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Some polynomials and interpolatory quadrature rules associated with strong
Stieltjes distributions are considered, especially when the distributions satisfy a
certain symmetric property. © 1995 Academic Press, Inc.

1. INTRODUCTION

Let the function {(r), defined on (a, b), be real, bounded, and nonde-
creasing with infinitely many points of increase in (a, b), and such that
the moments

= j”z'"dq;(t), m=0,%1,%2,...,
all exist. Then dyi(¢) is called a strong distribution on (a, b).
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We refer to a strong distribution on (a, b) as a strong Stieltjes distribution
on (a, b}, or simply as a SS(a, b) distribution, when (a, b) C (0, =). Given
a SS(a, b) distribution dy(¢) it is known, see for example [6], that

[[emBmdpn =0, 0ss=n-1,n=z1, (.

defines a unique set of polynomials B,(z), taken to be monic, satisfying
the three-term recurrence relation

B,,(Z) =(z- Bn)Bn—l(Z) - anan—Z(Z)’ n=2, (12)

with By(z) = 1, B{(z) = z — B, and 8, > 0, &, > O for n = 1. For these
results and others, but in terms of the equivalent orthogonal Laurent
polynomials, see [4].

In {6], the polynomials B,(z) and the associated interpolatory quadrature
rules have been investigated for a class of SS(a, b) distributions, denoted
by ScS(a, b) distributions, which satisfy the symmetric (inverse) property

dy(H) _ _ dp(elr)
Vi Vit

In this article we look at the real polynomials B,(A, z) given by

t € (a,b).

B,(A,2) =B,(z) - A B,_(2) n=1, (1.3)

where A € R, and the associated interpolatory quadrature rules for a class
of SS(a, b) distributions which possess the symmetric (inverse) property

day(t) = —d(c/t), t € (a,b), (1.4)
for ¢ > 0. Just as in the ScS(a, b) distributions we must have a = 0 iff
b =owand, if 0 < g < b < ©then ¢ = ab. When di)(t) can be given in
the form w(t) dt then w(¢) satisfies

t w(t) = (c/t) wlclt), t € (a, b).

For convenience we denote the class of distributions which satisfy (1.4)
as ScS(a, b) distributions.

LEMMA 1.1.  Let dii(t) be a ScS(a, b) distribution and let f(t) be integ-
rable with respect to d(t) on (a, b). Then

[7 forawo = {7 fiem dp.
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The proof of this lemma follows from change of variable properties of
Riemann-Stieltjes integrals and from the choice of c.

Some properties of the special ScS(a, b) distributions, where ¢ = 1,
have been considered in [3]. The ScS(a, b) distributions taking the form
w(?) dt have been studied in [8]. It was shown there that for any such distri-
butions

"B, (clz)
W - Bn(alﬁ-l’ Z)
= B"(Z) - arH]Bn-l(Z)

= {Bn+](z) + Bn+] B,,(Z)}/Z, n= lv (]'5)

and, further, ify, = 8, + «,,, then

Yn+1 C
= n=1, (1.6)
Y BanH

withy, = ¢/B,. These results can easily be proved for all ScS(a, b) distribu-
tions.

For a given ScS(a, b) distribution dys(¢) it follows from Lemma 1.1 that
Hn = c"u_,,, m=0.Consequently for the associated Hankel determinants

Mo o+t T M-
) (m) M+l Mops2 T Mgnen
H&m :], Hnl: . . . s nzl,
Mosn—1 Mptn 70 Mmsan-2
m =0, *1, 2, ..., the following holds:
H("m) — c"(’"*"‘”H‘,,'”"Z"*z’, m= 0’ n=0.

2. THE POLYNOMIALS B,(A, 2)

In this section dyi(¢) is assumed to be any SS(a, b) distribution. In (1.3)
the polynomials B,(\, z) are defined by B,(z) in just the same way as the
quasi-orthogonal polynomials (see, for example, [1]) are defined from
orthogonal polynomials.

It follows from (1.1) and (1.3) that

J’bt~n+xB"(A’t)dd]([):O, l=ss<sn-1,n=2. 2.1
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A more general result is the following.

THEOREM 2.1. Let Q,(z) be a real monic polynomial of degree n = 2
which satisfies the condition

th‘”“Q,,(t) db()=0, l=s=n-1.

Then there exists a A € R such that Q,(z) = B\, z).

This result is easily proved by considering the linear combination of
Q.(1) in terms of the polynomials B(1), r = 1,2, ..., n.

It can be established from (2.1) that the zeros of B,(A, z) are all real
and distinct and that at least n — 1 of them lie inside (a, b). Let these
zeros, in increasing order, be denoted by z{}, zM, ..., z{*). From (1.2) and
(1.3), B,(A, 0) = (—1)"B, ... B,_,(B, + M) and, hence, for example, we
can say that if A > —g, then z{} > 0 while if A < -8, then z{}} < 0.

THEOREM 2.2. For n = 1, if 0 = X = a,,, then all the zeros of
B.(\, 2) lie inside the interval (a, b).

