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Abstract

This work presents a study of probabilistic modeling, with applications to survival analy-
sis, based on a probabilistic model called Exponential Geometric (EG), which o�ers great
�exibility for the statistical estimation of its parameters based on samples of life time
data complete and censored. In this study, the concepts of estimators and lifetime data
are explored under random censorship in two cases of extensions of the EG model: the
Extended Geometric Exponential (EEG) and the Generalized Extreme Geometric Expo-
nential (GE2). The work still considers, exclusively for the EEG model, the approach of
the presence of covariates indexed in the rate parameter as a second source of variation to
add even more �exibility to the model, as well as, exclusively for the GE2 model, a anal-
ysis of the convergence, hitherto ignored, it is proposed for its moments. The statistical
inference approach is performed for these extensions in order to expose (in the classical
context) their maximum likelihood estimators and asymptotic con�dence intervals, and
(in the bayesian context) their a priori and a posteriori distributions, both cases to esti-
mate their parameters under random censorship, and covariates in the case of EEG. In
this work, bayesian estimators are developed with the assumptions that the prioris are
vague, follow a Gamma distribution and are independent between the unknown parame-
ters. The results of this work are regarded from a detailed study of statistical simulation
applied to compare the estimation procedures approached under the pretext of evaluating
these estimators based on the 95% coverage probability, mean square error, mean bias
and the mean interval amplitude. At the end of each extension's approach, an application
with real data is also presented to highlight the reach and particularities of the extended
model addressed.

Keywords: Censored and covariate data, Maximum likelihood and bayesian estimation,
Extensions for Exponential Geometric distribution, Statistical simulation.



Resumo

Este trabalho apresenta um estudo de modelagem probabilística, com aplicações à análise
de sobrevivência, fundamentado em um modelo probabilístico denominado Exponencial
Geométrico (EG), que oferece uma grande �exibilidade para a estimação estatística de
seus parâmetros com base em amostras de dados de tempo de vida completos e censura-
dos. Neste estudo são explorados os conceitos de estimadores e dados de tempo de vida
sob censuras aleatórias em dois casos de extensões do modelo EG: o Exponencial Ge-
ométrico Estendido (EEG) e o Exponencial Geométrico Extremo Generalizado (GE2). O
trabalho ainda considera, exclusivamente para o modelo EEG, a abordagem de presença
de covariáveis indexadas no parâmetro de taxa como uma segunda fonte de variação para
acrescentar ainda mais �exibilidade para o modelo, bem como, exclusivamente para o
modelo GE2, uma análise de convergência até então ignorada, é proposta para seus mo-
mentos. A abordagem da inferência estatística é realizada para essas extensões no intuito
de expor (no contexto clássico) seus estimadores de máxima verossimilhança e intervalos
de con�ança assintóticos, e (no contexto bayesiano) suas distribuições à priori e posteriori,
ambos os casos para estimar seus parâmetros sob as censuras aleatórias, e covariáveis no
caso do EEG. Neste trabalho os estimadores bayesianos são desenvolvidos com os pressu-
postos de que as prioris são vagas, seguem uma distribuição Gama e são independentes
entre os parâmetros desconhecidos. Os resultados deste trabalho são resguardados de um
estudo detalhado de simulação estatística aplicado para comparar os procedimentos de
estimação abordados sob o pretexto de avaliar estes estimadores com base na probabili-
dade de 95% de cobertura, erro quadrático médio, vício médio e a amplitude intervalar
média. Ao �nal da abordagem de cada extensão é apresentada ainda uma aplicação com
dados reais para destacar o alcance e as particularidades do modelo estendido abordado.

Palavras-Chave: Dados censurados e covariados, Estimação de máxima verossimilhança e
bayesiano, Extensões para a distribuição Exponencial Geométrica, Simulação estatística.
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Chapter

1
Introduction: Probabilistic Models,

Genesis and Extended Summary

Statistics can be announced a science inherent to Probability Theory, a concept that
in the most re�ned context is approached in the light of Analysis Mathematics in a branch
of study known as Measure Theory and that is in constant discoveries since its origin as
scienti�c knowledge in the �rst decade of the 19th century (see Laplace [32].

In the same vein, several applications are summarized in the shadow of the Probability
Theory that is summarized the data analysis to explain the frequency of occurrence of the
natural and/or arti�cial events and phenomena present in all �elds of human knowledge,
both in observational studies as in experiments to model randomness and uncertainty in
order to estimate or enable the prediction of future observations of these phenomena, since
even in the most basic data analysis the processes are still dependent on measures that
can be interpreted as counting, size, mass, volume ... or any additive and multiplicative
property through the fundamental principle of counting.

In this sense, the Probability Distributions (or Probabilistic Models) until then pre-
sented in the literature are intrinsic to the Theory of Probability and Statistics, and
are consolidated as the platform for statistical analysis in practically all areas of study,
whether in the context of the probabilistic modeling for estimate the probability of occur-
rence of events, as the same in the statistical inference for the decision making and/or also
through statistical modeling under conclusions about a subset of representative values of
a universe, the sample of a population.

1.1 Initial Considerations

Since Pierre Simon Laplace, who according to Hájek [21], is considered the precursor
of probability theory, a wide range of probability distributions have been proposed to
model a multitude of random phenomena, and in recent decades the statistical litera-
ture related to Survival Analysis and Reliability Theory, in addition to becoming more
complex mathematically and computationally, according to Harris and Albert [23], it is
enormously rich in useful results regarding not only analytical results, but also to the pro-
posal of probability distributions due to the modeling of survival and reliability functions
that, above all, are probabilistic models for a random variable T positive for a temporal
phenomenon, a quantile t for the model, called failure time (or lifetime).

In survival and reliability studies, a given distribution function (or cumulative prob-
ability function), commonly denoted by F , is at the heart of the survival or reliability

13



14 Introduction

function, denoted respectively by S and R, which by in turn, with the probability den-
sity function (or mass probability function) f derived from F , it is the description of the
hazard rate resulting from the e�ects of time exposures, the hazard rate function (or risk
function) commonly denoted by h.

In this context, the common practice in modeling random phenomena through the
results of the survival and reliability analysis consists of prior knowledge of the forms of
the hazard rate function, since whatever the probability distribution from which a func-
tion S derives or R, such functions are strictly decreasing probability functions, while
the h function contains �ve basic forms: constant, increasing, decreasing, unimodal and
bathtub.

The richness of the diversity of forms that the hazard rate can take over time is the
main feature in the modeling of the functions of lifetime random variables and the more
shapes a model captures, the more indicated him it will be to model the failure time.

However, it is very common to observe that the greater the number of θ parameters
in the parameter vector of a probability distribution, the greater the number of hazard
rate forms captured by its hazard rate function.

Two-parameter models, such as those discussed in the recent studies of Ramos [50],
Braguim [5] and Reis [53], respectively derived from the fundamental distributions Gama,
Log-Logistic (LL) and Weibull, although limited in their characteristics and unable to
show ample �exibility, they present under certain parametric conditions the forms of in-
creasing and decreasing risk, and with the exception of LL, they still capture the constant
form. But, as more parameters are inserted in these models, as developed in Stacy et al.
[62], Mudholkar and Srivastava [44] and Rosaiah, Kantam and Kumar [56] to propose,
respectively, the Generalized Gamma (GG), Weibull Exponentiated (EW) and Exponen-
tiated Log-Logistic (ELL) distributions, more limitations are also inserts in its character-
istics and �exibility, but more forms for the hazard rate function are now captured, such
as unimodal and bathtub risks in both distributions.

Such searches have been developed over the years, either for a better exploration of
the observed phenomena or to obtain distributions with more forms for hazard rate, such
as obtaining bimodal risk models as developed in Mendoza, Ortega and Cordeiro [41]
and, no less important, the discovery of hazard rate functions with reduced number of
parameters but that captures as many forms of hazard rate as possible, as shown in the
work of Ramos, Louzada and Ramos [52], where the approached distribution assumes the
four basic forms in the parametric conditions of only two parameters.

For family Exponential distribution, for exemple, the obtaining procedures consist, in
the most basic approach, as proposed by Gupta and Kundu [20] for a random variable T ,
in exponentialize the distribution function F of interest in the shape parameter π > 0 to
be added, so that, with the parametric vector θ

Ψ(t|θ, π) = [F (t|θ)]π , (1.1)

in the domain t,θ, π ∈ R∗+ so that

ψ(t|θ, π) =
d

dπ
Ψ(t|θ, π) = π[F (t|θ)]π−1f(t|θ) . (1.2)

Another method, introduced by Marshall and Olkin [39], which in line that the method
proposed in Gupta and Kundu [20] by introducing a new shape parameter, is more general
because it does not consider restrictions for the shape parameter π, as well as for the
random variable X. Generalization is also obtained from a F distribution function as

Ψ(x|θ, π) =
πf(x|θ)

1− πF (x|θ)
, (1.3)
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in the domain of t, π ∈ R and θ ∈ Θ, there Θ is parametric space for the parametric
vector θ, and so that

ψ(x|θ, π) =
πF (x|θ)

[1− πF (x|θ)]2
. (1.4)

See that ψ is the distribution function of a new probability distribution, provided that
your �rst derivative exists in relation to π and in the sample space Ω ⊆ R, for every
X ∈ Ω event still occur

P (X) ≥ 0 , (1.5)

P

(
∞⋃
i=1

Xi

)
=
∞∑
i=1

P (Xi) , (1.6)

P (Ω) =

∫ ∞
0

ψ(t|θ, π)dt = 1 . (1.7)

Another widely applied arti�ce consists of mixing the f distribution with a given ϕ
distribution to obtain a new probability distribution called composite models (or mix
models).

In Tahir and Cordeiro [63], the authors scanned the literature on the analysis of sur-
vival and reliability in search of the models generated through this technique and cataloged
a vast number of distributions composed since that this procedure was used in 1997 by
the work of Adamidis and Loukas [3].

The authors in Tahir and Cordeiro [63] still point out that there is not only one pro-
cedure for obtaining a composite distribution, and that they follow three categories of
composition of distributions that start from the simple generalization called the "�rst
generalization approach" (or G-classes to denote the classes of generalized distributions),
actually reaching the procedures properly called composite models in the "second gener-
alization approach" (or composition) and arrive in the current procedures for obtaining
composite models in the category called "recent trends in composition".

Above all, the �rst model composed in the literature, proposed Adamidis and Loukas
[3], the Exponential Geometric model (EG), was conceived to model phenomena in func-
tion of time with three characteristics: (I) the time minimum t with (II) exponential
evolution which (III) marks the n repetitions required until a failure occurs.

To model this phenomenon, the authors considered the auxiliary random variables
X ∼ Exp(λ) and N ∼ Geo(θ) representing, respectively, (II) any time with exponential
evolution parameterized in λ > 0 and (III) the number of Bernoulli attempts required to
achieve failure in analysis.

As the objective is to obtain (I) a model based on the minimum t time, the compos-
ite model (or baseline distribution as highlighted by Tahir and Cordeiro [63]) should be
represented by the random variable de�ned as T = min({Xi}),∀i = 1, . . . , n.

In these conditions, the Exponential Geometric model comes from a population com-
posed of 3 subpopulations, where each of them represents a particular characteristic, that
is, for all λ, x ∈ R∗+, n ∈ N and 0 < θ < 1:

δ(x|λ) = λe−λx e ε(n|θ) = θ(1− θ)n−1 . (1.8)

As T = min({Xi}) has the distribution to the minimum of the set {Xi},∀i = 1, . . . , n,
due to the Xi ∼ Exp(λ) being independent and identically distributed, we obtain that
T ∼ Exp(nλ), ∀ nλ, t ∈ R∗+, so that

δmin(t|nλ) = nλe−nλt . (1.9)
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Then, if T is the baseline distribution of the composite model between it the discrete
random variable N , noting that e−nλt = e−λte−(n−1)λt, we can write

g(t|θ, λ) =
+∞∑
n=1

δ(n|θ)ε(t|nλ) = λθe−λt
+∞∑
n=1

n[(1− θ)e−λt]n−1 , (1.10)

where |(1−γ)e−λt| < 1 induces the convergence of the in�nite series indexed in n, so that

+∞∑
n=1

n[(1− γ)e−λt]n−1 =
1

[1− (1− γ)e−λt]2
. (1.11)

Therefore, the model composed of random variables T ∼ Exp(nλ) e N ∼ Geo(θ), for
nλ, t > 0 e 0 < θ < 1, respectively, has a probability density function given by

g(t|θ, λ) =
λθe−λt

[1− (1− θ)e−λt]2
, (1.12)

for all t, λ ∈ R∗+ e θ ∈ ]0, 1[.
Many probabilistic distributions have been proposed as composite models based on the

Geometric distribution, in addition, generalizations for these models are acquired and, as
such models consider the parameter θ ∈ ]0.1[ inherited from the geometric distribution,
extensions for the composite models and their generalizations are also discovered when
considering the complement of θ in R∗+.

As well as de�ned for the Exponential and Weibull distributions, the models derived
from the EG distribution can also be understood as a family formed by the models
Extended Geometric Exponential (EEG), Generalized Exponential Geometric (GEG),
Complementary Exponential Geometric (CEG), Long-Term Complementary Exponen-
tial Geometric (LCEG), Complementary Exponentiated Exponential Geometric (CE2G),
Exponentiated Exponential Geometric (E2G), Marshall-Olkin Generalized Exponential
(MOGE) and the Generalized Exponential Geometric Extreme (GE2) distributions, pro-
posed respectively by Adamidis, Dimitrakopoulou and Loukas [2], Silva, Barreto and
Cordeiro [60], Louzada, Roman and Cancho [37], Louzada et al. [33], Louzada, Cancho
and Carpenter [34], Louzada, Marchi and Roman [35], Ristic and Kundu [54] and Ristic
and Kundu [55].

The family of distributions for the EG model can also be classi�ed as distributions of
two generations of models, the �rst with 2 parameters and the second with 3, where the
�rst generation starts with the EG model and ends with the EEG model and the second
generation starts with the E2G model and ends with the MOGE and GE2 models.

In Ristic and Kundu [54] and Ristic and Kundu [55] it is veri�ed that, although the
generalized models MOGE and GE2 (MOGE/GE2) are identi�ed with di�erent names
and proposed on di�erent dates, they are obtained under the same conditions, have the
same parametric states and have the same expression for the distribution and probability
density functions. Both works consider random variables strictly positive and parameter-
ized in α, λ e β de�ned in R∗+.

Important extensions or generalizations were, and can be, introduced in the statistical
literature, however, the EG distribution was, according to the records of Adamidis and
Loukas [3], Gupta and Kundu [20] and Tahir and Cordeiro [63] the �rst obtained to model
rates of decreasing risk under two parameters and started the modern era of probability
distribution theory with the main objective of proposing and emphasizing the solution of
problems faced by professionals and researchers in practically all areas of knowledge.
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1.2 General Objectives

The model EEG, as previously discussed, is the extension of the EG distribution and
has the function of probability density given by

g(t|γ, λ) =
γλe−λt

[1− (1− γ)e−λt]2
, (1.13)

for all t, γ, λ ∈ R∗+, as shown in Adamidis, Dimitrakopoulou and Loukas [2], where the de-
creasing and increasing forms for its function of derived hazard rate are presented. Above
all, such a model can be applied in situations where the hazard rate shows little or no
variation after a considerable period of evolution, as such behavior leads to the adoption
of a risk model whose form captures none or the slow increase or decrease in the hazard
rate.

That such form for the hazard rate can be captured by the Gamma and Weibull distri-
butions, but in contrast to these cases for EEG, the EEG distribution may be much more
appropriate due to its guaranteed �exibility in its basic properties that can be re�ected
for the computational gain when applied to adjust complete and censored lifetime data.

In Adamidis, Dimitrakopoulou and Loukas [2], the parameter estimation is performed
using the classic approach via maximum likelihood estimators, in addition, analytical ex-
pressions for the mean and variance of the distribution are presented and the work implies
that in that approach to the moments of distribution, such expressions are de�ned only
in the case where γ < 1. The expectation maximization algorithm (EM) is presented to
calculate the estimates of the parameters of this distribution, and in Ramos et al. [51] a
bayesian analysis is developed considering complete data with di�erent previous nonin-
formative distributions, but in both works nothing is clari�ed about the r-th moment in
the event that γ > 1.

Although the distribution is characterized by its mean residual lifetime for all γ ∈
R−{1}, as the �rst objective of this work we will present a study for the moments of the
EEG distribution in the general case, speci�cally when γ ≥ 1.

It is obvious that, since its disclosure, the EEG distribution is already consolidated
in the works identi�ed in the analysis of survival and reliability, since under the consid-
eration of censorship, as shown in the works Anwar et al. [4], Mirjalili [42], Dey et al.
[11] and Abujarad et al. [1], respectively, with a type-II, progressive type-II, progressive
type-I hybrid and censorship on the right approach, it is veri�ed that this distribution
is applied in a re�ned way in relation to the types of censorship considered both in the
context of survival and reliability.

However, the approach according to random censorship is not found in the literature,
and in none of these lines of application, therefore the second objective of this study is
to obtain the estimates for the parameter assuming di�erent estimation methods for the
distribution parameters of EEG under randomly censored samples. In this case, the main
objective is to study the bayesian estimates considering di�erent noninformative prior
distributions and to contrast them with the maximum likelihood estimate.

As the bayesian estimates and marginal posterior densities cannot be obtained in a
closed form, we carry out a bayesian analysis for the EEG distribution using Markov
Chain Monte Carlo (MCMC) methods (see , Gelfand and Smith [15]; or Chib and Green-
berg [8]) to obtain the posterior summaries of interest. Since bayesian analysis remains
a new approach proposal for this distribution, as veri�ed by the main works cited here,
in the present work we limit ourselves to applying inferences in this context only under
non-informative priori.

Numerical integration based on stochastic simulation methods as the MCMC will be
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used to simulate samples of the marginal posterior distribution of interest and in partic-
ular, we will be using the Metropolis-Hastings (MH) algorithm to obtain the posterior
summaries of interest.

As a �nal proposal for an approach to this distribution, we will consider the presence
of covariates in conjunction with random censorship and with the objective of presenting
the characteristics of this distribution under the presence of this double in�uence, in this
approach we consider it essential to develop the same approach used for the distribution in
the case randomly censored and without covariate, that is, the approach to the moments
of the EEG distribution in the presence of random and convariable censorship, as well the
obtaining their estimators will follow the same conditions, with the estimators obtained
in the cases classic and bayesian in order to be contrasted possible applications.

With similar objectives, in this work we will also consider the distribution that gener-
alizes the second generation of the EG distribution, as presented in the previous section,
the MOGE-GE2 distributions, whose probability density function is given by

f(t|α, λ, β) =
αλβe−λt(1− e−λt)α−1

[β + (1− β)(1− e−λt)α]2
, (1.14)

for all t, α, λ, β ∈ R∗+.
As it is highlighted in this work that the MOGE/GE2 distributions are the same and

are being approached as members of the EG family, we will from here on follow the com-
mon notation that the literature presents for the EG distribution family, as discussed in
the previous section, we will follow referring to the MOGE/GE2 distributions only as
GE2.

From the works of Ristic and Kundu [54] and Ristic and Kundu [55] to the most re-
cent, such as the current ones Khan, Akhtar and Ali Khan [45], Dey et al. [11], Torabi,
Bagheri and Mahmoudi [64] and Abujarad et al. [1], there is no signi�cant approach to
the moments of the GE2 distribution.

Although in Khan, Akhtar and Ali Khan [45] the authors have announced a study in
the light of bayesian inference for Marshall-Olkin family of distributions, which has ad-
mirably addressed the moments in the shadows of Laplace Approximation, this is did for
Marshall-Olkin Exponential (MOExp) and no reference is given for the GE2 distribution.

In Dey et al. [11], although a study is presented for the model considered through the
re�ned application of type-II progressive censorship, the work considers an approach to
the Marshall-Olkin Extended Exponential (MOEE) distribution and is also dont't move
of no measure to the GE2 model.

In the work of Torabi, Bagheri and Mahmoudi [64], despite the fact that the authors
actually approach the GE2 model, they do so with the parameters strictly limited to
α = 1 and β ∈ ]0, 1[ for all λ > 0, reducing the model GE2(1, λ, θ) for the GE distri-
bution. Therefore, the authors present a study that is limited to an application for the
GE distribution to complete data, where there is no study for the models of the GE2
distribution in the general case.

In the most recent work, presented by Abujarad et al. [1], although the GE2 distribu-
tion proposed by Ristic and Kundu [54] and Ristic and Kundu [55] is indeed explored, the
authors invoke this model under the reparametrization λ = θ−1 for all θ > 0, and insert a
third name for this distribution as Marshall-Olkin Exponentiated Exponential (MOExp-
Exp) and develop the approach, together with the MOExp models and the Marshall-Olkin
Exponential Extension (MOExpExt), in line with a simulation study for censored data
on the right, with application to real censored data. However, they also do not mention
anything about the moments of the three models covered.

From what the literature provides, there is a low, or negligible, approach to the GE2
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distribution, presenting a reasonable characteristic for this model. Therefore, in this work
we bring a Mathematical approach on the r-th moment of this distribution, in order to
characterize it as a probability distribution.

In addition, we will present an approach under random censorship for its estimators
and, under the same conditions described above on the proposed objectives for the EEG
distribution approach, this study will be developed considering the classical and bayesian
estimators with vague prioris, with applications to available real data in the literature on
survival analysis.

Both in the approach of the EEG distribution and in the GE2, the study of their
respective estimators will be developed computationally by the justi�cation that these
models are semi-pathological, as we will show in the approach of their respective mo-
ments.

Therefore, we consider a simulation study for both models and following the forms
of their respective hazard rate functions, that is, we will simulate the EEG in the para-
metric condition in which its risk is decreasing and increasing, while for the GE2 model
the simulation it is performed for cases in which it manifests the decreasing, increasing,
unimodal and bath shape for its hazard rate function.

1.3 Dissertation Structure

In detail, this work is organized as that is describe in the sequence.
In the chapter 2, in the section 2.1, the properties of the EEG model are reviewed in the

context of survival analysis. A lemma that guarantees obtaining the mean and variance
for this model, in the conditions presented by the author in Adamidis, Dimitrakopoulou
and Loukas [2] and, consequently, a theorem that reinforces the semi-pathology result for
EEG when γ > 1 são demonstrados, as well as a theorem that guarantees that this model
tends to lose memory as time progresses, a result hitherto commented on previous works
and, almost always, highlighted geometrically in the approaches for this distribution fam-
ily.

In the section 2.2, the maximum likelihood estimators for the parameters are pre-
sented, as well as a reference to Fisher's information matrix obtained by Kitidamrongsuk
et al. [30] in the speci�c case in which γ < 1 is described. Subsequently, a bayesian
approach to this model is introduced under the application of vague prioris as a result of
the product of independent Gamma distributions for its joint composition.

In the subsection 2.2.3, we present the simulation for the EEG model in the presence
of random censorship, in 3 particular cases for this category of censorship, with 4 di�er-
ent cases of sample size and two parametric cases to simulate the manifestation of these
scenarios with the two forms of the function of risk that this model assumes.

The subsection 2.2.4 describes an application for the EEG model in the presence of
censorship for a modeling problem with a set of 137 observations from patients with lung
cancer, where the parametric models Gamma, LL and Weibull are taken in competition
with to the EEG model for modeling under the classical conditions of the model estima-
tors. A random sample of 40 observations was also considered for modeling, however,
under bayesian conditions to highlight a contrast between these two approaches for the
model's estimators.

The section 2.3.2 presents the proposed distribution approach in the presence of co-
variates and censored times, so that a second source of variation is mathematically de�ned
for the density function and, consequently, de�ned the survival and risk function high-
lighting that with two sources of variation these three functions geometrically represent
surfaces in the space R3. Still in the section 2.3.2, a theorem is presented to show that the
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property of tendency to memory loss also manifests itself in the presence of covariates,
however, in this context, the risk function tends for a curve in the R3.

Following the theorem, the maximum likelihood equation, as well as its system of
maximum likelihood equations, for the p+ 1 parameters of the model in the presence of
censorship are presented without signi�cant change, maintaining the same properties that
in the case considered with a source of variation as shown in the analytical expression pre-
sented in the section 2.2, which does not occur in the bayesian approach that is introduced
with vague priori and also as the product between the independent Gamma distribution
for the parameter γ and the Normal distribution for each of the p + 1 parameters βj in
the covariate term.

In the subsection 2.3.1, the simulation for the EEG model in the presence of covariates
and censored time is also developed in 3 particular cases of random censorship, with 4
cases of di�erent sample size and two parametric cases for simulate the model according
to forms for the risk function that remain in the same conditions as in the case of a source
of variation, regardless of the composition of the second source in the model.

Subsequently, the subsection 2.3.2 deals with application that seeks to adjust survival
and risk models for two groups of patients undergoing di�erent lung cancer treatments.
In this application, a group presents proportional risk, which is why the Cox regression
model was used to contrast the adjustment implemented by the EEG model in the pres-
ence of censored and covariable data.

The application shows that, despite the �exibility that the Cox model o�ers, although
improved with the application of the cubic spline to smooth the function of survival and
risk, as we consider in two nodes, the EEG model still presented better results, adjusting
e�ciently to the empirical risk manifested by the censored data. In the second group, the
same performance is observed in contrast to the Weibull model.

In the chapter 3, a generalization for the EEG model is reviewed in the theoretical
context with a simulation and an application presented. This chapter has been divided
into 2 sections.

In the �rst, the section 4.1 seeks to review the origin of this three-parameter model,
highlighting its origin and consequent functions in the context of survival analysis, where
the descending, crescent, unimodal and bathtub shapes are notable as illustrated in the
�gure 3. 1 displayed.

In the following subsection, in 3.1.1, a signi�cant mathematical approach is presented
for the function of r-th moment for the approached distribution, presenting as results
three mottos, a proportion and a theorem to highlight a study of the moment of r-th
order of this model, considering its possible parametric compositions and its memory loss
tendency property inherited from its original distribution.

In the subsection 3.1.2 we will also see, in the classic aspect, the estimators for the
parameters of this model and, in the same way, in the subsection 3.1.3, the bayesian
approach is considered under vague prioris through the product independent range dis-
tributions.

In the sequence, the section 3.2 displays and discusses the results obtained in the
simulation study that considered three particular cases of censorship, with �ve di�erent
sample size cases and four parametric cases to simulate and evaluate the estimators of
this model approached according to each of the forms of risk function that the model
provides.

The sequence application, shown in the section 3.3, again shows the competition be-
tween the three-parameter model approached with competing models. The models consid-
ered were obtained under the same conditions as the one approached, making the contrast
in equality not only due to the parametric quantity and composition of the hazard rate
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function shape, but because they have di�erent conditions of �exibility and analysis.
In this work, we try to show that the relevance of the EEG and GE2 models does not

consist only of their good adjustments in statistical modeling applications, but that their
relevance is highlighted due to the fact that their properties inherited from the Exponen-
tial and Geometric distributions, that this relevance consists of the fact the compositions,
extensions or generalizations of models derived from Exponential and Geometric distri-
bution. That although most of its analytical results are intractable as a result of the
introduction of shape parameters, the �exibility inherited from its source distributions
injects highly relevant bene�ts to the computational approach in real life-time data.

