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. INTRODUCTION

Methods in mathematical physics usually provide an interface between quite different areas of
hysics, and it is not unusual that such areas advance in parallel, mostly ignoring each other’s
teps. This is the case with finite dimensional inner product spaces �hereafter mentioned as the
discrete”�, with its leading role in quantum mechanics �hence quantum information theory� and in
nite signal analysis. References 1–3 provide some links between those theories.

Both quantum mechanics of finite dimensional Hilbert spaces and finite signal analysis rely
eavily on the discrete Fourier transform �DFT, sometimes mentioned finite or fractional Fourier
ransform�, and, regarding quantum mechanics, after the seminal work of Weyl on finite dimen-
ional systems,4 it was Schwinger who observed and explored the fact that two physical observ-
bles whose families of eigenstates are connected via DFT share a maximum degree of
ncompatibility.5

Although, at first glance, a finite system might look much simpler than anything defined on a
onenumerable infinite dimensional Hilbert space �hereafter referred to as the “continuum”�, there
s much more knowledge about the latter than the former. In one phrase, in the continuum we have
ne, and only one, harmonic oscillator, while in the discrete there are a lot of candidates for that
ole, each one surely with its virtues, but surely no undisputed champion.

The eigenstates associated to the harmonic oscillator, the Gaussian function and the Hermite
olynomials, have a very distinguishable behavior under the action of the �usual� Fourier trans-
orm, so widely known that any comment on this regard is completely superfluous. Over such
roperties rests a huge amount of physical knowledge. On the other hand, however, although the
iscrete Fourier transform �DFT� is a well known tool, there is nothing on this context which
ould claim for itself a role analogous to that of the Gaussian function/Fourier transform “duo.”

A decisive step in an attempt to “regain,” in the discrete, all interpretative power derived from
he qualitative behavior of the harmonic oscillator eigenfunctions, lost when one leaves the con-
inuum realm, was given in Ref. 6, where the eigenstates of the DFT are obtained. The purpose of
his paper is to further explore this path, showing results which closely parallel those of the
ontinuum. Those results are obtained in a strikingly simple fashion, exploring the technique of
reaking infinite sums in modulo N equivalence classes. Pertinent research on the eigenstates of
he DFT can also be found in Ref. 7.

A remark must be made about the orthogonality of the DFT’s eigenstates. Mehta has conjec-
ured that those states are indeed orthogonal, what seems to be most reasonable. One may be led
o believe that, just as in the continuum, the eigenstates of the DFT may be also �nondegenerate�
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igenstates of some other �unitary or self-adjoint� operator, and thus orthogonal. Further evidence
upporting such conjecture is that the continuous limit of the DFT eigenstates recovers, as ex-
ected, the Gaussian times the Hermite polynomials. However, as it will be shown, quite surpris-
ngly, the conjecture does not hold, giving another fine example of the peculiarities of the finite
imensional context.

The eigenstates of the DFT are seen to be the Jacobi �3-function and its derivatives.8 Interest
n Jacobi �-functions, by their own turn, may come from a variety of directions. First, its math-
matical interest goes without saying �see, for example, Ref. 9 and references therein�. To cite
elatively recent examples in physics, in quantum physics it is deeply related to coherent states
ssociated to both circle10 and finite lattice topology.11 Its modular properties have proven to be of
undamental importance in superstring theory, as it is shown by standard literature in this field.12

The basic notation adopted in this paper and some preliminary results are presented in the next
ection. Following, orthogonality of the DFT’s eigenstates is discussed. Section IV contains the
ain results, for which a two variable generalization is verified in the subsequent section. Further

elations among �3-functions are obtained in Sec. VI, which precedes the concluding section.