Proof. 1t is known that the zeros of B,(0, z) = B,(z) and B,(«a,,, 2)
lie inside (a, b). Thus, we obtain

(_l)an(Os a) > 0# (_l)an(arﬁ-]’ a) > Ov Bn(o, b) > 09
B (a,;, b) >0

for all » = 1. From this and from

B"()\, Z): (1 - A )B"(Ov Z)+ A Bn(an-H’Z)‘
A n+l
we then have for 0 = A = o,
(=1)"B,(\,a) >0, B,(\,b)>0, n=1. 2.2)

It is true that z{)_, < b. Now, if z}) > b then we must have
B,(A, b) < 0, which is a contradiction to (2.2). Hence, z{}) < b.

Similarly, we can see that z{}} < a also leads to a contradiction of (2.2).
Hence the theorem is proved.

From (1.2) and (1.3) it can be seen that when n = 2, the zeros of
B,(A, z) for any A, are also the eigenvalues of the Hessenberg matrix
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Y Y v Ve BatA

Q Yy v Yaot BatA

0 L I Bn+)‘
HMN) =] ., . . .

0 0 - v,y Bt

_0 0 - ,6,,+)\J

The proof of this for A = 0 can be found in [7]. Now let

A\, 2)= f: B, Zz) : f”(k’ t)dd;(t), n=1.

Then it follows from (2.1) that

t’B, (N, 2) — B, (A, 1)
z—1t

Ao =["r A, n=z1, @3

where p is any integer such that 0 < p < n — 1. Thus, in the relation

B,(\z) Az-zZ)

AN2) & w
- n=1,

we have

A\, 2N (Myp tPB(\, ¢
wih) = Nz {zeh fb o )dd/(t), r= L2

B\, zY) B\, ZN)le =2
2.4)

Now, by considering the interpolation of "' f(¢) on the zeros of
B,(\, z) we obtain the quadrature rule

[ f@ i = 3 w1 + E D), @.5)

r=1

where E,(A, f) = 0 for "' f(1) € P,,_,.
As E (A, f) = 0 whenever f(t) € P,_,, the above is also the usual
interpolatory quadrature rule. Taking f(£) = t™"*!{B,(\, )/(z — Z))}?, we

. . . . n
find that w!) is positive. Moreover, taking f(z) = 1 we get 2,_, w}) = u,.

nr
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3. THE ScS(a, b) DISTRIBUTIONS AND B,{()X, 2)

We assume throughout the rest of this article that dy(r) is a
ScS(a, b) distribution and that A € R is such that B, (A, 0) # 0 (i.e.,

A# =B
In (2.1), by applying Lemma 1.1 we obtain

J’b[—n-#stan()\,C/t)dd,(t)_—_0‘ I=s=n—-1,n=2

Thus from Theorem 2.1, for each A € R there exists an % € R such that

2" B,(\, c/2)

B.(n.0) =B,(n, 2), n=1, G.1n

Here we have also included n = 1, which is easily seen to hold. Since
B,(z) = B,(0, z), we have from (1.3)

"B\, c/2)=7"B,0,c/z) = AZ"B,_,(0, c/z), n=1.
Thus from (1.5)

"B,(\, ¢/z) = B,(0, 0){B,(0, 2) — a,, B, (0, 2)}
—AB,_(0,04{B,(0,2) + B,B,-,(0,2)}, n=1.

Regrouping again leads to the relation (3.1), where we now find

_ ,8,(0,0) + X 8,8, ,(0,0) .
n= , n=1.
B,(0,0) — A B,_,(0,0)

Since B,(0, 0) = —8,B,_,(0, 0), the following result is established.

THEOREM 3.1. Foranyn =1, if

A
ZBn(;niA )’ (3.2)

then the polynomials B,(\, z) and B,(m, z) are related to each other by
the relation (3.1). Furthermore, when A, n > —f3,,

A = —_—
zs-r) - C/Z("T',:HA” r=1,2,...,n,
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and when A\, n < —83,,
W=l A=, r=23.n

The following is a special case of the above theorem.

THEOREM 3.2. For any n = 1, if N is equal to

L=VBNY, ~VB) or  K=VB(~Vy,-VB)

then
"B (A, ¢/2)
2O S B (A, ). 33
B,,()\,O) n( 2) (3.3)
In particular, zﬁ,’:‘p)z c/z("&_,th_r, r=1,2,...,n and Z;;‘f) — _\/;’ zf.’:‘p) _
C/Zgl},‘ﬁ)-!-Z—rs r = 2, 3, ey N

Proof. In Theorem 3.1 letting n = A we get A2 + 28, — B,a,,; = 0.
We take A, as the positive and A, as the other solution of this quadratic
equation. Since A, = —g,, the polynomial B,(X,, z) has that one negative
zero and (3.3) implies that this zero must be equal to —Vc. This completes
the proof.

EXAMPLE. We consider the shifted log-normal distribution

t—le—(ln(l)/z»()2 d(, tE (O, oo).

dp(1) =

2V

This distribution, which has also been considered in [3], is a ScS(0, =)
distribution with ¢ = 1. For this the coefficients of the recurrence relation
(1.2) are

Bn — ql/Z, Qpyp = ql/2(q-n _ 1), n= l,

where g = e > 1t is interesting to note that this distribution is also a
ScS(0, =) distribution with ¢ = g.