1.4 Other Considerations

The bayesian procedures include several statistical diagnostic tests witch seek to assess
the convergence of the markovian chain, this work consider the Heidelberger-Welch sta-
tionarity test, known as the heidel diagnostics, which uses the Cramer-von-Mises statistic
to test the hypothesis that the chain values provide a stationary distribution.

The diagnosis of heidel is based on the work of Heidelberger and Welch [24], Schruben
[59] and heidelberger and Welch [25], and the results of this test with a given signi�cance
will shown in the tables by the columns test-stat, p-value, and test result columns, for
show that all Markov chains from MCMC processes converged or not.

Since we consider adjustments by the performed using bayesian estimates, to com-
pare these adjustments the most appropriate adjustment measure is the DIC (Deviance
Information Criterion) which generalizes the Akaike, AAIC and Schwarz Information Cri-
terion, respectively the AIC, AICC and BIC, to evaluate �tted models with calculated
sample estimates via posterior distributions.

In the context of model comparison by the DIC measure, the best-�t model is indi-
cated by penalties that the others su�er through the e�ective number of parameters and
deviance, the statistics commonly indicated by pD and D, respectivaly, and obtained by
summing the squares of the linear regression residues which, according to Collett et al.
[9], summarizes to what extent the �t of a current model of interest diverges from a model
that is assumed to be a perfect �t to the data.

Suitable for selection problems of bayesian models in which the posterior distributions
of the models are obtained via MCMC simulation, when the pD decreases smaller is the
complexity of the model andthe DIC decreases by pointing the best �t, then, the lower
pD and DIC, the better is adjustment. Then, de�ned

D̄(θ) = E[−2 log(p(y|θ))] and D(θ̂) = −2 log(p(y|θ̂)) , (1.15)

from calculation of pD as pD = D̄(θ) − D(θ̂), the DIC can be obtained in two ways:
according to Spiegelhalter et al. [61] as DIC = pD + D̄(θ), or according to Gelman et al.
[16] as DIC = 2pD +D(θ̄).

In the applications from the sections 2.2.4 and 2.3.2, purposing to �t an ideal proba-
bilistic model for the censored lifetimes for the patients according to two chemotherapeutic
agents, standard and test, based on the absence and presence of covariates, respectively,
a same set of data is considered to discuss possible approaches and results around proba-
bilistic modeling and to point out the bene�ts and penalties in modeling with data with
and without variables.

The data was presented by Prentice [48], record the lifetime of 137 patients with ad-
vanced lung cancer and was recorded in the presence of covariates when the patient was
taken to the study. Tumors are classi�ed into four groups: squamous (1), small (2), adeno
(3) and large (4).
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The covariates considered in original study include performance status, a measure of
overall medical status for the patient on a scale of 10 out of 10 units from 10 to 90, where
10, 20, and 30 indicate that the patient is fully hospitalized, 40, 50 and 60 indicate a
partial con�nement in the hospital and 70, 80 and 90 indicate that the patient is able to
take care of himself.

Time in months from diagnosis to study initiation, age in years, and any therapy prior
to the study (1-yes ou 0-not) were also considered with as covariates in study 2.

In applications, the objective is to model the lifetime of standard and test chemother-
apeutic agents and, in the case of the presence of a vector x of covariates, is considers the
tumor group as a new covariate. So, denoting as X1, X2, X3, X4 and X5 the covariates
of the study, where

• X1: the tumor group with values 1, 2, 3 or 4

• X2: the medical status with values 10, 20, ..., 80 or 90

• X3: diagnostic time in months with values xi,3 ∈ Z+
∗

• X4: the age in years with values xi,4 ∈ Z+
∗

• X5: if you have had therapy with values 1 or 0

The covariate approach is developed with the covariates indexed in the scale param-
eter of the model under study. This form the presence of covariates in the probabilistic
model integrates into its variability a source of variation with origin in additive e�ect
index parametric that not require the scale parameter coupled in the model as a random
variable, but a simple source of variation that integrates e�ect the covariate in the model.

Therefore, in this approach, the modeling concept considers that an additive model
ν = 〈xk,β〉+ ε contributes to the probabilistic variation of the model, together with the
variable random that represents the lifetime, but as the scale parameter instead of being
coupled in the model as a random variable.

The commonly used models that consider the presence of covariates, generally statis-
tical models of regression or joint probability distribution, although powerful, require a
delicate or complex approach before, during and after the modeling process.

To circumvent this situation and also �nd a more �exible model, Cox [10], proposed a
semi-parametric model called the proportional risk model that became the most used in
the analysis of survival data, under the covariable aspect, due its versatility. The general
expression of the Cox model, for ν = 〈xk,β〉, is given by

h(t|x,β) = h0(t)φβ(ν) , (1.16)

on what h0(t|β) is the nonparametric component called the hazard rate function and
φβ(ν) is the parametric term, both non-negative on the condition that φβ(0) = 1.

The parametric term is almost always applied in the multiplicative form as

φβ(ν) = eν . (1.17)

With the same objective, to make the survival data modeling more �exible, the use of
spline functions is proposed, since this function also allows the investigation of nonlinear
e�ects and the evaluation of time interactions in the presence the covariates. According
to Heinzl and Kaider [26], modeling under the application of spline functions provides two
main advantages: no speci�c functional form needs to be speci�ed and its application is
completely computational, excluding applications of algebraic concepts.
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In addition, Durrleman and Simon [12] proposes the use of spline functions to detect
nonlinear relationships between covariates and Cox model response, and in the same vein
are used in Hess [27] and Heinzl, Kaider and Zlabinger [22] to evaluate and identify
interactions between time and covariates.

As if the �exibility that Cox's model itself provides does not su�ce, using spline
functions on the Cox model, it is possible to obtain a parametric form from and which
simulate survival times with adjust survival and risk functions with re�ned precision.

To obtain a �exible model for the hazard rate, Royston and Parmar [57] modeled the
logarithm of the risk-risk function as a cubic spline function of the time logarithm as

ln[H(t|x,β)] = ln[H0(t)] + ν , (1.18)

where H is the empirical cumulative risk function, x is the vector of covariates, β is the
vector of parameters and ν = 〈xk,β〉 is the additive model.

In this context, according to Lambert and Royston [31], the s spline function is applied
over the ln(t) function with the nodes κ0 = (κ1, . . . , κm). In this case s can be written
as s[ln(t)|a, κ0], with node location κ0 no coe�ciente a = (a1, . . . , am), and then used
for the logarithm of the accumulated baseline risk in the proportional accumulated risk
model of the expression (1.16) to obtain (1.18) rewritten as

ln[H(t|x,β)] = s[ln(t)|a, κ0] + ν , (1.19)

that taken on the scale of survival and hazard rate, provides

S(t|x,β) = e−e
ν

and h(t|x,β) =

{
d

dt
s[ln(t)|a, κ0]

}
eν , (1.20)

because the s spline function is a cubic polynomial and the relations between the functions
h and S, in particular with h(t) = H ′(t), S(t) = e−H(t) and H(t) = −ln[S(t)] under
derivative and integral operators in relation to t.

Thus, according Rutherford, Crowther and Lambert [58] over the Cox models, the
spline function can be considered a generalization of Weibull's proportional hazards rates
model and is reduced to the Weibull model with only two nodes.

Therefore, in this application a contrast between the EEG model in the presence of
covariates with the Cox/Spline2 model, the Cox model under two-node spline function
adjustment, it is considered.

In the application 2.3.2 the covariables X3 and X4 are integers, the 5 covariables of the
problem can be considered categorical, therefore, graphical methods to �nd proportional
risks are not feasible for the application, instead they are considered a statistical test
based on Schoenfeld residues to test the overall proportionality for risk functions.
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2
The Extended Exponential Geometric

Distribution

2.1 De�nition and Properties of the EEG Distribution

In the previous chapter, the expression (1.12) is obtained as the probability density
function (pdf) of a random variable considered as the lifetime of a n identical component
system, where the failure occurs when all components leave functioning, this is, if the
system's lifetime is T = min({Xi}),∀i = 1, . . . , n.

Here, if X the lifetime of the components follows an independent Exponential random
variable and the number of components N follows a Geometric distribution, the distribu-
tion the composition of the random variables T , X and N provides the model probabilistic
T ∼ EG(θ, λ), where 0 < θ < 1 and λ > 0.

Then, in the same conditions as before, but considering T = max({Xi}) we'll have to

δmax(t|n, λ) = nλe−λt(1− e−λt)n−1 , (2.1)

is the pdf of the random variable T , whose composed model with the random variable
N ∼ Geo(θ) has pdf

ψ(t|θ, λ) =
λθe−λt

[θ + (1− θ)e−λt]2
, (2.2)

obtained under the same algebraic conditions as the expression (1.12).
Taking u = θ + (1 − θ)e−λt with du = −λ(1 − θ)e−λtdt, by variable change in the

integral of ψ with respect to t, without di�culties it turns out that ψ is a pdf.
Now, taking the reparametrization ϑ = θ−1 see that 0 < θ < 1 ⇒ ϑ > 1 and that

under this reparametrization the pdf (2.2) boils down to pdf (1.12) under parameter ϑ.
This is, the distribution for random variable T with pdf (2.2) is the complement to the
EG model because, with ϑ = θ−1 ⇒ θ = ϑ−1, (2.2) can be rewritten under the parameter
ϑ as

ψ(t|ϑ−1, λ) =
λϑe−λt

[1− (1− ϑ)e−λt]2
= g(t|ϑ, λ) . (2.3)

And more, under the parameters ϑ > 1 and 0 < θ < 1, we have that g and ψ are well
de�ned and so that

g(t|θ, λ) = ψ(t|θ−1, λ)⇔ ψ(t|ϑ−1, λ) = g(t|ϑ, λ) . (2.4)

24
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Thus, noting that g and ψ are both de�ned in ϑ = θ = 1, considering the parameter
γ ∈ R∗+, by (1.12) and (2.2) we will have to

λγe−λt

[1− (1− γ)e−λt]2
=


g(t|γ, λ), if γ < 1

ψ(t|γ, λ), if γ > 1

λe−λt, if γ = 1

. (2.5)

Therefore, the pdf (2.3) is the extension of the model EG(θ, λ) with pdf (1.12) and
is a distribution called Extended Geometric Exponential and denoted by EEG(γ, λ), or
simply by EEG, and was introduced by Adamidis, Dimitrakopoulou and Loukas [2].

Let then T be a random variable that represents the lifetime of any phenomenon and
that follows an EEG distribution. In this conditions we have to say that T has pdf given
by

g(t|γ, λ) =
λγe−λt

[1− (1− γ)e−λt]2
, (2.6)

for all t, γ, λ ∈ R∗+ where λ is shape and γ is form parameters, respectively.
The distribution function G(t) is given by,

G(t|γ, λ) =
1− e−λt

1− (1− γ)e−λt
. (2.7)

The survival and hazard rate functions of EEG distribution are given by

S(t|γ, λ) =
γe−λt

1− (1− γ)e−λt
and h(t|γ, λ) =

λ

1− (1− γ)e−λt
, (2.8)

respectively.
The quantile function of the EEG distribution, for all q ∈ ]0, 1[, is given by

QEEG(q|γ, λ) = −1

λ
ln

[
1− q

1− (1− γ)q

]
. (2.9)

This result is trivial and is obtained by expression (2.7) considering that G(t|γ, λ) =
q ∈ ]0, 1[, so that QEEG(q|γ, λ) = G−1(q|γ, λ).

Many of the interesting characteristics and features of a distribution can be studied
through its moments, such as mean and variance. Expressions for expectation value,
variance and the r-th moment on the origin of T can be obtained using the well-known
formula

E(T r|γ, λ) =

∫ ∞
0

λγtre−λt

[1− (1− γ)e−λt]2
dt . (2.10)

The rth moment provides the most important properties of a probabilistic model, so
much so that the characterization of probability distributions, where possible, is indis-
pensable and de�ned by expression de E(T r), that is commonly approach in terms of
f.d.p. as

E(T r|α, λ, β) =

∫ ∞
0

trf(t)dt . (2.11)

Through this expression, in many cases, obtaining this result is not feasible due to the
lack of an elementary primitive for the integrant trf(t), mainly for obtaining high order
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moments, such as for obtaining asymmetry and kurtosis of model. In the best case, the
desired expression is obtained after costly mathematical devices.

However, in cases of models with non-negative random variables a device that facil-
itates obtaining expressions of order moments r ≥ 1 is derived in terms of the survival
function in parallel with the application of Fubini's theorem, the alternative rth moment
given by

E(T r|α, λ, β) = r

∫ ∞
0

tr−1S(t)dt . (2.12)

It is a highly advantageous method when it comes, for example, to moments of a
transformed random variable, where it is considerably easier to integrate xr−1[1 − F (x)]
instead of trf(t) (see, for exemple, Hong [28] or Chakraborti, Jardim and Epprecht [7]).
Armed with this device, we can proof the result below.

Lemma 1 For a random variable T with EEG(γ, λ) distribution, where γ, λ > 0, we
have that r-th moment function, for all r ≥ 1 it's such that

E(T r|γ, λ) =


γr!

λr

∞∑
k=0

(1− γ)k

(k + 1)r
,when γ 6= 1

r

λ
E(T r−1|1, λ), when γ = 1

, (2.13)

whatever it is λ > 0.

Proof: Taking

E(T r|γ, λ) = r

∫ ∞
0

xr−1S(x)dx , (2.14)

the expression for order moments r ≥ 1, derived from the survival function as the appli-
cation of Fubini's theorem, we have from (2.8) that

E(T r|γ, λ) = γr

∫ ∞
0

tr−1e−λt

1− (1− γ)e−λt
dt . (2.15)

Since γ and λ are parameters in E(T r|γ, λ), (1− γ)e−λt varies in t and is dominated
by e−λt, we have always one t about γ and λ such that |(1− γ)e−λt| < 1.
In this condition, we can take

1

1− (1− γ)e−λt
=
∞∑
k=0

(1− γ)ke−λtk , (2.16)

that which replaced in (2.15), follow that

E(T r|γ, λ) = γr

∫ ∞
0

tr−1e−λt

1− (1− γ)e−λt
dt = γr

∞∑
k=0

(1− γ)k
∫ ∞
0

tr−1e−λt(k+1)dt . (2.17)

See also that, with r, λ(k+ 1), t > 0 in the integral resulting in (2.17), we also have to∫ ∞
0

tr−1e−λt(k+1)dt =
Γ(r)

[λ(k + 1)]r
=

(r − 1)!

λr(k + 1)r
. (2.18)

Therefore, replacing (2.18) in (2.17), the �rst equality for the expression (2.13) is
obtained, because
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γr
∞∑
k=0

(1− γ)k
∫ ∞
0

tr−1e−λt(k+1)dt =
γr!

λr

∞∑
k=0

(1− γ)k

(k + 1)r
, (2.19)

the proof is completed for γ 6= 1.
Now, note that then γ = 1 the function E(T r|γ, λ) is pathological because in the

expression (2.19) result that E(T r|γ, λ) = 0, but by the expression (2.6), where

g(t|γ, λ) = g(t|1, λ) = λe−λt , (2.20)

it turns out that the random variable T ∼ EEG(1, λ) is reduced for the Exponential
distribution with parameter λ, this is, T ∼ EEG(1, λ) = Exp(λ) and

E(T r|γ, λ) = E(T r|1, λ) =

∫ ∞
0

trg(t|1, λ)dt =

∫ ∞
0

trλe−λtdt , (2.21)

such, by integration by parts, with u = tr and dv = e−λtdt, results∫ ∞
0

trλe−λtdt = −tre−λt
∣∣∣∞
0

+
r

λ

∫ ∞
0

tr−1λe−λtdt =
r

λ
E(T r−1|1, λ) , (2.22)

where −tre−λt
∣∣∣∞
0

= 0 in the rth application of L'Hospital theorem, or because that e−λt

grows faster than tr, which demonstrates the lemma.

Now see that, proposed by Erdely [13] (see Je�rey and Zwillinger [29], Guillera and
Sondow [19] and Gradshteyn and Ryzhik [18]), the function Lerch transcendent which
converges for any real number for all |z| < 1 and s, a ∈ R∗+, is given by

Φ(z, s, a) =
∞∑
k=0

zk

(k + a)s
, (2.23)

where, as one of its special cases, for a = 1, it is reduced to a polylogarithmic function
given by

Lis(z) = zΦ(z, s, 1) . (2.24)

that, since s ≥ 0, any of the following integral representations furnishes the analytic
continuation of the polylogarithm beyond the circle of convergence.

With this result we will be able to prove the following theorem:

Theorem 1 For a random variable T with EEG(γ, λ) distribution, where γ, λ > 0, we
have that r-th moment function, for all r ≥ 1 it's such that

E(T r|γ, λ) =


γr!Lir(1− γ)

λr(1− γ)
,when γ < 1

r

λ
E(T r−1|1, λ), when γ = 1

Pathological, when γ > 1

, (2.25)

whatever it is λ > 0 in E(T r|γ, λ).

Proof: By the last term in the equality from the result (2.23), with z = 1− γ, s = r and
a = 1, since 0 < γ < 1 we have

∞∑
k=0

zk

(k + a)s
=
∞∑
k=0

(1− γ)k

(k + 1)r
= Φ(1− γ, r, 1) , (2.26)
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de�ned by a power series in 1− γ.
And more, in this case, by the result (2.24), also we have to Lir(1−γ) = (1−γ)Φ(1−

γ, r, 1), by which

Φ(1− γ, r, 1) =
Lir(1− γ)

1− γ
, (2.27)

which proves the result (2.25) when γ < 1 in the �rst equality.
See also that the case γ = 1 is proved in the result (2.25) by the lemma (1), because

it coincides with the Exponential distribution parameterized in λ. Then, if we show that
result (2.25) diverges for all γ > 1 and r > 1, the result is proved.

Considering the general term ak =
(1− γ)k

(k + 1)r
in the power serie (2.26), there φ(k) = (1−

γ)k is an exponential function of positive k exponent in the base 1−γ and ψ(k) = (k+1)r

is a polynomial function in k of degree r, see that in ak the enumerator grows faster than
the denominator, that is, the general term function ak is dominated by ψ(γ) such that,
as γ > 1, then |ak| > 1 for all k ∈ N and k −→∞.

Therefore, the power serie (2.26) diverges alternately and this divergence can be guar-
anteed by the test of the general term (divergence test) considering that (1−γ)2 = δ > 0,
because in this case there will be in the sequence {ak} the subsequence {a2k} such that

lim
k−→∞

a2k = lim
k−→∞

(1− γ)2k

(2k + 1)r
= lim

k−→∞

δk

(2k + 1)r
L′Hospital

=
r times

lim
k−→∞

δk[ln(δ)]r

r!
=∞ , (2.28)

because for all k ∈ N and γ > 1, (1− γ)2k > 0, which proves that there is no E(T r|γ, λ)
for all r ≥ 1 then γ > 1.

More speci�cally, and strictly, the pathologic case for the EEG distribution is guaran-
teed showing γ > 1 e λ > 0, when T ∼ EEG(γ, λ) then E(T |γ, λ) =∞.

Note that a given function φ(y) = (1 + y)n can be written by Taylor expansion as

φ(y) = (1 + y)m =
∞∑
n=0

(
m

n

)
yn , (2.29)

a binomial series that, with y = −γ, independent of the situation at the border of the
radius disk |y| = γ > 1, can be rewritten in terms of the (generalized) binomial coe�cients
as

(1− γ)k =
∞∑
n=0

(
k

n

)
(−γ)n =

∞∑
n=0

(−γ)nkn

n!
=
∞∑
n=0

(−1)n
γnkn

n!
, (2.30)

where, for all k, n ∈ N, kn is the falling factorial, so that

kn =
k!

(k − n)!
=


1, where n = 0
n−1∏
i=0

(k − i), where n ≥ 1 and n ≤ k
, (2.31)

As k, n ∈ Z+ and 0 ≤ n ≤ k, the ith �rst few falling factorials are such that

k0 = 1
k1 = k(k − 1) ≥ 0
k2 = k(k − 1)(k − 2) ≥ 0
. . .

ki =
i−1∏
j=0

(k − j) ≥ 0
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where the equality kn = 0 occurs for all k ≤ i and inequality k > 0 occurs if n = 0 or
k > i, this is, how k, n −→ ∞, exist a k in Z+ such that for all k > i or n = 0, kn ≥ 1
such that the lowest value for kn is 1.

In this condition, replacing (2.30) in the power series (2.26) and considering the pre-
vious result such that kn ≥ 1, we have

∞∑
k=0

(1− γ)k

(k + 1)r
=
∞∑
k=0

∞∑
n=0

(−γ)nkn

n!(k + 1)r
≥

∞∑
k=0

∞∑
n=0

(−γ)n

n!(k + 1)r
, (2.32)

where the smallest term in the inequality is such that

∞∑
k=0

∞∑
n=0

(−γ)n

n!(k + 1)r
=

[
∞∑
n=0

(−γ)n

n!

][
∞∑
k=0

1

(k + 1)r

]
= AnBk , (2.33)

where An is a alternating series and Bk is a harmonic series of order r.
See that, ∀ n ∈ N, if n −→∞ then

An =
∞∑
n=0

(−γ)n

n!
= 1− γ

1!
+
γ2

2!
− γ3

3!
+
γ4

4!
− γ5

5!
+
γ6

6!
− . . .+ γ2i

2i!
− γ2i+1

(2i+ 1)!
+ . . . =

= 1 +
γ2

2!
+
γ4

4!
+
γ6

6!
+ . . .+

γ2i

2i!
+ . . .− γ − γ3

3!
− γ5

5!
− . . .− γ2i+1

(2i+ 1)!
− . . . =

= 1 +
γ2

2!
+
γ4

4!
+ . . .+

γ2i

2i!
+ . . .−

(
γ +

γ

1!
+
γ3

3!
+
γ5

5!
+ . . .+

γ2i+1

(2i+ 1)!
+ . . .

)
=

=
∞∑
i=0

γ2i

2i!
−
∞∑
i=0

γ2i+1

(2i+ 1)!
= cosh(γ)− sinh(γ) = e−γ ,

and also see that the serie Bk is divergent in the order r = 1, but converges for any r ≥ 2.
Thus, it results in (2.33) that

AnBk = e−γ
∞∑
k=0

1

(k + 1)r
=

{
∞, when r = 1
M, when r ≥ 2

. (2.34)

Therefore, from lemma (1), in the case where γ > 1, with the result (2.34), as
E(T r|γ, λ) increases the result (2.34), this is, then r = 1 we can assume that there is
no order moment r = 1, because

E(T |γ, λ) =
γ

λ

∞∑
k=0

(1− γ)k

k + 1
≥ γ

λ
AnBk =∞ , (2.35)

which proves that the random variable T ∼ EEG(γ, λ) is pathological when γ > 1,
because in this case there is no mean and variance for T , which demonstrates the result
(2.25) the theorem.

For 1− γ < 1 in (2.24), for order r = 1 and r = 2, Lir(1− γ) is given, respectively, by

Li1(1− γ) = −ln(1− γ) and Li2(1− γ) = −
∫ 1

0

ln[1− (1− γ)y]

y
dy ,

where Li2 is a dilogarithm, a special function with analytical results for particular cases
of γ < 1 and which, according to Loxton [38] and Zagier [65], will have 0 < γ < 1 what
0 < Li2(1− γ) < π2/6.

And more, for any order r > 1 in E(T r|γ, λ), the power serie the lemma (1) diverge
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by divergence test for serie, because we have with r applications the L'Hospital theorem,

the general term ak =
(1− γ)k

(k + 1)r
−→ L 6= 0 when n −→∞ and γ > 1.

Then, by the previous theorem, it is veri�ed that the expected value and the variance
presented in the works Adamidis, Dimitrakopoulou and Loukas [2], Kitidamrongsuk et al.
[30] and Louzada, Ramos and PerdonÃ½ [36] can be rewritten with

E(T |γ, λ) =


−γln(1− γ)

λ(1− γ)
, when γ < 1

1

λ
, when γ = 1

∞, when γ > 1

, (2.36)

for r = 1 and, by divergence test in the power serie the lemma (1) with γ > 1, when r = 2

E(T 2|γ, λ) =


− 2γ

λ2(1− γ)

∫ 1

0

ln[1− (1− γ)y]

y
dy, when γ < 1

2

λ2
, when γ = 1

∞, when γ > 1

. (2.37)

These conditions, the mean for EEG(γ, λ) distribution is trivial by the result (2.36),
but when is considered the expression

V ar(T |γ, λ) = E(T 2|γ, λ)− [E(T |γ, λ)]2 . (2.38)

the variance for EEG(γ, λ) is given

V ar(T |γ, λ) =


− 2γ

λ2(1− γ)

{
γ[ln(1− γ)]2

2(1− γ)
+

∫ 1

0

ln[1− (1− γ)y]

y
dy

}
, when γ < 1

1

λ2
, when γ = 1

@, when γ > 1

,

that meets the recent work proposed by Louzada, Ramos and Perdoná [36].
In Zagier [65], the author further assures that there are exactly eight values in [−1; 1]

for which Li2 has analytical results, so that three are in ]0; 1[, and as γ > 0 is guaranteed
then that when γ < 1, only three exact values for the expression Li2 are analytically
de�ned in R∗+.

Thus, exist and is analytically de�ned an expected value for the EEG distribution,
although this occurs conditionally when γ < 1, important properties are attributed to
this distribution for cases where this parametric condition is acquired.

Exponential and Geometric distributions are characterized by their memory loss prop-
erty that, in particular, is associated with population parameter as a rate parameter in
function of their respective λ and γ �xed parameters, respectively. The following theorem
shows that, even though the EEG distribution has no �nite mean, this distribution tends
towards memory loss as time progresses.

Theorem 2 Let h(t|γ, λ) as obtained in (2.8). When t −→∞, then h(t|γ, λ) −→ λ, this
is, tends to lose memory over time.

Proof: When t −→∞, see that e−λt −→ 0. Then

lim
t−→∞

h(t|γ, λ) = lim
t−→∞

λ

1− (1− γ)e−λt
=

λ

1− (1− γ)(limt−→∞ e−λt)
= λ , (2.39)
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the which proves the theorem.

The previous theorem allows us to observe that in the context of modeling this dis-
tribution is indicated to model phenomena in which wear, or phenomenon of interest,
manifests risk that tends to stabilize over time, ie the risk that an event of interest occurs
is in�uenced until certain time.

Figure 2. 1 in the next page presents di�erent forms for EEG distribution risk func-
tions, considering di�erent values of λ and γ. Moreover to observing the property shown
in the theorem, we can also that for any λ > 0, the hazard rate function (2.8) is decreasing
when γ ∈ ]0, 1[, constant for γ = 1 and increasing when γ > 1.
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Figure 2. 1 : In panel, the forms for hazard rate functions of the EEG distribution.



