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The present paper has the goal of studying close approaches between a planet and a group of particles. The mathematical model
includes the presence of the atmosphere of the planet. This cloud is assumed to be created by the passage of the spacecraft in the
atmosphere of the planet, which can cause the explosion of the spacecraft. The system is assumed to be formed by the Sun, the
planet, and the spacecraft that explodes and becomes a cloud of particles. The Sun and the planet are assumed to be in circular
orbits and the motion is planar. The equations of motion are the ones given by the circular planar restricted three-body problem
combined with the forces given by the atmospheric drag. In the numerical simulations, the planet Jupiter is the celestial body used
for the close approaches.The initial positions and velocities of the spacecraft and the particles are specified at the periapsis, because
it is assumed that this is the point where the explosion occurs.

1. Introduction

The close approach between a spacecraft and a celestial body
received a lot of attention in the literature related to the
astrodynamics field. Several missions used this idea to save
fuel in their maneuvers. The Voyager mission visited several
planets of the Solar System gaining energy from successive
close approaches [1–4]. Other applications of this maneuver
are available in the literature, like: the use of Swing-Bys in the
inner Solar System to send a spacecraft to the giant planets
[5] or even to the Sun [6]; the use of Venus in a trip to Mars
[7, 8]; studies to make a three-dimensional close approach to
Jupiter to change the orbital plane of the spacecraft [9]; use
of one [10] or two [11] passages by the Moon to increase the
energy of the spacecraft; the use of multiple passages by the
secondary body to find trajectories linking the primaries [12]
or the Lagrangian points [13, 14].

A good description of this maneuver is available in
Broucke [15]. There are many other researches available
in the literature considering this problem, several of them
optimizing parameters to obtain some desired results, like

obtaining multiple close approaches [16–19], combining this
maneuver with low thrust [20] or impulsive maneuvers [21].
The eccentricity of the primaries was also included in some
researches, like in reference [22].

In the present paper, the effects of the atmosphere of
the planet during the close approach [23, 24] between a
planet and a cloud of particles are studied. The mathematical
model is given by the circular restricted planar three-body
problem [25], with the inclusion of the atmospheric drag.
The cloud is assumed to be created by the explosion of the
spacecraft during the closest approach, which is the point
where it suffers the strongest effect from the atmosphere.
Similar studies are considered in [26, 27]. This same type of
problem is considered from the astronomical perspective in
references [28–33].

For each particle created by the explosion of the space-
craft, the equations of motion are numerically integrated
forward in time, until a point where the particle is at a
distance that can be considered far enough from the planet
and it is possible to disregard the effects of the planet and
consider the Sun-particle as a two-body system. A and B are
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the points where the particles and the spacecraft are assumed
to be far from the planet.Then we can use equations from the
two-body celestial mechanics to compute the velocity, energy
and angular momentum after the passage by the planet, for
each particle. From those results, the eccentricity and the
semi-major axis of each particle can be obtained. After that,
the orbit of the spacecraft can be integrated backwards in
time, now as a single body. The planet is assumed to be
in a circular orbit centered in the central body and any
keplerian orbit is valid for the spacecraft.The difference from
the standard close approach maneuver is the existence of
an atmosphere in the planet and it causes a drag force in
the spacecraft that makes the explosion and changes the
trajectories of the particles after that explosion.The equations
of motion are the ones of the restricted planar circular three-
body problem [25] with the addition of the atmospheric
drag, in the same way done for a single particle in reference
[23]. The drag force is assumed to be proportional to the
square of the velocity and the density of the atmosphere
varies exponentially with the altitude. The main goal of the
present research is to map the change of the orbits of the
particles that form the cloud after the close approach with
the planet. In particular, it is mapped the orbital parameters
of the particles after passing by the planet. After that the
effects are compared with similar maneuvers made without
the presence of the atmosphere of the planet. This type of
work is important, because it helps to obtain the size and
density of the cloud of particles after the passage, for any
given time. That information has a strong impact on the
evaluations of the risks that spacecrafts suffer when passing
by shorter distances from this cloud. It is also possible to use
those informations to plan orbital maneuvers for a spacecraft
to escape from the cloud or, at least, to pass by regions of
smaller densities. The costs of those maneuvers are strongly
dependent on the time in advance that it starts. So, by having a
better knowledge of the size and density of the cloud ahead of
time, it is possible to reduce the risk and the consumption of
the maneuvers that will be realized to escape from the cloud.