I. PRELIMINARY RESULTS

In Ref. 6 it is shown that there is a set of functions with the following remarkable property

fn�j� =
in

�N
�
k=0

N−1

fn�k�exp�2�i

N
kj� , �1�

here N is a natural number. The functions

fn�j� = �
�=−�

�

exp�−
�

N
��N + j�2�Hn����N + j��, � =�2�

N
�2�

re defined making use of the Hermite polynomial Hn. Writing Hn�x� in terms of its generating
unction, Hn�x�= �n

�tn exp�2xt− t2�	t=0, it is possible to write this state �to use a quantum mechanical
erminology� as8

fn�j� =
1

�N

 �n

�tn�3� j

N
−

�

�
t,

i

N
�exp�t2�


t=0
, �3�

here

�3�z,�� = �
�=−�

�

exp�i���2�exp�2�i�z�, Im��� � 0, �4�

s the Jacobi �3-function, following Vilenkin’s notation.13 In this notation the basic properties of
his even function read as

�3�z + m + n�,�� = exp�− i��n2�exp�− 2�inz��3�z,�� , �5�

�3�z,i�� = �−1/2 exp�−
�z2

�
��3� z

i�
,

i

�
� , �6�

mphasizing its period 1 and quasiperiod �. A beautiful consequence of �6� is that this function can

e written as a sum of Gaussians,
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�3� z

L
,

i

�2� = � �
�=−�

�

exp�− ���

L
�2

��L + z�2� , �7�

form in which the width L /� becomes apparent. Property �6� also provides an easy way to obtain
he additional identity �also given by Ref. 6�

fn�j� = ��− i�n �
�=−�

�

exp�−
�

N
�2 +

2�i

N
j��Hn���� , �8�

hich is in fact a generalization of Eq. �7� �if one compares it to Eq. �2��.

II. ORTHOGONALITY OF THE fn’S

According to Eq. �1�, the functions fn�j�� are eigenstates of the DFT with associated eigen-
alue in. Mehta has conjectured that fn�j��n=0

N−1 is an orthogonal set, and thus complete, over a finite
et of N points �for odd N. For even N one must replace fN−1�j� by fN�j��. This reasonable
onjecture, quite surprisingly indeed, does not hold for arbitrary N �it holds for large N�. As, in the
ollowing, evidence will be collected against the original conjecture, details shall be kept to a level
igher than usual.

Let �fn , fm� denote the inner product

�fn, fm� = �
j=0

N−1

fn
*�j�fm�j� = �2�− i�n+m�

j=0

N−1

�
�,	=−�

�

exp�−
�

N
��2 + 	2� +

2�i

N
j�� − 	��Hn����Hm��	� .

he sum over j� is a realization of the modulo N Kroenecker delta,


�,	
�N� = �1 � = 	 �mod N� ,

0 � � 	 �mod N� ,

hus

�fn, fm� = 2��− i�n+m �
�,	=−�

�


�,	
�N� exp�−

�

N
��2 + 	2��Hn����Hm��	� . �9�

he well-known identity,

exp�−
1

2
x2�Hk�x� =

ik

�2�
�

−�

�

dy exp�−
1

2
y2 + ixy�Hk�y� ,

ogether with the sum over 	� leads to

�fn, fm� = �
�,�=−�

� �
−�

�

dy dz exp�−
1

2
�y2 + z2� + iy�� + iz��� + �N��Hn�y�Hm�z� ,

here the infinite sum on �� covers the equivalence class present in 
�,	
�N� . Now, the sum over ��

y its turn is a realization of a modulo 2� Dirac delta, thus, with the integration over z� and
onvenient changes of variables,

�fn, fm� = 2� �
�,�=−�

� �
−�

�

dy exp�− y2 −
�2v2

�2 + i�y�N − v�N���Hn�y −
�v
�
�Hm�y +

��

�
� ,

here again an infinite sum is introduced due to the modulo 2� delta.
The above expression is rather elucidative. It is not hard to realize that the infinite sums over
� ,�� are a direct consequence of the equivalence classes brought in by the modulo N Kroenecker
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elta present in Eq. �9�. For large N, the term corresponding to �=�=0 becomes increasingly
mportant, and a simple check shows that this term is exactly 
n,m. Thus, as expected, the limit
→� recovers the usual harmonic oscillator results. For finite �and small� N, however, all terms

n the above summation must be taken into account.
Following then, the sum on � is seen to be a realization of the modulo 2� Dirac delta,