32 The Extended Exponential Geometric Distribution

2.2 Estimation of Parameters Under Censoring

2.2.1 Maximum Likelihood Estimates

Suppose that t1, . . . , tn are lifetime data with density f(t) and survival function S(t).
Assuming that the i-th component could experiment censoring in time Ci, then the data
set is (ti, δi), where ti = min{Ti, Ci} and δi = 1 if Ti ≤ Ci or δi = 0 if Ti > Ci. This kind
of censorship has random censorship mechanism and type I and II censoring as special
schemes and so it is the one used in these study. This way, the likelihood function is given
by

L(θ|t, δ) =
n∏
i=1

[g(ti|θ)]δi [S(ti|θ)]1−δi . (2.40)

Now, let t1, . . . , tn be a random sample of EEG distribution then the likelihood function
considering data under censoring is given by,

L(γ, λ|t, δ) =
n∏
i=1

λδiγe−λt

[1− (1− γ)e−λt]δi+1
. (2.41)

The maximum likelihood estimates (MLE) are obtained by maximizing the logarithm
of likelihood function given by

l(γ, λ|t, δ) = r ln(λ) + n ln(γ)−
n∑
i=1

{
λti − (δi + 1) ln

[
1− (1− γ)e−λti

]}
, (2.42)

where r =
n∑
i=1

δi. From
∂

∂λ
l(γ, λ|t, δ)

∣∣∣∣
(γ,λ)=(γ̂,λ̂)

= 0 and
∂

∂γ
l(γ, λ|t, δ)

∣∣∣∣
(γ,λ)=(γ̂,λ̂)

= 0, we

get, respectively, the system of likelihood equations
n

γ̂
−

n∑
i=1

(δi + 1)e−λ̂ti

1− (1− γ̂)e−λ̂ti
= 0

r

λ̂
−

n∑
i=1

[
ti +

ti(δi + 1)(1− γ̂)e−λ̂ti

1− (1− γ̂)e−λ̂ti

]
= 0

, (2.43)

which solutions provide the maximum likelihood estimators of the parameters γ and λ.
Note that the solutions of probability equations cannot be obtained analytically and

therefore numerical approaches need to be used in this case.
However, in Kitidamrongsuk et al. [30] is shown that the Fisher information matrix

for γ and λ exist, and so the MLE for γ and λ are asymptotically normal and distributed
with joint distribution given by,

(γ̂, λ̂) ∼ N2[(γ, λ), I−1(γ, λ)] for n→∞, (2.44)

where I(γ, λ) is the Fisher information matrix with elements given by

Ijk(θ) = E
[ ∂2

∂θj∂θk
l(θ|x)

]
, j, k = 1, 2 , (2.45)

where l(θ|x) = ln[L(θ|x)] and, in case for the EEG distribution, θ = (θ1, θ2) = (γ, λ)
whith l(θ|x) = l(γ, λ|t, δ) (see subsection 2.1.3 in Kitidamrongsuk et al. [30] for more
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detail) which, according to the theorem 1, exists exclusively when γ ≤ 1, and where δ
is a vector with n elements 1, this is, t, δ = (1, , . . . , 1), provided that the conditions of
regularities necessary for the existence of I(γ, λ) are satis�ed (see Mood, Graybill and
Graybill [43] for example).

When all (2.45) it exists, is called the expected information matrix, and its application
will be possible if, and only if, it is obtained analytically for all its jk elements, which is
not always possible, as possible by the theorem (1) for cases where γ > 1.

In cases where (2.45) does not exist, or is not obtained analytically, we can consider
that the jkth element is obtained by

Jjk(θ) =
∂2

∂θj∂θk
l(θ|x) . (2.46)

However, there are no records in the literature that in the I(θ) matrix there are,
simultaneously, the elements Ijk and Jj′k′ , and therefore, in cases where at least one
element Ijk does not exist, the application of Fisher's observed information matrix is
considered, which, according to (2.42) and (2.43), for the maximum likelihood estima-
tor of the EEG model in presence of censorship, taking l′(γ, λ|t, δ) = U(γ, λ|t, δ) and
l′′(γ, λ|t, θ) = U2(γ, λ|t, δ), respectively the �rst and second order score function, we will
have by (2.42) Fisher's observed information matrix given by

J(α̂; β̂) =

 −U2(λ̂|γ̂, t, δ) −U2(γ̂, λ̂|t, δ)

−U2(λ̂, γ̂|t, δ); α̂) −U2(γ̂|λ̂, t, δ)

 , (2.47)

whose elements, where g is the pdf of the EEG model in the time ti, will be

−U2(λ̂|γ̂, t, δ) =
1

λ̂

n∑
i=1

[
r

γ̂
+

(δi + 1)(1− γ̂)

λ̂
t2i g(ti|γ̂, λ̂)

]

−U2(γ̂|λ̂, t, δ) =
1

γ̂

n∑
i=1

[
n

γ̂
+

(δi + 1)

λ̂
e−λ̂tig(ti|γ̂, λ̂)

]

−U2(λ̂, γ̂|t, δ) = −U2(γ̂, λ̂|t, δ) = −
n∑
i=1

(δi + 1)

λ̂γ̂
tig(ti|γ̂, λ̂)

. (2.48)

Thus, we de�ne as the lower limit of the variance of the θ = (γ, λ) estimators the
statistical inequality given by

LI(θ) = [nJ(θ)] ≤ V ar(θ̂) , (2.49)

called observed inequality of information.
In particular, for the EEG(γ, λ) model the expected inequality of information will

exist if, and only if, it exists in (2.48)

E[Tg(T |γ, λ)] =

∫ ∞
0

tg2(t|γ, λ)dt , (2.50)

E[T 2g(T |γ, λ)] =

∫ ∞
0

t2g2(t|γ, λ)dt , (2.51)

E[e−λTg(T |γ, λ)] =

∫ ∞
0

e−λtg2(t|γ, λ)dt , (2.52)

in E[U2(λ̂, γ̂|t, δ)], E[U2(λ̂|γ̂, t, δ)] and E[U2(γ̂|λ̂, t, δ)], respectively, that by the theorem
1, exists only when γ ≤ 1.
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2.2.2 Bayesian Estimation

Now, we carry out a bayesian estimation of the parameters γ and λ. This way, we
need to assume some prior distributions for the unknown parameters of the distribution,
in view of that the prior distributions considered in this work express little or non infor-
mation about γ and λ.

This can be obtained by assuming independent Gamma distributions for each param-
eter resulting in a joint prior distribution given by

π(γ, λ) ∝ γa1−1λa2−1e−b1γ−b2λ , (2.53)
where a1, b1, a2 and b2 are known hyperparameters.

In this work, we assume that a1, a2, b1 and b2 in which (2.53) becomes a �at prior. The
joint posterior distribution for γ and λ is proportional to the product of the likelihood
function (2.41) and the prior distribution (2.53) resulting in

p(γ, λ|t, δ) ∝ γa1+n−1λa2−1e−b1γ−b2λ
n∏
i=1

λδie−λti

[1− (1− γ)e−λti ]δi+1
. (2.54)

The full conditional posterior distributions for γ and λ are given as follows:

p(λ|t, δ, γ) ∝ λa2−1e−b2λ
n∏
i=1

λδie−λti

[1− (1− γ)e−λti ]δi+1
, (2.55)

and

p(γ|t, δ, λ) ∝ γa1+n−1e−b1γ

{
n∏
i=1

[
1− (1− γ)e−λti

]δi+1

}−1
. (2.56)

These conditional distributions are needed in simulation of parameters of the joint
posterior distribution based on Monte Carlo Markov Chain (MCMC) methods.

Since the conditional distributions of λ and γ are not identi�ed, we use the Metropolis-
Hastings algorithm (see Gamerman and Lopes [14]) to simulate the quantities of interest.

2.2.3 A Simulation Study in the Presence of Random Censorship

We chose to perform this simulation procedure for m = 2 parametric cases given by
{θ1,θ2} = {(0.25, 3.25), (3.5, 0.75)}, the parameter vectors for the model in the cases
which the curve of risk manifests the forms, respectively, increasing and decreasing, as
shown in the following image.12/11/2019 Results: Curvas de Risco.sas

192.168.139.128/SASStudio/38/sasexec/submissions/c01a05a1-5439-45a7-8e08-c78cc26b2562/results 1/1

12/11/2019 Results: Curvas de Risco.sas

192.168.139.128/SASStudio/38/sasexec/submissions/63897347-7ba1-4b14-b629-29f312231aa5/results 1/1

Figure 2. 2 : The hazard rate works for simulations of EEG distribution censored.

In this section, we develop a simulation study used MCMC method whose main objec-
tive is to study the e�ciency of the MLE method for the distribution X ∼ EEG(x|γ, λ).

For this, the following procedure was computationally implemented
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Step 1: Set the values N and n, respectively the number of samples in the simulation
and the size of each their, and the values γ and λ in a number of m cases of the
parametric vector θ = (γ, λ) of the model EEG(θ) = EEG(x|γ, λ) censored with
a �xed proportion of censorship in N samples, so that nτδ is the exact number of
censorships determined in each sample, where τδ is the proportion of censorship.

Step 2: Generate nN values q ∈ ]0, 1[, so that n− nτδ values are complete lifetime and
nτδ values are censored lifetime from each of the N samples of the distribution
X ∼ EEG(θ) with x = Q(q), according (3.13), and such that F (x|θ) ∈ ]0, 1[.

Step 3: Use the values obtained in step 2 for the X ∼ EEG(θ) distribution to calculate
in each of the N samples the estimated vector θ̂ = (γ̂, λ̂), this is, for i = 1, . . . , N ,
get θ̂i through MLE of the γ and λ parameters by the MCMC method.

Step 4: Use the N vectors θ̂ = (γ̂, λ̂) and the vector θ = (γ, λ) for compute the mean
bias absolute (MBA), square root from the mean square errors (MSE) and 95%
coverage probability, respectivaly

Vθjk =
1

N

N∑
i=1

|θjk − θ̂ijk| , (2.57)

eθjk =

√√√√ 1

N

N∑
i=1

(θjk − θ̂ijk)2 , (2.58)

p̂θjk =
1

N

N∑
i=1

Wijk , (2.59)

so that, in the i-th sample where, for j-th parameter, with j = 1, 2, 3, and k-th case,
with 1 ≤ k ≤ m

Wijk =

{
1, if θjk ∈ IC{θjk,0.95}
0, otherwise

,

and IC{θjl,0.95} is the interval of 95% (of credibilaty or con�dence) for the parameter
θjk, with θk = (θ1k, θ2k) = (λk, γk) and θ̂ik = (θ̂i1k, θ̂i2k) = (λ̂ik, γ̂ik), in the i-th
sample of the k-th case, respectivaly. Moreover, for the N con�dence and credibility
intervals obtained, we will also consider the mean interval amplitude (MIA) in each
case as

hIC{θ;1−ε} =
1

N

N∑
i=1

hIC{θi;1−ε} , (2.60)

were hIC{θi;0.95} = 2z 0.05
2
σ̂θ̂i in the classic case and hIC{θi;0.95} = θ̂i

(k+[0.95]η)
− θ̂i

(k)

in the bayesian case, were θ
(k)
i is the k−th smallest lower limit and θ

(k+[0.95]η)
i

is the [k + (0.95)η]−th smallest upper limit of the ordered set of quantis θ∗j =

{θ(1)j ; θ
(2)
j ; θ

(3)
j ; ...; θ

(η)
j } from the j−th posterior sample for size η.

Repeat steps 2, 3, 4 and 5 for the m cases of θ.
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To generate the random data with τδ = 0.0, 0.2, 0.4, the exact proportion of censor-
ships, the sizes n = 10, 25, 50, 100 in N = 500 samples were used to perform 24 simulation
processes by the approach classic and bayesian, totaling 48 processes.

For this approach, MBA and MPE are expected to approach zero as samples of size n
increase and your respective this likelihood of empirical coverage p approaches 0.95, the
theoretical probability of the con�dence and credibility interval which for this simulation
process is de�ned as the most rigorous in the case of credibility, with the Highest Posterior
Density (HPD) interval.

The seed used to generate the simulation random values was the 64− bit Windows 10
operating system time, with Intel R© CoreTM i5− 4200U CPU @ 1.60GHz processor and
8.00GB installed RAM. The software used was SAS On Deamand where the implemented
code mainly considered the DATA STEP process and the IML and MCMC procedures,
all with seed inserted by the STREAMINIT(0) statement.

For each sample of the EEG model, the MCMC process was implemented with 50000
iterations for each of the 500 samples, with 10000 iterations burn-in, and roughing with
4 iterations to average each of the 500 subsequent samples of size η = 10000. The desired
estimate was obtained by averaging these 500 averages and to generate the exact amount
of censored data we used the same methods used by Goodman, Li and Tiwari [17].

It is noteworthy that the following results re�ect the care taken with the sample au-
tocorrelation, since with burning 20% of the initial iterations for the estimates generated
in the Markov chain followed by the thinning of 4 units, the 10000 values generated are
uncorrelated throughout the iterations.

The results of the cases described for the simulation are presented in tables ( 2. 1
) and ( 2. 2 ) below, where we used the methods describe by Goodman, Li and Tiwari
(2006, [17]) for generation the censorships.

Table 2. 1 : Results for the model EEG(γ, λ) = EEG(0.25, 3.25).
Cases Classical estimation Bayesian estimation

θ τδ n θ̂ pθ eθ Vθ hIC µ̂θ̂ pθ eθ Vθ hIC

γ

0

10 1.130 0.978 6.932 0.948 5.707 0.293 0.991 0.018 0.103 0.612
25 0.453 0.964 0.243 0.277 1.411 0.275 0.980 0.011 0.082 0.588
50 0.361 0.958 0.071 0.173 0.809 0.282 0.970 0.014 0.088 0.516
100 0.296 0.970 0.018 0.096 0.486 0.261 0.956 0.010 0.080 0.372

0.2

10 1.888 0.956 20.726 1.723 11.091 0.283 1.000 0.007 0.066 0.692
25 0.542 0.976 0.461 0.361 1.923 0.292 0.994 0.011 0.079 0.648
50 0.417 0.976 0.126 0.228 1.063 0.299 0.988 0.016 0.094 0.585
100 0.333 0.976 0.036 0.133 0.627 0.277 0.979 0.014 0.087 0.502

0.4

10 2.497 0.884 36.283 2.350 18.372 0.546 1.000 0.093 0.296 1.227
25 0.701 0.942 0.937 0.532 2.997 0.765 1.000 0.283 0.515 1.529
50 0.468 0.986 0.184 0.277 1.445 1.338 1.000 0.751 0.183 1.849
100 0.390 0.992 0.068 0.186 0.889 1.693 1.000 2.178 1.443 2.031

λ

0

10 7.603 0.974 87.237 5.156 21.783 3.297 0.986 1.114 0.833 6.709
25 4.403 0.960 9.571 2.130 10.264 3.311 0.984 1.000 0.792 5.985
50 4.083 0.942 4.509 1.519 6.768 3.385 0.978 1.219 0.852 5.082
100 3.645 0.958 1.581 0.930 4.554 3.315 0.968 0.849 0.634 3.785

0.2

10 8.560 0.916 149.707 6.576 26.617 2.986 0.964 0.956 0.802 6.590
25 4.400 0.960 11.017 2.266 11.225 2.934 0.956 0.887 0.779 5.626
50 3.783 0.932 4.512 1.561 7.305 2.986 0.942 0.978 0.809 4.941
100 3.263 0.948 1.553 0.975 4.792 2.263 0.938 1.002 0.977 4.385

0.4

10 7.820 0.870 109.853 6.159 31.055 0.244 1.000 9.038 3.006 0.545
25 4.060 0.922 12.817 2.411 12.698 0.272 1.000 8.869 2.978 0.491
50 3.231 0.962 3.494 1.449 7.832 0.622 1.000 8.341 2.896 0.408
100 2.902 0.908 1.931 1.137 5.297 0.439 1.000 7.907 2.811 0.361
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In the case where γ > 1 and λ < 1, for the parametric vector (3.25, 0.75) as shown
in the following table, the results are the same, showing that in any parametric case the
bayesian approach is preferable over the classical.

Table 2. 2 : Results for the model EEG(γ, λ) = EEG(3.5, 0.75).
Cases Classical estimation Bayesian estimation

θ τδ n θ̂ pθ eθ Vθ hIC µ̂θ̂ pθ eθ Vθ hIC

γ

0

10 13.962 0.948 2127 11.608 86.203 4.120 0.984 3.722 1.394 8.893
25 5.131 0.936 19.521 2.652 14.825 4.114 0.976 3.072 1.354 7.891
50 4.446 0.952 6.886 1.713 8.664 4.136 0.968 2.851 1.239 6.417
100 3.891 0.956 2.120 1.041 5.235 3.862 0.962 1.550 0.918 4.608

0.2

10 72.309 0.946 857579 69.800 116.44 4.682 0.999 4.127 1.849 10.361
25 6.436 0.970 46.070 3.686 20.692 4.456 0.988 3.797 1.461 8.843
50 5.192 0.968 11.435 2.268 11.129 4.277 0.982 3.273 1.400 6.929
100 4.523 0.984 3.927 1.386 6.672 4.376 0.980 2.520 1.168 5.594

0.4

10 138.85 0.956 1212328 136.20 512.63 4.469 0.996 2.993 1.346 10.740
25 9.767 0.972 183.735 6.883 36.721 4.920 0.996 5.475 1.797 10.110
50 6.645 0.990 32.886 3.564 16.235 5.112 0.990 6.087 1.902 8.859
100 6.009 0.987 21.291 2.736 7.948 4.891 0.951 6.240 2.311 7.961

λ

0

10 0.968 0.966 0.241 0.353 1.693 0.752 0.978 0.082 0.162 1.204
25 0.817 0.952 0.061 0.186 0.902 0.729 0.970 0.025 0.126 0.749
50 0.796 0.936 0.027 0.124 0.613 0.750 0.958 0.016 0.098 0.537
100 0.770 0.962 0.011 0.083 0.421 0.758 0.964 0.008 0.073 0.393

0.2

10 0.984 0.982 0.318 0.390 1.853 0.745 0.997 0.111 0.174 1.251
25 0.825 0.948 0.072 0.198 0.998 0.730 0.960 0.025 0.127 0.749
50 0.784 0.944 0.029 0.132 0.669 0.719 0.967 0.025 0.133 0.642
100 0.759 0.944 0.013 0.089 0.459 0.739 0.960 0.010 0.080 0.421

0.4

10 1.039 0.978 0.567 0.474 2.153 0.664 0.950 0.040 0.166 1.024
25 0.834 0.960 0.098 0.238 1.132 0.683 0.954 0.027 0.139 0.781
50 0.767 0.944 0.041 0.153 0.743 0.693 0.948 0.022 0.121 0.602
100 0.745 0.948 0.007 0.099 0.473 0.738 0.951 0.017 0.082 0.591

The table 2. 1 highlights that the estimates assume discrepant values in all cases of
size 10 samples, in both parameters and only in the classic case. In this case, even for
γ < 1 the estimation errors considered are relatively high and, although this is expected,
increase dramatically when the censorship ratio increases.

In the bayesian case, we can see that in samples of any size and up to 20% censorship
the estimates and estimation errors are reasonable and behave as expected, with errors
decreasing as sample size increases. A fact also present in the classic case, however, in the
bayesian case convergence occurs faster with estimates close the true value since samples
of size 10.

Despite the superiority of the bayesian estimation over the classical one in samples of
any size and in the case of 0% and 20% censorship, the results show that in the case of 40%
censorship the classical approach is preferable to the bayesian estimator for γ parameter
only.

It is noteworthy that in the bayesian case the approach to 40% censorship when γ < 1
does not follow any expected pattern, with divergence of the true parameter value and
therefore increase of the estimation errors, whereas in the classic case it is veri�ed that
the As sample size increases, estimates tend to true value and estimation errors decrease.

The table 2. 1 still shows that, although the probability of coverage for the case of
40% of censorship under classical estimation does not tend to the theoretical value of 95%,
the estimator in this case is preferable over the bayesian in both parameters, becouse as
is observed about the λ parameter the behavior is analogous.

The simulation for the parametric vector (0.25, 3.5) provides the results to evaluate the
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behavior of the model estimators in a particular case where γ < 1 and λ > 1, and allows
us to conclude that the bayesian estimation is preferable the classical in cases where the
censorship proportion of the sample is not signi�cant.

Above all, the previous results in table 2. 2 allow us to conclude that as the sample
size increases, the values of the estimatives α̂ and β̂ are closer to the true values of the
parameters α and β, respectively, and similarly the probability of empirical coverage
approaches pre-established con�dence level, as expected in applied asymptotic theory.
However, the comparetion between the classical and bayesian cases, especially for small
samples, shows bayesian estimators are preferable.

Therefore, the results show that the EEG distribution is indeed �exible and can be
approached in both classical and bayesian contexts to model censored data from samples
of any size.

2.2.4 Aplication for Censored Data for Advanced Lung Cancer

In this application the proposed methodology was implemented to model the life span
of patients with advanced lung cancer. The data used refer to the lifetime (in days) of
a group of 137 patients observed by the Veterans Administration's Lung Cancer Study
Group and reported in a work proposed by Prentice [48] and the modeling considered the
support of the classic inference and bayesian to obtain the estimates of the parameters of
the survival and risk models intended in the modeling as models derived from the EEG,
Gamma, Log Logistica (Log-Log.) and Weibul distributions.

The main objective of this application is to put the EEG probabilistic model in com-
petition with the others, as well as to contrast the estimators of this model according
to an application to real data. For this purpose, the 137 observations for the develop-
ment of classical inference through the MLE (Maximum Likelihood Estimators) obtained
from the system solution presented in 2.43 are considered, while the bayesian inference
is applied to a random sample of 40 observations among the 137 presented by Prentice
[48] and developed with the prioris vague presented in (2.55) and (2.56) to estimate the
parameters γ and λ, respectively.

Above all, the modeling is proposed as an adjustment for the data according to a prob-
abilistic model that captures the alternative forms of risk, and as shown in the following
�gure, the data indicate that the hazard rate for patients is predominantly decreasing,
which is con�rmed by plotting the empirical risk function based on the Epaneshnikov
smoothed kernel function.06/02/2020 Results: 03CODEEGUNI_AP1.LYMPHOMADATA.sas

192.168.139.128/SASStudio/38/sasexec/submissions/43bffd88-f6f2-4529-a05b-3d5a21d6bc0e/results 1/1

06/02/2020 Results: 03CODEEGUNI_AP1.LYMPHOMADATA.sas

192.168.139.128/SASStudio/38/sasexec/submissions/6d1cd768-c33c-4e9f-a623-c8e53ae4c5f2/results 1/1

The LIFETEST Procedure

Figure 2. 3 : TTT-plot and empirical hazard rate plot for 137 patients.

One of the most common ways to verify the �t for the survival model is to compare
the �tted model with the survival curve obtained by the Kaplan-Meyer nonparametric
estimator, and for the problem data, with 6.6% of censorship, the graph of the estimated
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Kaplan-Meyer survival curve is shown in the following graph, where + indicates the
probability of the censored time.06/02/2020 Results: 03CODEEGUNI_AP1.LYMPHOMADATA.sas

192.168.139.128/SASStudio/38/sasexec/submissions/6d1cd768-c33c-4e9f-a623-c8e53ae4c5f2/results 1/1

The LIFETEST Procedure

Figure 2. 4 : Empirical survival plot for patients data with lung cancer.

Next, using the maximum likelihood method, the estimates for the parameters of the
EEG, Gamma, Log-Log models are presented. and Webull obtained with 5% signi�cance.

The table shows the estimates for the location and scale parameters in column θ̂, where
e γ and λ are the location and scale parameters, respectively, indicated by column θ, and
with their respective standard errors and asymptotic con�dence intervals, respectively in
the std.err and CI95%(θ) columns, as well as the test statistic and the p-value for the
t-Student test, respectively in t-stat and p-value.

Table 2. 3 : Results estimations for the models.
Model θ θ̂ std. err. IC95%(θ) test-stat p-value

EEG
γ1 0.2611 0.0805 (0.1018; 0.4205) 3.2400 0.0015
λ2 0.0038 0.0011 (0.0017; 0.0060) 3.5500 0.0005

Weibull
γ2 0.8521 0.0570 (0.7393; 0.9649) 14.9400 <0.0001
λ2 120.6800 13.0096 (94.9549; 146.4100) 9.2800 <0.0001

Gamma
γ3 0.8095 0.0860 (0.6394; 0.9795) 9.4100 <0.0001
λ3 0.0062 0.0009 (0.0043; 0.0080) 6.7300 <0.0001

LogLog
γ4 1.2679 0.09249 (1.0850; 1.4508) 13.7100 <0.0001
λ4 67.9870 8.0648 (52.0393; 83.9346) 8.4300 <0.0001

The table 2. 5 in the sequence shows the results for the main information criteria
for the considered adjustments.

Table 2. 4 : Results for measures of �t.
Criterion EEG Weibull Gamma Log-Log.
−2log[L(θ)] 1496.0 1496.2 1498.2 1500.5

AIC 1500.0 1500.2 1502.2 1504.5
AAIC 1500.1 1500.3 1502.3 1504.6
BIC 1505.9 1506.0 1508.0 1510.4

Given the candidate models for data adjustment, it is conventionally preferred to
choose the one that provides the lowest value of the information criterion, in this case,
based on the criteria presented in table 2. 5 , it is concluded that the EEG distribution
provides the best �t, followed by the Weibull, Gamma and Log-Log. models, respectively,
although it is observed that in both criteria a result is shown pointing a narrow di�erence
between the candidate models for the best �t. However, this small di�erence is observed
in the �gure 2. 5 in the next page, which shows the graphic result of this adjustment.

Note by �gure 2. 5 in the sequence, that the adjusted survival graphs highlight the
negligible di�erence between the 4 values obtained by the information criteria, however,
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although under small di�erence, these values actually point to models less likely to rep-
resent the data, which is notable for the graph risk for each model.

06/02/2020 Results: 03CODEEGUNI_AP1.LYMPHOMADATA.sas
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Medidas de Distânciamento Médio Entre KM e D-Ajust.

 EEG GG EW ELL

DMED 0.0130203 0.0244347 0.0162617 0.0231249
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Figure 2. 5 : Survival and hazard rate plot for the �tted models for 137 patients data.

The following table shows the average distance that the survival models adjusted in
comparison to the empirical model as the representative of the true model. The compar-
ison is given for the four models as the average of the di�erences between the estimated
value for the corresponding adjusted survival function and the corresponding empirical
value obtained via Kaplan-Mayer.

Table 2. 5 : Average distance measures.
EEG Weibull Gamma Log-Log.
0.0130 0.0163 0.0244 0.0231

As said initially to this application, to contrast the previous results, we took a random
sample of size 40 from patients with advanced lung cancer.

The table 2. 6 displays the data sampled for the survival times (in days) of 40 patients,
where the symbol ∗ indicates the presence of censorship in the times 025∗, 103∗ e 231∗,
and in the sequence is shows the empirical survival function obtained via Kaplan-Meyer
for the sample obtained.

Table 2. 6 : Dataset related to the lifetimes.
1 2 8 8 10 11 12 12 15 16
18 19 20 21 25∗ 43 44 51 54 56
82 84 90 100 103∗ 118 126 153 164 177
200 201 231 231∗ 250 287 340 411 991 999

06/02/2020 Results: 03CODEEGUNI_AP1.LYMPHOMADATA.sas
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The LIFETEST Procedure

Figure 2. 6 : Empirical survival plot for 40 patients data with lung cancer.