2. Definition of the Problem and
Mathematical Model

Since the main goal of the present paper is to study the
evolution of a cloud of particles formed by the explosion
of the spacecraft, the first hypothesis is that the spacecraft
comes from outside the sphere of influence of the planet.
Then, it enters in the atmosphere of that planet and it
travels, as a single body, governed by the gravity and the
atmosphere of the planet until it reaches the periapsis of its
trajectory around the planet. Although this motion is not
keplerian, there is always a point of closest approach to the
planet that is called periapsis. At this point the effects of the
atmosphere reach its maximum point, transferring energy
to the spacecraft and increasing its temperature. It is then
assumed that the protecting shield of the spacecraft fails and
that it explodes, forming a cloud of particles. Those particles
then follow independent trajectories, governed by the same
forces (gravity and atmosphere of the planet). The planet is

assumed to be travelling in a circular orbit centered in the
Sun and the spacecraft comes to the close approach from an
elliptic orbit, also centered in the Sun. Figure 1 illustrates this
situation. The spacecraft is initially travelling in the elliptic
orbit around the Sun that has a perihelion marked by the
point P. Jupiter is travelling in a circular orbit around the
Sun and it has a sphere of influence represented by the circle
around its center. The point A is the position where the
spacecraft starts its approximation to Jupiter, but it is still far
from the planet such that the system can be modeled as a
two-body problem (spacecraft-Sun). The spacecraft follows
its trajectory, now under the gravitational forces of the Sun
and Jupiter, until it enters the atmosphere of the planet,
when the extra force generated by the drag is included in
the dynamics. This force not only modifies the trajectory
of the spacecraft, but it also generates the explosion of the
spacecraft when it is passing by the point of the closest
approach to the planet. After that, the cloud of particles
follows its way in the atmosphere, as individual bodies. If
there is no capture by the planet Jupiter, the particles will
leave the planet and go back to an orbit around the Sun.
Point B represents the exit point from the sphere of influence
of Jupiter. It is a generic point, marked to explain the main
ideas of the trajectory. Each particle has its own exact point
of escaping, since the trajectories are independent from each
other after the explosion. The equations of motion for each
particle and for the spacecraft are the ones given by the planar
restricted circular three-body problem with the inclusion of
the atmospheric drag. Those equations are written in the
rotating system of reference that is a system that rotates
together with the primaries of the system (Sun and Jupiter
in the present case). The canonical system of units is used. It
implies that the unit of distance is the Sun-Jupiter distance,
the unit of mass is the total mass of the bodies involved (Sun
and Jupiter, since the spacecraft has a negligible mass) and
the unit of time is defined in such a way that the period of the
motion of the primaries is 2𝜋. Under those hypothesis, the
equations of motion are [23]:
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𝜕Ω
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where𝐶
𝐷
is the drag coefficient, which is a constant that takes

into account the form of the spacecraft or the particles; 𝐴 is
the cross section area of the spacecraft or the particles; 𝑉⃗ is
the velocity of the spacecraft or the particles; 𝑚 is its mass;
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Figure 1: Geometry of the maneuver. It is not in scale to visualize
better all the steps.

𝜌
0
is the density of the atmosphere at an altitude ℎ

0
; ℎ is the

altitude of the spacecraft; 𝐻 is a constant that specifies the
decay velocity of the density with the altitude.

The “Jacobian Integral” is a constant of motion that is
very important in the restricted three-body problem. It is
valid only when the atmospheric drag is not included. In the
present paper it is used as a parameter to identify a single
trajectory. It is expressed by:
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where 𝐸 is the energy; 𝐶 is the angular momentum; 𝑟
1
is the

distance between the spacecraft and the Sun; 𝑟
2
is the distance

between the spacecraft and Jupiter; 𝜔 is the angular velocity
of the Sun-Jupiter system.

3. Identifying a Trajectory

It is very important to define a set of variables that can identify
uniquely one Swing-By trajectory. There are several choices
that can be used for this task. In the present research the
following ones are used [15]:

(a) Ψ, the angle of approach. It is the angle formed by
the line of the periapsis (line linking the center of
Jupiter to the point of the closest approach of the
trajectory) and the line connecting the two primaries
(Sun-Jupiter). In the rotating system of reference this
line is also the horizontal axis;

(b) 𝐽, the Jacobian constant, expressed by (4). Although
this is no longer constant after the inclusion of the
atmospheric drag, this parameter is usually used to
identify Swing-By trajectories. It is used only to find
the velocity of the particle at the periapsis;

(c) ℎ
𝑝
, the altitude of the periapsis for the trajectory

around Jupiter.
The choice of these parameters was made based in the

literature [15], that used those variables and they showed to
be very adequate to describe the problem.

