Voronoi density) at a given redshift. After-

wards, in order to detect the galaxy clusters from the sample of candidate galaxies,

we employ the FOF algorithm provided by Farrens et al. (2011) which is based on

that described in Botzler et al. (2004). To evaluate the efficiency of the method, we

run the VT-FOFz cluster finder on a mock galaxy catalog. For this, we compute

the completeness and purity. We perform a statistical analysis using the number

counts of detected clusters and mock halo number counts, while requiring that the

detected clusters match with the largest number of haloes. In addition, we run the

cluster finder on a sample of SDSS DR12 survey and we compare the results ob-

tained with the galaxy clusters detected by the redMaPPer cluster finder, see Rykoff

et al. (2014). The analysis is performed for r-band magnitude cuts in the range

19.4 < r < 20.9, in order to evaluate the impact of the photometric redshift via a

non-representative training data set in magnitude space, see chapter 3. We expect

to recover a large volume of galaxy clusters detected by the redMaPPer code.

This chapter is organized as follows: Section 4.1 describes the mock catalogs

used in this work, moreover we describe the selection criteria to choose the galaxies

from the SDSS DR12 survey and we present the main features of the galaxy cluster

∗〈http://www.darkenergysurvey.org〉
†〈http://www.lsst.org〉
‡〈http://www.darkenergysurvey.org〉

http://www.darkenergysurvey.org
http://www.lsst.org
http://www.darkenergysurvey.org
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catalog given by Rykoff et al. (2014). Section 4.2 describes the VT-FOFz cluster

finder. In section 4.3 we perform a statistical analysis using the mock catalog. Here,

we explain the method employed for determining a match between the detected

galaxy clusters and the simulated haloes, furthermore we define the completeness

and purity. Section 4.4, presents the galaxy clusters detected from the sample of

SDSS DR12 data, furthermore we compare the VT-FOFz and redMaPPer cluster

catalogs. Finally, in section 4.5 we present the conclusions of this chapter. This

work is presented in the paper Rivera et al. (2017b) (II-prep.).

4.1 Data

In this section we describe the mock catalogs used to perform the statistical analysis

of the VT-FOFz cluster finder. We employ these catalogs to evaluate the perfor-

mance of the cluster finder by calculating the completeness and purity which quantify

the reliability of the estimated galaxy cluster catalog. In addition, we describe the

photometric redshift survey based on the SDSS DR12 survey which is employed to

detect the galaxy clusters via the VT-FOFz algorithm.

4.1.1 Mock catalogs

For the performance analysis we use the mock galaxy catalog described in sec-

tion 3.1.1. We apply a similar i-band magnitude cut i < 21 to obtain a subsample

with “SDSS-like” cuts. In total we have 1 876 505 galaxies, out to a redshift of

z < 1.62 and a mean redshift of zmean ≈ 0.35. In order to avoid catastrophic re-

sults, we only consider galaxies with redshift error smaller than 0.15. We use the

photometric redshifts estimated in chapter 3. Here, we choose the photometric red-

shift estimated by the ANNz2 code (Sadeh et al. (2016)) the single value for the

photometric redshift is determined from the inverse of the cumulative distribution

function, see chapter 3. The training data set has a r-band magnitude cut r < 19.4

and is used in color space to avoid non-representativeness problems in the magni-

tude space. We choose this redshift estimator because, despite having large scatter,

its associated photometric redshift distribution fits very well with the true redshift

distribution, which allows us to improve the detection of galaxy clusters.

We also use the mock dark matter halo catalog associated to the galaxy mock

catalog. The dark matter haloes which populate the mock catalog are provided by

the Millennium Simulation, which is a 21603 particle N -body simulation for ΛCDM



Chapter 4. Galaxy cluster finder combining VT and FOF techniques 79

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6
log10NHalo

14.0

14.2

14.4

14.6

14.8

15.0

15.2

15.4

lo
g

10
(M

H
al

o
/[
M
¯
h
−

1
])

Figure 4.1: Scatter plot between halo mass and number of galaxies inhabiting the halo.

Note that the mass selection sets the minimum number of galaxies which must be con-

sidered for the cluster finder in the mock catalog. In order to include the scatter in the

observable-mass relation and the possible bias, we set that Ng,obs,min = 10.

cosmology (Springel et al. (2005)). The mock encompasses a cubic volume of side

500 h−1 Mpc, in which the dark matter field is evolved from redshift z = 127 until

the present. The simulation considers haloes with a minimum of 20 particles for

a halo resolution of Mhalo,lim = 1.72 × 1010h−1M�. The adopted ΛCDM model

has the following parameters: Ωb = 0.045, Ωm = 0.25, ΩΛ = 0.75, h = 0.73h,

ns = 1 and σ8 = 0.9 according to the cosmological parameters estimated from

the first year results from the WMAP (Spergel et al. (2003)). For our analysis

we consider dark matter haloes with mass M ≥ 1014M�h
−1 and redshift z ≤ 0.5.

This threshold redshift is chosen because the estimated photometric redshifts in

the galaxy mock catalog are reliable up to this limit, see chapter 3. Note that

the mass selection determines the minimum number of galaxy members required to

detect galaxy clusters according to figure 4.1. In order to include the scatter in the

observable-mass relation and the possible bias, we set Ng,obs,min = 10 for this work.

After mass and redshift selection we get a halo catalog with 1 903 objects.
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Figure 4.2: Number of galaxies per comoving volume versus the spectroscopic redshift

(true redshift) in each r-band cut for the mock catalog. We note that for deeper cuts, the

density of galaxies is highest in each spectroscopic redshift. Thus, if we perform a cut in

low magnitude, we can lose galaxy clusters and we can increase the error in cosmological

studies. For high redshifts, the density of galaxies is low. Therefore, in this region we

expect to detect less galaxy clusters.

4.1.2 GAMA DEEP survey

The GAMA DEEP survey is a photometric redshift catalog in which the photo-

metric data are obtained from the SDSS DR12 survey with “GAMA-like” cuts and

without magnitude limit, as it is described in section 3.1.3. The photometric red-

shifts are estimated using the ANNz2 code. This sample was trained using the color

space in order to avoid problems of non-representativeness in the magnitude space.

Section 3.3.1 shows that the quality of estimated redshifts is kept when using the

magnitudes or the colors as input. The single value for the photometric redshift is

estimated through the Monte Carlo sampling method (i.e., the method based on the
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inverse of the cumulative function). Figure 4.3 shows the number of galaxies per co-

moving volume for true redshifts from the mock catalog, the estimated photometric

redshifts from the mock catalog and the estimated photometric redshifts from the

GAMA DEEP survey. We note that the estimated number density of galaxies from

the true redshifts and photometric redshifts for the mock catalog agree very well.

On the other hand, the number density of galaxies in the GAMA DEEP survey is

greater than the mock catalog case in z ∈ [0, 0.33], especially at z ≈ 0.3 we observe

a little peak in the GAMA DEEP. Hence in this redshift, we expect to detect more

galaxy clusters in the GAMA DEEP survey than in the mock galaxy catalog. For

higher redshifts, the number density of galaxies drops faster in the GAMA DEEP

survey than in the mock catalog. Note that the above result is independent of r-band

magnitude cuts. Indeed, the number density of galaxies experiences few changes for

cuts with r ≥ 20.6, see figure 4.2.
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Figure 4.3: Number of galaxies per comoving volume for true redshifts from the mock

catalog, the estimated photometric redshifts from the mock catalog and the estimated

photometric redshifts from the GAMA DEEP survey. Note that the estimated number

density of galaxies from the true redshifts and photometric redshifts for the mock catalog

agree very well. On the other hand, the number density of galaxies in the GAMA DEEP

survey is greater than the mock catalog case z ∈ [0, 0.33], especially at z ≈ 0.3 we observe a

little peak in the GAMA DEEP case. For higher redshifts, the number density of galaxies

drops faster in the GAMA DEEP survey than in the mock catalog.

4.1.3 redMaPPer SDSS DR8 cluster catalog

The readMaPPer SDSS DR8§ cluster catalog was obtained by running the redMaP-

Per cluster-finding algorithm on a sample from SDSS DR8 photometric catalog. The

§〈http://risa.stanford.edu/redmapper/〉

http://risa.stanford.edu/redmapper/
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red-sequence Matched-filter Probabilistic Percolation (redMaPPer) code is a cluster

finder which detects optical clusters through the red sequence technique, see Rykoff

et al. (2014); Rykoff et al. (2016) for more details. The used photometric sample

covers a total angular area of ≈ 10 400 deg2 after applying the selection criteria de-

scribed in section 2 of Rykoff et al. (2014). The catalog contains galaxy clusters

with a richness cut λ ≥ 20S(zλ) in the redshift range zλ ∈ [0.08, 0.55] which mini-

mizes the edge effects from the training sample. Here the function S(zλ) is called

the scale factor and it defines the correction factor on the richness caused by the

survey depth. The chosen richness cut implies that the detected clusters should have

at least 20 galaxies above the limiting magnitude of the survey. This result agrees

to the threshold mass of M > 1014M� according to Rykoff et al. (2012). In total,

the catalog has 26 111 detected galaxy clusters.

4.2 Galaxy cluster finder

Here we describe the VT-FOFz cluster finder. This combines two techniques Voronoi

Tessellation (VT) (Voronoi (1907)) and Friends of Friends (FOF) (Huchra & Geller

(1982)) on a photometric redshift survey. Both techniques are frequently used to

find galaxy clusters. Ramella et al. (2001); Kim et al. (2002); Lopes et al. (2004);

Soares-Santos et al. (2011) used VT to find galaxy clusters, whereas Berlind et al.

(2006); Botzler et al. (2004); Farrens et al. (2011); Hung-Yu et al. (2014) used FOF

algorithm to look groups and clusters on galaxy surveys. The VT-FOFz software

package is split into two parts

1. Compute Voronoi regions for all galaxies and to establish the candidate gala-

xies to form clusters.

2. From the candidate galaxies catalog, we use the FOF code to find the galaxy

clusters.

In the remainder of the section we describe in detail the above steps.

4.2.1 Candidate galaxies to form clusters

In order to determine the candidate galaxies, we convert the astronomical coordi-

nates (α, δ, z) to Cartesian coordinates (X,Y ,Z), where α is the Right Ascension

angle, δ is the Declination angle and z is the cosmological redshift. We use the
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following transformation equations:

X = Dc cos(δ) cos(α), (4.1)

Y = Dc cos(δ) sin(α), (4.2)

Z = Dc sin(δ), (4.3)

where Dc is the comoving distance, see equation (2.77). With the galaxies in Carte-

sian coordinates, we split the catalog into boxes to parallelize the processes. Our

aim is to have approximately the same number of galaxies in each box, hence we use

the k-d tree algorithm, which organizes points in a k-dimensional space. To avoid

boundary problems at the time of merging the boxes, we introduce an overlap region

between nearest neighbors. To build that region, we compute the mean inter-galaxy

separation for each dimension

di = DiN
−1/3; i = 1, 2, 3, (4.4)

where N is the number of objects in the box and Di are the dimensions of the box.

Then, we add Nt(di/2) in each boundary of respective dimension, where Nt is a

parameter introduced to control the overlap region size. This way of making the

overlap allows us to take into account the spatial galaxy distribution for every box.

After the splitting the catalog, we establish Voronoi cells for each galaxy by

using the open source software library Voro++¶. This library computes Voronoi

tessellations in 3d (Rycroft (2009)). The Voronoi volume of a galaxy is defined as

the sum of the volumes of all the cells that are closer to that galaxy than to any

other. Thus, in regions with high density of galaxies the Voronoi volumes should be

smaller than in regions with low density. The galaxy clusters with large number of

members are found in places with high density, thus the candidate galaxies to form

clusters have small Voronoi volumes. We define the Voronoi density as

ρvoro ≡
1

Vvoro

, (4.5)

where Vvoro is the Voronoi volume of galaxy. To recover the initial catalog in the

coordinates (α, δ, z) and to add ρvoro for each galaxy, we clean the galaxies in the

overlap region for all boxes. This cleanup method is valid when the overlap is large

¶〈http://math.lbl.gov/voro++/〉

http://math.lbl.gov/voro++/
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such that the Voronoi volume for the galaxies at the boundary is the true value.

Figure 4.4 shows an example of this method. Here, we set Nt = 4 as a good value

in order to build the overlap regions.

0 1 2 3 4 5 6 7 8 9
X

2

4

6

8

10

Y

1

2

3
4

567 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29
30

0 1 2 3 4 5 6 7 8 9
X

16

18

21

25

0 1 2 3 4 5 6 7 8 9
X

16

18

21

25

567 8

9

10

11

12

22

Figure 4.4: Example of the cleanup method used for a Voronoi tessellation in 2d. Left:

The solid rectangle represents a box without a region of overlap. Note that this split

contains the points {16, 18, 21, 25}. To find the true Voronoi regions of these points it

is necessary to add an overlap region (region between the solid rectangle and dashed

rectangle), which must contain the points {5, 6, 7, 8, 9, 10, 11, 12, 22}. Center and right:

Voronoi regions for the points contained in the box without and with the overlap region,

respectively.

According to the above assertion, the candidate galaxies to form clusters are

those with large ρvoro. However, we know that the redshift distribution of galaxies is

not constant (see previous chapter). To avoid mistakes in the selection, we split the

catalog into redshift bins, here we set 100 redshift bins. We define the percentage

of cut Pcut as the fraction of the densest galaxies which are selected to be candidate

galaxies. For each redshift bin, the Pcut parameter establishes a density threshold ρthr

which allows us to select galaxies with density above this threshold. The percentage

of cut is a free parameter.

4.2.2 Finding galaxy clusters through FOF

The FOF algorithm is a percolation method that allows us to find groups and

clusters in galaxy surveys. This method looks for galaxy pairs, that are nearer to

one another than a given linking length. The FOF method used for this work is the
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SFOF‖ code provided by Farrens et al. (2011) and based on work by Botzler et al.