Under the same conditions for the previous adjustment, where it was considered to �t
a probabilistic model according to the form of risk that the data presents, the following
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�gure shows the TTT-plot (total time in test) and the graph for the empirical hazard rate
function for the sample of 40 observations.

Under the same conditions for the previous adjustment, where it was considered to �t
a probabilistic model according to the form of risk that the data presents, the following
�gure shows the TTT-plot and the graph for the empirical hazard rate function smoothed
for the sample of 40 observations. Note that TTT-plot coincides with the empirical hazard
rate function, both of which provide information that survival models must still adjust a
decreasing risk model to the sampled data.06/02/2020 Results: 03CODEEGUNI_AP1.LYMPHOMADATA.sas
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The LIFETEST Procedure

Figure 2. 7 : TTT-plot and empirical hazard rate function graph for 40 patients.

Competition with other probabilistic models is also considered in this case of the ad-
justment and to maintain the same conditions the same probability models are considered:
the Gamma, Lo-log models. and Weibull.

So, based on the table 2. 6 , since data related to lung cancer patients have the
censorship mechanism, the equations (2.41) and (2.53) were used to obtain bayesian es-
timates for the adjustment. Following, the table 2. 7 displays these estimates and the
convergence test for the executed MCMC process.

Table 2. 7 : Results for MCMC process with 95% credibility for models.
Cases Results estimations for the models Results from convergence test

Model θ θ̂ std.err. IC95%(θ) test-stat p-value test outcome

EEG
γ1 0.1266 0.0803 (0.0048; 0.2840) 0.1432 0.4109 passed
λ1 0.00172 0.0009 (0.0002; 0.0036) 0.1523 0.3825 passed

Weibull
γ2 0.7062 0.0890 (0.5227; 0.8701) 0.1825 0.3041 passed
λ2 132.5000 32.8925 (77.2955; 200.3000) 0.1702 0.3335 passed

Log Log.
γ3 1.0490 0.1391 (0.8001; 1.3237) 0.3251 0.1150 passed
λ3 66.1672 17.8906 (36.7660; 105.1000) 0.1097 0.5392 passed

Gamma
γ4 0.6136 0.1141 (0.4056; 0.8406) 0.0920 0.6257 passed
λ4 0.0039 0.0011 (0.0018; 0.0060) 0.0960 0.6046 passed

The table 2. 7 shows the estimates for location and scale parameters in the coluns
θ̂, respectivaly indicated for γ and λ by the colun θ, and their respective standard-error
and yours 95% credibility intervals in the columns std.err. and IC95%(θ), respectivaly.

In graphics panel in the next page, the set formed by the graphics of iteration, autocor-
relation, and a posteriori density plots outlines the diagnosis for a parameter of interest.

Geometrically, the iteration plots indicate that the Markov chains converged actually
to an estimate the parameters of interest, as indicated in the tests in table 2. 7 , and that
all these iterations are independent of each other as shown in the autocorrelation plots.

In the 2. 8 panel, each row represents an estimated model and each column represents
a parameter for respective model, the gamma and lambda parameters. Each row contains



42 The Extended Exponential Geometric Distribution

the iterations, autocorrelation, and a posteriori density graphs for each parameter in the
model respectively for the EEG, Gama, LL and Weibull models.

Figure 2. 8 : Diagnostics plot for the convergence the markov chains.

The table 2. 8 below shows the results for the some information criteria for the
adjustments made to lung cancer patient data.

Table 2. 8 : Results for measures of �t.
Criterion EEG Weibull Log-Log. Gamma

pD 1.289 1.978 1.939 1.908

D(θ̂) 438.728 439.510 440.582 439.519
DIC 441.305 443.466 444.459 444.755

Given the set of candidate better models, it is conventionally preferred to choose the
one that provides the value lowest DIC. In this case, based on the criteria presented in
2. 8 it is concluded that the EEG distribution provides the best �t.
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However, even though the EEG model has the lowest penalty, this is veri�ed by a
signi�cantly low di�erence in relation to the four models confronted. The reader may
therefore be tempted to assume that, statistically, the values for these comparisons are
the same, which implies considering the average distance shown in table 2. 9 in the
sequence, which in turn shows that the adjustment that led to the estimated survival
curve closest to the empirical was the curve derived from the Weibull model.

Table 2. 9 : Average distance measures.
EEG Weibull Log-Log. Gamma
0.0329 0.0327 0.0353 0.0404

Situations like this lead to comparisons by graphical routes, which eventually, due to
the survival curve plotted with the 95% con�dence bounds, does not allow considering
the best �t to the data between the adjusted models, as long as some curve is plotted
outside con�dence bounds. In addition, if we consider the risk curve, provided that any of
them is contrary to the previous information provided by the TTT-plot and the empirical
risk smoothed, as shown in �gure 2. 7 in the sequence, no signi�cant conclusion can be
considered.
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Figure 2. 9 : Survival and hazard rate plot for the �tted models.

Then, by geometric means, it is possible to verify at most which of the adjusted mod-
els are not appropriate so that estimates are taken through it. See in the image that the
adjusted survival functions are entirely contained in the con�dence region and that the
risk functions are all decreasing.

In the image 2. 7 , on the left, if the adjusted survival graph is considered as a
tiebreaker between the EEG and Weibull models, noting that the largest distance from
the Kaplan-Meyer curve for the EEG and Log-Log models is highlighted in most of the
observed time, this allows the interpretation that the EEG model presents a lower adjust-
ment in relation to the Weibull for the survival data shown in the table 2. 8 .

On the right, in the image 2. 7 , the adjusted risk graphs highlight only that the
estimated models capture the form of risk expected by the data.

In the following section we will consider a mechanism that, inserted or omitted from
the modeling and model selection process, situations such as that obtained in the sample
of 40 observations can be easily circumvented.

2.3 The EEG Distribution in the Presence of Covari-
ates

The Exponential distribution can be alternatively parameterized according to its prob-
ability density function, and when a random variable T with such a distribution is inter-
preted as the length of time a mechanical or biological system survives, we say that λ > 0



44 The Extended Exponential Geometric Distribution

is the scale parameter of the distribution and is the inverse of the rate parameter φ > 0.
In this case we have to

λ =
1

φ
. (2.61)

Furthermore, to study the lifetime data, it is important to consider the relation-
ship of lifetime with other factors. From this, let us assume the presence of a vector
x = (x1, . . . , xp) of independent covariates associated to lifetime T with exponential dis-
tribution and scale parameter λ in the presence the covariates as follows

λ(x) =
1

φ(x)
. (2.62)

Since there are a multitude of shapes for covariates to relate to in a model, then let's
assume that φ is a linearizable nonlinear model de�ned as

φ(x) = e〈x,β〉 , (2.63)

were 〈x,β〉 is an internal product between x and β, this is, 〈x,β〉 = xβ′ = y ∈ R.
In this condition, let us assume the presence of a vector x = (x1, . . . , xp) of covariates

associated to lifetime T under the EEG distribution (2.6) with the scale parameter λ
depending on the covariates as follows

λ(x) = e−〈x,β〉 , (2.64)

where 〈x,β〉 ∈ R, with x = (1, x1, . . . , xp) and β = (β0, β1, . . . , βp) is the coe�cients
vector with βj ∈ R and �xed for all j = 0, . . . , p.

Note that, how the vectors x and β are of dimension p + 1, we have that 〈x,β〉 = y
is a additive e�ect, that reasonably describes relationships between various explanatory
variables of a given process, and how the collection of variables that make up x are
not observable, λ(x) = e−〈x,β〉 becomes a curve nonlinear composed of multiple variates
that confers randomness with considerable in�uence in the variability of the probabilistic
model.

Formally, since λ(x) varies in x ∈ Rp+1 for any β ∈ Rp+1 �xed, we can de�ne it as a
function λβ as follows.

De�nition 1 Let β ∈ Rp+1 a parameter vector �xed for any x ∈ Rp+1. If we de�ne a
relation λβ as

λβ : Rp+1 −→ R∗+
x 7−→ λβ(x) = e−〈x,β〉

then it is easy to see that λβ de�ne a function for x with �xed β.

See also that Imλβ = R∗+ and in this case we can take a subset Eβ ⊆ Imλβ de�ned
as

Eβ = {λβ(x) ∈ Imλβ; ∀x ∈ Rp+1} , (2.65)

and such that ∀ t ∈ R∗+, it is also de�ned that

De�nition 2 Let λβ : Rp+1 −→ R∗+ be a function, as in de�nition 1, for any x ∈ Rp+1

and a �xed β. Then we de�ne

g : R∗+ × Eβ −→ ]0, 1[

(t, λβ(x)) 7−→ g(t|x,β, γ) =
γ exp

(
−〈x,β〉 − te−〈x,β〉

)
[1− (1− γ) exp (−te−〈x,β〉)]2

, (2.66)
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G : R∗+ × Eβ −→ ]0, 1[

(t, λβ(x)) 7−→ G(t|x,β, γ) =
1− exp(−te−〈x,β〉)

1− (1− γ) exp(−te−〈x,β〉)
, (2.67)

S : R∗+ × Eβ −→ ]0, 1[

(t, λβ(x)) 7−→ S(t|x,β, γ) =
γ exp

(
−te−〈x,β〉

)
1− (1− γ) exp (−te−〈x,β〉)

, (2.68)

h : R∗+ × Eβ −→ R∗+

(t, λβ(x)) 7−→ h(t|x,β, γ) =
e−〈x,β〉

1− (1− γ) exp(−te−〈x,β〉)
, (2.69)

are, respectivaly, the density, distribution, survival and hazard rate functions of the EEG
distribution in the presence the covariates.

Following �gure 2. 10 shows density graphs for two parametric cases for γ and β.

Figure 2. 10 : In the panel, the density function for EEG distribution.

The �gure 2. 10 draught that the density function of the EEG distribution in the
presence of covariates has two sources of variability: lifetime t and the set of multiple
variates that constitute the additive e�ect index λβ(x) = e−〈x,β〉.

Empirically, for all i = 1, . . . , n, since λβ(xi) = e−〈xi,β〉 = λi is dependent for the
vector xi and is related to lifetime ti, in the sample of size n of lifetimes t, λ is a vector
related for t vector, both of size n, that is, xi 7→ λi no necessarily with ti 7→ λi but, for
each λi exist a ti related in the sample.

Then, for i = 1, . . . , n, observations from sample, we have then n vectors x compose
the lines from a matrix X, and if the n elements ν̂i = 〈xi, β̂〉 form an ν̂ = (ν̂1, ν̂2, . . . , ν̂n)′

vector, the matrix X is such that

ν̂ =


ν̂1
ν̂2
...
ν̂n

 =


1 x11 . . . x1p
1 x21 . . . x2p
...

...
. . .

...
1 xn1 . . . xnp



β̂0
β̂1
...
β̂p

 =


〈x1, β̂〉
〈x2, β̂〉

...
〈xn, β̂〉

 = Xβ̂
′
. (2.70)
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See then that each observation of the function λβ of the de�nition 1 is a constant,
which although varying by 〈x,β〉, is not considered as an observation of a random variable
because it enters the model as a particular parameter for its respective observation, and
therefore, even if the functions in (2) are de�ned in R∗+ × Eβ the expressions derived from
the density (2.66) follow the same analytical form presented in the previous section.

In the sequence, the �gure 2. 11 shows survival graphs for two parametric cases for
γ and β.

Figure 2. 11 : Survival plot for only model in colun left and diferents model in right.

Theorem 3 Let h(t|x,β, γ) the hazard rate functions as obtained in (2.69). For each x
�xed, when t −→ ∞ then h(t|x,β, γ) −→ λβ(x) = e−〈x,β〉, this is, tends to lose memory
over time and converge for λβ(x) = e−〈x,β〉 ∈ R∗+.

Proof: When t −→ ∞, as e−〈x,β〉 ∈ R∗+ is a constant, see that exp(−te−〈x,β〉) −→ 0.
Then

lim
t−→∞

h(t|x,β, γ) = lim
t−→∞

e−〈x,β〉

1− (1− γ) exp(−te−〈x,β〉
) =

e−〈x,β〉

1− (1− γ)0
= e−〈x,β〉 , (2.71)

the which proves the theorem.

Note that x is a vector of size p + 1 associated with a time t in the sample of size n.
Then, when h(t|x,β, γ) −→ λβ(x) = e−〈x,β〉, for each vectors x associated with one t of
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the sample, we have that geometrically hazard rate functions h tends for a curve in R2,
whose domain is time t, that which is perfectly reasonable becouse in the the presence of
covariates the density function g can be understood as a function of R2

+ \{(0, 0)} in ]0, 1[,
that is, (t, λβ(x)) 7→]0, 1[.

The hazard rate plots show that the criteria for the form of the hazard rate function,
established by the γ parameter, are still met in the presence of covariates. The �gure 2.
12 in the sequence shows the hazards rates graphs for two cases for γ and β.

Figure 2. 12 : Hazards rates plot for only model in colun left and in colun left.

Note from �gure that the nonlinear function λβ, that constitutes the additive e�ect
index of the model, does not in�uence the shape of the hazard rate function, independent
of the number of covariates present in λβ, that is, the number of additional parameters
in the model through β vector.

As presented in the (1) theorem, the rth moment for the EEG distribution in the
presence of covariates can be then written as

E(T r|γ,x,β) =


γr!Lir(1− γ)

(1− γ)e−r〈x,β〉
,when γ < 1

r

e−〈x,β〉
E(T r−1|1,x,β), when γ = 1

Pathological, when γ > 1

. (2.72)

While in the absence of covariables the moment r th provides a global measure for the
random variable, since µr = E(T r|γ,x,β) for each of the n observations, in the presence
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of covariables this measure can be summarized as a local measure due to the sample of
size n, whose information can be summarized as a position measure for the vector ~µr, such
as median (Md) and geometric mean (Mg) as central trend statistics and the norm of the
vector ~µr, which mathematically can be interpreted as a length, that is, the distance from
its end point to the origin.

In the case where r = 1, we will have for example that ~µ1 = (µ1,1, . . . , µn,1), then

Md(~µ1) =


µn

2
,1 + µn

2
,1

2
, if n par

µpn
2
q,1, if n impar

, Mg(~µ1) = n

√√√√ n∏
i=1

µi,1 and ‖~µ1‖2=

√√√√ n∑
i=1

µ2
i,1 . (2.73)

Thus, when it exists, the rth moment for the EEG distribution in the presence of
covariates can be interpreted as the r th moment for the i th observation among the n
observations in the sample. Furthermore, in this condition there will be a vector ~µr with
n elements where so that each element will be a value E(T r|γ,x,β) under parameter
λβ(xi).

Thus, considering the inverse of the equation (2.67), a sample of n quantiles of the
EEG distribution in the presence of covariates is given by the quantile function

QEEG(q|X,β, γ) = − 1

e−〈x,β〉
ln

[
1− q

1− (1− γ)q

]
, (2.74)

which, less than the covariant term, is analogous to the (2.9) function.
Furthermore, assuming survival data in the presence of covariates and censored data,

the likelihood function for the parameter vector (γ,β) is given by

L(γ,β|t,X, δ) =
n∏
i=1

γe−〈xi,β〉

[1− (1− γ) exp (−tie−〈xi,β〉)]
δi+1

. (2.75)

The maximum likelihood estimates are obtained by maximizing the logarithm of like-
lihood function given by

l(γ,β|t,X, δ) =n ln(γ) −

−
n∑
i=1

{
(δi + 1) ln

[
1− (1− γ) exp

(
−tie−〈xi,β〉

)]
+ tie

−〈xi,β〉
}
.

(2.76)

From
∂

∂λ
l(γ,β|t,X, δ)

∣∣∣∣
(γ,β)=(γ̂,β̂)

= 0 and
∂

∂βj
l(γ,β|t,X, δ)

∣∣∣∣
(γ,β)=(γ̂,β̂)

= 0 for j =

0, 1, . . . , p, we get the system of likelihood equations
n

γ̂
−

n∑
i=1

(1 + δi) exp(−tie−〈xi,β̂〉)

1− (1− γ̂) exp(−tie−〈xi,β̂〉)
= 0

n∑
i=1

tixi

[
(1− γ̂)(2 + δi)tie

−〈xi,β̂〉

1− (1− γ̂) exp(−tie−〈xi,β̂〉)

]
= 0

, (2.77)

whose solutions provide the maximum likelihood estimators of the parameters vectors
(γ,β) = (γ, β0, . . . , βp), and its second-order score functions provide Fisher's observed
information matrix analogous to (2.47).

By considering the bayesian approach it is assumed as prior distributions Gamma for
γ and Multivariate Normal distributions for β vector, with γ ∈ R∗+ and βj ∈ R, such that
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γ ∼ Γ(a, b) and β ∼ Np(µ, Sigma) , (2.78)

by which

π(γ,β) ∝ γa−1 exp

(
−bγ − 1

2

p∑
j=0

β2
j

σ2
j

)
, (2.79)

where a, b and σ2
j for j = 0, 1, . . . , p are known hyperparameters. In this work we assume

that a, b and σ2
j such that (2.75) becomes a �at prior.

The joint posterior distribution for γ and β is proportional to the product of the
likelihood function (2.75) and the prior distribution (2.79), resulting in

p(γ,β|t,X, δ) ∝ γa−1

ebγ
exp

(
−1

2

p∑
j=0

β2
j

σ2
j

){
n∏
i=1

exp
(
δi〈xi,β〉 − tie−〈xi,β〉

)
[1− (1− γ) exp (−tie−〈xi,β〉)]

δi+1

}
.

The full conditional posterior distributions for γ and β, respectively, are given as
follows:

p(γ|t,X, δ, β) ∝
n∏
i=1

γa−1e−bγ

[1− (1− γ) exp (−tie−〈xi,β〉)]
δi+1

, (2.80)

and for all j = 0, 1, . . . , p

p(βj|t,X, δ, λ) ∝ exp

(
−
β2
j

2σ2
j

) n∏
i=1

exp
(
δi〈xi,β〉 − tie−〈xi,β〉

)
[1− (1− γ) exp (−tie−〈xi,β〉)]

δi+1
. (2.81)

Since the conditional distributions of γ and β are not easily identi�ed, we use the
Metropolis-Hastings algorithm (see Gamerman and Lopes [14]) to simulate the quantities
of interest.

2.3.1 A Simulation Study with Censorship and Covariates

We have that N samples of size n from a EEG distribution in the presence of covariates
and with rate τδ under randomly censored data in each their, can be randomly generated
according to following steps:

Step 1: Fix a value for γ > 0 and the p + 1 values βi ∈ R, with i = 0, 1, . . . , p, for form
the vector β = (β0, β1, . . . , βp).

Step 2: Set a numbers of N , n and m, respectively, the number of samples, the size of
each their and cases of the parametric vector (γ, β0, . . . , βp) in the simulation.

Step 3: Set the τδ proportion of censorships for each of the N simulation samples so that
nτδ is the exact number of censorships determined in each sample, where δi is the
i-th observation censored in a censorships vector, so that

δi =

{
1, if ti is time failure
0, otherwise

. (2.82)

Step 4: Generate p random variables Xj with size n, in the wich Xj ∼ P(·|θ), j =
1, . . . , p, were P is a particular j-th probability distribution and θ are its parameters,
also previously set.
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Step 5: Use the values obtained in step 2 for generate the n vectors xk, k = 1, . . . , n, for
with β de�ned in the step 1, calculate os n values 〈xk,β〉, were

xk = (1, xk,1, xk,2, . . . , xk,p) and β = (β0, β1, β2, . . . , βp) . (2.83)

Step 6: Generate the nN values from q ∈ ]0, 1[ and build each of the N samples of the
n size EEG distribution, where each tk = Q(qk|xk,β, γ), k = 1, . . . , n, according to
with (2.74), is such that F (tk|xk,β, γ) = qk ∈ ]0, 1[, that is

tk =
1

e−〈xk,β〉
ln

[
1− qk

1− (1− γ)qk

]
. (2.84)

Step 7: Generate N random vectors of size n with nτδ elements δ = 0 and n(1 − τδ)
elements δ = 1 to form N bivariate vectors with n elements (t, δ).

Step 8: For k = 1, . . . , n, when δk = 0, generate q∗k ∼ Unif(0, tk) and recalculate tk as

t∗k =
1

e−〈xk,β〉
ln

[
1− q∗k

1− (1− γ)q∗k

]
, (2.85)

and t∗k will be a censored lifetime in the simulation

In this condition, each of the n vectors υk = (tk, δk, 1, xk,1, xk,2, . . . , xk,p) represents an
element in the simulation for the random variable EEG distribution in the presence of
covariates for the case for a prede�ned parametric vector (γ, β0, . . . , βp).

For generate the under randomly censored data, we utilize the same methods used
by Goodman, Li and Tiwari (2006, [17]. In the next page, the table 2. 10 and 2.
11 exibe the results for a simulation, according to the classical and bayesian approach,
the models EEG for the parametric vector (γ,β) = (0.50, 2.00,−0.25, 1.75,−0.75) and
(γ,β) = (2.75,−0.50, 1.00,−0.75, 1.25), respectivaly, for the decreasing and increasing
hazard rate with covariates.

The results in the next pages summarize a simulation study developed on 500 samples
of sizes 10, 25, 50 and 100, in cases for τδ%, the censorship proportion, set at 0% (complete
data), 20% and 40%. The theoretical con�dence level, �xed for the classic case, and the
level of credibility for the bayesian case, was 95%.

In the classic case, the maximum likelihood estimates were calculated based on the
expression (2.76) for each of the 500 simulated samples, and in the bayesian case the
estimates were obtained from the posteriori de�ned for the parameters γ and each βj
respectively through the expressions (2.80) and (2.80).

The computational process was implemented in SAS language under the procedures
NLMIXED and MCMC, respectively, for the clasic and bayesian approaches, respectively,
both aided by the SQL and IML procedures for the extraction and calculation of inter-
est statistics in the simulated process, such the estimates for the parameters of interest
and asymptotic con�dence intervals and HPD, for the calculation of the estimation error
measurements presented in sub section 2.2.3 by the expressions (2.57), (2.58), (2.59) and
(2.60).

The conclusion drawn from these results, as follows, boils down to the fact that the
EEG distribution in the presence of censorship and covariates still remains a �exible
model, which can be approached in either the classical or bayesian context to model sam-
ple data from any size and proportion of censorship.

In tables 2. 10 and 2. 11 in the sequence we can see that the MSE for all parameters
generally decrease to 0 with the increase of n, as well as their MBA and MIA.
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Table 2. 10 : Results for the model EEG(0.50, 2.00,−0.25, 1.75,−0.75).
Cases Classical estimation Bayesian estimation

θ τδ n θ̂ pθ eθ Vθ hIC µ̂θ̂ pθ eθ Vθ hIC

γ

0

10 12.676 0.976 2238.95 12.232 86.025 0.567 0.996 0.043 0.168 1.447
25 1.377 0.974 2.377 0.950 4.058 0.590 0.986 0.068 0.201 1.261
50 0.781 0.972 0.291 0.365 1.615 0.554 0.954 0.053 0.171 0.978
100 0.645 0.964 0.091 0.215 0.940 0.531 0.948 0.027 0.134 0.659

20

10 125.44 0.972 1497303 124.99 392.73 0.583 0.998 0.043 0.167 1.513
25 1.914 0.990 6.300 1.472 6.284 0.631 0.992 0.074 0.206 1.402
50 0.961 0.992 0.560 0.522 2.215 0.646 0.992 0.077 0.210 1.189
100 0.742 0.982 0.161 0.290 1.216 0.604 0.982 0.053 0.172 0.899

40

10 590.87 0.926 6389379 590.41 1130.19 0.576 0.998 0.034 0.151 1.538
25 3.339 0.980 47.503 2.887 13.175 0.666 0.998 0.079 0.215 1.545
50 1.327 0.986 1.802 0.887 3.510 0.674 0.996 0.097 0.233 1.354
100 0.936 0.992 0.418 0.479 1.776 0.684 0.992 0.097 0.236 1.128

β0

0

10 0.985 0.744 13.775 3.148 6.561 2.039 0.998 16.430 4.039 1.453
25 1.498 0.832 13.423 3.498 3.785 2.013 0.990 16.317 4.013 1.266
50 1.745 0.912 14.566 3.745 2.677 2.017 0.986 16.337 4.017 0.982
100 1.885 0.918 15.330 3.885 1.826 2.014 0.971 16.315 4.009 0.714

20

10 0.771 0.696 14.950 3.219 7.047 2.079 1.000 16.750 4.079 1.520
25 1.691 0.858 15.102 3.691 4.172 2.137 0.998 17.306 4.137 1.407
50 2.373 0.898 24.436 4.873 2.913 2.461 0.986 24.834 4.961 1.193
100 1.946 0.942 15.870 3.946 2.049 2.112 0.972 17.075 4.112 0.902

40

10 0.754 0.568 22.850 3.350 277.46 2.086 1.000 16.797 4.086 1.545
25 1.686 0.822 15.756 0.650 3.687 4.542 0.990 17.958 4.218 1.551
50 1.977 0.900 16.861 3.977 3.578 2.258 0.982 18.337 4.258 1.358
100 2.045 0.948 16.728 4.045 2.349 2.244 0.976 18.172 4.244 1.132

β1

0

10 −0.238 0.794 1.501 0.973 3.211 −0.225 0.998 0.435 0.541 2.644
25 −0.238 0.906 0.533 0.600 1.900 −0.237 0.968 0.391 0.524 1.811
50 −0.266 0.918 0.399 0.539 1.329 −0.260 0.960 0.359 0.524 1.307
100 −0.242 0.940 0.302 0.496 0.925 −0.244 0.951 0.289 0.500 0.983

20

10 −0.275 0.754 1.800 1.063 3.327 −0.241 0.996 0.466 0.554 2.772
25 −0.233 0.886 0.597 0.638 2.048 −0.209 0.968 0.391 0.523 1.937
50 −0.268 0.916 0.422 0.555 1.441 −0.233 0.964 0.342 0.506 1.398
100 −0.253 0.942 0.318 0.507 1.006 −0.245 0.960 0.300 0.498 1.003

40

10 −0.415 0.648 9.272 1.610 307.66 −0.241 1.000 0.457 0.562 2.942
25 −0.258 0.894 0.646 0.650 2.209 −0.223 0.984 0.400 0.520 2.120
50 −0.260 0.922 0.457 0.565 1.587 −0.235 0.964 0.364 0.517 1.564
100 −0.277 0.934 0.368 0.534 1.117 −0.260 0.960 0.334 0.514 1.114

β2

0

10 1.740 0.816 12.526 3.490 1.786 1.747 0.986 12.342 3.497 1.757
25 1.759 0.910 12.387 3.509 0.998 1.760 0.960 12.380 3.510 1.036
50 1.738 0.922 12.204 3.488 0.682 1.738 0.940 12.200 3.488 0.701
100 1.750 0.938 12.268 3.500 0.472 1.751 0.948 12.307 3.479 0.452