�2���y�N−v�N�, and after a change of variables one has

�fn, fm� = 2�� �
,�=−�

�

exp�−
2�

N
� +

Nv
2
�2

−
N�v2

2
�Hn���Hm�2�v

�
+ �� .

gain, summation over � must be included to account for the 2� periodicity of the Dirac delta.
plitting the sum on � in two sums, over the odd and even integers and shifting the sum on  by
N results in

fn, fm� = 2�� �
,�=−�

�

exp�−
2�

N
2 − 2�Nv2�Hn�� − �Nv�Hm�� + �Nv�

+ 2�� �
,�=−�

�

exp�−
2�

N
� +

N

2
�2

− 2�N�v + 1/2�2�Hn�� − �Nv�Hm��� + vN + N�� .

enoting the second term above by �fn , fm�odd, if N=2h+k, where the binary variable k controls
he parity of N, then

�fn, fm�odd = 2�� �
,�=−�

�

exp�−
2�

N
� + h + k/2�2 − 2�N�v + 1/2�2�Hn�� − �Nv�Hm��� + vN + N��

nd yet again shifting the sum on  by h+k /2 and the one on � by 1/2,

�fn, fm�odd = 2�� �
=−�

�

�k� �
�=−�

�

�1�exp�−
2�

N
2 − 2�Nv2�Hn��� − Nv��Hm��� + vN�� ,

here now �=−�
� �k� denotes a sum over the integers �half-integers� if k=0 �k=1�, so that back to

he general expression,

�fn, fm� = 2�� �
,�=−�

�

exp�−
2�

N
2 − 2�Nv2�Hn��� − Nv��Hm��� + vN��

+ 2�� �
=−�

�

�k� �
�=−�

�

�1�exp�−
2�

N
2 − 2�Nv2�Hn��� − Nv��Hm��� + vN�� .

ow, recourse to the Hermite polynomial’s generating function gives

�fn, fm� = 2��
�n

�tn

�m

�sm� �
,�=−�

�

exp�−
2�

N
2 + 2��t + s� − 2��N�t − s� − t2 − s2�

+ �
=−�

�

�k� �
�=−�

�

�1�exp�−
2�

N
2 + 2��t + s� − 2��N�t − s� − t2 − s2��

t=s=0

.

he sum on � results in a �3-function in the first term, and a �3 for k=0 or a �2 for k=1 in the

econd. The sum on ��, by its turn, gives �3-function in the first term, and a �2 in the second, as
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�fn, fm� = 2��
�n

�tn

�m

�sm���3� i��t + s�
�

,
2i

N
��3� i�N�t − s�

�
,2Ni��

+ �3−k� i��t + s�
�

,
2i

N
��2� i�N�t − s�

�
,2Ni�� exp�− t2 − s2�	�


t=s=0
.

sing the basic properties,

�3�z,i�� = �−1/2 exp�−
�z2

�
��3� z

i�
,

i

�
� ,

�2�z,i�� = �−1/2exp�−
�z2

�
��4� z

i�
,

i

�
� ,

ne gets

�fn, fm� =
2�3/2

N

�n

�tn

�m

�sm���3� i��t + s�
�

,
2i

N
��3� ��t − s�

2�
,

i

2N
�

+ �3−k� i��t + s�
�

,
2i

N
��4� ��t − s�

2�
,

i

2N
��exp�− 2ts�	�

t=s=0
.

inally, compact expressions can be achieved with

�3�z,�� =
1

2
��3� z

2
,
�

4
� + �4� z

2
,
�

4
�� ,

�2�z,�� =
1

2
��3� z

2
,
�

4
� − �4� z

2
,
�

4
�� ,

hus for k=0

�fn, fm� =
�3/2

N

�n

�tn

�m

�sm
�3� i��t + s�
�

,
2i

N
��3� ��t − s�

�
,
2i

N
�exp�− 2ts�


t=s=0

nd for k=1

�fn, fm� =
�3/2

N

�n

�tn

�m

�sm��3� i��t + s�
�

,
2i

N
��3� ��t − s�

�
,
2i

N
�

− 2�4� i��t + s�
2�

,
i

2N
��4� ��t − s�

2�
,

i

2N
�exp�− 2ts��

t=s=0
.