It is easily verified that these coefficients satisfy (1.6). By following
reasonings similar to those of [2, 5], we obtain

B,,(Z) — Z (- l)rqr(nfr){n} quzzn»r, n=1,
r=0 rlg
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where {':} are the g-binomial coefficients given by
q

Tl — o
0}, njq ’ g ’ T ’

[[a-dTa-d
k=1 k=1

for n = 0. We can write

N - 1 =q) .
B\, = N 4 1Y r(n r){n} [] + Ag" " r/ZZn r n=1.
WA, 2) =2 ;( yq ', CA " q

Hence, for A = A, = ¢"%(g"""* — 1), we get

R n ri2 + q(n—r)lz
) N = —1yg i q_.____.__,— n—r >
ib =g ) [LEEE s

and for A = A, = ¢"(—q™""* — 1), we get

. n ri2 _ _(n—r)i2
Bn(}‘n* Z) = Z (__l)rqr(n-—r){n} [g_——q;E——-] Zn*r, n=1.
r=0 rlq l-q

From the symmetry of the coefficients of B,,(X,,, z) and B,(A,, z) we see
that these polynomials satisfy the relation (3.3).

4. THE ScS(a, b) DISTRIBUTIONS AND w()

From (3.1) we have

z4n+2

mmdn=§mwan— B,(\,0) B{(n.2), n=1l. (4.1

c

Now in (2.3) with p = 0, substituting ¢/u for ¢ and then replacing z by
c/z, we obtain

B (A - X, C
An()‘*C/Z):ftJ'I’,u A, c/z) — B( (/”)dd;(u).

U—2z
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Hence, from (3.1)

n+l b
A cl2) = E—B,0 0 [Tu!

u"B.(n, z) — 2"B,(n, u)
u—2

dii(u).

Writing «"B,(n, z) — "B, (m, u) as zu" 'B,(n, z) — "B,(m, u) +
u" Nu — z)B,(n, z), immediately gives

n+1
B0 0w B,m )~ 2Am,  nzl (@2

A\ clz)=

THEOREM 4.1. For any ScS(a, b) distribution dy(t), if \, > — B, and
they satisfy (3.2), then the weights of the quadrature rule (2.5) satisfy

A — _
wi =wim ., r=12,...,n,n=1.
In particular,

wid=wh, ., r=1,2,..,nn=1.

Proof. In(4.1) and (4.2) substituting z = z{"),_, (i.e., by Theorem 3.1,
c/z = z{})), and then using (2.4) immediately gives the required result.

Similarly, we can also obtain the following.

THEOREM 4.2.  For any ScS(a, b) distribution dyi(1), if \, 3 < —B, and
they satisfy (3.2), then the weights of the quadrature rule (2.5) satisfy

A — ) — —
WL} - WS”]), Wn,r) - W£|7,113+2—r’ r= 2v 3s .,nn= 2.

In particular,

wih=wMo o r=2,3,...,n,n21.

We now define the step functions §,(¢), n = 1, on the interval (a, b) by

0 a<t<z™

n, b

r N - -
P (1) = Zwﬁ,ﬂ’ N<r=zZN.,r=112,...,n-1.

s=1

Mo, Zs,}:,)l<t<b,
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Then Theorems 3.2 and 4.1 tell us that the distributions given by dy, (1)
are all ScS(a, b) distributions.

ExaMPLE. We consider the distribution

— 1+ Vabl/t
di(t) = ——2L" 4t tE€(a,b),
) Vb-tVi—a (a. )

where 0 < a < b < . This distribution, which was the principle object
of study in 8], is a ScS(a, b) distribution with ¢ = ab.

THEOREM 4.3. For the distribution dy(t) we have for n = 1

W = BHav, )+ VB +av, ) - =,
forr=1,2,...,[(n+ 1)2] and

N 2T
Wiy ===, forr=1,2,....n.

Here,

v,,= 1+ cos(2r — )w/n), B = Vab, and a = (Vb — Va)!/4.

Proof. Clearly these results satisfy the required conditions given by
Theorems 3.2 and 4.1. First we consider the polynomials B,(z), n = 1,
defined by

f”r"”is (1) e
a Vb -tVi-a

_ The distribution in (4.3) is a ScS(a, b) distribution. The polynomials
B,(z) have been studied in some detail in [6], where it was shown that

dr=0, O=s=n-1,nz=1. 4.3)

B (ablz)
—r = s =1. )
B(0) B,(2) n (4.4)

Now in (4.3), if we substitute ¢ by ab/t and then use the above relation,
we obtain

b . Vablt
17" B (1) ————F—=dt = 0, l=s=nn=l.
f" Vb—-tVt—a
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Adding this with (4.3) gives
jbt"'”l}n(t)c@(t):O, lss=n-1,n=1,

which together with (4.4) yields
B(»=B,A.2, n=z=Ll

Here, B,(A,, z) are the polynomials given by Theorem 3.2 in relation to
the ScS(a, b) distribution dys(¢).
The proof of the theorem is completed by using a result given in [9].
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