20

10 1.755 0.728 12.945 3.510 1.926 1.772 0.976 12.571 3.522 1.904
25 1.777 0.920 12.530 3.527 1.095 1.773 0.968 12.477 3.523 1.137
50 1.740 0.936 12.219 3.500 0.741 1.738 0.956 12.200 3.488 0.755
100 1.759 0.918 12.329 3.508 0.515 1.758 0.934 12.324 3.508 0.528

40

10 1.808 0.678 13.592 3.563 1.960 1.775 0.980 12.622 3.525 2.070
25 1.739 0.900 12.308 3.489 1.194 1.741 0.966 12.278 3.491 1.278
50 1.746 0.934 12.284 3.498 0.828 1.746 0.966 12.267 3.496 0.864
100 1.748 0.938 12.257 3.498 0.570 1.747 0.942 12.255 3.497 0.588

β3

0

10 −0.748 0.810 2.396 1.499 1.131 −0.713 1.000 2.159 1.463 0.803
25 −0.731 0.902 2.236 1.483 0.631 −0.726 0.988 2.190 1.475 0.543
50 −0.737 0.924 2.224 1.487 0.435 −0.731 0.972 2.203 1.481 0.399
100 −0.751 0.948 2.258 1.501 0.297 −0.753 0.962 2.212 1.502 0.270

20

10 −0.733 0.748 2.446 1.492 1.196 −0.686 0.996 2.083 1.436 0.864
25 −0.772 0.890 2.353 1.522 0.674 −0.727 0.988 2.194 1.477 0.585
50 −0.758 0.934 2.291 1.508 0.467 −0.716 0.962 2.158 1.466 0.427
100 −0.749 0.952 2.254 1.500 0.323 −0.742 0.972 2.232 1.492 0.308

40

10 −0.696 0.692 2.426 1.464 1.202 −0.625 0.992 1.915 1.375 0.927
25 −0.761 0.886 2.339 1.512 0.736 −0.702 0.994 2.123 1.452 0.648
50 −0.762 0.922 2.308 1.512 0.523 −0.728 0.980 2.194 1.478 0.479
100 −0.749 0.944 2.256 1.499 0.359 −0.735 0.966 2.211 1.485 0.342
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Table 2. 11 : Results for the model EEG(2.75,−0.50, 1.00,−0.75, 1.25).
Cases Classical estimation Bayesian estimation

θ τδ n θ̂ pθ eθ Vθ hIC µ̂θ̂ pθ eθ Vθ hIC

γ

0

10 117.60 0.976 916583 115.14 364.34 3.354 0.992 1.755 1.045 8.168
25 6.167 0.982 51.458 3.808 18.444 3.430 0.988 2.432 1.177 6.733
50 3.929 0.961 6.976 1.704 7.699 3.197 0.960 1.937 1.024 5.051
100 3.294 0.954 2.113 0.998 4.430 3.061 0.938 1.242 0.804 3.693

20

10 452.16 0.954 4352995 449.60 1108.18 3.520 0.996 2.049 1.136 8.732
25 8.484 0.992 274.75 5.987 29.201 3.672 0.994 2.715 1.268 7.529
50 4.715 0.982 13.573 2.288 10.205 3.508 0.980 2.458 1.139 5.866
100 5.107 0.990 15.210 2.598 11.060 3.576 0.950 2.153 1.084 4.584

40

10 1383.43 0.884 15383476 1380.77 1992.76 3.481 1.000 1.640 1.016 8.894
25 13.787 0.992 746.96 11.243 56.689 3.857 0.994 3.242 1.389 8.295
50 6.863 0.992 39.261 4.257 17.070 4.187 0.990 4.314 1.609 7.442
100 5.006 0.998 10.419 2.335 8.406 4.099 0.942 3.694 1.449 5.747

β0

0

10 −1.125 0.775 5.218 1.917 4.602 −0.769 1.000 1.788 1.269 8.174
25 −0.770 0.895 2.086 1.286 2.444 −0.637 0.980 1.489 1.137 6.737
50 −0.602 0.923 1.431 1.105 1.713 −0.559 0.968 1.258 1.059 5.055
100 −0.542 0.944 1.176 1.042 1.180 −0.519 0.952 1.111 1.019 3.695

20

10 −1.333 0.703 6.296 2.077 4.659 −0.749 1.000 1.733 1.249 8.738
25 −0.776 0.882 2.162 1.304 2.676 −0.619 0.996 1.434 1.119 7.533
50 −0.626 0.900 1.527 1.129 1.871 −0.553 0.972 1.257 1.053 5.869
100 −0.638 0.899 1.534 1.141 1.824 −0.507 0.952 1.102 1.007 4.587

40

10 −1.093 0.702 20.384 2.668 157.78 −0.701 0.998 1.610 1.203 8.900
25 −0.803 0.860 2.539 1.363 3.096 −0.576 0.994 1.353 1.077 8.299
50 −0.584 0.916 1.481 1.099 2.055 −0.478 0.982 1.105 0.980 7.446
100 −0.507 0.934 1.162 1.009 1.419 −0.446 0.958 0.999 0.946 5.750

β1

0

10 1.019 0.825 4.659 2.035 2.237 1.063 0.992 4.434 2.063 2.120
25 1.012 0.915 4.175 2.012 1.263 1.034 0.962 4.230 2.034 1.286
50 1.004 0.925 4.073 2.004 0.881 1.018 0.942 4.123 2.018 0.889
100 0.988 0.938 3.978 1.988 0.613 0.995 0.942 4.007 1.995 0.612

20

10 1.024 0.757 5.347 2.051 110.80 1.033 0.990 4.321 2.033 2.297
25 1.000 0.919 4.140 2.000 1.356 1.032 0.976 4.228 2.032 1.411
50 1.016 0.951 4.129 2.016 0.954 1.033 0.964 4.188 2.033 0.975
100 0.996 0.897 4.059 1.996 0.933 0.996 0.976 4.009 1.996 0.662

40

10 0.917 0.712 14.427 2.417 284.75 1.047 0.996 4.377 2.047 2.523
25 1.012 0.881 4.262 2.012 1.539 1.050 0.970 4.330 2.050 1.623
50 1.018 0.918 4.153 2.018 1.029 1.039 0.962 4.223 2.039 1.085
100 0.994 0.932 4.015 1.994 0.727 1.008 0.938 4.067 2.008 0.747

β2

0

10 −0.766 0.831 2.499 1.518 1.277 −0.769 0.974 2.392 1.519 1.332
25 −0.758 0.887 2.315 1.508 0.671 −0.759 0.924 2.312 1.509 0.714
50 −0.746 0.941 2.254 1.496 0.459 −0.747 0.954 2.257 1.497 0.472
100 −0.747 0.954 2.248 1.497 0.310 −0.749 0.952 2.252 1.499 0.313

20

10 −0.774 0.757 2.635 1.537 1.361 −0.775 0.970 2.441 1.525 1.474
25 −0.745 0.890 2.279 1.495 0.719 −0.746 0.948 2.276 1.496 0.786
50 −0.751 0.912 2.270 1.501 0.495 −0.752 0.948 2.274 1.502 0.519
100 −0.742 0.913 2.244 1.492 0.485 −0.746 0.946 2.247 1.496 0.340

40

10 −0.717 0.712 2.725 1.540 1.422 −0.759 0.976 2.346 1.486 1.688
25 −0.768 0.910 2.361 1.518 0.807 −0.766 0.976 2.344 1.516 0.911
50 −0.745 0.930 2.256 1.495 0.533 −0.744 0.946 2.253 1.494 0.574
100 −0.743 0.924 2.240 1.493 0.369 −0.746 0.938 2.248 1.496 0.384

β3

0

10 1.254 0.855 6.355 2.504 0.812 1.319 0.988 6.611 2.569 0.641
25 1.256 0.917 6.295 2.506 0.414 1.279 0.978 6.403 2.529 0.395
50 1.251 0.933 6.263 2.501 0.288 1.265 0.946 6.332 2.515 0.279
100 1.250 0.952 6.255 2.500 0.196 1.256 0.950 6.284 2.506 0.192

20

10 1.270 0.785 6.450 2.520 0.818 1.335 0.990 6.697 2.585 0.692
25 1.254 0.907 6.287 2.504 0.452 1.288 0.976 6.450 2.538 0.433
50 1.258 0.939 6.295 2.508 0.312 1.274 0.954 6.377 2.524 0.305
100 1.254 0.929 6.276 2.504 0.304 1.258 0.954 6.293 2.508 0.208

40

10 1.245 0.702 6.828 2.543 0.909 1.367 0.982 6.868 2.617 0.773
25 1.260 0.902 6.325 2.510 0.515 1.308 0.972 6.553 2.558 0.497
50 1.245 0.937 6.233 2.495 0.340 1.270 0.970 6.354 2.520 0.338
100 1.247 0.928 6.241 2.497 0.232 1.258 0.946 6.291 2.508 0.232
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In the classic case, the random e�ects exerted on the response are realizations of a
probability distribution across each parameter of the model with covariates. To ensure
that the e�ects of covariates are �xed as well as the accuracy of the estimates and that
this random e�ect remains in the particular k−th parameter, without the in�uence of the
others p parameter by the estimation process, the method quadrature-adapted of Gauss-
Hermite was considered to approximate the integral of the likelihood given by expression
(2.76) in relation to the k−th estimated parameter. In addition, to perform the opti-
mization of solutions for expression (2.76), the procedure was also implemented with the
Quasi-Newton method with 300 iterations.

In the bayesian case the estimates were obtained by applying the MCMC method
(Monte Carlo via Markovian Chains) under the Metropolis algorithm proposed with ran-
dom walk around the chain the test values. In this case, a random perturbation initiated
by ε around 0 is performed such that the proposed function, the density q(θ∗|θk) =
g(|θ∗ − θk|) is dependent θk and be symmetrical around this value.

In this simulation the method Metropolis algorithm proposed with random walk was
preferred over Metropilis-Hasting because it produces a super adaptation to the proposed
density q, which drastically impacts the likelihood of simulation coverage. The MCMC
process was implemented based on the Metropolis algorithm with Normal distribution for
the proposed function to generate 50000 iterations and take 10000 initial discards with 4
element roughing to ensure independence, totaling 10000 independent elements resampled
to the posterior sample.

As discussed for the simulation developed in the 2.2.3 sub-section, here we also observe
bad estimates and therefore high estimation errors in the case of samples with 40% cen-
sorship of any size. However, it is observed in this case that as the sample size increases,
the estimates tend to their real values, and thus the MSE, MBA and MIA tend to 0 and
the probability of empirical coverage tends to 0.95.

2.3.2 Aplication Data for Advanced Lung Cancer with Covariates15/11/2019 Results: CODEEG05_LUNGAPLICA1.sas
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The LIFETEST Procedure

15/11/2019 Results: CODEEG05_LUNGAPLICA1.sas

192.168.139.128/SASStudio/38/sasexec/submissions/71a33078-14cd-40e6-b204-ced93d7d17bd/results 1/1

The LIFETEST Procedure

15/11/2019 Results: CODEEG05_LUNGAPLICA1.sas

192.168.139.128/SASStudio/38/sasexec/submissions/bd15cf48-36bf-4cbc-a568-cfd5cfe0245a/results 1/1

The LIFETEST Procedure

15/11/2019 Results: TTT Plot.sas

192.168.139.128/SASStudio/38/sasexec/submissions/2e5669c1-f49f-44fd-85ad-f6c4a50734a9/results 1/1

15/11/2019 Results: TTT Plot.sas

192.168.139.128/SASStudio/38/sasexec/submissions/c72fb0b1-f7a9-45b7-b086-aef7bf956287/results 1/1

Figure 2. 13 : The empirical hazard rate function plot and TTT-plot for two agents.

For the data this application, the previous panel displays the empirical hazard rate
function graph and TTT-plot for the standard agent and for the test agent, respectively,
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in the left column and the right.
In the displayed panel, in the 95% con�dence band display the hazards rates estimated

by Epanechnikov kernel-smoothed hazard rate function is exibed, and below, in the red
line on the anti-diagonal axis, the TTT-plot for both chemotherapeutic agents under ef-
fects the covariate data presented by Prantice [48].

Of particular interest are the e�ects of therapy on the tumor cell and the EEG model
is proposed because, as we show in 2. 13 , the data manifest the decreasing hazard form
that can be captured by the model-derived hazard rate function EEG.

Based on Schoenfeld residues, the table 2. 12 in the sequence presents a proportion-
ality test for the chemotherapeutic agents of this application, where only standard agent
can be treated as proportional hazard rate under 5% signi�cance test.

The table presents the results of the proportionality test for chemotherapeutic agents
in three steps: (1◦) obtaining the Schoenfeld residues, (2◦) the classi�cation of survival
time by the Schoenfeld residue and (3◦) the correlation test between the classi�ed survival
times and the Schoenfeld residues.

Table 2. 12 : Results for proportionality test.
Chemotherapy test-stat p-value test outcome for 5%

Standard 8.9810 0.1098 passed
Test 38.4444 <0.0001 not passed

However, the non-zero slope in a generalized linear regression of time-scaled Schoenfeld
residues is an indication of violation of the proportional risk, or more conservatively,
assumption when the correlation of Schoenfeld residues with survival are signi�cated, the
assumption of proportionality cannot be assumed.

When it comes to multiple variables, it is important to check the condition in which
these covariates correlate, since if the variables are highly correlated, the inferences under
the model may be erroneous or unreliable, and therefore all estimates for the parameters
in the probabilistic model are unreliable.

If there is no relationship between them, we say they are orthogonal and since we have
a set of 5 covariates in the problem, a multicollinearity diagnosis to quantify the linear
relationship between one covariable and the others is indispensable.

Multicollinearity attributes a problem in model �t and we can diagnose it by using
the variance in�ation factor (V IF ). Table 2. 13 presents the VIF of each covariate of
the model.

Table 2. 13 : VIF for covariables by agents.
Chemotherapy x1 x2 x3 x4 x5

Standard 1.0300 1.0523 1.3134 1.0287 1.2645
Test 1.1224 1.0816 1.2520 1.0477 1.2264

In the literature, V IF is indicative of multicollinearity problems if V IF is greater
than 10. However, some authors designate that the maximum level for V IF is 5.

Above all, the results of table 2. 13 show that in both chemotherapeutic agents, each
of the covariates manifests the V IF < 1.32, indicating that there is no multicollinearity
problem in the covariates.

In the next page, the maximum likelihood method, the estimates for the parameters of
the EEG and Cox-Splines2 models obtained with 5% of signi�cance, are shown. Note that
parameters κ1 and κ2 will be contained unconditionally in the model, because through
the spline function, are parameters for node.

In the sequence, the information criterions Akaike (AIC), Akaike corrected (AICC)
and the Schwarz Bayesian (BIC) are show.
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Table 2. 14 : Results estimations for the models.
Model θ θ̂ std. err. IC95%(θ) test-stat p-value

Cox-Splines2

κ1 -3.3954 1.1092 (-5.4695; -1.1213) - -
κ2 1.0148 0.0964 (0.8258 ; 1.2038) - -
β1 -0.0252 0.1151 (-0.2509; 0.2005) 0.0500 0.8267
β2 -0.0252 0.0090 (-0.0429; -0.0075) 7.7900 0.0052
β3 -0.0023 0.0200 (-0.0415; 0.0368) 0.0100 0.9071
β4 -0.0012 0.0125 (-0.0258; 0.0233) 0.0100 0.9211
β5 0.3345 0.3101 (-0.2733; 0.9422) 1.1600 0.2808

EEG

γ 0.7359 0.3375 ( 0.0627; 1.4091) 2.1800 0.0326
β0 3.2190 1.0556 ( 1.1132; 5.3248) 3.0500 0.0032
β1 0.0270 0.1257 (-0.2238; 0.2779) 0.2200 0.8303
β2 0.0270 0.0095 ( 0.0080; 0.0461) 2.8300 0.0060
β3 0.0017 0.0207 (-0.0396; 0.0430) 0.0800 0.9337
β4 0.0023 0.0134 (-0.0243; 0.0290) 0.1800 0.8610
β5 -0.3563 0.3298 (-1.0142; 0.3016) -1.0800 0.2837

The calculated criteria and presented in the table 2. 15 allow us to observe that,
although the di�erences are not signi�cant between the two models, the EEG model
presents the values of the minor information criteria and therefore the EEG model is
indicated as the preferred model for modeling covariate lifetime data.

Table 2. 15 : Information criterions.
Model -2Log AIC AICC BIC

Cox-Splines2 734.9 750.9 753.2 768.6
EEG 734.4 748.4 750.2 764.0

Then, through the estimated parameters for the EEG model, presented in table 2. 14
, we can also describe the algebraic expression for the nonlinear function adjusted λβ as

λβ̂(x) = exp[−3.219− 0.027(x1 + x2)− 0.001x3 − 0.0023x4 + 0.3563x5] (2.86)

and is de�ned λβ̂, we get

Table 2. 16 : Statistics for Distribution λβ̂.
Minimum Maximum Median Quartile Range n
0.0027 0.0258 0.0067 0.0062 69

the frequency distribution for λβ̂ based in the sample data for the Xj covariates, through
the values xi,j, for i = 1, . . . , 69 and j = 1, . . . , 5.

The following image shows the geometric representation for the previous frequency
distribution. 13/11/2019 Results: Summary Statistics

https://odamid.oda.sas.com/SASStudio/sasexec/submissions/f6e20701-2312-4fee-9e56-c40e95180330/results 1/1

Figure 2. 14 : Frequency distribution for λβ̂ by the sample of covariates.
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In this condition, the comparison turns to prediction errors measures, such as the
mean bias absolute (MBA) and mean square error (MSE) with presented in 2.57 and
2.58, respectivaly, but de�ned here for the two models as the di�erences weighted by
number of terms between the estimated for respective �tted survival function value and
or corresponding value empirical obtained through of the Kaplan-Mayer. The results are
shown in the following table.

Table 2. 17 : Precision.
Model MBA MSE

Cox-Splines2 0.0002 0.0138
EEG 0.0155 0.0985

From the results of the previous table, see that while the values obtained are both low
because the calculation values are decimal numbers less than 1, the Cox-Splines2 model
actually prevails over the EEG in this numeric comparison.

However, in the survival analysis, the interest is also in the adjustment of the hazard
rate function and since Cox's proportional hazard rate model directly models the hazard
rate function, it is essential still to verify whether the shape of the hazard rate function
is appropriate to the form suggested by the empirical data, as shown in the �gure 2. 13 .

The graphical comparison for �tting the Cox-Splines2 model with the empirical model
is shown in �gure 2. 15 below and outlines how well this model �t. The describe how it
�ts the empirical survival model and the its shape of hazard rate function.

15/11/2019 Results: CODEEG08_LUNGAPLICA2.sas
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15/11/2019 Results: CODEEG05_LUNGAPLICA1.sas
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The ICPHREG Procedure

quim=1

The ICPHREG Procedure

quim=2

Figure 2. 15 : The adjusted survival and hazard rate functions by Cox-Splines2.

As a consequence of this distribution, we are able, in addition to plotting the hazard
rate surface for the EEG model in the presence of covariates, to obtain the optimal curve
to represent the hazard rate function geometrically for the data of patients with advanced
lung cancer under the in�uence of standard chemotherapeutic agent.

The following image shows the hazard rate surface according for the λβ̂ frequency by
the sample of covariates and the optimal curve obtained with the median displayed in
table 2. 16 .

Without di�culty, it turns out that the estimated risk curve captures the true form of
the corresponding risk function shown in �gure 2. 13 , and the conclusion that the EEG
model is preferable in this case is immediate, although the great di�erence between the
survival curves presented by the table 2. 17 .

Now, analogous to what has been developed so far for the standard chemotherapeutic
agent, what follows are the adjustments to the hazard rate functions of the EEG and
Weibull model for the patients data treated with the test chemotherapeutic agent.

As shown in table 2. 12 , these data do not manifest proportional hazards rates, so
in this �t considered a parametric model to contrast the �t of the EEG model.

However, in this case the estimates for the parameters of the two models were obtained
by the MCMC method. Table 2. 18 following shows the estimates obtained, the standard
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Figure 2. 16 : The hazard rate surface and the hazard rate optima curve adjusted.

errors, and the HPD interval with credibility 95% for each of the model estimates in the
presence of covariates.

In the same table, with a signi�cance level of 5%, the stationarity test results for the
MCMC process convergence performed for this problem are presented for each parameter
in table 2. 18 . The data in the table show that convergence was achieved for each
parameter under chain markovian of 50000 iterations, 10000 burning and thinning for 4
unit.

Table 2. 18 : Results for MCMC process with 5% credibility for models.
Cases Results estimations for the models Results from convergence test

Model θ θ̂ std. err. IC95%(θ) test-stat p-value test outcome

EEG

γ 0.8931 0.3923 (0.2406; 1.6822) 0.0495 0.8796 passed
β0 2.1204 0.6876 (0.7478; 3.4154) 0.0783 0.7018 passed
β1 -0.2251 0.1067 (-0.4289; -0.0081) 0.2983 0.1366 passed
β2 0.0371 0.0061 (0.0250; 0.0490) 0.3340 0.1087 passed
β3 -0.0055 0.0107 (-0.0256; 0.0161) 0.0919 0.6259 passed
β4 0.0125 0.0105 (-0.0074; 0.0341) 0.0903 0.6348 passed
β5 0.5890 0.3260 (-0.0321; 1.2335) 0.3626 0.0909 passed

Weibull

µ 1.0364 0.1028 (0.8438; 1.2459) 0.2937 0.1408 passed
β0 2.2451 0.6820 (0.8910; 3.5413) 0.1147 0.5174 passed
β1 -0.2323 0.1010 (-0.4432; -0.0476) 0.0578 0.8277 passed
β2 0.0366 0.0058 (0.0254; 0.0480) 0.0187 0.9981 passed
β3 -0.0060 0.0104 (-0.0257; 0.0149) 0.2284 0.2186 passed
β4 0.0113 0.0101 (-0.00915; 0.0305) 0.0945 0.6123 passed
β5 0.5868 0.3172 (-0.0280; 1.2059) 0.1372 0.4310 passed

Based on these estimates, replacing them in the theoretical model, we then have the
estimated models EEG and Weibull adjusted for the test chemotherapeutic agent data.

The table 2. 19 in the sequence shows the results for the information criteria for the
bayesian models adjust resulting.

Table 2. 19 : Measures for �t.
Model pD D̄(θ) D(θ̂) DIC
EEG 5.66 711.30 705.64 716.96

Weibull 6.40 711.04 704.64 717.44

In the subsection 2.2.4 (page 37) a brief discussion is made about these measures, and
analogously, it is also noted here that no relevant information about the two adjusted
models is acquired. Although estimates indicate that an adjustment for the EEG model
would be more appropriate because it manifests the smallest pD and DIC, the di�erence
of one unit in these measures does not allow a�rm, statistically, to state which is the
most appropriate �t for the data between the two models contrasted.
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As we saw in the previous case of this application, it is possible to obtain estimates
that allow an excellent adjustment to the survival model but that diverge from the true
risk model. Therefore, due to the tie of the DICs for the adjustment of the EEG and
Weibull models, we will consider comparing the shape of the hazard rate function for
these models through their respective risk surface and the risk curve under the optimal
value for the source covariate of variation.

In this case, denoting by 〈x,β1〉 and 〈x,β2〉 the covariate variation source of the EEG
and Weibull model, respectively, we have to the exponentialized estimates for their values
are obtained through the following functions

〈x, β̂1〉 = 2.1204− 0.2251x1 + 0.0371x2 − 0.0055x3 + 0.0125x4 + 0.5890x5 , (2.87)

〈x, β̂2〉 = 2.2451− 0.2323x1 + 0.0366x2 − 0.0060x3 + 0.0113x4 + 0.5868x5 , (2.88)

whose exponentials through λβ̂1
(x) = e−〈x,β̂1〉 and λβ̂2

(x) = e−〈x,β̂2〉, respectivaly, provide
the distribution

Table 2. 20 : Statistics for Distribution λβ̂.
Model Minimum Maximum Median Quartile Range n
EEG 0.0016 0.0621 0.0091 0.0140 69

Weibull 0.0016 0.0605 0.0091 0.0139 69

In the sequence, the �gure shows the frequency distribution for λβ̂1
and λβ̂2

adjusted,
in the left with asymmetry by the EEG model and on the right forming an absolutely
descending curve by the Weibull model, both by the covariate sample.16/11/2019 Results: Summary Statistics

https://odamid.oda.sas.com/SASStudio/sasexec/submissions/0eb8de20-8745-494f-b5ef-c3e378928bd8/results 1/1

16/11/2019 Results: Summary Statistics

https://odamid.oda.sas.com/SASStudio/sasexec/submissions/0c6f8ba2-5215-49bf-911f-c19339500a3c/results 1/1

Figure 2. 17 : Frequency distribution for λβ̂1
and λβ̂2

by the sample of covariates.

Then, based on this distributions, the surface and optimal hazard rate curve for the
�tted models can be evaluated geometrically witch follows and we have so ensure that
the adjustment made by the estimated model EEG is the also most appropriate in these
contrast for patient data on the treatment of the test chemotherapeutic agent.

Therefore, on the data from study presented by Prentice [48], the adjustment devel-
oped under the EEG model is more e�cient than the cox-spline2 semiparametric model
for the standard chemotherapeutic agent and also for the Weibull parametric model for
the test chemotherapeutic agent.

Follow, to apply this adjustment, it is considered a scenario in which patients under
these treatments are at time domain hazard rate with limit set at 228 and 242, respec-
tively in the case of treatment chemotherapeutic under standard and testing agents. The
empirical hazard rate rates by the discrete kernel of Epanechnikov are shown in the fol-
lowing image under the range of 95% con�dence.

The image in next page shows the previously estimated models in the your respective
cases. They are properly adjusted in this time domain as shown in the red curves.
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21/11/2019 Results: Curvas de Risco.sas

192.168.139.128/SASStudio/38/sasexec/submissions/080a1f84-ad58-4b54-9bc7-0eb9e4128f85/results 1/1

20/11/2019 Results: Curvas de Risco.sas
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Figure 2. 18 : The hazard rate surface and the hazard rate optima curve adjusted.

In the sequence, in their respective scenarios the graphs show that, in the case of the
standard agent the risk curve remains su�cient over the risk rate data, as well as in the
case of the test agent an oscillation around the median curve can be considered in search
of the ideal curve.

21/11/2019 Results: Program 1

192.168.139.128/SASStudio/38/sasexec/submissions/00a816af-383a-47b7-bea4-9d74f838031a/results 1/1

21/11/2019 Results: Program 1

192.168.139.128/SASStudio/38/sasexec/submissions/dfca18c2-02e1-471b-83f4-eb7e86896ab8/results 1/1

Figure 2. 19 : Adjustment for the maximum time ten patients remain in hazard rate.

Since under two sources of variation the risk model generates a risk surface, it is
reasonable to consider taking an oscillation around the median as long as this oscillation
remains within the limits of the sample distribution, which is not possible when Only one
source of variation is modeled.