So, themethodology used to compare trajectories consid-
ering or not the drag force is based in the steps shown below.

(i) When studying trajectories without the drag force, a
numerical integration ismade starting at the periapsis
and in backward time, until the point A is reached
by the spacecraft (see Figure 1). At this point the
spacecraft is assumed to be far enough from Jupiter,
so the formulas developed for the two-body celestial
mechanics are valid to compute the two-body energy
and angular momentum before the close approach
for the Sun-spacecraft system. After that, the initial
conditions are returned to the periapsis. The cloud of
particles is created by making small modifications in
the variables Ψ and ℎ𝑝. So, the particles are assumed
to have values Ψ − 𝛿Ψ ≤ Ψ ≤ Ψ + 𝛿Ψ for the angle of
approach and ℎ

𝑝
−𝛿ℎ
𝑝
≤ ℎ
𝑝
≤ ℎ
𝑝
+𝛿ℎ
𝑝
for the altitude

of the periapsis. Limits for those increments (𝛿Ψ, ℎ
𝑝
)

are fixed in advance, to define the characteristics of
the cloud. Larger values represent a strong explosion
that generates a more dispersed cloud. On the other
side, smaller values for those two limits represent
weaker explosions, with a more concentrated cloud
of particles. In this part of the calculations it is
assumed that the Jacobian constant is the same for
all the particles, at the beginning of the motion. Then
numerical integrations aremade for each particle, this
time in forward time. This integration is performed
until the spacecraft collide with the planet or escape
from it and reaches a point B (see Figure 1), assumed
to be a point that is far enough from Jupiter such that
its effects in the motion of the particle are negligible.
At this point two-body celestial mechanics are again
assumed to be valid to compute the two-body energy
and angular momentum after the close approach for
the Sun-spacecraft system again;

(ii) The maneuver with the presence of the drag force is
similar. The numerical integration starts at periapsis,
with the same values for the parameters 𝐽, Ψ and
ℎ
𝑝
of the maneuver without drag. The integration

of the trajectory of the spacecraft is made again
backward in time, now including the drag force, until
the spacecraft arrives at the point A. The numerical
integration for the particles is performed forward in
time, including the drag force, for each particle until
they reach the point B. The same hypotheses made
for the situation without the drag force are made here
regarding the initial condition of each particle.

The same quantities are now calculated to measure the
effects of the atmosphere: the energy, the angular momen-
tum, the semi-major axis, the eccentricity and the Jacobian
constant before and after the Swing-By. This procedure is
repeated with and without the presence of the drag force,
what makes possible to measure its influence. The results
are shown in figures that have the semi-major axis and the
eccentricity of the particles of the cloud after the passage
by the atmosphere and the corresponding values for the
spacecraft before the passage.
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4. Tisserand’s Criterion

It is known for a long time that, when a particle passes
close to a massive celestial body, the orbital elements can
be drastically modified. The French astronomer Francois
Felix Tisserand established, in 1889, a relationship among the
orbital elements that should remain almost unaltered by a
close approach. It is an equation, written in the dimensionless
canonical system of units, which represents a quantity that
should be nearly conserved by the close approach. Thus, two
observed bodies are probably the same if they nearly satisfy
the Tisserand’s Criterion [34]:
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where 𝑎
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are the orbital elements of the particle

before the maneuver and 𝑎
0
, 𝑒
0
and 𝑖
0
are the orbital elements

of the particle after the maneuver. It is important to note
that all the orbits involved are planar. It means that there are
only two choices for the inclination before and after the close
approach: zero or 180 degrees. So, the trigonometric forms
presented in this equation (cos 𝑖

𝑖
and cos 𝑖

0
) are both minus

one or one. In this study, the Tisserand’s Criterionwill be used
to validate the orbits found.

5. Results

The results are presented in figures that display the semi-
major axis and the eccentricity of the particles of the cloud
after the passage for both cases, with and without drag.
The legends show the same values for the spacecraft, before
the passage. Two values were considered for the Jacobian
constant 𝐽: −1.3 and −1.0. Those values were chosen based in
simulations with different values. Since the Jacobian constant
is equivalent to the velocity of the spacecraft at the periapsis, it
is important to use values that do not imply in velocities that
are not too low, such that too many captures by Jupiter occur;
and also those which are not too high, such that the Swing-
Bys have very little effects. Eight values were considered for
the angel approach Ψ: 0∘, 45∘, 90∘, 135∘, 180∘, 225∘, 270∘, 315∘.
Those values were chosen in order to cover the whole range of
values from 0 to 360∘ in equally spaced values, such that there
are captures and escapes for the particles, as well as regions
with no effects from the Swing-Bys. Figures 2, 3, 4, 5, 6, 7, 8,
and 9 show the results, where the semi-major axes are shown
in canonical units. Red represents the cloud of particles for
the passage where the drag is included and black represents
the situation where drag is not included.