(2004). After selection of the densest galaxies, we run the FOF code on catalog of

candidate galaxies. In order to optimize the runtime in this step, we perform an

additional splitting of the objects into overlapping patches in α− δ space. The code

can then be run on each patch independently.

SFOF percolates in angular space in bins of photometric redshift. The angular

distance Θ between two galaxies in the same bin is given by the following equation

cos(Θ) = sin(δ1) sin(δ2) + cos(δ1) cos(δ2) cos(α1 − α2). (4.6)

These galaxies are considered friends (i.e. linked) if they satisfy the condition Θ ≤
Θfriend, where Θfriend is the angular linking length. The transverse separation of two

objects in a redshift bin can be estimated through the comoving distance, δ` =

Dc(z)δθ, where δθ is the angular separation. Recall that in this work we consider a

flat Universe, thus the angular comoving distance is equal to the comoving distance.

The angular linking length is defined as

Θfriend =
δ`friend(z)

Dc(z)
, (4.7)

where δ`friend is the transverse linking length. Note that the mean inter-galaxy

separation `m for a redshift bin increases if the number of galaxies decreases. In

order to take into account this effect in the selection of galaxy cluster members, the

transverse linking length is defined as a function of the redshift

δ`friend(z) ≡ br
`m(z)

`m(zref)
. (4.8)

Here, br is a free parameter for the transverse linking length which must be provided

and zref is the reference redshift where the transverse linking length is equal to br.

Henceforth, when we talk about the transverse linking length we will be referring to

the br parameter. The mean inter-galaxy separation is computed by using the mean

superficial density of galaxies in the redshift bin, thus

`m(z) =

(
dN

dA

)−1/2

. (4.9)

‖〈https://github.com/sfarrens/sfof〉

https://github.com/sfarrens/sfof
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Since the bins are shallow, the following approximation is used

dN

dA
∝ dN

dV
=

dN

dz

dz

dV
. (4.10)

By using equation (4.7), equation (4.8) and equation (4.9) the angular linking length

can be written as

Θfriend =

(
dN

dz

dz

dV

)−1/2
Rref

Da(z)
, Rref = br

(
dN

dz

dz

dV

)1/2

zref

, (4.11)

where dN/dz is the photometric redshift distribution and dz/dV is given by the

comoving volume definition. In order to implement the photometric redshift errors

in the analysis, the method allocates a galaxy in a redshift bin if the following

condition is satisfied:

|zgal − zbin| ≤ bzdzgal, (4.12)

where zbin is the central redshift of the bin, dzgal is the photometric redshift error

of the galaxy and bz is the free parameter for the line-of-sight linking length. Here

bz is a factor that determines the number of galaxies which are allocated along the

line-of-sight. The process of finding galaxy clusters in each redshift bin is performed

independently. As galaxies can exist in multiple bins, it is possible to form proto-

clusters in different bins with common members. When finishing the search for

clusters in all redshift bins, the proto-clusters with common members are merged to

form the final detections and build the galaxy cluster catalog.

The cluster center in Right Ascension, Declination and redshift, is computed

as the median of the galaxy members. The errors are computed via the standard

error on the median. The richness is defined as the number of galaxy members in

cluster. The cluster radius is calculated as the distance from the cluster center to

the position of the farthest member.

Figure 4.5 shows all the steps performed to detect galaxy clusters using the VT-

FOFz pipeline. In summary, the VT-FOFz cluster finder has three free parameters

Pcut, br and bz, which must be calibrated.

4.3 Performance of the cluster finder

In order to assess the performance of the VT-FOFz cluster finder we perform a

statistical analysis using the mock catalogs described in section 4.1.1. We compute
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Figure 4.5: Flow diagram of steps used in the VT-FOFz cluster finder. The red boxes

indicate the key steps and the associated free parameter. Here Pcut is the fraction of the

densest galaxies which allows us to select the candidate galaxies to form the clusters, br

is the transverse linking length parameter and bz is a factor which determines the how

galaxies are distributed along the line-of-sight.

the purity (P) and the completeness (C) properties of the cluster catalogs. The

values of P and C depend on the definition used for determining matches between

the galaxy clusters observed and the dark matter haloes, see Farrens et al. (2011);

Soares-Santos et al. (2011); Hung-Yu et al. (2014). These quantities characterize

the overall fidelity of the resulting galaxy cluster catalogs.

4.3.1 Matching between halos and galaxy clusters

We implement a cylindrical method for identifying matches between the dark matter

haloes and the detected galaxy clusters. The mock halo catalog is rank ordered by

the number of galaxy members contained within the halo Ng, whereas the cluster

catalog is rank ordered by the number of galaxies in each cluster Ng,obs (i.e. the

richness of the cluster). For each mock halo, we compute the radius R200 which is

defined by a sphere of overdensity equal to 200 with respect to the mean density

of the Universe. We define the matching threshold region for a halo as a cylinder

with radius R200 around the halo center and a height in the line-of-sight given by

2dzmax(1+z), where dz is related to the associated redshift error in the catalogs. We

require that any potential match be within the boundaries defined by the members

of the halo (i.e. the maximum extent for RA-Dec set by the galaxy member farthest

from the halo center). After that, we take the highest ranked halo and we search the

highest ranked clusters detected within the matching threshold region. We repeat

the same process for all haloes by keeping the rank order. Only unique matches are
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allowed. Therefore if there are multiple clusters with equal rank, the object closest

to the halo center is chosen as the match.

The completeness is defined as the fraction of haloes which are matched with the

detected galaxy clusters. On the other hand, the purity is defined as the fraction of

detections that corresponds to the haloes. Thus, we have

C(zh,M) =
Nmatches

Nhalos

, P(zc, Ng,obs) =
Nmatches

Nclusters

. (4.13)

We observe that the completeness depends on the mass (M) and the halo redshift

(zh), whereas the purity depends on the number of cluster members (Ng,obs) and on

the cluster photometric redshift (zc). The global completeness is defined as

Cglobal ≡

(
N∑
i

C2(zi, > M∗)

N

)1/2

, (4.14)

and the global purity is defined as

Pglobal ≡

(
N∑
i

P2(zi, > N∗g,obs)

N

)1/2

, (4.15)

for a M > M∗ and Ng,obs > N∗g,obs respectively. Note that we are computing the

root mean square in a set of redshift bins for the completeness and purity.

4.3.2 Calibrating free parameters of the cluster finder

The VT-FOFz cluster finder has three free parameters (Pcut, br and bz) which must

be adjusted in order to detect galaxy clusters in a photometric galaxy survey. By

using the mock catalogs described in section 4.1 we can calibrate the free parameters.

For this analysis, we define several samples from the mock galaxy catalog, by varying

the cut in the r-band magnitude in the range 19.4 < r < 20.9 with dmr = 0.1. Note

that the parameter values depend on the spatial distribution of galaxies, therefore

the obtained results are only valid for the mock galaxy sample used. Nevertheless,

the values estimated from the mock sample allow us to have an a priori knowledge

about the values which must be used at moment to run the cluster finder in the

GAMA DEEP catalog.

The method for calibrating the parameter set has two phases. Initially we es-

timate the parameters (b∗r, b
∗
z) such that the number of matches is maximum for
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Table 4.1: Values obtained for the free parameters, threshold redshift and galaxy clusters

detected after maximizing the global completeness and the likelihood function.

Cut of r-band P ∗cut b∗r b∗z zth Nclusters Nmatches

r < 19.4 0.347 1.758 1.420 0.2325 229 124
r < 19.5 0.400 1.585 1.409 0.2525 424 221
r < 19.6 0.360 1.414 1.456 0.2575 447 224
r < 19.7 0.401 1.157 1.578 0.2725 562 262
r < 19.8 0.322 1.074 1.547 0.2925 507 260
r < 19.9 0.434 0.792 1.992 0.3025 719 332
r < 20.0 0.371 0.828 1.570 0.3075 714 330
r < 20.1 0.345 0.587 1.938 0.3225 529 295
r < 20.2 0.416 0.539 1.931 0.3475 788 378
r < 20.3 0.387 0.515 1.957 0.3525 864 420
r < 20.4 0.400 0.471 1.728 0.3625 873 434
r < 20.5 0.350 0.454 1.705 0.3725 873 444
r < 20.6 0.344 0.425 1.747 0.3825 975 463
r < 20.7 0.341 0.409 1.550 0.4025 1 006 476
r < 20.8 0.416 0.318 1.914 0.4125 1 161 540
r < 20.9 0.362 0.314 1.910 0.4225 1 177 559

Pcut = 1.0. In other words, we maximize the global completeness by varying br, bz,

without Voronoi cuts, then

b∗r, b
∗
z = arg max

br, bz

Cglobal(br, bz), Pcut = 1.0. (4.16)

The redshift range used here is z ∈ [0, 0.5] and the number of bins is 10. We

use the Scipy Differential Evolution method∗∗ to maximize the function given in

equation (4.16). We repeat this process for all considered r-band magnitude cuts.

To determine the matches between haloes and the detected galaxy clusters we set a

conservative value for dz = 0.025, which is consistent to the value of the estimated

photometric redshift scatter for the galaxy mock catalog in z ∈ [0.0, 0.5] (i.e., σphot ≈
2dz), see chapter 3. In order to calibrate the Pcut parameter, we perform a maximum

likelihood analysis by comparing the redshift distribution of the detected galaxy

clusters and the halos by using Poisson statistics. We constrain the maximum

redshift in the analysis for each magnitude r-band cut. Note that the Voronoi

density allows us to set the densest regions. Hence, in this step, we are removing

∗∗〈https:
//docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.optimize.differential evolution.html〉

https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.optimize.differential_evolution.html
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impurities and avoiding false detections, thus obtaining more reliable results. The

limit is defined by the redshift in which the number density of galaxies according

to the mock catalog begins to be very low, see figure 4.2. Here we set that the

threshold redshift zth for each r-band cut is defined as

zth ≡ max
i
,

{
zi :

dN

dV
(zi) > 10−3 h3 Mpc−3

}
. (4.17)

The likelihood function used in this analysis is given by

L(C|H) =
∏
k

HCk
k exp (−Hk)

Ck!
, (4.18)

where Ck are the galaxy cluster number counts and Hk are the halo number counts

for the k-th redshift bin.

Figure 4.6 shows − ln(L) as a function of Pcut for all r-band cuts. Note that

the values which maximize the likelihood for all magnitude cuts are in the range

Pcut ∈ [0.32, 0.44]. This means that approximately 40% of the densest galaxies

are candidates to form galaxy clusters, regardless of the cut in r-band magnitude.

Table 4.1 shows the threshold redshift, the values obtained for P ∗cut, b
∗
r and b∗z, and

the detected number of clusters by using the method described in this section for all

magnitude cuts. We observe that the br parameter decreases for deeper magnitude

cuts. This effect is due to the fact that for deeper cuts we have more available

galaxies, hence the transversal linking length tends to be smaller. The above effect

is opposite in the line-of-sight linking length because this parameter depends on the

photometric redshift quality, therefore it is important to remark that, for deeper

cuts, bz tends to be greater as redshift quality gets worse.

Figure 4.7 shows number counts as a function of redshift for the dark matter

haloes, galaxy clusters without cut in the Voronoi density and galaxy clusters with

cut in the Voronoi density determined by the value which maximizes the likelihood

function, equation (4.18). Here, we use the values b∗r and b∗z which maximize the

global completeness. We observe that the Pcut parameter allows us to select the

galaxy clusters with the densest galaxies which are better adjusted to the halo

number in each redshift bin. This result is important for performing a cosmological

analysis. For deeper r-band cuts, we note that the galaxy cluster number counts

adjust better to the halo number counts. Nevertheless, we note that in those cases,

the estimated photometric redshifts are of low quality, see chapter 3. Therefore, we
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could have problems to detect the true galaxy clusters in deeper cuts (i.e, galaxy

cluster catalog with high completeness and low purity).
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Figure 4.6: Likelihood function against Pcut free parameter for each r-band magnitude

cut. We observe that the maximum value of likelihood independent of r-band cut is in the

range Pcut ∈ [0.32, 0.44]. This means that approximately the 40% of the densest galaxies

are candidates to form galaxy clusters, independently of the magnitude cut.
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Figure 4.7: Number counts versus redshift for haloes and clusters with Pcut = 1.0, and clus-

ters with Pcut equal to the value which maximizes the likelihood function, equation (4.18).

Note that in the case without the cut in the Voronoi density, the galaxy cluster number

counts overestimate the halo number counts. Therefore, the value of Pcut allows us to

select the galaxy clusters that are better adjusted to the halo number in each redshift bin.

The dotted black line represents the threshold redshift for each r-band cut.
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4.3.3 Completeness and purity

We perform a statistical comparison between the detected galaxy clusters and the

dark matter haloes. For assessing the performance of the VT-FOFz cluster finder,

we compute the completeness and purity. We employ the values given in table 4.1

for the free parameters Pcut, br and bz.

Figure 4.8 and figure 4.9 show the completeness and purity respectively according

to the definition presented in section 4.3.1. The completeness depends on the mass

of haloes and the purity depends on the number of the cluster members. Since both

of these quantities depend on the redshift, we split the halo sample and the cluster

catalogs in redshift bins with dz ≈ 0.17. For both figures we have used the following

convention: the black solid line is the bin z ∈ [0.0, 0.17], the red dashed line is the

bin z ∈ [0.17, 0.33] and the blue dotted line is the bin z ∈ [0.33, 0.5].

For high redshift, we detect less clusters according to the density of galaxies

(see figure 4.2) and as such the completeness worsens. Nevertheless, a large amount

of the few detected galaxy clusters are matched with the haloes in that redshift

region, thus implying high purity. In deeper cuts we see that the completeness and

purity improve for all redshift bins. Since we are adding fainter galaxies to the

mock sample, we can detect new clusters in regions where apparently there were no

galaxy clusters according to conservatives r-band cuts. On the other hand, despite

r-band cuts, we obtain good values of completeness and purity for massive haloes

and clusters with a large number of members. Figure 4.10 shows the scatter plot

between the mass of haloes and the number of cluster members for the matches.