Chapter

3
The Generalized Exponential

Geometric Extreme Distribution

3.1 The Generalization of the EG Distribution

Proposed by Gupta and Kundu [20] a model called Exponential Exponential (EE) was
obtained as

ψ(x|α, λ) = αλe−λx(1− e−λx)α−1 , (3.1)

where α, λ, x > 0, and as developed for the composite models EG and EEG, considering
the distribution for T = min({Xi}), 1 < i < n, with X ∼ EE(α, λ) e N ∼ Geo(θ), we
have pdf

δmin(t|n, α, λ) = nαλe−λt(1− e−λt)α−1[1− (1− e−λt)α]n−1 , (3.2)

whence it results, p(n|θ) = θ(1− θ)n−1, the pdf

ϕ(t|α, λ, θ) =
αλθe−λt(1− e−λt)α−1

[θ + (1− θ)(1− e−λt)α]2
. (3.3)

The function 3.3 is the pdf of the random variable X with distribution E2G, with
α, λ, x > 0 and 0 < θ < 1, and was proposed by Louzada, Marchi and Roman [35].

Also taking the distribution to T = max({Xi}), 1 < i < n, still with X ∼ EE(α, λ) e
N ∼ Geo(θ), pdf is obtained

δmax(t|n, α, λ) = nαλe−λt(1− e−λt)α−1(1− e−λt)α(n−1) , (3.4)

with which, as a composition model, one obtains

φ(t|α, λ, θ) =
αλθe−λt(1− e−λt)α−1

[1− (1− θ)(1− e−λt)α]2
, (3.5)

the pdf of the CE2G model proposed by Louzada, Marchi and Carpenter [34].
Analogously to the process of obtaining EEG models, assuming reparametrization

β = θ−1, from fdp (3.3) e (3.5), both with α, λ, x > 0 and 0 < θ < 1, in particular there
are 0 < θ < 1⇒ β > 1 whereby we obtain the GE2 model, whose pdf is

f(t|α, λ, β) =
αλβe−λt(1− e−λt)α−1

[β + (1− β)(1− e−λt)α]2
, (3.6)

60
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as proposed in Ristic and Kundu [54] and Ristic and Kundu [55].
Note that replacing θ = β−1, has in (3.5) the φ(t|α, λ, θ) = φ(t|α, λ, β−1), whereby

through some algebraic manipulations results that

αλβ−1e−λt(1− e−λt)α−1

[1− (1− β−1)(1− e−λt)α]2
=

αλβe−λt(1− e−λt)α−1

[β + (1− β)(1− e−λt)α]2
, (3.7)

that is, it turns out that φ(t|α, λ, θ) = ϕ(t|α, λ, β) under the parameter β > 1, the pdf
(3.6) of the GE2 model as uni�cation of the both distribution, (3.5) and (3.4).

Consequently, by reparametrization, the pdf of the CE2G distribution is the same as
the E2G distribution. The main, and hitherto unnoticed, joint contribution of Louzada,
Marchi e Roman [35] and Louzada, Marchi and Carpenter [34] was the obtaining of
distributions whose pdf coincide through the reparametrization β = θ−1.

Therefore, unifying both distribution, (3.3) and (3.7), and noting that both reduce
the Exponential distribution when α = β = 1, the random variable T is said to have an
Exponential Geometric Extreme Distribution (GE2) if its probability density function is
given by

f(t|α, λ, β) =
αλβe−λt(1− e−λt)α−1

[β + (1− β)(1− e−λt)α]2
, (3.8)

were α, λ, β > 0, which contributes to the natural interpretation of the GE2 distribution.
If α = 1 and β 6= 1, the pdf (3.8) reduces to EEG distribution Adamidis, Dimi-

trakopoulou and Loukas [2], it is important to point out that the credit and the main
motivation for introducing this distribution goes to the Louzada, Roman and Cancho [37]
and Louzada, Marchi and Roman [35]. Moreover, following those authors we obtain a
signi�cant account of mathematical properties of the GE2 distribution such as moments,
rth moment of the ith order statistic and some entropy measures.

Beyond this, if α = β = 1, the pdf (3.8) reduces to Exponential distribution. The
distribution function for the GE2(α, λ, β) distribution is given by,

F (x|α, λ, β) =
(1− e−λx)α

β + (1− β)(1− e−λx)α
. (3.9)

The survival, hazard functions of the GE2(α, λ, β) distribution is given by

S(t|α, λ, β) =
β − β(1− e−λt)α

β + (1− β)(1− e−λt)α
, (3.10)

and

h(t|α, λ, β) =
αλe−λt(1− e−λt)α−1

β + [1− 2β − (1− β)(1− e−λt)α](1− e−λt)α
. (3.11)

An important characteristic from the hazard function for the GE2 model is your forms,
that take the form constantly, decreasing, crescent, bathtub and unimodal. In the next
page, the �gure 1 present di�erent forms for the density and hazard functions for the EEG
distribution considering di�erent values of α, λ e β in the �rst column charts and with λ
�xed to di�erent values of α and β in the second column charts.

For all λ > 0 whith α = β = 1, result that

h(t|1, λ, 1) = λ . (3.12)

By the �gure 3. 1 in the sequence, note that for values the α ∈ ]0, 1[ and β ∈ ]1,∞[,
the risk function takes the form of the bathtub, and is such that when the parameters α,
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λ and β increase, the curve valley (the minimum point h(t|α, λ, β)) decreases and the risk
function tends to form increasing to any λ with α ≥ 1.

When α ∈ ]1,∞[ and β ∈ ]0, 1[, the risk function takes the unimodal form and the
measure that the parameters α, λ e β are decrease, the curve crest (the maximum point
for h(t|α, λ, β) function) are increase, from which the risk function tends to decrease,
reaching such a shape for any λ value with α < 1.
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Figure 3. 1 : In panel, the forms for hazard functions of the GE2 distribution.

Note that as the λ parameter increases the maximum value of the risk rate in the time
interval it also increases, that the highlights a scalar behavior in the risk function, that
is, λ represents a scale parameter in the model. Similarly, the measure that α and β vary,
the risk function changes shape to a �xed λ highlighting a shape characteristic for these
parameters.



The Generalization of the EG Distribution 63

In this condition, as in cases where λ ∈ ]0, 1[ we have that λ acts as a time rate in
the GE2 model, for this, it is always necessary to check whether λ is a rate parameter or
scale in the distribution.

Moreover, the �gure 3. 1 also it shows that when t −→ ∞, h(t|α, λ, β) −→ λ, this
is, these result re�ects that the risk function of the GE2 model tends to lose memory
or not wear out as time goes by. In the following section will be formally presented the
demonstration of this result in the form of a theorem.

For research in reliability analysis, for example, where almost always in durability
studies it is intended to obtain small quantiles of the time that report premature failures,
under the conditions described above, the GE2 distribution risk function emerges as a
great alternative when you seek information that a random phenomenon, which we con-
sider to have survived for the while t, won't have your probability of surviving altered.

As in the risk model h(t|α, λ, β), when T ∼ GE2(α, λ, β) and from time tn, the prob-
ability of the phenomenon under study to fail does not depend on how long it has been
running and there is no aging or greater likelihood of failure in this period of the operation
then the most relevant information about premature failure risk is contained in the time
range (0, tn, the ideal failure times to be modeled for GE2.

The quantile function of the GE2 distribution, for q ∈ ]0, 1[, is given by

Q(q|α, λ, β) = −1

λ
ln

{
1−

[
βq

1− q(1− β)

]1/α}
, (3.13)

were α, λ, β ∈ R∗+.
See that, the qth quantile of the CE2G distribution is given by

QCE2G(q|α, λ, θ) = −1

λ
ln

{
1−

[
q

q + (1− q)θ

]1/α}
. (3.14)

Under parametrization θ ∈ ]0, 1[, but using a change in the parametrization θ = β−1

in (3.14) were β > 1, and under parametrization β > 1 the pth quantile of the QCE2G can
be rewritten as

QCE2G(q|α, λ, β−1) = −1

λ
ln

[
1−

(
βq

1− q(1− β)

)1/α
]

= Q(q|α, λ, β) , (3.15)

were α, λ ∈ R∗+ and β ∈ ]1,∞[. When θ ∈ ]0, 1[, see occourQ(q|α, λ, β) = QCE2G(q|α, λ, β).
The GE2 distribution arises naturally in competing risks scenarios, in which the ran-

dom variable has distribution of T = min({X1, . . . , XM}) were M is a random variable
with Geometrical distribution and Xi are assumed to be independent and identically dis-
tributed according to a EE distribution.

Still in the competing risks scenarios, other motivation for considering the GE2 dis-
tribution lies on the fact the parameter has a biological interpretation.

According Ristic and Kundu [55], since the GE2 is a probability distribution generated
by composing a random variable M with geometric distribution with a random variable
X distributed according to an EE distribution, then GE2 represents the minimum time of
X1, . . . , XM when 0 < β < 1, the random time of X1, . . . , XM for β = 1 and the maximum
time of X1, . . . , XM when β > 1, this is, if T ∼ GE2(α, λ, β), for all α, λ, β ∈ R∗+

T =


min{X1, . . . , XM},when 0 < β < 1

random{X1, . . . , XM}, when β = 1

max{X1, . . . , XM}, when β > 1

. (3.16)
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3.1.1 General Properties

Many of the interesting characteristics and features of a distribution can be studied
through its moments, such as mean and variance. Expressions for expectation value,
variance and the r-th moment on the origin of X can be obtained using the well-known
formula

E(Xr|α, λ, β) =

∫ ∞
0

αλβxre−λx(1− e−λx)α−1

[β + (1− β)(1− e−λx)α]2
dx . (3.17)

The rth moment provides the most important properties of a probabilistic model, so
much so that the characterization of probability distributions, where possible, is indis-
pensable and de�ned by expression de E(Xr), that is commonly approach in terms of
f.d.p. as

E(Xr|α, λ, β) =

∫ ∞
0

xrf(x)dx . (3.18)

Through this expression, in many cases, obtaining this result is not feasible due to the
lack of an elementary primitive for the integrant xrf(x), mainly for obtaining high order
moments, such as for obtaining asymmetry and kurtosis of model. In the best case, the
desired expression is obtained after costly mathematical devices.

However, in cases of models with non-negative random variables a device that facil-
itates obtaining expressions of order moments r ≥ 1 is derived in terms of the survival
function in parallel with the application of Fubini's theorem, the alternative rth moment
given by

E(Xr|α, λ, β) = r

∫ ∞
0

xr−1S(x)dx . (3.19)

It is a highly advantageous method when it comes, for example, to moments of a
transformed random variable, where it is considerably easier to integrate xr−1[1 − F (x)]
instead of xrf(x) (see, for exemple, Hong [28] or Chakraborti, Jardim and Epprecht [7]).

A general expression for rth ordinary moment µ′r = E(Xr) with density function given
by distribution X ∼ GE2(α, λ, β) variable, can be obtained analytically the as follows.

At �rst, let's also consider that, when Y ∼ E2G(α, λ, θ) according to Louzada, Marchi
and Roman [35], when α > 0, λ > 0 and 0 < β < 1 results that

E(Y r|α, λ, θ) =
θr!

λr

∞∑
k,l,m,n=0

(−1)k+l
(1− θ)n(n− k + 2)k(αk +m− l + 1)l

k!(l + 1)rl!
. (3.20)

In Equation (3.20), see that (n−k+2)k and (αk+m− l+1)l are the decreasing factor
power polynomials also known as "Pochhammer symbols" proposed for Pochhammer [47]
(see, for exemple, Olver [46] or Qi, Shi and Liu [49]), and as k, l,m, n ∈ N with α ∈ R,
can be rewritten in terms of fractions as

(n− k + 2)k =
(n− k + 2)!

(n− 2k + 2)!
=


k−1∏
i=1

n− i+ 1, if k ≥ 1

1, if k = 0

, (3.21)

and

(αk +m− l + 1)l =
Γ(αk +m− l + 2)

Γ(αk +m− 2l + 2)
=


l−1∏
j=1

αk +m− j + 1, if l ≥ 1

1, if l = 0

. (3.22)
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Then, when X ∼ GE2(α, λ, β) with α, λ > 0 and 0 < β < 1, X = Y ∼ GE2(α, λ, β) =
GE2(α, λ, θ), this is, for X = Y ∼ E2G(α, λ, β) (model proposed by [35]), with 0 < β =
θ < 1 and we can ensure the following lemma

Lemma 2 For the random variable X with GE2(α, λ, β) distribution, when α, λ > 0,
with α 6= 1 and 0 < β < 1, we have that r-th moment function not exists, this is

E(Xr|α, λ, β < 1) = r

∫ ∞
0

xr−1S(x|α, λ, β < 1)dx −→∞ . (3.23)

Proof: It is immediate that, when the particular case α = 1 occurs, GE2(α, λ, β) =
EEG(λ, β) and the demonstration considers two cases about the expression (3.20): when
n− k + 2 e αk +m− l + 1 are positive or negative in (3.21) and (3.22).

When they are positive, their equality in (3.21) and (3.22) is satis�ed, but when they
are negative (n− k + 2)k e (αk +m− l + 1)l are reduced to

(n− k + 2)k = (−1)k
(−n+ k − 2)!

(−n+ 2k − 2)!
, (3.24)

and

(αk +m− l + 1)l = (−1)l
Γ(−αk −m+ l − 2)

Γ(−αk −m+ 2l − 2)
. (3.25)

And more, see that (i)
(n− k + 2)!

(n− 2k + 2)!
≥ 1 and (ii)

Γ(αk +m− l + 2)

Γ(αk +m− 2l + 2)
≥ 1 (according

to the exposed on page 28, paragraph 7), and assuming (3.20) rewrite as

E(Xr|α, λ, β) =
βr!

λr

∞∑
k,l,m,n=0

(−1)k+l(1− β)n(n− k + 2)!Γ(αk +m− l + 2)

k!(l + 1)rl!(n− 2k + 2)!Γ(αk +m− 2l + 2)
, (3.26)

taking a general term Ak,l,m,n such that

Ak,l,m,n =
(1− β)n(n− k + 2)!Γ(αk +m− l + 2)

k!(l + 1)rl!(n− 2k + 2)!Γ(αk +m− 2l + 2)
, (3.27)

and with the aid of a term Bk,l,m,n = (−1)k+lAk,l,m,n, such that


Ak,l,m,n =

(1− β)n(n− k + 2)!Γ(αk +m− l + 2)

k!(l + 1)rl!(n− 2k + 2)!Γ(αk +m− 2l + 2)
, if (3.21), (3.22)

Bk,l,m,n =
(−1)k+l(1− β)n(−n+ k − 2)!Γ(−αk −m+ l − 2)

k!(l + 1)rl!(−n+ 2k − 2)!Γ(−αk −m+ 2l − 2)
, if (3.24), (3.25)

,

we can assume (3.20) rewrite as

E(Xr|α, λ, β) =
βr!

λr

∞∑
k,l,m,n=0

(−1)k+l
(1− β)n(n− k + 2)!Γ(αk +m− l + 2)

k!(l + 1)rl!(n− 2k + 2)!Γ(αk +m− 2l + 2)
=

=


βr!

λr

∞∑
k,l,m,n=0

(−1)k+lAk,l,m,n, if n− k + 2, αk +m− l + 1 > 0

βr!

λr

∞∑
k,l,m,n=0

(−1)k+lBk,l,m,n, if n− k + 2, αk +m− l + 1 < 0

,
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so it turns out that

E(Xr|α, λ, β) =


βr!

λr

∞∑
k,l,m,n=0

(−1)k+lAk,l,m,n, if n− k + 2, αk +m− l + 1 > 0

βr!

λr

∞∑
k,l,m,n=0

Ak,l,m,n, if n− k + 2, αk +m− l + 1 < 0

.

So, by i and ii, (3.27) it's such that

Ak,l,m,n =

[
(1− β)n

k!(l + 1)rl!

] [
(n− k + 2)!

(n− 2k + 2)!

] [
Γ(αk +m− l + 2)

Γ(αk +m− 2l + 2)

]
=

= a(k,l,n)a(n,k)a(k,m,l) ≥ a(k,l,n)(1)(1) = a(k,l)an = A∗k,l,n .

(3.28)

this is, when n−k+2 > 0 and αk+m−l+1 > 0, it turns out that Ak,l,m,n ≥ A∗k,l,n, but when

n−k+2 < 0 and αk+m−l+1 < 0, as
∣∣∣(−n+ k − 2)l

∣∣∣ ≥ 1 and
∣∣∣(−αk −m+ l − 2)l

∣∣∣ ≥ 1,

it turns out that Ak,l,m,n ≥ (−1)k+lA∗k,l,n, where

A∗k,l,n = a(k,l)an =
1

k!(l + 1)rl!
(1− β)n =

(1− β)n

k!(l + 1)rl!
. (3.29)

Then, in the case that n− k + 2 > 0 and αk +m− l + 1 > 0

E(Xr|α, λ, β) =
βr!

λr

∞∑
k,l,m,n=0

(−1)k+lAk,l,m,n ≥
βr!

λr

∞∑
k,l,m,n=0

(−1)k+lA∗k,l,m,n , (3.30)

where
∞∑

k,l,m,n=0

(−1)k+lA∗k,l,m,n =
∞∑
k=0

∞∑
l=0

(−1)k+l

k!(l + 1)rl!

[
∞∑
m=0

∞∑
n=0

(1− β)n

]
, (3.31)

and, in the case that n− k + 2 < 0 and αk +m− l + 1 < 0, as (−1)2(k+l) = 1, occurs

E(Xr|α, λ, β) =
βr!

λr

∞∑
k,l,m,n=0

Ak,l,m,n ≥
βr!

λr

∞∑
k,l,m,n=0

A∗k,l,m,n =
βr!

λr

∞∑
k,l,m,n=0

(1− β)n

k!(l + 1)rl!
,

where

∞∑
k,l,m,n=0

(1− β)n

k!(l + 1)rl!
=
∞∑
k=0

∞∑
l=0

1

k!(l + 1)rl!

[
∞∑
m=0

∞∑
n=0

(1− β)n

]
. (3.32)

In this condition, as 0 < β < 1, in the double sum indexed in m and n, at follows that

∞∑
m=0

∞∑
n=0

(1− β)n = lim
m−→∞

m∑
i=0

1

β
=

1

β

(
lim

m−→∞

m∑
i=0

(1)

)
=∞ , (3.33)

this is, with the double sum indexed at m and n diverging, the double sum indexed at k
and l also diverges, since it is the in�nite sum of the in�nite sum of in�nite terms of the
double sum indexed at m e n. Therefore, in (3.26) it is concluded

E(Xr|α, λ, β) −→∞ , (3.34)

which proof the lemma.
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Lemma 3 For the random variable X with GE2(α, λ, β) distribution, when α, λ > 0 and
β = 1, we have that r-th moment function exists, is given for

E(Xr|α, λ, β = 1) =
r!

λr

∞∑
n=1

(−1)n−1
(α)n

n!nr
, (3.35)

and such that
r!

λr

∞∑
n=1

(−1)n−1
(α)n

n!nr
≤ r!

λr
er , (3.36)

where e is the Euler's number.

Proof: In Equation (3.17), when β = 1, see that

E(Xr|α, λ, β = 1) =

∫ ∞
0

αλxre−λx(1− e−λx)α−1dx , (3.37)

where

(1− e−λx)α−1 = [1 + (−e−λx)]α−1 =
∞∑
k=0

(
α− 1

k

)
(−e−λx)k =

=
∞∑
k=0

(−1)k
(α− 1)k

k!
e−kλx ,

(3.38)

a converging series, since if x > 0 then 0 < e−kλx < 1, that replaced in (3.37) provides

E(Xr|α, λ, β = 1) = αλ
∞∑
k=0

(−1)k
(α− 1)k

k!

∫ ∞
0

x(r+1)−1e−(k+1)λxdx . (3.39)

Moreover, if α ∈ R∗ result, similarly to (3.22), that (α−1)k =
Γ(α)

Γ(α− k)
and if λ ∈ R∗,

for all k ∈ N, result that (k + 1)λ ∈ R∗ by which considering the probability function

of the Gamma distribution, we have
∫ ∞
0

x(r+1)−1e−(k+1)λxdx =
Γ(r + 1)

[(k + 1)λ]r+1
. Then, in

(3.39) result that

E(Xr|α, λ, β = 1) = αλ
∞∑
k=0

(−1)k
Γ(α)Γ(r + 1)

k!Γ(α− k)[(k + 1)λ]r+1
=

=
r!

λr

∞∑
n=1

(−1)n−1
αΓ(α)

n!nrΓ(α− n+ 1)
=
r!

λr

∞∑
n=1

(−1)n−1an .

(3.40)

Now, see that αΓ(α) = Γ(α+1),
1

n!nr
≤ rn

n!
and Γ(α−n+1) = (α)n+1Γ(α+1), where

(α)n+1 ≥ 1, taking an =
Γ(α + 1)

n!nrΓ(α− n+ 1)
, we have

an =
Γ(α + 1)

n!nrΓ(α− n+ 1)
=

rnΓ(α + 1)

n!(α)n+1Γ(α + 1)
=

rn

n!(α)n+1
≤ rn

n!
, (3.41)

and if for all n we have (−1)n−1
1

n!nrΓ(α− n+ 1)
≤ 1

n!nrΓ(α− n+ 1)
, applaying (3.41)

in (3.40), result

E(Xr|α, λ, β = 1) =
r!

λr

∞∑
n=1

(−1)n−1
Γ(α + 1)

n!nrΓ(α− n+ 1)
≤ r!

λr

∞∑
n=1

rn

n!
=
r!

λr
er ,
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this is, as
Γ(α + 1)

Γ(α− n+ 1)
= (α)n, the proof is completed.

Moreover, let's consider the polylogarithm with order 1 for a variable y given by

Li1(y) = − ln(1− y) =
∞∑
n=1

yn

n
<

∞∑
n=1

yn =
∞∑
n=1

yn

n0
=

y

1− y
= Li0(y) , (3.42)

when 0 < y < 1 so we can ensure the following lemma.

Lemma 4 For the random variable X with GE2(α, λ, β) distribution, when α, λ > 0 and
β > 1, we have that r-th moment function exists and is such that

E(Xr|α, λ, β) ≤ r!

λr
er . (3.43)

Proof: From Equation (3.17), taking β + (1− β)(1− e−λx)α = u we have rewrite her

E(Xr|α, λ, β) =
β

λr(1− β)

∫ 1

β

1

u2

{
− ln

[
1−

(
u− β
1− β

)1/α
]}r

du , (3.44)

and, taking y =

(
u− β
1− β

)1/α

results

E(Xr|α, λ, β) =
αβ

λr

∫ 1

0

yα−1[− ln(1− y)]r

[β + (1− β)yα]2
dy , (3.45)

where 0 < y < 1.
From equation (3.42) and by Maclaurin series, we have that

− ln(1− y) <
y

1− y
<

1

1− y
. (3.46)

Then, by inequality (3.46), assuming r ≥ 0, the integrate in (3.45) is such that∫ 1

0

yα−1[−log(1− y)]r

[β + (1− β)yα]2
dy <

∫ 1

0

yα−1(1− y)−r

[β + (1− β)yα]2
dy , (3.47)

where in the denominator of the integrand in the second integral, taking

[β + (1− β)yα]2 = β2[1− (1− β−1)yα]2 ,

as β, y > 0 such that 0 < (1− β−1)yα < 1, results in the geométric series

1

[1− (1− β−1)yα]2
=
∞∑
l=1

l[(1− β−1)yα]l−1 , (3.48)

and in the binomial series

(1− y)−r = [1 + (−y)](−r) =
∞∑
k=0

(
−r
k

)
(−y)k =

∞∑
k=0

[(−1)r]k

k!
[(−1)y]k =

∞∑
k=0

(r)k

k!
yk,
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both converging and such that in the secund member of the inequality (3.47), we obtain∫ 1

0

yα−1(1− y)−r

[β + (1− β)yα]2
dy =

1

β2

∫ 1

0

yα−1

[
∞∑
k=0

(r)k

k!
yk

][
∞∑
l=1

l[(1− β−1)yα]l−1

]
dy =

=
1

β2

[
∞∑
k=0

∞∑
l=1

(r)k

k!
l(1− β−1)l−1

]∫ 1

0

yαl+k−1dy =

=
1

β2

∞∑
k=0

∞∑
l=1

(r)kl(1− β−1)l−1

k!(αl + k)
.

See that

1

β2

∞∑
k=0

∞∑
l=1

(r)kl(1− β−1)l−1

k!(αl + k)
<

1

β2

∞∑
k=0

(r)k

k!

∞∑
l=1

l(1− β−1)l−1

α
, (3.49)

and if for all β ≥ 0 result 0 < 1 − β−1 < 1 and if r ∈ N, according to (3.21), we

have (r)k =
r!

(r − k)!
≤ r!rk, replacing (3.49) in the inequation (3.47), it is concluded by

equation (3.45) that

E(Xr|α, λ, β) ≤ αβ

λr

[
1

αβ2

∞∑
k=0

(r)k

k!

∞∑
l=1

l(1− β−1)l−1
]

=
r!

βλr

∞∑
k=0

rk

k!
=
r!

λr
er ,

which proof the lemma.

Note that, when r = 0, in the lemma (4) it follows that

µ′0 = E(X0|α, λ, β) =
0!

λ0
e0 =

∫ ∞
0

x0f(x|α, λ, β)dx =

∫ ∞
0

f(x|α, λ, β)dx = 1 ,

this is, the function of the r-th moment coincides with the probability density function
when r = 0.

Similarly, when r = 1 and r = 2 we have

µ′1 ≤
e

λ
, µ′2 ≤

2e2

λ2
and V ar(X|α, λ, β) ≤ e2

λ2
,

which will be proved in the following proportion.
As the result of previous lemma (4) that guarantees that E(Xr|α, λ, β) is limited, the

general expression of the r-th moment of the random variable X ∼ GE2(α, λ, β) is given
by

Proposition 1 For the random variable X with GE2(α, λ, β) distribution, we have that
r-th moment function is given by

µ′r =
r!

λr

∞∑
k=0

∞∑
l=0

∞∑
m=0

(−1)m
(1− β−1)l[(αl + k)m − (αl + α + k)m]

(m+ 1)m!
. (3.50)

Proof: From Equation (3.18), taking in the results (3.10) the variable change y = 1−e−λx,
we have in E(Xr|α, λ, β) = µ′r that

r

∫ ∞
0

xr−1
[1− (1− e−λx)α]

1− (1− β−1)(1− e−λx)α
dx =

r

λr

∫ 1

0

[−ln(1− y)]r−1(1− yα)

(1− y)[1− (1− β−1)yα]
dy , (3.51)
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is this, rewritten with

µ′r =
r

λr

∫ 1

0

[−ln(1− y)]r−1(1− yα)

(
1

1− y

)[
1

1− (1− β−1)yα

]
dy , (3.52)

where 0 < β−1, y < 1 and considering the geometric series

1

1− y
=
∞∑
k=0

yk and
1

1− (1− β−1)yα
=
∞∑
l=0

[(1− β−1)yα]l , (3.53)

it turns out that

µ′r =
r

λr

∞∑
k=0

∞∑
l=0

(1− β−1)l
∫ 1

0

[−ln(1− y)]r−1(yαl+k − yαl+α+k)dy , (3.54)

and still, taking z = −ln(1− y) we have in the µ′r that

µ′r =
r

λr

∞∑
k=0

∞∑
l=0

(1− β−1)l
∫ ∞
0

zr−1e−z[(1− e−z)αl+k − (1− e−z)αl+α+k]dz . (3.55)

See that 1− e−z = 1 + (−e−z) and so that

[1 + (−e−z)]w =
∞∑
m=0

(
w

m

)
(−e−z)m =

∞∑
m=0

(−1)m
(w)m

m!
e−mz . (3.56)

Then, with proper adjustment in terms of subtraction, (3.55) can be rewritten as

µ′r =
r

λr

∞∑
k=0

∞∑
l=0

∞∑
m=0

(−1)m
(1− β−1)l[(αl + k)m − (αl + α + k)m]

m!