There are many conclusions coming from those results.
First, it is clear that the inclusion of the atmospheric drag
increases the dispersion of the particles of the cloud. It
happened for all the situations simulated.Another effect com-
mon to all the simulations is the circularization of the orbits.
It means that the atmospheric drag reduces the eccentricities
of the particles, when compared to the equivalent simulations
without the presence of drag. Considering specific cases, it
is visible that the maneuvers, in the situation where Ψ = 0

∘,
have no change in the energy of the particle due to the Swing-
By. The centers of the black curves, for both values of the

Table 1: Amplitude of the dispersions for semi-major axis and
eccentricity.

Figure Ψ (deg) 𝐽
No drag With drag

Δ𝑎 Δ𝑒 Δ𝑎 Δ𝑒

Figure 2 0 −1.3 0.27398 0.01378 0.40155 0.04336
−1.0 0.04844 0.03052 0.14377 0.05914

Figure 3 45 −1.3 0.01231 0.00558 0.01820 0.01735
−1.0 0.06168 0.00105 0.08655 0.00727

Figure 4 90 −1.3 0.00164 0.00180 0.00502 0.01627
−1.0 0.06168 0.00105 0.08655 0.00727

Figure 5 135 −1.3 0.00380 0.00381 0.00952 0.02189
−1.0 0.00357 0.00074 0.00428 0.00338

Figure 6 180 −1.3 0.03220 0.00117 0.03701 0.01684
−1.0 0.04784 0.00245 0.08567 0.00675

Figure 7 225 −1.3 15.06492 0.01648 28.89744 0.04306
−1.0 0.06267 0.02993 0.12365 0.04258

Figure 8 270 −1.3 0.01418 0.00616 0.26598 0.05998
−1.0 0.00419 0.01809 0.01787 0.05396

Figure 9 315 −1.3 0.04569 0.01179 0.64335 0.06859
−1.0 0.00359 0.01621 0.01966 0.06234

Jacobian constant, have the same keplerian elements of the
spacecraft before the passage. The particles are dispersed by
the variations of the initial conditions only (angle of approach
and periapsis altitude). It is also visible that all the orbits
involved are hyperbolic for the situation where 𝐽 = −1.0,
since the eccentricities are larger than one and the semi-major
axis are positive. For the situations where 𝐽 = −1.3 all the
orbits involved are elliptic. These differences come from the
higher magnitude of the velocity at the periapsis caused by
the increase of the Jacobian constant. The addition of the
atmospheric drag has the effect of making an extra loss in
the energy, as expected, showed by the decreases of the semi-
major axis. It is also visible that, with the increase of the
Jacobian constant (and so the velocity at the periapsis) the
modifications in the orbit of the spacecraft decreases. This
is explained by the fact that the particles and the spacecraft
remains a longer time inside the atmosphere in the situations
where the velocity is smaller.

For the situations where = 45
∘, the Swing-By maneuver

reduces the energy of the particle. All the orbits before the
close approach are hyperbolic and after the close approach
they are elliptic, for both values of the Jacobian constant.
It means that captures occur in all situations and the
particles become part of the Solar System after the close
approaches. Once again, the effects are smaller when the
velocity increases, for the same reasons already explained.
Both values of the semi-major axis and eccentricity are larger
for higher velocities at the periapsis.

The cases where Ψ = 90
∘ represent the maneuvers that

give the maximum loss of energy for the particles due to the
Swing-by. Once again there are capture trajectories in all the
situations, since the particle is in a hyperbolic orbit before
the passage and in elliptical orbits after that. Note that for the
case 𝐽 = −1.0 the captures resulted in orbits with eccentricity
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Figure 2: Semi major (a) axis and eccentricity (e) for the particles after the close approach considering Ψ = 0
∘.

Table 2: Orbital parameters and Tisserand’s values for a cloud of particles before and after the explosion.