The massive halos tends to match clusters with a large number of members as we

expected, nevertheless we note that there is a large scatter in the observable-mass

relation.

Figure 4.11 shows the scatter plot between redshift of haloes and redshift of clus-

ters for the matches. For deeper r-band cuts, we achieve matches in higher redshifts,

although the dispersion increases. Moreover, in these cases we obtain more pure and

complete catalogs. Therefore, we observe that the low quality of the photometric

redshift for deeper r-band cuts do not produce a high impact in measuring com-

pleteness and purity. The most important factor is to have a photometric redshift

distribution in agreement with the true redshift distribution. In the next section

we will perform a more robust statistical analysis with the detected galaxy clusters

from the GAMA DEEP catalog.
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Figure 4.8: Completeness versus the mass of dark matter haloes for three redshift bins

in the range z ∈ [0.0, 0.5]. Note that the completeness worsens as the redshift increases

for all magnitude cuts. Moreover, for high mass, the completeness is greater than for low

mass as expected. For deeper r-band magnitude cuts and low redshifts, we attain high

completeness (> 0.8) for log10M > 10.4.
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Figure 4.9: Purity versus the number of cluster members for three redshift bins in the

range z ∈ [0.0, 0.5]. The purity improves considerably for deeper r-band cuts. Moreover,

unlike the completeness, for low redshift we observe that the purity decreases. For the last

two redshift bins and for deeper r-band magnitude cuts, we attain high purity (> 0.8) for

Ng,obs > 40.
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Figure 4.10: Scatter plot of the mass of haloes as a function of the number of cluster

members for the matches. The massive halos tend to match clusters with more members

as expected, nevertheless we note that there is a large scatter in the observable-mass

relation.
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Figure 4.11: Scatter plot of the redshift of haloes as a function of the redshift of clusters for

the matches. We note that the scatter is low including deeper r-band cuts. For r > 20.6,

we achieve matches at higher redshift, although the dispersion increases. The low scatter

is related to the conservative selection of dz.
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4.4 GAMA DEEP galaxy cluster catalog

We consider a subsample from the GAMA DEEP survey, we select the galaxies that

lie in a circle centered at RA, Dec = [180, 30] and radius 30 deg for a total area

≈ 2763 deg2 in the sky. For this analysis we consider r-band magnitude cuts in

the range r ∈ [20.6, 20.9] with dmr = 0.1. Recall that for these magnitude cuts

we obtain the best results of completeness and purity in the mock catalogs, see

section 4.3.3. Moreover, in these cases, the number density of galaxies experiences

few changes, see figure 4.2 and figure 4.3.

Given that the spatial distribution in the GAMA DEEP catalog is different to the

spatial distribution in the mock catalog, we choose different values for the fraction of

the densest galaxies and the transverse linking length parameter. In order to analyze

the impact of the Voronoi selection and the linking length parameter, we employ the

following set of values: Pcut = {1.0, 0.7, 0.5, 0.2} and br = {0.8b∗r, 0.7b∗r, 0.6b∗r},
where b∗r is the value given in table 4.1 for each r-band magnitude cut. Here, we use

the b∗z value estimated for the mock catalogs. Unlike the mock catalog, we set the

condition Ng > 5 for the number of galaxy members in the detected clusters.

4.4.1 Comparison between GAMA DEEP cluster catalog and redMaP-

Per SDSS DR8

In this section we compare the galaxy clusters detected using the VT-FOFz cluster

finder in the GAMA DEEP catalog with those listed in the redMaPPer SDSS DR8

catalog (Rykoff et al. (2014)). We select a sample of the redMaPPer SDSS DR8

which lies in the same angular region chosen for the sample of the GAMA DEEP

catalog given previously.

In order to find the matches between the galaxy clusters in the GAMA DEEP

catalog and the redMaPPer SDSS DR8 catalog, we develop a similar code to that

described in section 4.3.1. Initially the redMaPPer SDSS DR8 catalog is rank or-

dered by number of galaxy members contained within the cluster Ng and we set a

matching threshold region for every cluster in the catalog. The region is defined by

∆z = 2dz(1 + z), ∆RA = RAmax − RAmin and ∆Dec = Decmax − Decmin. To con-

sider the photometric redshift error in both redMaPPer clusters and GAMA DEEP

clusters, we set dz = 0.075. Afterwards, we look for all the GAMA DEEP clusters

which lie in the matching threshold region. All matches must satisfy the following
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criterion

Clmatch = min
i∈U

{∣∣∣∣∣1− N i
g,rM

N i
g,GD

∣∣∣∣∣Di
ang

}
, (4.19)

where U is the set of galaxy clusters that inhabit the threshold region, N i
g,rM is the

number of galaxy members in the redMaPPer cluster, N i
g,GD is the number of galaxy

members the GAMA DEEP cluster and Di
ang is the angular distance between the

cluster candidate to be matched and the center of the threshold region. To avoid

multiple matching with the same galaxy cluster, we remove from the GAMA DEEP

catalog those clusters which have been selected as matching. We use equation (4.13)

to estimate the completeness and purity. We treat redMaPPer clusters in the same

way as the simulated dark matter haloes, hence the completeness measures the

fraction of redMaPPer clusters that we have been detected using the VT-FOFz

cluster finder. We run the VT-FOFz cluster finder on the GAMA DEEP catalog

performing two tests. In the first test, we fix the value of the transverse linking

length and we vary the Pcut parameter, we assume the following values br = 0.8b∗r

and Pcut = 1.0, 0.5, 0.2. In the second test, we fix the value of the Pcut parameter

and we vary the transverse linking length, we assume the following values Pcut = 0.7

and br = 0.8b∗r, 0.7b
∗
r, 0.6b

∗
r. Then, the GAMA DEEP catalogs obtained in both tests

are compared with the redMaPPer catalog. Figure 4.12, figure 4.13, figure 4.14 and

figure 4.15 correspond to the first test. Figure 4.16, figure 4.17, figure 4.18 and

figure 4.19 correspond to the second test. These figures show the completeness and

purity, the scatter plot between Ng,GD and Ng,rM, the scatter plot between zGD and

zrM, and the scatter scatter plot between Ng,GD and Rang for matched (red) and

non-matched (blue) GAMA DEEP clusters. We observe that the Voronoi selection

as well as the transverse linking length affect the detection of galaxy clusters in the

same way. By selecting a fraction of the galaxies using the Pcut (i.e., those regions

which contains the densest galaxies), we avoid detecting large fake galaxy clusters

and merging effects.

Figure 4.15 and figure 4.19 show that the Pcut and br parameters affect the size

and the richness (i.e., number of galaxy members for our cluster finder) in the same

way. For lower values of Pcut and br, the detection of large and/or rich galaxy clusters

decreases, mainly those clusters which do not match with the redMaPPer clusters.

Nevertheless, low values of these parameters imply missed detections of true galaxy

clusters, therefore we must choose the values with care. Figure 4.12 and figure 4.16

show that the completeness and purity vary with the Voronoi selection and the
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transverse linking length. We note that the purity increases and the completeness

decreases for low values of Pcut and br. This effect is stronger for the Pcut parameter

because a strong Voronoi selection would only allows us to choose the galaxies that lie

in the densest regions and we could be rejecting true galaxy clusters with low Voronoi

density. Note that for the cases (Pcut = 1.0, br = 0.8b∗r), (Pcut = 0.7, br = 0.8b∗r) and

(Pcut = 0.7, br = 0.7b∗r) with Ng,GD ≥ 5, we recover a large number of RedMaPPer

clusters (C > 0.9) up to z ≈ 0.33, however the purity is very low. The two cases

where Voronoi selection was used present higher purity, this result is in agreement

with the above assertion. It shows us that we can keep high values of completeness

and improve the purity by using the Voronoi selection.

Figure 4.13 and figure 4.17 show that Ng,GD presents a positive correlation with

Ng,rM as is expected. Both parameters Pcut and br have a similar effect on the

richness. The low values avoid detecting rich clusters, which improves the scatter

relation. However, in extreme cases (i.e., very low values, Pcut = 0.2 and br = 0.6b∗r)

we begin to observe a constant bias as the detected clusters can only be formed by

the closest galaxies to each other and several members are rejected. Figure 4.14

and figure 4.18 show the scatter relation between the photometric redshifts of the

GAMA DEEP clusters and the photometric redshifts of the redMaPPer clusters.

We observe that for high redshifts there is a bias, which is due to the low quality of

galaxy photometric redshifts in this region. Moreover, we note that the scatter in

the relation zGD − zrM is less sensitive to the variation of br parameter whereas the

Voronoi selection relieves the large scatter. This effect is expected because, when

choosing the densest galaxies, we are constraining the regions wherein the SFOF

code would search for clusters, thus avoiding satellite members which could affect

the selection of the redshift.

Figure 4.20 compares the redshift distribution in the three cases described above,

in which we recover a large number of redMaPPer galaxy clusters (i.e., for C > 0.9).

We consider the following threshold richness Ng,GD ≥ 15 and Ng,GD ≥ 20 according

to the threshold richness used in the redMaPPer catalog (Rykoff et al. (2014)). For

Pcut = 1.0, br = 0.8b∗r case, we observe a large excess of clusters detected by the VT-

FOFz for both cases Ng,GD ≥ 15 and Ng,GD ≥ 20. The reduction of Pcut improves

the results, however the histogram of GAMA DEEP clusters does not match with

the histogram of redMaPPer. If we combine the effect of two parameters (i.e., we

reduce the transverse linking length and we select less densest galaxies) the results

improve. Note that for the cases (Pcut = 0.7, br = 0.7b∗r, Ng,GD ≥ 15, r < 20.8)
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and (Pcut = 0.7, br = 0.7b∗r, Ng,GD ≥ 20, r < 20.6) the GAMA DEEP histograms

match the redMaPPer histogram up to z ≈ 0.33. Therefore, we can assert that

these combinations of parameters are reliable results. We remark that the GAMA

DEEP cluster catalog must not necessarily have the same cluster selection as the

redMaPPer catalog, because the used optical methods are different. For GAMA

DEEP cluster catalog we employ a spatial method (i.e., we use the angular position

and the photometric redshifts), whereas the redMaPPer catalog utilizes the cluster

red sequence method.
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Figure 4.12: Completeness and purity between redMaPPer clusters and GAMA DEEP

clusters as function of redshift for Pcut = {1.0, 0.5, 0.2} and br = 0.8b∗r . For Ng,GD ≥ 5,

Pcut = 1.0 and br = 0.8b∗r , we recover all redMaPPer clusters up to z ≈ 0.3, nevertheless

the cluster catalog has too many impurities. If we consider a higher threshold of the

number of cluster members, we improve the purity but we lose in completeness mainly

at high redshifts. For the other cases we observe that the Voronoi selection improves the

purity, although the completeness decreases.
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Figure 4.13: Scatter plot of the number of galaxy members of the GAMA DEEP clusters

(GD) versus the number of galaxy members of the redMaPPer clusters (rM) for Pcut =

{1.0, 0.5, 0.2} and br = 0.8b∗r . The Voronoi selection improves the scatter relation Ng,GD−
Ng,rM. However, for Pcut = 20, we begin to observe a bias, which is due to the low

threshold in the selection of the densest galaxies. This effect is more evident in deeper

r-band magnitude cuts.
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Figure 4.14: Scatter plot of the photometric redshift of the GAMA DEEP clusters (GD)

versus the photometric redshift of the redMaPPer clusters (rM) for Pcut = {1.0, 0.5, 0.2}
and br = 0.8b∗r . Note that the scatter improves for higher threshold of the number of

cluster members. The Voronoi selection relieves the large scatter. For high redshifts, the

relation presents a bias due to the low quality of galaxy photometric redshifts in this

region.
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Figure 4.15: Scatter plot of the number of galaxy members and the cluster radius in arc-

min for the matched GAMA DEEP clusters (red) versus the non-matched GAMA DEEP

clusters (blue) by using 4 redshift bins in the range zGD ∈ [0.0, 0.5] (Pcut = {1.0, 0.5, 0.2}
and br = 0.8b∗r). Note that for high values of the Pcut parameter we detect a large number

of big and rich galaxy clusters which are not matched with the redMaPPer clusters. The

Voronoi selection relieves this problem. On the other hand, for the lowest redshift bin and

the highest redshift bin we detect many non-matched clusters and the effect is greater for

low redshifts.
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Figure 4.16: Completeness and purity between redMaPPer clusters and GAMA DEEP

clusters as function of redshift for Pcut = 0.7 and br = {0.8b∗r , 0.7b∗r , 0.6b∗r}. For Ng,GD ≥
5, Pcut = 0.7, br = 0.8b∗r and br = 0.7b∗r , we recover most redMaPPer clusters until z ≈ 0.3,

nevertheless the cluster catalog has many impurities. If we consider a higher threshold of

the number of cluster members, we improve the purity but we lose in completeness mainly

at high redshifts. Note that the reduction of the transverse linking length improves the

purity, although the completeness decreases.
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Figure 4.17: Scatter plot of the number of galaxy members of the GAMA DEEP clusters

(GD) versus the number of galaxy members of the redMaPPer clusters (rM) for Pcut = 0.7

and br = {0.8b∗r , 0.7b∗r , 0.6b∗r}. The scatter in the relation Ng,GD − Ng,rM improves for

lower br values. Nevertheless, for br = 0.6b∗r , we begin to note a bias due to the reduction

of the transverse linking length. For deeper r-band magnitude cuts this effect is more

evident.
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Figure 4.18: Scatter plot of the photometric redshift of the GAMA DEEP clusters (GD)

versus the photometric redshift of the redMaPPer clusters (rM) for Pcut = 0.7 and br =

{0.8b∗r , 0.7b∗r , 0.6b∗r}. The scatter in the relation zGD−zrM is less sensitive to the variation

of the br parameter. For high redshifts, the relation presents a bias due to the low quality

of galaxy photometric redshifts in this region.
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Figure 4.19: Scatter plot of the number of galaxy members and the cluster radius in

arcmin for the matched GAMA DEEP clusters (red) versus the non-matched GAMA

DEEP clusters (blue) by using 4 redshift bins in the range zGD ∈ [0.0, 0.5] (Pcut = 0.7

and br = {0.8b∗r , 0.7b∗r , 0.6b∗r}). Note that for high values of the br parameter we detect a

large number of big and rich galaxy clusters which are not matched with the redMaPPer

clusters. The reduction of the transverse linking length relieves this problem. On the other

hand, for the lowest redshift bin and highest redshift bin we detect many non-matched

clusters and the effect is greater for low redshifts.
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Figure 4.20: Number counts versus the redshift for the sample of the redMaPPer cluster

catalog and the three best cases of the detected GAMA DEEP clusters (Pcut = 1.0, br =

0.8b∗r), (Pcut = 0.7, br = 0.8b∗r), (Pcut = 0.7, br = 0.7b∗r). In other words, we select the

cases in which we recover a large number of redMaPPer clusters. For Pcut = 1.0, br = 0.8b∗r

case, we observe a large excess of clusters detected by the VT-FOFz for both cases Ng,GD ≥
15 and Ng,GD ≥ 20. The reduction of the Pcut improves the results, however the histogram

of GAMA DEEP clusters does not match with the histogram of redMaPPer. If we combine

the effect of two parameters (i.e., we reduce the transverse linking length and we select

less densest galaxies) the results improve. Note that for the cases (Pcut = 0.7, br =

0.7b∗r , Ng,GD ≥ 15, r < 20.8) and (Pcut = 0.7, br = 0.7b∗r , Ng,GD ≥ 20, r < 20.6) the

GAMA DEEP histograms match the redMaPPer histogram up to z ≈ 0.33. Therefore,

we can assert that these combinations of parameters are reliable results.