∫ ∞
0

zr−1e−(m+1)zdz ,

Now, considering Gamma distribution, where
∫ ∞
0

zr−1e−(m+1)zdz =
Γ(r)

(m+ 1)!
, noting

that rΓ(r) = r! concludes

µ′r =
r!

λr

∞∑
k=0

∞∑
l=0

∞∑
m=0

(−1)m
(1− β−1)l[(αl + k)m − (αl + α + k)m]

(m+ 1)!m!
, (3.57)

what completes the proof.

An in�nite series by itself can bring several di�culties in obtaining its sum, since it is
not always possible to de�ne a value to which a series converges ... when it converges.

The previous proposition states that the exact calculation of the expected value of the
GE2 distribution can only be obtained by the in�nite sum of the elements contained in
each k × l ×m matrix, or by the iterated series corresponding to the sum in�nity of the
rows, columns, and level of the expression E(Xr|α, λ, β) as

lim
k−→∞

lim
l−→∞

lim
m−→∞

(−1)m
(1− β−1)l[(αl + k)m − (αl + α + k)m]

(m+ 1)!m!
, (3.58)

which can be calculated by means of Pringsheim's theorem (see Bromwich [6]), that lays
down criteria for exchanging in�nity limit operators.
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Theorem 4 Let h(t|α, λ, β) as obtained in (3.11). When t −→ ∞, then h(t|α, λ, β) −→
λ, this is, tends to lose memory over time.

Proof: Applying in (3.11) the change of the variable w = e−λt, when t −→ ∞ is easy
watched that w −→ 0 and

lim
t−→∞

h(t|α, λ, β) = lim
w−→0

αλw(1− w)α−1

β + [1− 2β − (1− β)(1− w)α](1− w)α
, (3.59)

an indeterminacy of type 0
0
. So, by L'Hospital's rule, it results out that

lim
t−→∞

h(t|α, λ, β) = lim
w−→0

−αλ(αw − 1)(1− w)α−2

α(1− w)α−12β[(1− w)α − 1]− 2(1− w)α + 1
= λ , (3.60)

the which proves the theorem.

3.1.2 Maximum Likelihood Estimation

Let t1, . . . , tn be a random sample of GE2 distribution, that is, T ∼ GE2(α, λ, β),
then the likelihood function is given by,

L(α, λ, β|t) =
(αλβ)n

exp

(
λ

n∑
i=1

ti

) n∏
i=1

(1− e−λti)α−1

[β + (1− β)(1− e−λti)α]2
. (3.61)

The logarithm of likelihood function is given by

l(α, λ, β|t) =n[log(α) + log(λ) + log(β)] +
n∑
i=1

{(α− 1)log(1− e−λti) −

− 2log[β + (1− β)(1− e−λti)α]− λti} ,
(3.62)

with system of likelihood equations given by

n

α̂
+

n∑
i=1

log(1− e−λ̂ti)

[
β̂ − (1− β̂)(1− e−λ̂ti)α̂

β̂ + (1− β̂)(1− e−λ̂ti)α̂

]
= 0

n

λ̂
−

n∑
i=1

[
λ̂(α̂− 1)e−λ̂ti

1− e−λ̂ti
− 2α̂λ̂(1− β̂)e−λ̂ti(1− e−λ̂ti)α̂−1

β̂ + (1− β̂)(1− e−λ̂ti)α̂
− ti

]
= 0

n

β̂
− 2

n∑
i=1

1− (1− e−λ̂ti)α̂

β̂ + (1− β̂)(1− e−λ̂ti)α̂
= 0

. (3.63)

Now, by the expression (2.40), when t1, · · · , tn be a random sample of GE2 in the
presence of the censure, your distribution then the likelihood function is given by,

L(α, λ, β|t, δ) =
(αλ)rβn

exp

(
λ

n∑
i=1

δiti

) n∏
i=1

[1− (1− e−λti)α]1−δi(1− e−λti)δi(α−1)

[β + (1− β)(1− e−λti)α]1+δi
, (3.64)

and logarithm of likelihood function in the presence of the censure given by

l(α, λ, β|t, δ) = r ln(αλ) + n ln(β) +
n∑
i=1

{
(1 + δi) ln[β + (1− β)(1− e−λti)α] +

+ δi(α− 1) ln(1− e−λti)− (1− δi) ln[1− (1− e−λti)α]− λδiti
}
,

(3.65)
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whose system of likelihood equations given by

r

α̂
+

n∑
i=1

ln(1− e−λ̂ti)

[
δi −

(1− δi)(1− e−λ̂ti)α̂

1− (1− e−λ̂ti)α̂
−

− (1 + δi)(1− β̂)(1− e−λ̂ti)α̂

β̂ + (1− β̂)(1− e−λ̂ti)α̂

]
= 0

r

λ̂
+

n∑
i=1

tie
−λ̂ti

[
δi(α̂− 1)

1− e−λ̂ti
− α̂(1− δi)(1− e−λ̂ti)α̂−1

1− (1− e−λ̂ti)α̂
−

− α̂(1 + δi)(1− β̂)(1− e−λ̂ti)α̂−1

β̂ + (1− β̂)(1− e−λ̂ti)α̂

]
−

n∑
i=1

δiti = 0

n

β̂
−

n∑
i=1

(1− δi)[1− (1− e−λ̂ti)α̂]

β̂ + (1− β̂)(1− e−λ̂ti)α̂
= 0

, (3.66)

whose solutions provide the maximum likelihood estimators of the parameters α, λ e β.

3.1.3 Bayesian Analysis Approach

As developed in the previous chapter for the EEG model with censorship, with censor-
ship for the model in the presence multiple variableand the cure rate model, here we also
consider the approach bayesian for the estimators of this model and so we need to assume
some prior distributions for the unknown parameters for development the inference.

Then, as assumed in the previous cases, a priori distributions for the parameters of
the GE2 model correspond to the non-informative context, this is, it is considered an non-
informative a priori distribution that satis�es the conditions α, λ, > 0 and it is su�cient
consider the Gamma distribution for each of the parameters since it is de�ned continuous
in R and tends to a Normal distribution as the size of its sample increases.

For this, we assume that the parameters are independent with the following prior
distributions

α ∼ Γ(a1, b1), λ ∼ Γ(a2, b2) and β ∼ Γ(a3, b3) . (3.67)

Thus, under the bayesian approach, both the marginal distribution and the a priori
distribution considered are not symmetric. The previous distributions expressing little or
no information on α, λ and β can be obtained assuming independent Gamma distribution
for each parameter, generate the probability distribution given by

π(α, λ, β) ∝ αa1−1λa2−1βa3−1e−b1α−b2λ−b3β , (3.68)

where a1, a2, a3, b1, b2 and b3 are known hyperparameters.
The joint posterior distribution for α, λ and β is proportional to the product of the

likelihood function (??) and the prior distribution (3.68). Then, the expression (3.63)
taking

∆(α, λ, β|t, δ) =
n∏
i=1

[1− (1− e−λti)α]1−δi(1− e−λti)δi(α−1)

[β + (1− β)(1− e−λti)α]1+δi
, (3.69)

it follows that

p(α, λ, β|t, δ) ∝ αr+a1−1λr+a2−1βn+a3−1∆(α, λ, β|t, δ)

exp

[
b1α + λ

(
b2 +

n∑
i=1

δiti

)
+ b3β

] .
(3.70)
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The full conditional posterior distributions for α, λ and β are given as follows:

p(α|t, δ, λ, β) ∝ αr+a1−1e−b1α∆(α, λ, β|t, δ) , (3.71)

p(λ|t, δ, α, β) ∝ λr+a2−1∆(α, λ, β|t, δ)

exp

[
λ

(
b2 +

r∑
i=1

δiti

)] , (3.72)

and

p(λ|t, δ, α, β) ∝ βn+a3−1e−b3β∆(α, λ, β|t, δ) . (3.73)

These conditional distributions are needed in simulation of parameters of the joint
posterior distribution based on MCMC methods.

Since the conditional distributions of α, λ and β are not easily identi�ed, we use the
Metropolis-Hastings algorithm (see for example, Gelfand and Smith [15] or Chib and
Greenberg [8] to obtain the posterior summaries of interest.

3.2 A Simulation Study for the Model Randomly Cen-
sored

In this section, we develop a simulation study used MCMC method whose main objec-
tive is to study the e�ciency of the MLE method for the distribution X ∼ GE2(x|α, λ, β).

For this, the following procedure was computationally implemented

Step 1: Set the values N and n, respectively the number of samples in the simulation
and the size of each their, and the values α, λ and β in a number of m cases of the
parametric vector θ = (α, λ, β) of the model GE2(θ) = GE2(x|α, λ, β) censored
with a �xed proportion of censorship in N samples, so that nτδ is the exact number
of censorships determined in each sample, where τδ is the proportion of censorship.

Step 2: Generate nN values q ∈ ]0, 1[ and n values from each of the N samples of
the distribution X ∼ GE2(θ) with x = Q(q), according (3.13), and such that
F (x|θ) ∈ ]0, 1[.

Step 3: Use the values obtained in step 2 for the X ∼ GE2(θ) distribution to calculate
in each of the N samples the estimated vector θ̂ = (α̂, λ̂, β̂), this is, for i = 1, . . . , N ,
get θ̂i through MLE of the α, λ and β parameters by the MCMC method.

Step 4: Use the N vectors θ̂ = (α̂, λ̂, β̂) and the vector θ = (α, λ, β) for compute for
j-th parameter, with j = 1, 2, 3 in the k-th case, with 1 ≤ k ≤ m, the mean
bias absolute (MBA), square root from the mean square errors (RMSE) and 95%
coverage probability, respectivaly

Vθjk =
1

N

N∑
i=1

|θjk − θ̂ijk| , (3.74)

eθjk =

√√√√ 1

N

N∑
i=1

(θjk − θ̂ijk)2 , (3.75)

p̂θjk =
1

N

N∑
i=1

Wijk , (3.76)
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so that, in the i-th sample where

Wijk =

{
1, if θjk ∈ IC{θjk,0.95}
0, otherwise

,

and IC{θjl,0.95} is the interval of 95% for the parameter θjk, with θk = (θ1k, θ2k) =

(λk, γk) and θ̂ik = (θ̂i1k, θ̂i2k) = (λ̂ik, γ̂ik), in the i-th sample of the k-th case, respec-
tivaly. Moreover, for the N con�dence and credibility intervals obtained, we will
also consider the mean interval amplitude (MIA) in each case as

hIC{θ;1−ε} =
1

N

N∑
i=1

hIC{θi;1−ε} , (3.77)

were hIC{θi;0.95} = 2z 0.05
2
σ̂θ̂i in the classic case and hIC{θi;0.95} = θ̂i

(k+[0.95]η)
− θ̂i

(k)
in

the bayesian case, were θ(k)i is the k-th smallest lower limit and θ(k+[0.95]η)
i is the [k+

(0.95)η]-th smallest upper limit of the ordered set of quantis θ∗j = {θ(1)j ; θ
(2)
j ; θ

(3)
j ; ...; θ

(η)
j }

from the j-th posterior sample for size η.

Repeat steps 2, 3, 4 and 5 for the m cases of θ.
We chose to perform this simulation procedure for m = 4 parametric cases given

by {θ1,θ2,θ3,θ4} = {(0.75, 0.5, 3.5), (1.0, 2.0, 0.8), (3.0, 1.0, 0.1), (5.0, 1.5, 2.0)}, parame-
ter vectors for the model in the cases which the curve of risk manifests the forms, respec-
tively, increasing, unimodal, decreasing and bathtub, as shown in the following image.

23/11/2019 Results: Gerador de Gráficos de Risco.sas

https://odamid.oda.sas.com/SASStudio/sasexec/submissions/9a385b95-48fa-42a4-ac90-4f98a4925891/results 1/1

23/11/2019 Results: Gerador de Gráficos de Risco.sas

https://odamid.oda.sas.com/SASStudio/sasexec/submissions/c9317983-17b3-4c6e-8ef3-d2a578f85b26/results 1/1

23/11/2019 Results: Gerador de Gráficos de Risco.sas

https://odamid.oda.sas.com/SASStudio/sasexec/submissions/41e07454-9b25-4775-a553-a87c994b9099/results 1/1

23/11/2019 Results: Gerador de Gráficos de Risco.sas

https://odamid.oda.sas.com/SASStudio/sasexec/submissions/56a21048-6dfb-44e2-a3f3-b45f10b13a17/results 1/1

Figure 3. 2 : The hazard works for simulations of GE2 distribution censored.

For the random data generated with the exact proportion of censorships of τδ =
0.0, 0.2, 0.4 in 4 case parametric with sizes n = 10, 25, 50, 100, 200, by the processes
approach classic and bayesian, were necessary a total of 120 processes.

For this approach, MBAs, RMSEs and MIAs are expected to be close to zero as
the samples of size n increases and that probability of empirical coverage p approaches
P = 0.95, the probability of the theoretical credibility range which, for this simulation
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process is de�ned as the most rigorous, the Highest Posterior Density (HPD) interval.
The results are presented in the following tables, were the statistics considered for eval-

uation criteria are presented in the Classical estimation column for the classical approach
via MLE and in bayesian estimation for the bayesian approach via MCMC.

Table 3. 1 : Results for the model GE2(α, λ, β) = GE2(0.75, 0.5, 3.5).
Cases Classical estimation Bayesian estimation

θ τδ n θ̂ pθ eθ Vθ hIC µ̂θ̂ pθ eθ Vθ hIC

α

0

10 1.697 0.996 3.396 1.145 6.604 0.775 0.993 0.184 0.153 1.387
25 1.005 0.957 0.666 0.466 2.365 0.805 0.994 0.207 0.163 1.183
50 0.879 0.949 0.430 0.313 1.550 0.804 0.991 0.207 0.155 0.995
100 0.802 0.946 0.276 0.214 1.054 0.778 0.982 0.173 0.135 0.795
200 0.786 0.939 0.449 0.155 0.740 0.771 0.965 0.479 0.115 0.627

0.2

10 2.015 0.989 3.686 1.464 8.932 0.787 0.988 0.184 0.150 1.419
25 1.146 0.936 0.890 0.594 2.783 0.856 0.992 0.247 0.192 1.272
50 0.943 0.936 0.515 0.364 1.744 0.855 0.995 0.237 0.175 1.070
100 0.865 0.941 0.341 0.254 1.192 0.841 0.986 0.212 0.157 0.870
200 0.813 0.943 0.109 0.174 0.819 0.889 0.970 0.167 0.126 0.673

0.4

10 2.770 0.989 8.095 2.196 15.490 0.800 0.990 0.179 0.148 1.460
25 1.221 0.939 1.032 0.671 3.199 0.890 0.993 0.261 0.203 1.340
50 1.015 0.926 0.619 0.435 1.988 0.913 0.997 0.281 0.214 1.150
100 0.908 0.931 0.404 0.293 1.350 0.897 0.984 0.255 0.189 0.941
200 0.858 0.922 0.281 0.211 0.940 0.869 0.961 0.212 0.158 0.741

λ

0

10 0.588 0.987 0.300 0.214 1.346 0.473 0.965 0.130 0.104 1.387
25 0.516 0.968 0.164 0.127 0.688 0.473 0.961 0.100 0.083 1.183
50 0.509 0.964 0.114 0.088 0.459 0.484 0.972 0.077 0.065 0.996
100 0.506 0.961 0.077 0.063 0.314 0.491 0.968 0.063 0.051 0.795
200 0.501 0.947 0.055 0.043 0.218 0.495 0.955 0.045 0.038 0.627

0.2

10 0.560 0.987 0.339 0.234 1.479 0.436 0.933 0.148 0.119 1.419
25 0.510 0.967 0.184 0.143 0.770 0.452 0.938 0.114 0.093 1.272
50 0.500 0.968 0.122 0.099 0.512 0.465 0.957 0.089 0.073 1.070
100 0.494 0.952 0.083 0.069 0.347 0.473 0.962 0.071 0.057 0.870
200 0.491 0.939 0.063 0.051 0.240 0.480 0.947 0.055 0.045 0.673

0.4

10 0.579 0.980 0.371 0.273 1.749 0.396 0.898 0.179 0.148 1.460
25 0.499 0.957 0.219 0.173 0.881 0.415 0.899 0.261 0.203 1.340
50 0.479 0.955 0.145 0.115 0.581 0.429 0.913 0.109 0.092 1.155
100 0.477 0.934 0.100 0.082 0.392 0.444 0.910 0.089 0.073 0.941
200 0.476 0.923 0.077 0.062 0.271 0.456 0.902 0.071 0.059 0.741

β

0

10 11.036 0.789 41.581 10.260 228.300 3.418 1.000 0.690 0.558 1.392
25 5.758 0.824 9.610 4.395 39.010 3.577 0.999 0.935 0.745 1.186
50 4.569 0.861 4.874 2.735 18.130 3.718 0.994 1.107 0.868 1.000
100 4.136 0.901 2.949 1.880 10.750 3.855 0.983 1.233 0.971 0.800
200 3.781 0.910 1.769 1.275 6.680 3.827 0.970 1.197 0.927 0.629

0.2

10 17.480 0.787 106.789 16.650 279.100 3.445 1.000 0.629 0.502 1.419
25 7.435 0.834 28.888 6.039 78.110 3.683 0.999 0.920 0.730 1.277
50 5.399 0.871 7.028 3.493 24.390 3.855 0.998 1.156 0.908 1.076
100 4.655 0.918 3.839 2.341 13.430 4.023 0.988 1.350 1.041 0.875
200 4.319 0.929 2.311 1.640 8.417 4.144 0.908 1.414 1.106 0.676

0.4

10 20.650 0.773 132.864 19.910 327.800 3.437 1.000 0.538 0.432 1.465
25 10.285 0.848 23.831 8.866 104.300 3.761 1.000 0.894 0.701 1.340
50 6.955 0.891 11.576 5.006 37.820 3.976 0.997 1.204 0.929 1.161
100 5.656 0.923 5.415 3.205 18.640 4.256 0.993 1.491 1.163 0.947
200 5.224 0.945 3.693 2.422 11.670 4.518 0.983 1.762 1.373 0.743

The above table shows, above all, that between the n sizes considered, the highest
measurements point to high RMSE, MBA and MIA values for 10 samples in the classic
case and that such measures are compensated for the sample size increases given the



76 The Generalized Exponential Geometric Extreme Distribution

asymptotically expected convergences in the case of estimation via MLE. In the bayesian
case, besides the measurements of erros are smaller, this is common in any sample.

In the bayesian case, although the same statistics presented low values already in
samples of size 10, it is veri�ed that the estimator of the parameter β, in this case,
overestimates the estimates in samples with high proportions of censorship. In addition,
it is found that the coverage probability for the 3 estimators converge more slowly to the
theoretical value compared to the MLEs.

An analogous behavior is observed in the parametric case shown in table below.

Table 3. 2 : Results for the model GE2(α, λ, β) = GE2(1.0, 2.0, 0.8).
Cases Classical estimation Bayesian estimation

θ τδ n θ̂ pθ eθ Vθ hIC µ̂θ̂ pθ eθ Vθ hIC

α

0

10 1.312 0.991 0.980 0.604 3.792 1.212 0.988 0.472 0.338 1.846
25 1.090 0.949 0.453 0.343 1.765 1.104 0.978 0.318 0.236 1.253
50 1.051 0.955 0.303 0.235 1.185 1.060 0.976 0.232 0.175 0.953
100 1.027 0.945 0.214 0.170 0.812 1.030 0.966 0.176 0.138 0.722
200 1.013 0.958 0.141 0.115 0.572 1.010 0.967 0.126 0.102 0.534

0.2

10 1.494 0.986 2.403 0.790 5.139 1.273 0.987 0.532 0.383 1.995
25 1.112 0.966 0.492 0.362 1.953 1.147 0.988 0.363 0.250 1.338
50 1.056 0.949 0.329 0.255 1.293 1.088 0.976 0.251 0.190 1.006
100 1.035 0.945 0.228 0.179 0.898 1.054 0.966 0.187 0.142 0.766
200 1.019 0.951 0.158 0.127 0.625 1.030 0.963 0.138 0.110 0.571

0.4

10 1.915 0.977 5.748 1.197 7.807 1.342 0.991 0.598 0.442 2.184
25 1.176 0.971 0.576 0.414 2.207 1.210 0.989 0.410 0.294 1.466
50 1.099 0.935 0.378 0.291 1.450 1.145 0.977 0.300 0.222 1.093
100 1.057 0.947 0.257 0.202 1.001 1.095 0.977 0.214 0.163 0.822
200 1.034 0.947 0.179 0.141 0.706 1.057 0.961 0.158 0.122 0.622

λ

0

10 2.901 0.983 2.803 1.447 8.104 2.141 0.979 0.735 0.561 1.846
25 2.267 0.963 1.057 0.783 4.140 2.023 0.975 0.553 0.432 1.255
50 2.128 0.957 0.713 0.546 2.809 2.008 0.976 0.474 0.373 0.955
100 2.071 0.959 0.489 0.382 1.931 2.010 0.973 0.383 0.303 0.723
200 2.017 0.959 0.339 0.268 1.334 1.990 0.970 0.298 0.238 0.536

0.2

10 3.036 0.977 2.517 1.637 9.262 2.034 0.969 0.680 0.540 1.995
25 2.228 0.965 1.179 0.866 4.589 1.903 0.967 0.563 0.447 1.338
50 2.056 0.957 0.776 0.608 3.084 1.878 0.959 0.487 0.394 1.007
100 1.982 0.952 0.522 0.409 2.102 1.883 0.963 0.390 0.320 0.767
200 1.936 0.949 0.363 0.294 1.458 1.886 0.959 0.321 0.262 0.572

0.4

10 2.989 0.948 2.928 1.802 10.430 1.839 0.957 0.659 0.539 2.186
25 2.049 0.939 1.241 0.951 5.134 1.708 0.919 0.590 0.491 1.466
50 1.909 0.955 0.851 0.669 3.446 1.690 0.925 0.532 0.448 1.093
100 1.851 0.940 0.611 0.491 2.355 1.702 0.910 0.482 0.403 0.824
200 1.816 0.931 0.434 0.349 1.624 1.724 0.905 0.410 0.343 0.623

β

0

10 3.417 0.903 10.089 3.073 43.500 0.917 1.000 0.263 0.202 1.847
25 1.529 0.883 2.488 1.119 7.893 0.944 0.995 0.370 0.285 1.255
50 1.070 0.901 0.973 0.607 3.569 0.933 0.981 0.395 0.302 0.955
100 0.937 0.927 0.600 0.414 2.172 0.920 0.975 0.383 0.293 0.723
200 0.855 0.927 0.389 0.270 1.392 0.877 0.957 0.311 0.235 0.536

0.2

10 4.865 0.906 27.788 4.461 64.830 0.945 1.000 0.249 0.199 1.997
25 1.882 0.904 3.175 1.447 10.840 0.980 1.000 0.365 0.282 1.340
50 1.350 0.922 1.568 0.860 5.048 1.003 0.994 0.439 0.335 1.007
100 1.114 0.942 0.829 0.536 2.873 1.012 0.983 0.447 0.338 0.767
200 1.005 0.957 0.527 0.369 1.822 0.991 0.977 0.407 0.304 0.572

0.4

10 6.840 0.887 32.496 6.480 156.000 0.963 1.000 0.243 0.195 2.186
25 2.314 0.899 4.438 1.910 15.400 0.998 0.999 0.348 0.271 1.466
50 1.660 0.934 2.931 1.170 7.330 1.041 0.996 0.440 0.335 1.092
100 1.346 0.962 1.204 0.763 4.000 1.086 0.995 0.510 0.383 0.824
200 1.220 0.977 0.762 0.540 2.550 1.124 0.989 0.513 0.396 0.623
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Tables 3. 1 and 3. 2 show that the advantage of bayesian estimators over MLE
consists mainly in applications with small size sample and whe more severe interval esti-
mates, since the values for The MIA in this approach is signi�cantly lower when the true
value of the parameter is greater than 1. In general, bayesian estimates are more accurate
as observed in the calculated RMSEs.

The tables 3. 3 and 3. 4 in the sequence re�ect the behavior of the EEG model
parameter estimators described so far and show that, both via MLE and MCMC, the
provided estimates show have the same properties.