Initial orbit (canonical units) After maneuver (cloud of particles)

𝐽 Ψ (deg) 𝑎 𝑒

Tisserand’s Criterion
No drag With atmospheric drag
𝑇— 𝑇

𝑚
𝑇min 𝑇max

−1.0

0 −1,23775 1,610314 2,000569 2,06071106 2,05025320 2,07252358
45 −0,53638 2,821376 2,000065 2,06142012 2,05096604 2,07322829
90 −0,54698 2,774633 2,000082 2,06192721 2,05148132 2,07372668
135 −1,39075 1,526299 2,000611 2,06193529 2,05149121 2,07373280
180 1,229213 0,844421 2,001342 2,06136489 2,05091418 2,07316926
225 0,534676 0,995945 2,001846 2,06073155 2,05027747 2,07253978
270 0,545158 0,993546 2,001829 2,06022456 2,04977090 2,07203293
315 1,379367 0,839495 2,001300 2,06021643 2,04976138 2,07202647

−1.3

0 3,58547 0,7898784 2,601373 2,66063381 2,65033163 2,67227080
45 −2,03535 1,4746355 2,601006 2,66105799 2,65076288 2,67268695
90 −1,60122 1,6199792 2,600942 2,66130887 2,65102208 2,67292885
135 −26,9689 1,0317580 2,601223 2,66124006 2,65095278 2,67286048
180 0,9678 0,6037537 2,601733 2,66084666 2,65055228 2,67247478
225 0,58864 0,8084081 2,602051 2,66047080 2,65017124 2,67210496
270 0,54589 0,8534019 2,602114 2,66022005 2,64991829 2,67185720
315 0,80375 0,6532013 2,601834 2,66028895 2,64998489 2,67192855

just below 1.0, so they are almost parabolic orbits and the
captures almost did not happen. The cases with 𝐽 = −1.3

have lower velocities, so the captures are stronger and the
eccentricities after the close approaches are in the range 0.81
to 0.83, so not so close to parabolic orbits. It is also noted
that the semi-major axis for the particles are larger when the
atmospheric drag is included, what is not expected since the
atmosphere takes energy from the particles. This situation
happened because the maneuvers with Ψ = 90

∘ cause the
largest loss of energy due to the passage by Jupiter, so, if the

atmosphere changes this geometry and the trajectories have
angles of approach different from that extreme case, there is
a reduction in the variation of energy due to the Swing-By.
It means that the magnitudes of the energy removed by the
atmosphere were smaller than themagnitude of the decreases
in the variation of energy due to the fact that the Swing-By
occurred out of the extreme geometry.

The situations that have Ψ = 135
∘ also represent Swing-

Bys that reduces the energy of the particles. For both values
of the Jacobian constant all the trajectories ends in captures.
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Figure 3: Semi major (a) axis and eccentricity (e) for the particles after the close approach considering Ψ = 45
∘.
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Figure 4: Semi major (a) axis and eccentricity (e) for the particles after the close approach considering Ψ = 90
∘.

Once again the characteristic of having smaller loss of energy
when the atmosphere is included occurred, this time for both
values of the Jacobian constant. In the case where 𝐽 = −1.0 the
captures resulted in orbits with very high eccentricities, near
the parabolic orbits again.The cases where 𝐽 = −1.3 have now
the characteristic of having almost parabolic orbits before the
close approach.

The cases where Ψ = 180
∘ represent the other geometry

where the Swing-By itself does not modify the orbit of the
particle, similar to the case Ψ = 0

∘. All the orbits are elliptic,

before and after the close approaches, for both values of
the Jacobian constant. Another characteristic of these orbits
is that there is an inversion in the change of energy due
to the inclusion of the drag force. There are decreases for
𝐽 = −1.3 and increases for 𝐽 = −1.0. This fact occurs due
to the sensibility of the orbits in the border line between
gains and losses in energy, in terms of the angle of approach.
The atmosphere can make small deviations in the orbits and
put them in trajectories with angle of approaches a little
below 180

∘, so loosing energy, or a little above 180∘, gaining
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(b) 𝐽 = −1.0, keplerian elements of the spacecraft before the Swing-By:
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Figure 5: Semi major (a) axis and eccentricity (e) for the particles after the close approach considering Ψ = 135
∘.
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(a) 𝐽 = −1.3, keplerian elements of the spacecraft before the Swing-By:
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(b) 𝐽 = −1.0, keplerian elements of the spacecraft before the Swing-By: 𝑎 =
1.229213, 𝑒 = 0.844421

Figure 6: Semi major (a) axis and eccentricity (e) for the particles after the close approach considering Ψ = 180
∘.

energy. These differences in the energy variations can be
larger than the removal of energy by the atmosphere, causing
the unexpected results.