4.5 Summary and conclusions

In this chapter, we have introduced the VT-FOFz cluster finder. This technique

combines Voronoi Tessellation and Friends of Friends algorithms. We have been able

to detect galaxy clusters in every cut in the r-band for the magnitude range 19.4 <

r < 20.9 in the mock galaxy catalog. We observe that the cut in r-band magnitude

as well as the quality of estimated photometric redshifts play an important role in

the detection of galaxy clusters and in the redshift depth of the cluster catalog.

We set that a cluster detected from the mock galaxy catalog matches with a dark

matter halo if the galaxy cluster lies in the matching threshold region of the halo.
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The matching region is a cylinder defined in the 2+1 space (i.e., angular coordinates

and redshift). We require that the detected matches be unique.

For the mock catalogs, the br and bz free parameters from the FOF technique

are obtained by finding the value set which maximizes the number of matches for an

input galaxy catalog with no Voronoi selection. The Pcut free parameter from the

Voronoi step is obtained by determining the value which adjusts the galaxy cluster

number counts with the halo number counts for a threshold redshift set by the

density of galaxies in each r-band magnitude cut. We observe that approximately

the 40% of densest galaxies are candidates to form part of galaxy clusters, for all

r-band cuts in the mock catalog. On the other hand, we note that the br parameter

decreases for deeper magnitude cuts. This effect is due to the fact that for deeper

cuts we have more available galaxies, hence the transversal linking length tends to be

smaller. The above effect is opposite to the line-of-sight linking length because this

parameter depends on the photometric redshift quality. Therefore, it is important

to remark that for deeper cuts bz tends to be greater in agreement with the loss in

the quality of the estimated photometric redshifts. We compute the completeness

and purity by using the best values for the free parameters of the VT-FOFz cluster

finder in the mock catalog. At high redshift we detect less clusters, hence the

completeness worsens. However, a large number of the few detected galaxy clusters

are matched with the haloes in that redshift region, thus implying high purity. The

massive haloes tend to match clusters with high richness as we expect (i.e., positive

correlation), nevertheless we note that there is a large scatter in the observable-mass

relation. We measure a high completeness and purity for massive haloes and clusters

with high richness as expected, these measurements improve for deeper r-band cuts.

We observe that the low quality of the photometric redshift for deeper r-band cuts

does not have a large impact on the measurement of completeness and purity in the

mock catalog.

We run the VT-FOFz cluster finder on a sample of the GAMA DEEP survey. We

compare the obtained cluster catalog with the redMaPPer SDSS DR8 cluster catalog.

We analyze the impact of the Voronoi selection and the choice of the transverse

linking length by varying the Pcut and br parameters in the GAMA DEEP sample.

For the comparison between the GAMA DEEP cluster catalog and redMaPPer cata-

log, we treat the redMaPPer clusters like dark matter haloes and we compute the

completeness and purity in the same way as with the mock catalogs. We observe that

the Voronoi selection as well as the transverse linking length affect the detection of
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galaxy clusters in the same way. The selection of low values of Pcut and br parameters

allows us to avoid the detection of large and/or rich galaxy clusters, which do not

match with redMaPPer clusters. Nonetheless, low values of these parameters imply

missed detections of true galaxy clusters, therefore we must choose the parameters

with care. For Ng,GD ≥ 5 we recover a large number of redMaPPer cluster (C > 0.9)

up to z ≈ 0.33, but with low purity. The results obtained for z > 0.33 are less

reliable. The Voronoi selection allows us to reduce the scatter in the redshift relation

between the GAMA DEEP clusters and redMaPPer clusters. Comparing the redshift

distribution for Ng,GD ≥ 15 and Ng,GD ≥ 20 in the cases in which we recover a large

number of redMaPPer clusters, we show that including Voronoi selection produces

the best results. Note that the GAMA DEEP cluster catalog must not necessarily

have the same cluster selection as the redMaPPer catalog, because the used optical

methods are different.



Chapter 5

Cosmological forecast via abundance of galaxy

clusters

In the study of the evolution of large scale structures in the Universe, galaxy clusters

appear as candidates for understanding the underlying nature of this density field.

In section 2.6.4 we showed that the abundance of dark matter haloes and mainly the

halo mass function is intrinsically related with the cosmological model describing the

Universe. Therefore the number counts of these large objects is ideal to be used as

a cosmological probe, however dark matter structures cannot be directly observed.

The observables we can detect are the baryonic structures which lie within the

cluster haloes, among which are galaxies as well as baryonic gas (galaxies here are

considered as tracers of the dark matter), see Voit (2005); Allen et al. (2011).

Galaxy clusters are the largest detected virialized objects. They are embedded

within the filaments in a cosmic web of matter, see Bharadwaj et al. (2004). In 1933

the Swiss astrophysicist Fritz Zwicky suggested the existence of dark matter in the

Coma Cluster via the observation of the velocity dispersions of the galaxies in that

same structure. Currently this exotic form of matter is also used for explaining the

rotation curves of spiral galaxies (Freeman (1970); Rubin, Ford & Thonnard (1980))

as well as the evolution of structures in the Universe (Blumenthal et al. (1984)).

Clusters are formed by as many as several hundred galaxies which are gravitationally

bound (∼ 5% of the total cluster mass), the hot Intra-Cluster Medium (∼ 15% of

the total cluster mass) and the dark matter that composes the halo (∼ 80% of

the total cluster mass). Other negligible components in the total energy of the

clusters are the relativistic particles and magnetic fields. These systems are usually

classified on their mass: Structures between ∼ 1012 − 1013.7M� are usually known

as Galaxy Groups, structures between ∼ 1013.7 − 1015M� are usually known as

112
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Galaxy Clusters and structures above ∼ 1015M� are usually known as Galaxy Super

Clusters. Clusters are also used for studying energetic hydrodynamic process, the

enrichment of metals in the Universe (in astrophysics, metals are referred to any

element except for hydrogen and helium) and the physics of Active Galactic Nuclei

(AGN).

The abundance of galaxy clusters as a cosmological probe has been used in seve-

ral works (Gladders et al. (2007); Mantz et al. (2008); Rozo et al. (2010); Allen et

al. (2011); Mana et al. (2013)). However the determination of the mass in galaxy

clusters through observable quantities (e.g., temperature, richness) as well as the

other observational effects (i.e., photometric redshift, completeness and purity of

cluster catalog, among others) are open problems nowadays, see Allen et al. (2011);

Kravtsov & Borgani (2012); Simet et al. (2017). In order to use galaxy clusters in

cosmological analysis, it is necessary to model the above effects as functions of mass

and redshift. There are several works that have used the self-calibration method

to constrain both cosmological parameters of interest and nuisance parameters in-

volved in the observational effects via cluster number counts and the clustering of

clusters (i.e., cluster covariance), see Lima & Hu (2004); Lima & Hu (2005); Lima &

Hu (2007); Erickson et al. (2011); Aguena & Lima (2016). Our aim in this chapter

is to perform a self-calibration cosmological inference test through the galaxy clus-

ter abundance by using a MCMC (Markov-Chain Monte Carlo) statistical method.

We apply four tests in this analysis. First, we fix the nuisance parameters and

we constrain the cosmological parameters of interest (i.e., we consider a large flat

prior probability distribution). Second, we fix the cosmological parameters and we

constrain the nuisance parameters. Third, we constrain all parameters involved in

the analysis by using a Gaussian prior probability (i.e., normal distribution) for the

parameters except the parameter of the equation of state of dark energy and the

density parameter of the cold dark matter. Fourth, we constrain all parameters

involved in the analysis with a flat prior probability. The used cluster abundance

data are generated via random Poisson sampling from a fiducial model.

This chapter is organized as follows: Section 5.1 we describe the relation between

the observed galaxy clusters and the halo dark matter. Section 5.2 we perform a brief

introduction of the statistical tools which are used to the development of this work.

Section 5.3 we present the fiducial model utilized for the cosmological forecasting.

Section 5.4 we constrain the model parameters (i.e, the cosmological parameters plus

the nuisance parameters), and we perform the discussion of the results. Section 5.5
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we conclude this chapter.

5.1 Galaxy cluster abundance

In section 2.6 we presented the concepts of a power matter spectrum of fluctuations

and the growth factor. We explained the spherical collapse model to illustrate the

formation of dark matter haloes and we derived an estimated the halo abundance

through the Press-Schechter formalism. In this section we outline the relation be-

tween the abundance of the observed galaxy clusters and the abundance of the dark

matter haloes (i.e., the observable-mass relation and the effect due to the photome-

tric redshifts).

5.1.1 Mass function

The mass function describes the number density of collapsed dark matter haloes, in

other words, it models the dark matter halo abundance. Section 2.6.4 presents the

basic notions to estimate the halo number counts in mass slices and redshift bins.

We showed that the mass function is described by the following function form

dn

d lnM
= f(σ)

ρm
M

d lnσ−1

d lnM
, (5.1)

where ρm is the background matter density in the Universe, equation (2.30); σ(M, z)

is the rms (root mean square) variance of the smoothed density field, equation

(2.183); M is the halo mass, dn is the number of haloes per comoving volume for

mass value between M and M + dM ; and f(σ) is a factor that depends on the

model used to describe the dark matter collapse, in the PS formalism it is given

by equation (2.188). Jenkins et al. (2001); Evrard et al. (2002); Linder & Jenkins

(2003); Kuhlen et al. (2005); Crocce et al. (2010); among others showed that the

factor f(ν) can be parametrized through a universal function of the peak height

ν = δc/σ, hence it is expected to be cosmologically dependent only on σ(z,M).

Courtin et al. (2011) demonstrated that the critical overdensity for collapse δc also

depends on redshift and cosmology to describe a more accurate mass function.

In order to improve the accuracy of the functional form, the mass function is

measured via a large set of cosmological simulations. Currently, the most used

model is given by Tinker et al. (2008). They used a large set of simulations based

on a flat, ΛCDM cosmology. The simulations were perfomed by using three in-
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dependent codes, GADGET2 (Springel (2005)), HOT (Warren & Salmon (1993)), and

ART (Kravtsov et al. (1997)). The dark matter haloes are identified by a spherical

overdensity (SO) algorithm. The functional form calibrated by them is given by

f(σ) = A

[(σ
b

)−a
+ 1

]
exp

(
−c/σ2

)
, (5.2)

which it is motivated from Sheth & Tormen (1999). The parameter A is the ampli-

tude of the overall mass function, and the parameter c sets the cutoff scale at which

the halo abundance exponentially decreases. Moreover, a and b are the slope and

amplitude in the limit of the low-mass, respectively. The above parameters were es-

timated for various values of the overdensity with respect to the background matter

density ∆ and of redshifts (∆ ∈ [200, 3200] and z ≤ 2.5). They showed that the

parameters A, a and b depend on the overdensity and redshift, and the parameter

c only depends on the overdensity. The functional form for the parameters is given

by

A(z) = A0(1 + z)−0.14, (5.3)

a(z) = a0(1 + z)0.06, (5.4)

b(z) = b0(1 + z)−α, (5.5)

log10 α(∆) = −
[

0.75

log10(∆/75)

]1.2

. (5.6)

The zero subscript indicates the value at z = 0. The fitting functions for the

overdensity are

A0 =

{
0.1(log10 ∆)− 0.05 if ∆ < 1600,

0.26 if ∆ ≥ 1600,
(5.7)

a0 = 1.43 + (log10 ∆− 2.3)1.5, (5.8)

b0 = 1.0 + (log10 ∆− 1.6)−1.5, (5.9)

c = 1.2 + (log10 ∆− 2.35)1.6. (5.10)

The Tinker mass function is calibrated over the range of halo masses 1010.5h−1M� ≤
M ≤ 1015.5h−1M� at z = 0. Figure 13 of Tinker et al. (2008) shows the evolution of

the mass range with the redshift. The models mentioned previously do not consider

effects of baryon physics which can affect the halo mass function at the level of a
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few percent, see Stanek et al. (2009); Cui et al. (2012). We will use the Tinker

mass function for the analysis developed in this chapter.