Table 3. 3 : Results for the model GE2(α, λ, β) = GE2(3.0, 1.0, 0.1).
Cases Classical estimation Bayesian estimation

θ τδ n θ̂ pθ eθ Vθ hIC µ̂θ̂ pθ eθ Vθ hIC

α

0

10 4.892 0.985 11.362 2.614 17.790 3.492 0.979 1.219 0.889 4.673
25 3.258 0.983 1.155 0.795 4.559 3.210 0.973 0.760 0.564 2.950
50 3.089 0.971 0.640 0.484 2.613 3.092 0.967 0.465 0.402 2.071
100 3.022 0.959 0.419 0.325 1.677 3.024 0.956 0.367 0.287 1.456
200 3.001 0.931 0.291 0.226 1.109 2.988 0.950 0.263 0.205 1.031

0.2

10 5.766 0.985 14.446 3.500 26.240 3.517 0.978 1.260 0.909 4.978
25 5.354 0.655 2.802 2.381 5.943 3.190 0.967 0.816 0.607 3.142
50 3.083 0.971 0.701 0.520 2.940 3.079 0.964 0.556 0.430 2.222
100 2.982 0.950 0.442 0.344 1.801 2.982 0.949 0.387 0.305 1.547
200 2.966 0.923 0.305 0.242 1.201 2.955 0.939 0.276 0.221 1.106

0.4

10 9.664 0.982 42.415 7.439 63.470 3.601 0.989 1.368 1.001 5.435
25 3.351 0.962 1.998 1.063 6.261 3.199 0.963 0.902 0.655 3.437
50 3.095 0.952 0.880 0.619 3.370 3.072 0.954 0.627 0.478 2.444
100 2.934 0.938 0.497 0.388 2.013 2.929 0.933 0.425 0.338 1.679
200 2.892 0.918 0.339 0.277 1.323 2.878 0.920 0.315 0.259 1.189

λ

0

10 2.542 0.940 2.437 1.664 6.959 1.061 0.987 0.316 0.254 4.675
25 1.743 0.875 1.331 0.952 3.867 1.024 0.991 0.245 0.195 2.951
50 1.387 0.880 0.872 0.645 2.666 0.994 0.991 0.205 0.164 2.072
100 1.186 0.881 0.615 0.460 1.977 0.986 0.991 0.197 0.157 1.467
200 1.076 0.913 0.418 0.320 1.451 0.974 0.981 0.197 0.158 1.032

0.2

10 2.545 0.967 2.475 1.683 7.763 1.009 0.985 0.305 0.247 4.978
25 1.469 0.627 0.562 0.495 1.163 0.946 0.979 0.255 0.209 3.143
50 1.318 0.912 0.821 0.604 2.999 0.924 0.987 0.207 0.167 2.223
100 1.097 0.905 0.577 0.439 2.108 0.898 0.981 0.202 0.166 1.547
200 1.009 0.914 0.419 0.325 1.555 0.897 0.969 0.202 0.168 1.106

0.4

10 2.814 0.976 2.985 1.982 9.307 0.957 0.977 0.310 0.255 5.440
25 1.706 0.916 1.156 0.987 4.670 0.872 0.963 0.277 0.229 3.438
50 1.322 0.904 0.959 0.682 3.289 0.848 0.959 0.255 0.214 2.446
100 1.053 0.917 0.589 0.451 2.317 0.812 0.959 0.247 0.211 1.680
200 0.932 0.930 0.413 0.328 1.722 0.802 0.941 0.245 0.215 1.190

β

0

10 2.343 0.984 8.331 2.266 31.080 0.110 1.000 0.071 0.017 4.673
25 0.748 0.939 1.786 0.681 4.539 0.114 1.000 0.032 0.022 2.951
50 0.362 0.911 0.725 0.301 1.625 0.115 0.998 0.032 0.028 2.071
100 0.217 0.908 0.297 0.158 0.776 0.116 0.990 0.045 0.034 1.456
200 0.144 0.917 0.122 0.082 0.416 0.112 0.979 0.045 0.035 1.031

0.2

10 2.455 0.986 8.133 2.375 33.670 0.111 1.000 0.071 0.017 4.980
25 2.765 0.992 3.905 2.667 9.429 0.113 0.999 0.032 0.020 3.142
50 0.405 0.917 1.032 0.343 2.017 0.116 0.999 0.032 0.025 2.220
100 0.223 0.911 0.338 0.167 0.884 0.114 1.000 0.032 0.029 1.550
200 0.157 0.918 0.155 0.098 0.505 0.114 0.988 0.045 0.033 1.106

0.4

10 7.119 0.988 52.010 7.049 110.700 0.112 1.000 0.032 0.018 5.435
25 1.547 0.956 5.952 1.478 13.490 0.116 1.000 0.032 0.021 3.437
50 0.574 0.936 1.480 0.514 3.170 0.117 0.999 0.032 0.023 2.444
100 0.273 0.929 0.424 0.215 1.218 0.117 0.999 0.032 0.027 1.680
200 0.175 0.939 0.187 0.114 0.653 0.116 0.999 0.032 0.030 1.189
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Table 3. 4 : Results for the model GE2(α, λ, β) = GE2(5.0, 1.5, 2.0).
Cases Classical estimation Bayesian estimation

θ τδ n θ̂ pθ eθ Vθ hIC µ̂θ̂ pθ eθ Vθ hIC

α

0

10 13.085 0.983 12.845 9.436 74.440 5.120 0.967 1.520 1.234 8.933
25 6.128 0.985 3.846 2.446 14.500 5.331 0.974 1.563 1.206 7.164
50 5.440 0.973 2.200 1.570 8.271 5.316 0.963 1.399 1.050 5.625
100 5.151 0.966 1.358 1.037 5.394 5.185 0.974 1.035 0.790 4.250
200 5.047 0.957 0.910 0.716 3.701 5.093 0.967 0.761 0.596 3.197

0.2

10 23.442 0.984 122.783 19.700 145.200 5.120 0.977 1.480 1.208 9.189
25 6.787 0.989 6.393 3.045 18.090 5.404 0.980 1.630 1.242 7.547
50 5.565 0.980 2.438 1.643 9.318 5.366 0.977 1.430 1.048 5.921
100 5.354 0.967 1.561 1.175 5.943 5.361 0.975 1.162 0.876 4.568
200 5.167 0.959 1.030 0.798 4.013 5.215 0.968 0.855 0.656 3.392

0.4

10 51.166 0.966 364.692 47.420 220.000 5.001 0.972 1.382 1.140 9.312
25 7.303 0.974 7.764 3.597 22.540 5.355 0.971 1.618 1.271 7.836
50 5.874 0.973 3.172 2.005 11.270 5.469 0.977 1.561 1.174 6.382
100 5.393 0.964 1.737 1.292 6.621 5.384 0.969 1.257 0.943 4.851
200 5.282 0.955 1.182 0.908 4.418 5.325 0.965 0.960 0.731 3.638

λ

0

10 1.761 0.909 0.861 0.625 3.770 1.197 0.930 0.373 0.324 8.934
25 1.568 0.963 0.518 0.405 2.144 1.272 0.951 0.298 0.254 7.165
50 1.508 0.950 0.387 0.296 1.492 1.324 0.963 0.255 0.209 5.626
100 1.507 0.953 0.263 0.204 1.041 1.382 0.963 0.205 0.166 4.251
200 1.507 0.957 0.182 0.144 0.721 1.433 0.962 0.155 0.124 3.197

0.2

10 1.803 0.981 0.990 0.688 4.279 1.137 0.908 0.422 0.376 9.190
25 1.559 0.965 0.555 0.430 2.371 1.204 0.937 0.345 0.304 7.548
50 1.481 0.952 0.432 0.336 1.649 1.255 0.931 0.307 0.264 5.922
100 1.469 0.955 0.311 0.232 1.163 1.321 0.943 0.245 0.205 4.568
200 1.472 0.957 0.207 0.163 0.811 1.377 0.940 0.195 0.158 3.393

0.4

10 1.879 0.971 1.206 0.793 4.859 1.064 0.871 0.484 0.443 9.313
25 1.498 0.959 0.626 0.485 2.711 1.112 0.870 0.429 0.392 7.836
50 1.468 0.940 0.485 0.374 1.901 1.177 0.889 0.367 0.328 6.383
100 1.418 0.947 0.369 0.279 1.329 1.228 0.887 0.320 0.281 4.851
200 1.416 0.955 0.262 0.199 0.940 1.290 0.897 0.263 0.222 3.639

β

0

10 13.762 0.832 80.592 13.180 271.500 1.323 0.999 0.711 0.677 8.935
25 4.513 0.853 11.524 3.643 36.320 1.463 0.978 0.672 0.575 7.165
50 3.058 0.855 4.219 2.098 13.890 1.597 0.960 0.678 0.563 5.626
100 2.561 0.904 2.257 1.354 7.827 1.783 0.951 0.662 0.546 4.253
200 2.302 0.921 1.296 0.917 4.824 1.940 0.949 0.656 0.532 3.199

0.2

10 12.993 0.815 70.725 12.400 235.500 1.298 0.999 0.727 0.702 9.191
25 5.288 0.858 11.546 4.446 45.030 1.422 0.991 0.676 0.596 7.5504
50 3.637 0.864 6.498 2.681 19.110 1.555 0.971 0.672 0.564 5.924
100 2.765 0.895 2.955 1.630 9.429 1.720 0.957 0.677 0.562 4.570
200 2.442 0.924 1.601 1.070 5.698 1.917 0.950 0.683 0.550 3.394

0.4

10 21.772 0.819 134.205 21.160 294.400 1.281 1.000 0.734 0.718 9.314
25 6.733 0.839 20.635 6.033 74.910 1.353 0.993 0.715 0.652 7.837
50 4.838 0.878 12.708 3.843 31.790 1.508 0.980 0.447 0.572 6.384
100 3.223 0.899 4.056 2.086 12.570 1.663 0.965 0.669 0.562 4.853
200 2.631 0.919 2.012 1.292 7.059 1.855 0.949 0.685 0.553 3.641

As the signi�cance level for the con�dence intervals and credibility in each sample was
5%, the probability of theoretical coverage for each of the parametric case combinations,
sample size, and censorship ratio was set at 0.95, for each of the parameters, ie Pθ = 0.95
is the nominal or expected coverage probability in all cases.

However, the determining factor to be taken into consideration, which is the evaluation
pθ proportion of empirical coverage obtained, in the sense of what is the acceptable level
of variation around 0.95 as well as your precision. Therefore, in this simulation study all
pθ statistics are considered acceptable as long as it is observed that, as the values for n
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increases, pθ approaches 0.95.
Note that, in the descriptions of simulationof this study it is not considered in which

approach, classical or bayesian, pθ is closer to 0.95, but whether this statistic converges
to its nominal value. The question of proximity for the expected value for the displayed
statistics is considered by the error measures, as MBA, RMSE and MIA presented, re-
spectively, by 3.75, 3.74, and 3.77.

For each of the 1500 GE2 samples, the MCMC process was implemented with 50000
iterations for each of the later 1500 samples, with 10000 burn-in and roughing every 4
iterations to average each of the 1500 later samples of the size 10000 and the desired
estimate by averaging these averages. To generate the random censored data, we utilize
the same methods used by Goodman, Li and Tiwari [17].

The seed used to generate the simulation random values was the 64− bit Windows 10
operating system time, with Intel R© CoreTM i5− 4200U CPU @ 1.60GHz processor and
8.00GB installed RAM. The software used was SAS On Deamand where the implemented
code mainly considered the DATA STEP process and the IML and MCMC procedures,
all with seed inserted by the STREAMINIT(0) statement.

3.3 Application for Measures of Recurrence Censored
Times

In this application, with a sample 38 observations, the main objective is to �t a proba-
bilistic model for the recurrence times to infection at point of insertion of the catheter for
kidney patients users portable dialysis equipment. The data was presented by Mcgilchrist
and Aisbett [40], record the lifetime of 38 patients and for each patient two times of in-
fection recurrence are observed: the �rst and second time of occurrence of the event of
interest.

Since the times recorded refer to the time of return of the infection, one of the objec-
tives of this modeling is to predict the probability of recurrence (return) of the infection
due to the insertion of the catheter. In this case, in the probabilistic context, predicting
the probability of recurrence of the infection is the same as predicting the probability for
the event that is occurrence of infection at the catheter insertion point.

One of the ways to obtain this measure is through a survival analysis, which can
empirically be taken as an estimate given by the survival curve obtained by the Kaplan-
Meyer non-parametric estimator for both cases of recurrence. The graphs of the estimated
survival curves the Kaplan-Meyer are shown in the graph below.
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The LIFETEST Procedure

Figure 3. 3 : Product-limit survival estimate plot for two cases for recorrences.

The table 3. 5 in the sequence consists of the approximate chi-square statistics
(χ2), degrees of freedom (DF), and p-values (Pr > χ2) for the Log-Rank, Wilcoxon, and
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likelihood ratio tests. All this three tests show strong evidence of that not exist di�erence
among the survival curves for the two cases of recurrence (p-values > 0.3).

Table 3. 5 : Test of equality.
Test χ2 DF p-values

Log-Rank 0.2678 1 0.6048
Wilcoxon 0.9882 1 0.3202
-2Log(LR) 0.0058 1 0.9394

However, since the recurrence time is an observable continuous random variable and
dependent on a population with characteristic structures and conditions, nonparametric
approaches using estimates such as Kaplan-Meyer, limit not only the quality of the in-
tended forecast, but also the inference that can be made about the study population.

In these conditions, for the intended modeling, an adjustment is proposed for the data
with a probabilistic model that captures alternative forms of risk, as shown in the �gure
below, the data indicate a predominantly decreasing form of risk, however, leaves evidence
that it can also take the form bathtub and unimodal, respectively.
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Figure 3. 4 : Product-limit survival estimate plot for �rst case for recorrence.18/01/2020 Results: CODEEG12_AIRLINECOMPANY.sas
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Figure 3. 5 : Product-limit survival estimate graph for second case for recorrence.

In addition, it is also of particular interest to estimate the risk rate of recurrence of the
infection, since a risk model also attributes relevant information about the future health
status of patients submitted to catheter insertion, but according to the equality of the
curves Kaplan-Meyer, the best scenario would be to assume that the risk models for the
two cases of recurrence are also the equals.

However, the empirical risk function always results in an increasing function and,
consequently, it is assumed that the failure rate increases as time increases.

That way, in the context of modeling via continuous survival models, although the
survival function implies in the form of the risk function, and decreases monotonously,
although the probability of recurrence of the infection tends to zero, the risk of infection
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may actually be reduced, but in three ways: or the risk may be reduced as time increases
, or it can reduce up to a certain time after which the risk shows an increase, or it can
show reduction after a period of time when the risk has been increasing.

It is worth mentioning that, although the probability decreases as time passes, the
hazard of recurrence of infection does not always decrease as a patient is subject to
di�erent factors that are not summarize in the cure time.

Therefore, the GE2 model is considered as a competitor for the proposed adjustment,
since both forms of risk presented in 3. 4 and 3. 5 can be captured by the risk function
derived from this model.

In addition to the GE2 model, the Generalized Gamma (GG), Weibull Exponentiated
(EW) and Exponentiated Log-Logistics (ELL) distributions, which also present the same
forms for the risk function.

And more, based on the 38 observations presented in Mcgilchrist and Aisbett [40],
time recurrence data still follow event type 1, if "infection occurs", or 0, if "censorship"
occurs, highlighting that censored observations were recorded in the course of the study
without the failure of interest event occurrering, "infection occurs". In this condition,
the data have the mechanism of random censorship, and the equations (3.71), (3.72) and
(3.73) were used to obtain bayesian estimates for this adjustment.

In the sequence, the table 3. 6 shows these estimates and the convergence test for
the MCMC process performed. The table display the estimates for location and scale
parameters in the coluns θ̂, where α and β are location parameters and λ is the scale
parameters, indicated by the column θ, and whith their respective standard-error and the
HPD intervals with 95% con�dence, in the columns std. err. and IC95%(θ), respectivaly.

Table 3. 6 : Results for MCMC process for models for �rst case for recorrence.
Cases Results estimations for the models Results from convergence test

Model θ θ̂ std. err. HPDI95%(θ) test-stat p-value test outcome

GE2
α1 0.9315 0.1934 (0.5930, 1.3145) 0.1601 0.3601 passed
λ1 0.0038 0.0017 (0.0004, 0.0067) 0.0720 0.7391 passed
β1 0.4154 0.2861 (0.0197, 0.9939) 0.4219 0.0633 passed

GG
α2 0.1692 0.0866 (0.0836, 0.3390) 0.0532 0.8566 passed
λ2 4.2455 0.2718 (3.7092, 4.7542) 0.1714 0.3305 passed
β2 1.5158 0.2002 (1.1627, 1.9163) 0.1119 0.5295 passed

EW
α3 6.6238 5.3099 (0.2060, 17.5152) 0.2900 0.1443 passed
λ3 0.3246 0.0556 (0.2211, 0.4335) 0.0604 0.8115 passed
β3 7.0170 3.1090 (2.7192, 13.8023) 0.2674 0.1675 passed

ELL
α4 24.6154 16.3566 (2.1027, 56.4252) 0.0981 0.5940 passed
λ4 0.9042 0.1554 (0.6153, 1.2060) 0.0767 0.7114 passed
β4 2.3182 1.1238 (0.7308, 4.6215) 0.0890 0.6414 passed

The table 3. 7 in the sequence shows the results for some information criteria for the
adjustments made by the recurrence time data for the �rst case.

Table 3. 7 : Results for measures of �t.
Criterion GE2 GG EW ELL
AIC 369.7 413.1 369.8 372.3
AICC 370.4 413.8 370.5 373.0
BIC 374.6 418.0 374.7 377.2
DIC 368.3 368.6 377.7 368.6

The �gure in the next page shows the plot for result of this adjustment, and analogous
to what has been developed so far for the �rst case for recorrence, in the sequence follows
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the adjustments to the hazard functions of the models GE2, GG, Weibull and ELL for
the patients data for second case for recorrence.
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Figure 3. 6 : Survival and hazard graphs for the �tted models for �rst case for recorrence.

Given the candidate data-�tting models, it is conventionally preferred to choose the
one that provides the value lowest information criterion, in this case, based on the criteria
presented in table 3. 7 , it is concluded that the GE2 distribution provides the best
adjust.

Table 3. 8 following shows the estimates obtained, the standard errors, and the HPD
interval with credibility 95% for each of in the model estimates.

In the same table, with a signi�cance level of 5%, the stationarity test results for the
MCMC process convergence performed for this problem are presented for each parameter.
The data in the table show that convergence was achieved.

Table 3. 8 : Results for MCMC process for models for second case for recorrence.
Cases Results estimations for the models Results from convergence test

Model θ θ̂ std. err. HPDI95%(θ) test-stat p-value test outcome

GE2
α1 1.3422 0.2784 (0.8336, 1.9247) 0.3450 0.1015 passed
λ1 0.0048 0.0022 (0.0009, 0.0092) 0.3888 0.0773 passed
β1 0.3504 0.2843 (0.0097, 0.8891) 0.2121 0.2452 passed

GG
α2 0.1645 0.0784 (0.0837, 0.3239) 0.2126 0.2444 passed
λ2 4.4183 0.2291 (3.9349, 4.8332) 0.0695 0.7548 passed
β2 1.2023 0.1652 (0.9204, 1.5542) 0.0413 0.9261 passed

EW
α3 103.7 57.6383 (13.9215, 220.0000) 0.3550 0.0953 passed
λ3 0.8504 0.2841 (0.4359, 1.4685) 0.4508 0.0532 passed
β3 1.6983 0.9914 (0.3435, 3.5922) 0.2831 0.1510 passed

ELL
α4 23.0030 15.4581 (1.9036, 55.8937) 0.1002 0.5839 passed
λ4 1.0786 0.1916 (0.6944, 1.4422) 0.1604 0.3593 passed
β4 3.5417 2.0586 (0.9169, 7.5370) 0.1054 0.5590 passed

The table 3. 9 in the sequence shows the results for the information criteria for the
bayesian models adjust resulting.

Table 3. 9 : Results for measures of �t.
Criterion GE2 GG EW ELL
AIC 311.6 364.8 312.6 312.6
AICC 312.3 365.5 313.3 313.3
BIC 316.5 369.7 317.5 317.5
DIC 306.5 308.8 308.1 308.1

Table 3. 8 previous shows the estimates obtained, the standard errors, and the HPD
interval with credibility 95% for each of in the model estimates.
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Based on these estimates, replacing them in the theoretical model, we then have the
models GE2, GG, EW and ELL adjusted for second case for recorrence time. Then, based
on this results, the �gure in the sequence shows the graphic result the adjustment.
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Figure 3. 7 : Survival and hazard plots for the �tted models for second case for
recorrence.

Then, we have so ensure that the adjustment made by the estimated model GE2 is
most appropriate in these contrast for patient data for �rst and second case for recorrence.

In the table in follows, are showns the means distance that the survival models �tted in
comparison for empirical model as the representative for the true model. The comparison
turns for the four models as the di�erences weighted by number of terms between the
estimated for respective �tted survival function value and or corresponding value empirical
obtained through of the Kaplan-Mayer.

Table 3. 10 : Average distance measures.
Recorrence GE2 GG EW ELL
First case 0.0547 0.0436 0.0775 0.0770
Second case 0.0461 0.0378 0.0788 0.0673



Chapter

4
Final Results and Conclusions

4.1 Final Results and Conclusions

The present work does not present a chapter for the theoretical framework or basic
concepts used for the proposals made, but sought, when a given concept was used, to
refer to it and describe its relevance with subtlety.

To compensate for this absence, in the introduction to this work, the most relevant
concepts are described through four subsections. In particular, a bibliographic review
that highlights the genesis of the models studied, mainly for the distribution from which
they originate, was presented in the subsection 1.1.

The subsections 1.2 and 1.3 presented a detailed summary of the intended results in
the present study and described the structure of how the work was developed, pointing
out what and how the approaches were carried out. In the subsection 1.4 we sought to
give a more detailed focus to the concepts that are less relevant to the study's proposals,
but which were applied in parallel to the proposed objectives for obtaining the results and
even for the applications considered.

Under valuable mathematical concepts, where theoretical points from di�erent lines of
study were approached such as those of In�nite Series, Special Functions and the Mathe-
matical Analysis itself which somehow absorbs these �elds, the properties of the models
were demonstrated, proposing them exclusively to support in processes from the resoluc-
tion in real problens with these models.

However, the work sought to present the approach of these problems according to the
assumed properties and, in some cases, demonstrated for the models approached here.
The property of as constitutes the forms of hazard rate, derived from the density and
survival functions of the models, conditioned to the scale parameter inherited from the
Geometric distribution, was the main one.

It has also been seen, and demonstrated, that the extensions for the Geometric Expo-
nential distribution provide hazard rate function that inherits the memory loss property
of the Exponential and Geometric functions that generated them, as well as the relation-
ships that their respective parameters have for a given form from the hazard rate function,
making clear the parametric conditions under which they are generated.

Particularly, regarding the considered EEG models, varieting in time only and/or in
the time with presence the covariables, it was clearly highlighted that, in both cases ap-
proached, whatever the value of the λ > 0 parameter assumed, the hazard function derived
from this model has a decreasing behavior for cases where γ < 1 and increasing when
γ > 1, where λ is the scale or rate parameter of the model that, becouse by construction
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is inherited from the Exponential distribution, and γ is its shape parameter. When γ = 1
the EEG model is reduced to the Geometric Exponential model.

Similarly, regarding the GE2 model, it was clari�ed that for any assumed λ > 0 value,
when α < 1 the resulting hazard rate function takes the decreasing form for any β < 1
and bathtub form for any β > 1, but in the case where α > 1, the hazard rate is unimodal
when β < 1 and increasing if β > 1.

Still on the hazard rate forms of the GE2 model, in the cases where (1) α = β = 1,
which (2) β = 1 for any α > 0 with α 6= 1, and that (3) α = 1 for any β > 0 with α 6= 1,
the GE2 model is reduced to the Geometric Exponential model. In (1) and (2) this is
immediate by substitution, as can be seen in [3], and in (3) this is guaranteed in [35].

Under the parametric conditions evidenced for the EEG and GE2 models, the com-
putational approach is simpli�ed, since in the bayesian case, for example, an appropriate
initial kick is needed to calculate model estimates via MCMC, and knowing a favorable
region for this kick, the markovian process reaches its convergence faster.

Therefore, knowing the hazard rate form for a given data set and, consequently, where
the scale or rate parameter from model EEG converges, the initial kick to the γ estimate
is simpli�ed because of the region for this parameter to be previously known. The same
way that is for the kicks for the estimates of α and β in the GE2 model, in the both cases
the kicking λ are made according to the inherited memory loss property.

Also worth highlighting from the conclusions obtained about the properties demon-
strated, the fact of the EEG and GE2 distributions are semi pathological in consequence
from the yours parameters γ and β, respectivaly. Depending of the parametric condition
that is considered for γ or β, exist or not a mean and variance for distribution EEG or
GE2, and in this constatation we prove the parametric conditions under which we can
guarantee that the expected value exists for the EEG and GE2 distribution, obtaining it
in terms of in�nite series.

The work shows that, equipped with these propertie, the use r-th moment it is even-
tually impracticable, mainly for distribution GE2 by virtue your expression, and even
though it exists under certain parametric conditions the expected value and variance
for EEG and GE2, presuppositions for important statistical concepts, such as expected
Fisher's matrix, the Central Limit Theorem and the moments of order r are not achieved
under in the complementary cases.

Based on elaborate computational resources to support the approaches considered in
the study of these models, the work considers the outline of the geometric shapes of some
functions, such as the con�dence bands presented in the applications and in particular for
the density, survival and hazard surface considered for the EEG model in the presence
of covariables. Due to these computational resources, as a consequence of the obtained
properties, the simulation study was concluded as follows.

The elaboration of the statistical simulation under the classical and bayesian approach
via MLE and MCMC, respectively, required delicate computational processes for the ex-
traction and calculation of statistics relevant to the results evaluation criteria. As de-
scribed in chapter 1, this work was developed focusing on the study area of survival
analysis and in these simulations were considered at least 4 samples sizes and 3 cases of
censorships, one of them being the case for complete-time data.

As shown, we present the results of 3 simulation studies developed for (1) EEG model
in the presence of censorship, (2) for the EEG model in the presence of censorship and
multiple variables and (3) for the GE2 model in the presence of censorship. The 3 case
studies were chosen according to the forms of the hazard function derived from the re-
spective simulated models.

All 3 results were satisfactory, although with speci�c features. It is worth mentioning
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the slow convergence of the probability of empirical coverage in the case of the simulation
(3) described in the subsection 3.2, where both bayesian and classical estimators showed
equal conditions and properties over their estimates in any parametric case, censorship
ratio and samples larger than 20 observations. Particularly, in small samples the bayesian
estimators were superior in all the considered criteria.

In the subsection 2.2.3, the case of simulation (1) shows that, despite the high qual-
ity of the estimates obtained by the MLE, this quality was attributed to large samples
and, in cases of low censorship, those lower than tau = 0.20. For these estimators, it
was common to observe reasonable situations with relevant sample sizes and censorship
ratios, such as n = 50 and τ = 0.2, where estimates attributed high estimation errors,
pointing to an estimated ine�cient.

In this cases, the simulation study highlights that bayesian estimators are signi�cantly
superior to the classical one. Although it shows high estimation errors for high censorship
ratios, it is still signi�cantly better than MLE in these situations.

When the same model was simulated, also in the presence of censorship but consid-
ering multiple variables, as developed in simulation (2), the e�ciency of the bayesian
and classical estimators are analogous, and the results highlight that both the MLE and
MCMC methods are satisfactorily accurates in the model in the presence of censorship
and multiple variables, even with high proportion of censorship, showing that in both
inference cases the presence of covariables in the model attributes high �exibility and
excellent results in relation to their estimators.

With regard to the simulations developed, it is evident that while MLE is preferable
for its speed in large samples, MCMC is preferable for its accuracy in small sample sizes,
but what is noteworthy is that the presence of multiple variables compensates the penalty
that estimates su�er by high censorship ratios, as shown in simulations (1) and (2).

Above all, the 3 studies allow to conclude that the estimators of these models are
appropriate in the considered sample conditions and in view of their particular proper-
ties, as the biparametric EEG model in the presence of censorship and in the presence of
covariables with p+ 1 parameters in the presence of censorship or the GE2 model as a 3
parameter model and under censorship.

Focused in the EEG parametric model, the work presents the applications for this
model in the presence of censorship and under censorship in the presence from covariable,
respectively in the sub sections 2.2.4 and 2.3.2 . In these applications it is shown that
this model is preferable in the contrasts performed, which was possible to conclude with
its obtained properties, as described in 2.3.2 where, even though enhancing the speci�c
competing model for a case of the proportional hazard rate, the EEG model presents a
superior adjustment, because besides capturing the empirical hazard form presented by
the data, it �ts the empirical hazard with interpolation and adjustment satisfactory in
the con�dence range considered.

Similarly, in the case of the tri-parametric model, the application in the subsection 3.3
highlights that the GE2 model is also preferable over its competitors, that although they
present excellent adjustments and capture the form of the risk rate function manifested
empirically, all the information criteria presented, as well as the average distance between
the survival function adjusted with the Kaplan-Meyer empirical, are the best because
they are the smallest among all the models considered, which highlights the e�ciency of
the GE2 model over the others.
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