The situations whereΨ = 225
∘ have also some interesting

and peculiar facts. First of all, it is a geometry that increases
the energy of the particles. For values of the Jacobian constant
equal to−1.0, there are escape trajectories in all the cases, with
the particles leaving closed trajectories around the Sun to go

to open trajectories, leaving the Solar System. The escapes
occur in the limit, because the orbit before the close approach
is almost parabolic, with eccentricity equal to 0.995945. The
cases with 𝐽 = −1.3 are more interesting. Passages not
including the drag force also result in escape trajectories, with
orbits having eccentricities just above 1.0, so near parabolic
orbits. The inclusion of the drag force increases the loss of
energy, and these amounts of the increases are large enough to
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(b) 𝐽 = −1.0, keplerian elements of the spacecraft before the Swing-By: 𝑎 =
0.534676, 𝑒 = 0.995945

Figure 7: Semi major (a) axis and eccentricity (e) for the particles after the close approach considering Ψ = 225
∘.
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Figure 8: Semi major (a) axis and eccentricity (e) for the particles after the close approach considering Ψ = 270
∘.

avoid the escapes, so keeping the particles as part of the Solar
System. It means that the atmosphere plays an important role
in these maneuvers.

The cases with Ψ = 270
∘ consist in maneuvers that gives

the maximum gains in energy for the particles. The result of
the larger increases in energy is that now there are only escape
trajectories, for both values of the Jacobian constant. It is
also noted that the escapes generated trajectories with larger
eccentricities, no longer near parabolic orbits. The situation

is similar for the last case studied, with Ψ = 315
∘. There are

increases in the energy of the particles in all the cases and all
the orbits are hyperbolic.

Table 1 shows the values of the amplitude of the disper-
sions for both semi-major axis and eccentricity in all cases
simulated. It is visible that the inclusion of the atmospheric
drag increased the dispersions in all simulations.The increas-
ing factor depends on the geometry of the passage and on the
value of the Jacobian constant.
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𝑎 = 1.379367, 𝑒 = 0.839495

Figure 9: Semi major (a) axis and eccentricity (e) for the particles after the close approach considering Ψ = 315
∘.

After that, the Tisserand’s parameters are evaluated, to
verify the orbits found. Table 2 shows the orbital param-
eters and the Tisserand’s values for the spacecraft before
the explosion and for the particles of the cloud after the
explosion. The values shown are: 𝐽 (Jacobian constant), Ψ
(angle of approach); 𝑎 (semi-major axis); 𝑒 (eccentricity);
𝑇
−
(Tisserand’s parameter of the spacecraft before the close

approach);𝑇
𝑚
(the average value of the Tisserand’s parameter

for the cloud of particles after the explosion); 𝑇min (the
minimum value of the Tisserand’s parameter for the cloud of
particle after the explosion) and 𝑇max (the maximum value
for the Tisserand’s parameter for the cloud of particles after
the explosion). It is possible to observe that the Tisserand’s
parameters (𝑇

−
, 𝑇
𝑚
, 𝑇min, 𝑇max) show slight variations after

the second decimal digit due to the atmospheric drag force,
so these results are showing the effects of the drag force.
In average, the inclusion of the drag force increased the
Tisserand’s parameter by the value 0.06.The amplitude of the
dispersion is 0.02.

6. Conclusions

A numerical algorithm to measure the effects of the atmo-
sphere in a Swing-By between a planet and a spacecraft
that explode during the passage is developed. This algorithm
allows the quantification of the results obtained by the
inclusion of the drag force and also gives conditions to make
predictions in other situations.This technique is then applied
to a spacecraft passing by the planet Jupiter. The results give
an idea of the behavior of the particles, showing regions
where captures and escapes occur, and also quantifying the
effects of the atmospheric drag. In general, the presence of
the atmosphere causes a reduction in the eccentricities of
the orbits of the particles after the Swing-By, so generating

orbits that are closer to circular when compared to the
situations where drag is not present. This reduction is also
quantified by the present algorithm. The semi-major axis
of the trajectories are usually reduced by the presence of
the atmosphere, but some exceptions exist near the point
of maximum loss in energy (angle of approach 90∘). This
fact happens because the losses in energy that come from
the deviations from this optimal point for the Swing-By is
larger than the energy removed by the atmosphere. Next, the
Tisserand’s criterion was applied in the maneuvers and the
effects of the atmosphere in this parameter were measured,
in terms of average and dispersion.
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