5.1.2 Observable clusters and theoretical haloes

So far we have talked about the distribution of dark matter haloes (i.e., the mass

function for haloes) as well as the use of halo number counts to constrain cosmologi-

cal parameter. We must relate the halo masses employed in theoretical counts with

the observable physical properties of the galaxy clusters. The observational signals

of clusters are found in different wavelengths. These include millimeter wavelengths,

i.e. the Sunyaev-Zel’dovich effect, optical (richness or velocity dispersion in galaxy

members) and X-ray due to the thermal bremsstrahlung (luminosity, temperature,

gas mass and/or gas thermal energy), see Allen et al. (2011).

In order to estimate the mass of galaxy clusters, the scaling relations usually

depend on the observable. For our cosmological analysis, we assume the scaling

relation to be a power law in mass according to Rozo et al. (2010); Mana et al.

(2013); Simet et al. (2017). We parametrize

lnMobs = lnM0 + α ln

(
λ

λ0

)
, (5.11)

where Mobs is the observed mass inferred from the observable, λ is the cluster

richness and M0 is the normalization factor for the pivot point λ0. To relate the

observed mass with the true mass (i.e., theoretical mass), we assume the following

lognormal distribution given by Lima & Hu (2005)

P (Mobs|M) =
1√

2πσ2
lnM

exp
(
−x2

(
Mobs

))
, (5.12)

where

x
(
Mobs

)
≡ lnMobs − lnM − lnMbias√

2σ2
lnM

. (5.13)

Here the mass bias lnMbias and the variance σlnM depend on the redshift and

the true mass. The number of galaxy clusters per comoving volume within the
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observable mass range
[
Mobs

k ,Mobs
k+1

]
is given by

n̄k =

∫ Mobs
k+1

Mobs
k

d lnMobs

∫
d lnM

dn̄

d lnM
P (Mobs|M) (5.14)

=

∫
d lnM

dn̄

d lnM

1

2
[erfc(xk)− erfc(xk+1)] .

We define xk = x
(
Mobs

k

)
. The function erfc(xk) is the complementary error function.

Note that for σlnM → 0 and lnMbias = 0 we recover equation (2.191). In order to

account the effects of the cluster finder used to detect the galaxy clusters and to

improve the accuracy of the results we can consider the completeness and purity in

the above equation according to Aguena & Lima (2016). However, for our approach,

we do not consider these properties in the cluster number counts, in this analysis

we assume the purity and completeness equal to one. In addition to the effects due

to the observable-mass relation presented previously, in our approach we consider

the uncertainties obtained in the estimation of photometric redshifts. These redshift

uncertainties can affect the position of the galaxy clusters in the 2+1 space of angular

coordinates and redshift. We also assume a normal distribution in the relation

z − zphot according to Lima & Hu (2007), hence we have

P (zphot|z) =
1√

2πσ2
z

exp
(
−y2 (zphot)

)
, (5.15)

where

y(zphot) ≡
zphot − z − zbias√

2σ2
z

. (5.16)

Here zbias and σz are functions of the redshift. To simplify calculations, we neglect

the effects in the angular selection, therefore the mean number of the observed

galaxy clusters in the redshift bin [zphot,i, zphot,i+1] and mass range [Mobs
k ,Mobs

k+1] is

given by

m̄k,i = ∆Ω

∫ zphot,i+1

zphot,i

dzphot

∫
dz

dVc
dzdΩ

P (zphot|z)n̄k, (5.17)

= ∆Ω

∫
dz

D2

H(z)

1

2
[erfc(yi)− erfc(yi+1)] n̄k,

where yi = y(zphot,i) and ∆Ω is the survey sky coverage. We observe that in the

perfect redshift case (i.e., in the absence of photo-z uncertainties and biases), the
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above expression is given by equation (2.192). Lima & Hu (2007) performed a

quantitative and qualitative discussion about the effects on cluster abundance due

to the bias and scatter in photometric redshift, see figure 1 from Lima & Hu (2007).

We should point out that equation (5.17) allows us to theoretically estimate the

observed cluster number counts in a mass range and a redshift bin.

5.2 Statistical tools for analysis

The constraint of physical properties and parameters in a cosmological model via

observed data, requires robust statistical analysis for inferring the best fit of the

parameters and their associated uncertainties. The following section presents a

brief introduction of the statistical tools used in the development of this work.

5.2.1 Bayes’ theorem

In Bayesian statistics, the probability represents a degree-of-belief of an assumption

instead that of the Frequentist interpretation of the probability in which it is related

with the frequency with which an event occurred. Therefore, as our data (i.e., the

Universe) cannot be repeated in a cosmological analysis, it is more useful to use the

Bayesian inference approach rather a Frequentist inference approach.

Let X and Y be two propositions, then according to probability theory, these

variables obey the following rules

prob(X|I) + prob(X̄|I) = 1, sum rule, (5.18)

prob(X, Y |I) = prob(X|Y, I)× prob(Y |I), product rule, (5.19)

where X̄ denotes the proposition that X is false. The function prob(X|I) defines

the probability that the proposition X occurs for a given relevant background in-

formation I. By using the product rule (5.18), we find the following expression:

prob(X|Y, I) =
prob(Y |X, I)× prob(X|I)

prob(Y |I)
. (5.20)

This relation is known as Bayes’ theorem. By using both sum and product rules,
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we can obtain the marginalization relation, which is given by

prob(X|I) =
M∑
k=1

prob(X, Yk|I), (5.21)

for a whole set of alternative possibilities {Yk} = Y1, Y2, Y3, ..., YM . Therefore,

through the product rule (5.18), we can show that the above expression satisfies

the following normalization condition

M∑
k=1

prob(Yk|X, I) = 1. (5.22)

In the continuum limit, equation (5.21) is given by

prob(X|I) =

∫ ∞
−∞

pdf (X, Y |I)dY, (5.23)

where pdf (X, Y |I) is the probability distribution function, and the normalization

condition is ∫ ∞
−∞

pdf (Y |X, I)dY = 1. (5.24)

The probability distribution function is interpreted here as a probability density.

The probability that the variable Y lies in the range [y1, y2] and with a true propo-

sition X is given by

prob(X, y1 ≤ Y < y2|I) =

∫ y2

y1

pdf(X, Y |I)dY. (5.25)

Sivia & Skilling (2006) prefer to use “prob” to refer to the probability distribution

function and thus keeping the notation between the discrete and continuous cases.

In the rest of this work, we denote “pdf” by “prob”. Note that the marginalization

is a powerful tool for problems which involve nuisance parameters as it is the case

in the analysis that we perform in this chapter.

If we replace X by the data {di} and Y by the hypothesis Θ(pk), here {pk} are

the parameter set of the hypothesis. Thus, Bayes’ theorem can be rewritten as

prob(Θ(pk)|{di}, I) =
prob({di}|Θ(pk), I)× prob(Θ(pk)|I)

prob({di}|I)
. (5.26)

The term prob(Θ(pk)|I) is called the prior probability, it represents the initial
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knowledge we assume about the hypothesis before the statical analysis; the term

prob({di}|Θ(pk), I) is called likelihood function, it modifies the prior probability

according to the data; the term prob(Θ(pk)|{di}, I) is called posterior probability,

it shows the state of knowledge about the truth of the hypothesis according to the

experimental measurements; the term prob({di}|I) is the evidence. The evidence

plays an important role in the model selection, see chapter 4 of Sivia & Skilling

(2006). The above representation of the Bayes’ theorem enables us to know the

probability that the hypothesis is true given the experimental measurements. We

can estimate the degree of believe in the proposed model by using the data.

5.2.2 Poisson statistics

In nature there are problems that involve the counting of discrete events in a finite

interval, either of time, distance or other physical properties. The probability of

observing N events in a fixed interval, given only the expected value 〈N〉 = µ can

be expressed by a Poisson distribution

prob(N |µ) =
µNe−µ

N !
. (5.27)

We observe that the mean value of N is given by

〈N〉 =
∞∑
N=0

Nprob(N |µ) =
∞∑
N=0

N
µNe−µ

N !
= µe−µ

∞∑
N=1

µN−1

(N − 1)!
= µ, (5.28)

The variance is given by

σ2
N = 〈(N − 〈N〉)2〉 = 〈N2〉 − 〈N〉2 =

∞∑
N=0

N2prob(N |µ)− µ2 (5.29)

=
∞∑
N=0

N2µ
Ne−µ

N !
− µ2 = e−µµ

∞∑
k=0

(k + 1)
µk

k!
− µ2 = µ.

The Poisson distribution tends to a normal distribution for large µ. In the limit of

large mean value, we can say that N = x = µ(1 + δ), where µ� 1 and δ � 1. Note

that the discrete distribution becomes a continuous probability distribution function

for the variable x. Given that N is large we can use the Stirling’s approximation,

then

N !→
√

2πxe−xxx, x→∞. (5.30)
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Therefore, equation (5.27) is rewritten as

prob(x|µ) =
µxe−µ√

2πxe−xxx
=

µµ(1+δ)e−µ√
2πµ(1 + δ)e−µ(1+δ)µ(1 + δ)µ(1 + δ)

(5.31)

=
eµδ(1 + δ)−µ(1+δ)−1/2

√
2πµ

=
1√
2πµ

exp

(
−(x− µ)2

2µ

)
.

Here we use the fact that

(1 + δ)µ(1+δ)−1/2 ≈ exp

(
−µ
(
δ +

δ2

2

))
, (5.32)

for µ � 1 and δ � 1. The above approximation is found by taking the natural

logarithm and then expanding in δ to second order. Note that in this case the mean

value as well as variance are equal to µ as previously shown.

5.2.3 Markov chain Monte Carlo methods

The Markov chain Monte Carlo (MCMC) is a family of techniques which are used

to sample probability distributions. The concept of a Monte Carlo refers to the

algorithms based on a random realizations, whereas that the Markov chain concept

is a series of random variables, such that the next value in the chain only depends

on the current position and not on previous values. The MCMC methods have been

used in several astrophysical and cosmological analysis, for instance Lewis & Bri-

dle (2002); Battye & Weller (2003); Vikhlinin et al. (2009); Planck Collaboration

(2016); Simet et al. (2017). In addition to understanding the posterior probability

distribution function or likelihood function in detail, the MCMC methods enable us

to solve the marginalization problem of the nuisance parameters in the statistical

analysis, because these algorithms naturally provide a sampling of values for a spe-

cific parameter from the marginalized probability distribution. In general, MCMC

methods allow us to determine the maximum of the posterior distribution as well

as to estimate the uncertainties of the involved parameters in the analysis. On the

other hand, we must point out that an algorithm based on MCMC provides us an

efficient method to characterize posterior probability function or likelihood func-

tion which depends on a large set of parameters unlike the other methods such as

the gridding (i.e., the time cost is lower compared with other methods). For more

details, see MacKay (2003).
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The Metropolis-Hastings method

The Metropolis-Hastings method (M-H) is the most commonly MCMC algorithm

used to estimate the probability distribution in the data analysis. This method is

given by the following algorithm:

1. Set an arbitrary initial point in the parameter space Θ1 to which it is computed

the probability p(Θ1|{di}).

2. Determine a second point through a proposal probability distribution q(Θ2|Θ1),

which depends on the current point Θ1. Usually, the proposal distribution is

given by a multivariate Gaussian distribution centered on Θ1 with a general

covariance tensor that must be tuned for performance.

3. Estimate the acceptance probability, which is defined as

α(Θ2|Θ1) = min

{
1,
p(Θ2|{di})
p(Θ1|{di})

q(Θ1|Θ2)

q(Θ2|Θ1)

}
. (5.33)

If the proposal probability distribution is symmetric q(Θ2|Θ1) = q(Θ1|Θ2),

thus the last quotient in the acceptance probability is equal to one.

4. Generate a random number r from a uniform distribution of (0, 1).

5. Compare r with the acceptance probability

• If α > r, Θ2 is accepted in the chain and it is taken as the initial point

for the following step.

• If α < r, Θ2 is rejected, Θ1 is again the initial point for the following

step.

In order to build a chain, the above process is repeated to obtain the next point.

Note that the proposal point Θ2 only depends on the current point and not on the

previous points of the chain. The M-H algorithm has the advantage that it is simple

to implement. Nonetheless there are others algorithms with faster convergence rate.

emcee software package

The emcee software package∗ was developed by Dan Foreman-Mackey, see Foreman-

Mackey et al. (2013). It is a python implementation of the affine-invariant ensemble

∗〈http://dan.iel.fm/emcee/current/〉

http://dan.iel.fm/emcee/current/
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sampling algorithm proposed by Goodman & Weare (2010), which is commonly

called the stretch move. The advantages of this method are that its performance

does not depend on the covariances among parameters, its autocorrelation time

is shorter than in the M-H method (i.e., the stretch move algorithm requires fewer

computations of the probability distribution compared to a M-H sampler to generate

the same number of independent samples) and it can be run parallel according to

Foreman-Mackey et al. (2013).

The stretch move algorithm consists of simultaneously evolving an ensemble

of K walkers S = {Θk}, such that the proposal probability distribution for each

walker is based on the current position of the k − 1 walkers which belongs to the

complementary ensemble S[k] = {Θj,∀ j 6= k}. If Θj ∈ S[k], then the following step

of a walker at position Θk(t) is obtained via

Θk(t+ 1) = Θj + Z (Θk(t)−Θj) , (5.34)

where Z is a random variable drawn from a distribution g(Z = z) that does not

depend on the covariances between the parameters. Here the acceptance probability

is given by

α(Θk(t+ 1)|Θk(t)) = min

(
1, Zn−1p (Θk(t+ 1))

p (Θk(t))

)
, (5.35)

where n is the number of parameters. The above algorithm is repeated in series for

each walker in the ensemble.

In order to parallelize the above algorithm, the full ensemble is split into two

subsets (S(0) = {Θk,∀ k = 1, . . . , K/2} and S(1) = {Θk,∀ k = K/2 + 1, . . . , K}) and

simultaneously all the walkers from the S(0) set are updated by the stretch move

method by employing only the positions of the walkers in S(1). In the same way, by

using the new positions in the S(0) set, it is updated S(1). Thus achieving a valid

step for all walkers.

Preparing the chains for the statistical analysis

The chains obtained by a MCMC method allow us to determine the best value and

their uncertainty of the model parameters involved in the study (i.e., characterize the

probability distribution for each model parameter). However, we should be careful

with the MCMC output. We must set whether the results have achieved a converged

set of samples or they do not converge yet, as well as to determine the position in
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which the chains have converged. Here, we present useful concepts which are used

in this chapter to prepare the chains before performing the statistical analysis.

• Burn-in: The number of initial steps required for that the MCMC output

begins to describe a stationary sample around to the maximum of the poste-

rior probability distribution is known as burn-in. This set of points must be

rejected to avoid their influence on the estimation of both the best fit and the

confidence regions of the model parameters. The selected burn-in depends on

the performed experiment. We choose the percent of burn-in by performing

a visual inspection in the chains against the number of the iteration. This

choice must be satisfied for the involved parameters in the experiment.

• Convergence Criterion: In order to determine if the obtained MCMC out-

put has converged, we set the following steps as convergence criterion:

1. Split the total sample in two subsets with the same number of chains.

2. Set the burn-in in both subsamples.

3. Determine the root square of the variance σ
(k)
i and the mean value µ

(k)
i

for each parameter i in both subsamples (k = 1, 2).

4. Compute the ratio

r
(k)
i =

|µ(1)
i − µ

(2)
i |

σ
(k)
i

, k = 1, 2, (5.36)

where i represents all parameters.

If r
(1)
i ≈ r

(2)
i → 0.0 ∀ i we can say that the dataset enables sampling the

probability distribution with a good reliability level. Therefore, as long as the

ratios are lower, the reliability level will improve. Note that here we consider

finite variance, i.e., σ2 < ∞. In addition to the above criterion, we perform

a visual comparison between the confidence contours obtained for the two

subsamples.

• Thinning the chains: This process consists of reducing the number of points

in the chains obtained from a MCMC algorithm to decrease their autocorre-

lation and to provide a more precise estimate of the posterior probability

distribution. We thin the sample keeping every n-th point from the chains,

e.g., if we have a sample of 50 000 points and we apply a thinning of 5, then
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the final sample would have 10 000 points. According to Owen (2017), this

can improve the statistical efficiency of the chain.

5.3 Fiducial model

In order to carry out the cosmological forecasting we assume a flat wCDM model

without radiation as our fiducial cosmology. The mass bias of the observable-mass

relation is expected to be a smooth function of redshift. On the other hand, the mass

scatter tends to increase for high redshifts and low mass. Therefore, according to

Aguena & Lima (2016), the bias and scatter of equation (5.13) can be parametrized

by

lnMbias = Ab + nb ln(1 + z), (5.37)

and
σ2

lnM

0.22
= 1 +B0 +Bz(1 + z) +BM

(
lnMs

lnM

)
. (5.38)

Here Ab, nb, B0, Bz and BM are nuisance parameters, and lnMs is the pivot mass.

It is fixed with value Ms = 1014.2h−1M�. For the bias and the scatter due to the

estimated photometric redshift (see equation (5.15) and equation (5.16)) we assume

a constant value for each considered redshift bin in the analysis. Hence, if we use

Nz redshift bins, we add 2Nz parameters to the nuisance set. In addition to the

nuisance parameters indicated previously, we must add to this set the parameter

α which comes from the mass-richness scaling relation (see equation (5.11)). The

normalization factor and the pivot point are fixed according to the values given by

Simet et al. (2017) M0 = 1014.344h−1M� and λ0 = 40.

For our synthetic dataset, we consider a total sky area of 10 400 deg2 which is in

agreement with the survey area used in the RedMaPPer SDSS DR8 cluster catalog

(Rykoff et al. (2014)), see section 4.1.3. To make a more realistic study, the limits of

the richness and redshift of the used data are in agreement with the results obtained

in chapter 4. We set the following ranges: for richness 10 ≤ λ ≤ 300 and for redshift

0.05 ≤ z ≤ 0.40. We employ 4 redshift bins and 5 richness bins in a logarithmic scale

for our analysis. Therefore we have 8 nuisance parameters due to the photometric

redshifts. To compute the cluster number counts, we use the Tinker mass function

(5.2) for overdensity ∆ = 200 with respect to the background matter density.

The observed synthetic data of the cluster number counts are obtained from a

random sampling of a Poisson distribution with the expected value computed by the
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Tinker mass function. Table 5.1 shows the fiducial values for the parameters involved

in this analysis. The cosmological parameters are taken from Planck Collaboration

(2016). The parameters of the mass-richness relation are taken from Simet et al.

(2017). The parameters of the observable-mass relation are taken from Aguena

& Lima (2016). The parameters due to photometric redshifts are considered such

that they are not biased and their scatter increases for high redshifts just as it is

expected, see chapter 3. The considered priors are Gaussian distributions centered

in the fiducial values with sigma values given by table 5.1. “None” label in the Prior

column indicates that the parameter in question has a large flat prior distribution in

all performed tests or the parameter is fixed in the analysis, we do not define a prior

probability distribution. Figure 5.1 shows the fiducial model as well as the synthetic

data obtained by Poisson sampling for every bin of redshift and richness. Note that

for bins with high richness the cluster abundance is lower, then the Poisson error is

larger compared with the number of clusters in the bin (see equation (5.29)).
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Figure 5.1: Cluster number counts for the fiducial model as well as for the synthetic data

for every bin of redshift and richness. The error bars are computed as the root square of

the variance according to equation (5.29).

Let nα be the estimated number of galaxy clusters in a specific bin of redshift and

richness (i.e., the expected number of galaxy clusters in the bin), then the probability
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Table 5.1: Fiducial values used to obtain the observed synthetic data of the cluster abun-

dance per bin. The values of parameters are taken from Planck Collaboration (2016);

Simet et al. (2017); Aguena & Lima (2016). The photometric redshifts are considered

without bias and a scatter increasing with the redshift (see chapter 3). The values in

the Prior column are the sigma values for the prior probability distributions. The status

column indicates whether the parameters is fixed or it is free in the analysis.

Parameter Definition Value Prior Status

Cosmological parameters

h Hubble parameter 0.6774 ±0.0096 Free

Ωch
2 CDM density normalized by h 0.1188 None Free

Ωbh
2 Baryon density normalized by h 0.02230 ±0.00014 Free

w0 Equation of state of DE -1.0 None Free

lnAs Amplitude of the linear power spec. -19.9615 ±0.023 Free

ns Scalar spectral index 0.9667 ±0.0040 Free

Ωr Radiation density 0.0 None Fixed

Ωk Curvature density 0.0 None Fixed

Nuisance parameters

α Power-law index for mass-λ 1.33 ±0.09 Free

M0/h
−1M� Normalization factor for mass-λ 1014.344 None Fixed

λ0 Richness pivot point 40 None Fixed

Ab Normalization factor of Mbias 0.0 ±0.09 Free

nb Redshift evolution of Mbias 0.0 ±0.05 Free

B0 Normalization factor of σ2
lnM 0.0 ±0.05 Free

Bz Redshift evolution of σ2
lnM 0.0 ±0.05 Free

BM Mass evolution of σ2
lnM 0.0 ±0.05 Free

Ms/h
−1M� Mass pivot of σ2

lnM 1014.2 None Fixed

zb1 zphot bias for bin 1 0.0 ±0.05 Free

zb2 zphot bias for bin 2 0.0 ±0.05 Free

zb3 zphot bias for bin 3 0.0 ±0.05 Free

zb4 zphot bias for bin 4 0.0 ±0.05 Free

σ2
z1 zphot variance for bin 1 0.1 ±0.05 Free

σ2
z2 zphot variance for bin 2 0.15 ±0.05 Free

σ2
z3 zphot variance for bin 3 0.20 ±0.05 Free

σ2
z4 zphot variance for bin 4 0.25 ±0.05 Free
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to observe Nα clusters is given by the Poisson distribution, see section 5.2.2. Here we

assume that the measures taken in each bin are statistically independent, therefore

the likelihood used for our analysis is given by

L({Nα}|{nα(θi, si)}) =

Nbins∏
α=1

nNαα e−nα

Nα!
, (5.39)

where Nbins is the considered number of bins, {θi} correspond to the cosmological

parameters and {si} correspond to the nuisance parameters. In order to constrain

the parameters involved in the model by using the emcee software package, we em-

ploy the Bayes’ theorem to compute the posterior probability (see equation (5.26)).

Hence, the logarithm of the posterior function is given by

ln P({nα(θi, si)}|{Nα}) ∝ ln L({Nα}|{nα(θi, si)}) + ln P({nα(θi, si)}), (5.40)

where

ln L({Nα}|{nα(θi, si)}) =

Nbins∑
α=1

(Nα lnnα − nα − lnNα!) . (5.41)

and P({nα(θi, si)}) is the prior probability of the model parameters.

5.4 Results and discussion

In order to understand the power of the cluster abundance as cosmological probes,

we consider four cases for our analysis.

I Free cosmological parameters with fixed nuisance parameters. We use 6 parame-

ters {h, Ωch
2, Ωbh

2, w0, lnAs, ns}.

II Free nuisance parameters with fixed cosmological parameters. We use 14 pa-

rameters {α, Ab, nb, B0, Bz, BM , zb1, zb2, zb3, zb4, σ2
z1, σ2

z2, σ2
z3, σ2

z4}.

III Free Ωc h
2 and w0 parameters, the other parameters with Gaussian priors. We

use 20 parameters {h, Ωch
2, Ωbh

2, w0, lnAs, ns, α, Ab, nb, B0, Bz, BM , zb1, zb2,

zb3, zb4, σ2
z1, σ2

z2, σ2
z3, σ2

z4}.

IV Free all parameters in the model. We use 20 parameters {h, Ωch
2, Ωbh

2, w0,

lnAs, ns, α, Ab, nb, B0, Bz, BM , zb1, zb2, zb3, zb4, σ2
z1, σ2

z2, σ2
z3, σ2

z4}.



Chapter 5. Cosmological forecast via abundance of galaxy clusters 129

These tests allow us to explore the impact in the constraint of the model parame-

ters, by using self-calibration of the observable properties in the galaxy clusters (i.e,

the nuisance parameters). On the other hand, the second case is focused on cons-

traint of the nuisance parameters by fixing the parameters cosmological. This test

allows us to look the sensibility of the number counts in the mass-richness relation,

the observable-mass relation and the observed photometric redshift. To observe the

effect produced by applying a thinning to the walkers, we compute the percentage

relative error for the mean value 〈pk〉 and σk in each parameter for every thinning

test, then we have

Percentage relative error =

∣∣∣∣xk − xthkxk

∣∣∣∣× 100. (5.42)

Here xk is the value (either mean value or σ) in the test without thinning and xthk

represents the value obtained by applying the thinning method.

Figure 5.2 and figure 5.3 show the walkers against the step number for the

considered cases. The gray lines represent the fiducial value given in table 5.1.

These plots allow us to find the step number in which the samples look to have a

stable behavior. Note that in the case I, the stability is achieved in the step number

∼ 2000, for the case II in the step number ∼ 4000, for the case III in the step number

∼ 3000 and for the case IV in the step number ∼ 5000. The above values enable us

to estimate the burn-in value in each test. To complement the visual decision of the

burn-in performed through the figures of the walkers, we compute the ratio (5.36)

to assess the remaining sample after the burn-in process. Figure 5.4 and figure 5.5

show the ratio for all parameters in each case. We observe that for the case I, case II

and case III the remaining sample is reliable, because the threshold ratio is ∼ 0.25

in the three cases. The above threshold ratio implies that the discrepancy between

the mean value for every parameter obtained in each subsample is at most of one

fourth of the estimated σ. Recall that for this calculation, we split the sample in

two subsets. The case IV presents a reasonable threshold ratio of ∼ 0.9. Although

this value is large for having a high reliable sampling, we are satisfied. Because, we

achieve low values for several parameters as well as the high values are lower than

1.0, considering that in this case, we are constraining 20 parameters without priors.

Figure 5.6 and figure 5.7 show the percentage error relative computed for the

thinning tests as function of the parameters according to equation (5.42). In gene-

rally, the thinning method affects more the mean value than the sigma one, in all
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cases. For the case I, we observe that the relative error does not exceed the value

of 0.05% for all parameters, except in Ωbh
2, wherein the error reaches ∼ 0.2%. The

case II shows that the relative error reaches the largest value in ∼ 1.2%. Here ns,

B0 and Bz are the parameters whose error is higher. For the other parameters

the relative error does not exceed the ∼ 0.42%. We observe that the relative error

reaches a value of ∼ 13% for the parameter B0 (Thinning = 100) and a value of

∼ 9% for the parameter Ab (Thinning = 50) in the case III. Nevertheless, for the

other parameters the relative error does not exceed a value of ∼ 3%. The case IV

shows that for all parameters, the relative error does not exceed a value of ∼ 0.2%,

except to parameter B0, wherein the error reaches a value of ∼ 6.2%. We can assert

that for all cases the results are little affected by a thinning of 100. Table 5.2 shows

the walkers, steps by walker, burn-in and thinning for every performed case. For

the thinning process, we reduce the burn-in in agreement with the chosen thinning

values.

Table 5.2: Walkers, steps by walker, burn-in and thinning for every performed case.

Case Walkers Steps Burn-in without thinning Thinning value

I 120 13 000 2 000 100

II 200 13 000 4 000 100

III 120 10 000 3 000 100

IV 100 16 000 5 000 100
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Figure 5.2: Position of each walker as function of the number step with fixed nuisance

parameters (Top) and with fixed cosmological parameters (Bottom). The gray lines

represent the true value of the parameters.
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Figure 5.3: Position of each walker as function of the number step with Gaussian priors

(Top) and without priors (Bottom). The gray lines represent the true value of the

parameters.
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Figure 5.4: Convergence test in each parameter with fixed nuisance parameters (Top) and

with fixed cosmological parameters (Bottom). Black solid line indicates the convergence

ratio by using the sigma value for the first set of chains, red dashed line indicates the

convergence ratio by using the sigma value for the second set of chains. The computed

ratio (5.36) in all parameters for both panels show us that the remaining sample after the

burn-in process is reliable to perform the statistical analysis. Note that the ratio does not

exceed the value ∼ 0.1 for the top panel and the value ∼ 0.25 for the bottom panel.
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Figure 5.5: Convergence test in each parameter with Gaussian priors (Top) and without

priors (Bottom), see equation (5.36). Black solid line indicates the convergence ratio by

using the sigma value for the first set of chains, red dashed line indicates the convergence

ratio by using the sigma value for the second set of chains. The top panel shows that

the sample obtained after the burn-in process is reliable. Observe that in this case the

ratio (5.36) threshold is ∼ 0.12, which is a good value. On the other hand, in the bottom

panel, we have a reasonable threshold ratio of ∼ 0.9, considering that we are constraining

20 model parameters without priors.
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Figure 5.6: Percentage relative error for three thinning tests in each parameter with

fixed nuisance parameters (Top) and with fixed cosmological parameters (Bottom), see

equation (5.36). Note that in both cases, the thinning method affects more the mean

value than the sigma one. Nonetheless for the left-top plot, we observe that the percentage

relative error in all parameters is less than 0.05%, except in Ωbh
2 in which the error reaches

∼ 0.2% in the test with Thinning = 100. On the other hand, the percentage relative error

reaches a value of ∼ 1.2% in the test with Thinning = 100 for the left-bottom plot, wherein

ns, B0 and Bz are the parameters with larger error. The relative error does not exceed

the ∼ 0.42% in the other parameters.
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Figure 5.7: Percentage relative error for three thinning tests in each parameter with

Gaussian priors (Top) and without priors (Bottom). The thinning method affects more

the mean value than the sigma one, in both cases. The left-top plot shows that the relative

error reaches a value of ∼ 13% for the parameter B0 (Thinning = 100) and a value of ∼ 9%

for the parameter Ab (Thinning = 50). However, for the other parameters the relative

error does not exceed a value of ∼ 3%. The left-bottom plot shows that for all parameters,

the relative error does not exceed a value of ∼ 0.2%, except to parameter B0, wherein the

error reaches a value of ∼ 6.2%.
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5.4.1 Constraining the parameters

For the determination of cosmological parameters via cluster number counts, we use

the emcee software package described in section 5.2.3. We will focus the discussion

in the density parameter of cold dark matter normalized with the Hubble parameter

Ωch
2 and the parameter which characterizes the equation of state of the dark energy

w0.

Figure 5.8 shows the 1σ and 2σ confidence region for the constraint of cosmolo-

gical parameters with fixed nuisance parameters and for the constraint of nuisance

parameters with fixed cosmological parameters, i.e, case I and case II. We observe

that for both cases, the true values are recovered at the 2σ level. However, the

constraints on cosmological parameters are weak unlike the constraints on nuisance

parameters. The marginalized constraints on cosmological parameters show that we

achieve to estimate the Ωch
2 and w0 in 1σ confidence interval. The parameter h is

that one with the worst constraint in this test.

Figure 5.9 shows the constraints of the cosmological parameters with priors and

without priors, i.e., case III and case IV. The main conclusion in this figure is that

the priors in the parameters without interest improve the constraints. In the case

III, we observe a positive covariance between Ωch
2 and w0 which is not present in

the other cases. We see the best fit point within the 1σ error contours in most cases

and within the 2σ error contours in all cases which indicate that the error model we

are using is good and viable. We compute the cluster number counts for every bin of

redshift and richness comparing the fiducial model with the best-fitting at 1σ level,

for the case III (with priors) and the case IV (without priors). Note that the values

estimated by MCMC sampling at 1σ level achieve to recover the number counts

predicted by the fiducial model. Furthermore, we observe that the application of

priors in the parameters improves the confidence region in the number counts.

Table 5.3 shows the marginalized results, the mean value and the standard devia-

tion for the model parameters in the four cases analyzed. We can see that the priors

increase the precision in the estimation of the parameters, in other words the case

III shows lower values of the standard deviation than in the other cases. E.g., for

the parameter Ωch
2 the standard deviation in the case III is σΩch2 = 0.0059 whereas

in the other cases, the standard deviation is an order of magnitude greater. We

note that the self-calibration method using only number counts allows us to recover

the power-law index α for the case IV (no priors). This method can complement
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other calibration methods for the observable-mass relation, thereby obtaining more

reliable results.
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Figure 5.10: Cluster number counts for every bin of redshift and richness comparing the

fiducial model with the best-fitting at 1σ level (black dashed line), for the case with priors

(Top) and the case without priors (Bottom). The gray areas indicate the 1σ confidence

regions of the best-fitting of the cluster abundance model.
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5.5 Summary and conclusions

Here we constrain the cosmological parameters through galaxy cluster abundance.

In order to include the effects due to the photometric redshifts and the estimated

observable mass, we employ the self-calibration model proposed by Lima & Hu

(2007). The Tinker mass function is used to estimate the number counts in a mass

range and a redshift bin, see Tinker et al. (2008). We assume that the richness and

the cluster mass are related through a power law according to Rozo et al. (2010);

Mana et al. (2013); Simet et al. (2017). We introduce the concept of Bayesian

statistics and of Monte Carlo sampling via Markov chains (i.e., MCMC methods).

We use the emcee software package in our analysis. For the cosmological forecasting,

we assume a flat ΛCDM as fiducial model. The synthetic data are obtained from

a Poisson sampling. We set the likelihood for this problem to be a product of

independent Poisson distributions, one for each bin.

For our analysis, we have performed four tests: an error analysis of free cosmologi-

cal parameters with fixed nuisance parameters; free nuisance parameters with fixed

cosmological parameters; flat prior on the density of dark matter and on the equation

of dark energy with Gaussian priors in the other parameters; and a flat prior on all

parameters. We set the burn-in in each case through visual analysis of the walkers

against step number. We note that the tests with more free parameters need a high

burn-in range. The case with all free parameters presents more difficulty to obtain

a successful convergence test. We observe that the thinning process applied to the

chains does not produce significant changes in the mean value and variance for every

parameter involved in the study. We observe that the self-calibration method via

cluster abundance allows us to recover the fiducial values in all considered cases. On

the other hand, Lima & Hu (2004); Lima & Hu (2005); Lima & Hu (2007); Aguena

& Lima (2016) show that the inclusion of clustering of clusters as well as the purity

and completeness in the analysis could solve the degeneracy problems and improve

the results. In fact, the implementation of these observables would be the next step

to follow in this work. We observe that the self-calibration method along with other

methods, e.g., weak gravitational lensing Simet et al. (2017), allow us to improve

the mass-richness relation according to the results obtained for the power law index

α.



Chapter 6

Conclusions

This work is focused on the study of optical galaxy clusters in three steps: analysis

and estimation of photometric redshifts for galaxies, detection of galaxy clusters

from galaxy survey and constraining of parameters from a given cosmological model

via cluster abundance. We perform a review of the basic theoretical framework for

understanding the formation of galaxy clusters. We present the fundamental con-

cepts of standard cosmology in the background as well as beyond of the background

(linear theory). The conclusions are:

I. Analysis and estimation of photometric redshifts:

The detection of the optical galaxy cluster needs accurate and precise measure-

ments of redshift for the galaxies. Photometric redshifts allow us to probe much

larger volumes of the Universe than possible with spectroscopic redshifts, but

they have large measurement uncertainties. We have approached this problem

by using the ANNz2 and GPz machine learning codes. We have investigated the

degradation in the accuracy and precision of the recovered of photometric red-

shifts applying the machine learning methods to deep photometric datasets,

which are trained using much shallower and brighter spectroscopic samples.

For this analysis, we utilize the Monte-Carlo random sampling for defining a

photometric redshift estimator based on the cumulative distribution function

(CDF). We note that the distribution of the z-phot estimators based on the

CDF fits better the PDF stacking of all galaxies in the data set. Nonetheless,

these estimators have a greater scatter than their counterparts. We estimate

the photometric redshift for the samples GAMA DEEP and GAMA MAIN

(subsets of the SDSS DR12), which are trained by the spectroscopic GAMA

survey.
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In the degradation analysis, we observe that comparatively, the CDF-ANNz2

estimator shows better performance at higher redshifts, albeit with larger scat-

ter. We show that the estimated photometric redshift loses quality for deeper

cuts. We have problems estimating higher redshifts. This carries unwanted

effects in the number density of galaxies and the increase of impurities in the

detection of galaxy clusters. The density of galaxies given by CDF-ANNz2

estimator has the least error according the number density of galaxies given by

z-spec data in deeper cuts and high redshifts.

II. Detection of galaxy clusters:

We present the VT-FOFz cluster finder, which combines two techniques Voronoi

Tessellation (VT) and Friends of Friends (FOF). We employ the CDF-ANNz2

estimator as single value of the photometric redshift for the galaxies. By using

the mock catalogs, we observe that the cut in r-band magnitude as well as

the quality of estimated photometric redshifts play an important role in the

detection of galaxy clusters and in the redshift depth of the cluster catalog.

We note that approximately the 40% of densest galaxies are candidates to form

galaxy clusters, for all r-band cuts. We compute the completeness and purity

to assess the performance of the cluster finder. At high redshift we detect less

clusters, hence the completeness worsens. However, a large number of the few

detected galaxy clusters are matched with the haloes in that redshift region,

thus implying high purity. The massive haloes tend to match clusters with

high richness as it is expected. There is a large scatter in the observable-mass

relation which obtain from the mocks.

We run the VT-FOFz cluster finder in a sample of the GAMA DEEP survey.

We compare the obtained cluster catalog with the redMaPPer SDSS DR8 clus-

ter catalog. We observe that the Voronoi selection as well as the transverse

linking length affect in the same way the detection of galaxy clusters. The

selection of low values of Pcut and br parameters allows us to avoid the detec-

tion of large and/or rich galaxy clusters, which do not match with redMaPPer

clusters. Low values of these parameters imply lost in the detection of true

galaxy cluster. For Ng,GD ≥ 5 we recover a large number of redMaPPer cluster

(C > 0.9) until z ≈ 0.33, but with low purity. The results obtained for z > 0.33

are less reliable. The Voronoi selection allows us to reduce the scatter in the

redshift relation between the GAMA DEEP clusters and redMaPPer clusters.
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Comparing the redshift distribution for Ng,GD ≥ 15 and Ng,GD ≥ 20 in the

cases in which we recover a large number of redMaPPer clusters, we show that

the case with Voronoi selection allows us to obtain the best results.

III. Constraint of the cosmological parameters:

We forecast constraints of the cosmological parameters through galaxy clus-

ter abundance through a MCMC method. We use the self-calibration model

proposed by Lima & Hu (2007) to include the effects due to the photometric

redshifts and the estimated observable mass. We employ the Tinker’s mass

function to estimate the number counts in a range of mass and a redshift bin.

We assume that the richness and the cluster mass are related through a power

law according to Rozo et al. (2010); Mana et al. (2013); Simet et al. (2017).

For our analysis, we propose four tests: flat priors for cosmological parameters

with fixed nuisance parameters; flat priors for nuisance parameters with fixed

cosmological parameters; flat priors for density of dark matter and equation of

dark energy with Gaussian priors in the other parameters; and flat priors for

all parameters. We note that the self-calibration method via cluster abundance

allows us to recover the fiducial values in all considered cases. We observe that

the self-calibration method along with other methods, e.g., weak gravitational

lensing (Simet et al. (2017)), allow us to improve the mass-richness relation

according to the results obtained for the power law index α.

We set a list of the possible future works based on the obtained results presented

in this thesis.

• Use the CDF-ANNz2 estimator for determining the single value of the photo-

metric redshift in deeper and larger photometric surveys, which are currently

being developed, e.g., DES, LSST, Euclid, WFIRST, J-PAS.

• Implement the full probability distribution function of the photometric redshift

in the VT-FOFz cluster finder.

• Determine the mass-richness relation for the galaxy clusters detected by the

VT-FOFz cluster finder through weak gravitational lensing analysis, see Simet

et al. (2017).

• Introduce clustering of clusters as well as completeness and purity in the cons-

traint of cosmological parameters through galaxy cluster number counts.
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• Employ the detected galaxy clusters from the VT-FOFz cluster finder to cons-

train cosmological parameters.



Appendix A

General relativity for cosmology

In the beginning of the 20th century Albert Einstein proposed the concept that gravi-

ty is not a force, but is rather the local manifestation of spacetime geometry. This

gravity theory is called general relativity (GR). He used the Riemannian geometry to

explain his theory. In order to understand the concepts involved in general relativity,

we are going to explain the most important concepts of differential geometry used

here.

Definition A.0.1 (Manifold). Set of pieces which can be “sewed” smoothly. More

precisely, a real manifoldM, n-dimensional and c∞ is a set with a collection of open

sets {Oα} which satisfies the following properties:

1. ∀ p ∈M is at least in a Oα (i.e. {Oα} cover M).

2. ∀α there is an one to one function ϕα : Oα → Uα called coordinate chart,

where Uα is an open subset which belongs to IRn.

3. If two open set Oα and Oβ are overlapped Oα ∩ Oβ = ∅ we can consider

the function ϕβ ◦ ϕ−1
α which takes points in ϕα(Oα ∩ Oβ) ⊂ Uα ⊂ IRn to

ϕβ(Oα ∩Oβ) ⊂ Uβ ⊂ IRn.

The figure A.1 shows a representation of the manifold concept.

Definition A.0.2 (Metric). The metric associated to the manifold M is a non-

degenerate symmetric tensor of type (0,2), which satisfies the following properties

1. g(v1, v2) = g(v2, v1) ∀ v1, v2 ∈ Vp. (Symmetry)

2. g(v, v1) = 0 ∀ v ∈ Vp iff v1 = 0. (Non-degeneration)
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Figure A.1: Representation of a manifold. Adapted from Coutant (2012)

Here Vp is the tangent space at p point ofM. The metric defines the inner product

in the tangent space Vp. Given a coordinate basis we can write the metric as

ds2 = gabdx
adxb, thus g(u, v) = gabu

avb, ∀u, v ∈ Vp. (A.1)

The metric can be interpreted as the measure of an infinitesimal distance in the

manifold. Therefore, the metric allows the computation of path length proper time,

in addition it allows us to determine the shortest distance between two points.

Spacetime is modeled as a 4-dimensional Lorentzian manifold, where the metric

signature is (3,1) or (-,+,+,+). This allows us to classify the tangential vectors in

three types:

• timelike if g(v, v) < 0,
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• null or lightlike if g(v, v) = 0,

• spacelike if g(v, v) > 0,

where v ∈ Vp.

Definition A.0.3 (Covariant derivative). Just as in differential calculus, we define

the concept of a manifolds here. The covariant derivative is a map from (k, l) tensor

fields to (k, l + 1) tensor fields, which acts linearly on its arguments and obeys the

Leibniz rule on tensor products. In a coordinate basis the covariant derivative is

given by

∇aT
b1...bk
c1...cl

= ∂aT
b1...bk
c1...cl

+
∑
i

ΓbiadT
b1...d...bk
c1...cl

−
∑
j

ΓdacjT
b1...bk
c1...d...cl

, (A.2)

where Γ is a tensorial density called connection. This geometric object allows us to

keep the covariance in the derivative.

The torsion tensor Tc
ab for a manifold may be defined as

Tc
ab = Γcab − Γcba. (A.3)

We say that a connection is metric compatible if the covariant derivative of the

metric with respect to that connection is everywhere zero, see Carroll (2004). The

fundamental theorem of Riemannian geometry states that on any Riemannian mani-

fold with metric gab there is a unique metric compatible connection with torsion free.

In other words, it is satisfied the following properties:

• Torsion free:

Tc
ab = 0 thus Γcab = Γcba. (A.4)

• Metric compatible:

∇agbc = 0. (A.5)

The connection coefficients are called Christoffel symbols and these are given by

Γaab =
1

2
gcd (∂agbd + ∂bgad − ∂dgab) . (A.6)

Definition A.0.4 (Riemann tensor). The geometric object which quantifies the
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intrinsic curvature is called Riemann tensor. This is define as

∇a∇bwc −∇b∇awc = R d
abc wd, ∀w ∈ V ∗p , (A.7)

where V ∗p is the dual space at p. The Riemann tensor is related with the Christoffel

symbols through the following expression

R d
abc = ∂bΓ

d
ac − ∂aΓdbc + ΓeacΓ

d
eb − ΓebcΓ

d
ea. (A.8)

The Riemman tensor satisfies the following properties:

1. R d
abc = −R d

bac ,

2. R d
[abc] = 0,

3. Rabcd = −Rabdc,

4. ∇[aR
e

bc ]d = 0, Bianchi identities,

5. Rabcd = Rcdab.

The Ricci tensor is defined as

Rac = R b
abc . (A.9)

The scalar curvature or the Ricci scalar is given by

R = Ra
a = gabRab. (A.10)

Definition A.0.5 (Geodesic equation). In Euclidean geometry the shortest distance

between two points is the straight line; in Riemannian geometry this concept is

generalized. We may think that a particle is moving on a sphere and its movement

is restricted to the surface. The path that the particle must follow to travel the

shortest distance is not the straight line, it is actually a curved path. In order to

find this path in the manifold, we consider the coordinate chart ϕ, in which the

geodesic can be seen as path xµ on IRn. The geodesic equation in IRn is given by

dxν

dλ
+ Γνµγ

dxµ

dλ

dxγ

dλ
= 0, (A.11)

where λ is called parameter affine.



Appendix A. General relativity for cosmology 152

As the geodesic is the shortest path between two points, we can find the equa-

tions (A.11) by using the Euler-Lagrange equations

d

dλ

(
∂L
∂ẋα

)
− ∂L
∂xα

= 0, (A.12)

for the Lagrangian

L = gµν ẋµẋν . (A.13)

The above equations allow us to find the Christoffel symbols without using equa-

tion (A.6).

In order to find the field equations which describe the gravity theory proposed

by Einstein, David Hilbert in 1915 proposed the following action

SEH =

∫
ν

d4x
√
−gR, (A.14)

where g is the determinant of the metric tensor, R is the scalar curvature and ν is a

hypervolume of the spacetime. The above expression is known as Einstein-Hilbert

action. Actually to find the field equations, we need the following general action

S =
1

2κ
(SEH + SGYH) + SM, (A.15)

where κ is a constant, SGYH is a boundary term to relax the boundary conditions

and SM is the action which involves the matter field. The term SGYH is proposed

by Gibbons-York-Hawking in 1977, see Gibbons & Hawking (1977); Hawking &

Horowitz (1996). This term is given by

SGYH = 2

∮
∂ν

d3yε
√
|h|k. (A.16)

Here ∂ν is the boundary of ν, h is the determinant of the induced metric, k is the

trace of the extrinsic curvature and ε is ±1 depending whether ∂ν is timelike or

spacelike (we assume that ∂ν is everywhere non-null). The xα coordinates are used

for the region ν and yα coordinates for ∂ν. The matter action is given by

SM =

∫
ν

d4x
√
−gLM

(
gαβ, ψ

)
. (A.17)

By using the properties of variational calculus, the Gauss-Stokes theorem and
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supposing that δgµν = 0 in ∂ν as boundary condition, we have that the variation of

Einstein-Hilbert action is given by

δSEH =

∫
ν

d4x
√
−g
(
Rαβ −

1

2
Rgαβ

)
δgαβ −

∮
∂ν

d3y ε
√
|h|hαβnσ∂σδgαβ, (A.18)

where nµ is a normal vector to ∂ν such that nµnµ = ε = ±1. The boundary term in

the above expression can be avoided if we consider that term ∂σδgαβ = 0 as other

boundary condition. Although this argument carries to Einstein field equations

we would be fixing two boundary conditions. To avoid the above, Hawking, York

and Gibbons introduced the term SGYH in the action which allows us to have a

well defined variational problem by using only one boundary condition δgαβ = 0.

Therefore, by using the definition of extrinsic curvature we have

δSGYH =

∮
∂ν

d3y ε
√
|h|nαhνγ∂αδgγν . (A.19)

The above result cancels the boundary term in the variation of Einstein-Hilbert

action.

The variation of the matter action is given by

δSM =

∫
ν

d4x
√
−g
(
∂LM

∂gαβ
− 1

2
gαβLM

)
δgαβ. (A.20)

We define the energy-momentum tensor as

Tαβ ≡ −2
∂LM

∂gαβ
+ gαβLM, (A.21)

which is symmetric and satisfies

∇βT
αβ = 0. (A.22)

This equation is known as the energy conservation equation. Therefore, equa-

tion (A.20) can be rewritten as

δSM = −1

2

∫
ν

d4x
√
−g Tαβδgαβ. (A.23)
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Thus, by combining equation (A.18), equation (A.19) and equation (A.23) we obtain

δS =
1

2

[∫
ν

d4x
√
−g
(

1

κ

(
Rαβ −

1

2
Rgαβ

)
− Tαβ

)
δgαβ

]
. (A.24)

If we impose that the variation in the total action is invariant with respect to δgαβ

then δS = 0, and replacing κ = 8πG, we obtain the Einstein field equations

Rαβ −
1

2
gαβR = 8πGTαβ. (A.25)

To consider the cosmological constant Λ we must modify the Einstein-Hilbert action

in the following way

S̃EH =

∫
ν

d4x
√
−gR− 2Λ. (A.26)

Then, the Einstein field equations with cosmological constant are given by

Rαβ −
1

2
gαβR + Λgαβ = 8πGTαβ. (A.27)

In conclusion, the general relativity can be summarized in the following postulates:

1. The spacetime is decribed by a 4-dimensional manifold M and a Lorentzian

metric g on M.

2. Local conservation of energy: It does exist a symmetric tensor Tαβ(ψ) = Tβα

which is function of matter fields and satisfies

Tαβ = 0 on u ⊂M iff ψi = 0 ∀ i, (A.28)

∇βT
αβ = 0. (A.29)

3. The metric g on M is determined by the Einstein field equations

Rαβ −
1

2
gαβR = 8πGTαβ, (A.30)

where Rαβ is the Ricci tensor, R is the scalar curvature and Tαβ is the energy-

momentum tensor. Here we consider c = 1.
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Newtonian treatment for matter perturbations

Newtonian gravitation is an adequate description of general relativity in the sub-

horizon limit (i.e., kη � 1) for non-relativistic matter perturbations. We consider

a non-relativistic fluid with density ρ, pressure P � ρ and velocity ~v. The position

of a fluid element is given by ~r and the time is t. Equations of motion are given by

the dynamics fluid theory

∂ρ

∂t
+∇r(ρ~v) = 0, Continuity equation, (B.1)(

∂

∂t
+ ~v · ∇r

)
~v =

∇rP

ρ
−∇rΦ, Euler’s equation,

∇2
rΦ = 4πGρ, Poisson’s equation.

Disturbing the fluid properties, we have:

ρ = ρ0 + δρ(t, ~r), ~v = ~v0 + δ~v(t, ~r), (B.2)

Φ = Φ0 + δΦ(t, ~r), P = P0 + δP (t, ~r),

where the zero index denotes the background value. Here we assume adiabatic

perturbations (entropy perturbations are null, see Mukhanov (2005)), therefore we

have the following relation
δP

δρ
=
∂P

∂ρ
= c2

s, (B.3)

where cs is called sound speed.

Introducing expressions (B.2) in the equations (B.1) and using the results ob-
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tained in the section 2.2 we obtain the equations for first order perturbations:

∂δρ

∂t
+ ρ0∇rδ~v +∇r (δρ~v0) = 0, (B.4)

∂δ~v

∂t
+ (δ~v · ∇r)~v0 + (~v0 · ∇r) δ~v = −c

2
s∇rδρ

ρ0

−∇rδΦ,

∇2
rδΦ = 4πGδρ.

Until now, we have worked in the Eulerian coordinate system. In order to find the

solution for the system of partial differential equations (B.4) we will change to the

Lagrangian coordinate system (it is the analogous to comoving coordinates). The

Eulerian and Lagrangian coordinate systems are related by the following transfor-

mation law:

t = t′, ~r = a(t′)~x, then
∂

∂t
=

∂

∂t′
− ~v0 · ∇r; ∇r =

1

a
∇x, (B.5)

where (t′, ~x) are the Lagrangian coordinates and (t, ~r) are the Eulerian coordinates.

These expressions allow us to rewrite the equations (B.4) in the Lagrangian coor-

dinate system. To simplify the notation we use the following convention t′ → t

and ∇x → ∇. The system of partial differential equations for perturbations in

Lagrangian coordinate is given by:

∂δ

∂t
+

1

a
∇δ~v = 0, (B.6)

∂δ~v

∂t
+Hδ~v +

c2
s

a
∇δ +

1

a
∇δΦ = 0,

∇2δΦ = 4πGa2ρ0δ.

Here δ is called contrast density and it is defined as δ ≡ δρ/ρ0. We combine the

equations (B.6) to obtain the equation which describes the growth of perturbations

in the non-relativistic matter distribution for a universe in expansion

∂2δ

∂t2
+ 2H

∂δ

∂t
−
(

4πGρ0δ +
c2
s

a2
∇2δ

)
= 0. (B.7)

The evolution of large structure is due to gravitational instability caused by the

small initial irregularities in the distribution of matter. Those regions with more

matter exert a greater gravitational force to their neighboring regions causing an

increase of matter in these regions. The fluctuations in the density field grow to
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produce the structures observed now. This simple picture does not explain all pro-

cess involved in galaxy formation (actually, there are also complicated astrophysical

processes involved here). However, this model allows us to understand how the

linear perturbations evolve inside the horizon.

To solve equation (B.7) we use the Fourier transformation, so we can write

δ̈k + 2Hδ̇k + 4πGρ0

(
c2
sk

2

4πGa2ρ0

− 1

)
δk = 0, (B.8)

where δk is the Fourier mode of the contrast density. The critical wavenumber kJ is

called the Jeans wavenumber and it is defined as

k2
J ≡

4πGρ0a
2

c2
s

, then λJ =
2π

kJ
, (B.9)

so equation (B.8) is rewritten as

δ̈k + 2Hδ̇k + 4πGρ0

(
λ2
J

λ2
− 1

)
δk = 0. (B.10)

For a static universe (H = 0, so a is a constant), we have

δ̈k + 4πGρ0

(
λ2
J

λ2
− 1

)
δk = 0. (B.11)

Here we have a harmonic oscillator equation, then the solution is given by

δk ∝ e±iωt where ω = 2
√
πGρ0

[(
λJ
λ

)2

− 1

]1/2

. (B.12)

In the limit λJ � λ the solution is periodic. The gravity is negligible in comparison

with the pressure. The term (csk)2 dominates over 4πGρ0, where the first term

is related with the pressure perturbations and the second term is related with the

gravitational potential. For the case λJ < λ, we have unstable modes in which

the pressure cannot hold the collapse or expansion of the perturbations. These

are known as decay modes or growth modes. In contrast to the static case, for

the expansion case we have the damping term 2Hδ̇k in the differential equation.

According to the structures observed in the Universe, the perturbations in the matter

distribution have modes that grow. Therefore we require that λ� λJ in which the

scales are much larger than the Jeans’ scale. Here gravity dominates and the ~k
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dependence in each Fourier mode can be neglected then all modes grow equally.

The perturbations can be rewritten as δk(a) = D(a)δk, where D(a) is called growth

factor. Expression (B.8) allows us to obtain a differential equation for D(a)

D̈ + 2HḊ = 4πGρ0D. (B.13)

By using the relation da = aH(a)dt we rewrite equation (B.13) as

d2D

da2
+

(
d lnH

da
+

3

a

)
dD

da
=

3Ωm

2a5

(
H0

H

)2

D. (B.14)

The above equation was computed in the chapter 2 for matter perturbations in the

sub-horizon limit. Here we show that the Newtonian theory is sufficient to describe

the matter perturbation at late time for scales which are well within the horizon.
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