gain, the limit N→� easily recovers the usual results, as the i factor inside the �-functions
uarantees that, in this limit, only a term proportional to ��n /�tn���m /�sm�exp�−4ts�	t=s=0 survives.
nyhow, with the above expressions any term �fn , fm� can be calculated as a sum of �-function
erivatives evaluated at zero. The particular situation m=0, for example, for N even, is quite
nstructive. In this case

�fn, f0� =
�3/2 �n

n�3� i�t
,
2i��3� �t

,
2i� ,
N �t � N � N t=0
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�fn, f0� = 
�3/2

N
�
j=0

n �n

j
�ij � j

�tj �3� �t

�
,
2i

N
�


t=0

�� �n−j

�tn−j �3� �t

�
,
2i

N
�


t=0
� ,

nd it is immediate to see that all n=odd terms are zero. For n=2 �and for all even numbers not
ultipliers of 4�, the symmetry of the binomial term and the multiplicity of the powers of i lead

o a pairwise cancellation of all non-zero terms. For n=4 �and its multipliers�, the situation is
ifferent. The simplest case is n=4,

�f4, f0� = 
�3/2

N
�
j=0

4 �4

j
�ij � j

�tj �3� �t

�
,
2i

N
�


t=0

�� �4−j

�t4−j �3� �t

�
,
2i

N
�


t=0
�

�f4, f0� =
�3/2

N
�2�3�0,

2i

N
��3���0,

2i

N
� − 6��3��0,

2i

N
��2� .

his term �with proper normalization� goes to zero quite fast with increasing N. In fact, for N
10 it is already of order of 10−6. On the other hand, it is immaterial to discuss the case N=4 �or

maller�, as in this situation the distinct eigenvalues of the Fourier operator are enough to guar-
ntee orthogonality of the whole set. Considering all this, it comes down to, literally, one-half a
ozen different values of the dimensionality N �the range �5,10�� for which a significant deviation
rom the “expected” results �that is, orthogonality� can be observed.

V. DFT AND WIDTH INVERSION

Starting from the own definition of the �3-function, Eq. �4�, with ��R, a fractional shift of
he �3 function can be calculated,

�3�z +
k

N
,
i�2

N
� = �

�=−�

�

exp�−
�

N
�2�2�exp�2�i��z +

k

N
�� ,

here k is an integer. The sum over �� can be broken into modulo N equivalence classes as

�3�z +
k

N
,
i�2

N
� = �

j=0

N−1

�
	=−�

�

exp�−
�

N
�2�j + 	N�2�exp�2�i�j + 	N��z +

k

N
�� .

onveniently regrouping the terms one gets

�3�z +
k

N
,
i�2

N
� = �

j=0

N−1 � �
	=−�

�

exp�− �N�2	2�exp�2�i	�i�2j + Nz���
�exp�−

�

N
�2j2 + 2�ijz +

2�i

N
jk� ,

here the term inside the brackets can be identified as �3-function,

�3�z +
k

N
,
i�2

N
� = �

j=0

N−1

�3�i�2j + Nz,iN�2�exp�−
�

N
�2j2 + 2�ijz +

2�i

N
jk� .

se of property �6� leads to

�3�z +
k

N
,
i�2

N
� =

1
�N�2� j=0

N−1
�3� iz

�2 −
j

N
,

i

N�2�exp�−
�N

�2 z2 +
2�i

N
jk� �10�

� 2�i �
nd taking advantage of the Fourier coefficients exp N jk it is easy to obtain the inverse relation
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�3� iz

�2 −
k

N
,

i

N�2� =�N

�2 �
j=0

N−1

�3�z +
j

N
,
i�2

N
�exp��N

�2 z2 −
2�i

N
jk� . �11�

articular cases of these equations are most interesting, and a lot of peculiar relations can be
btained with the different possible choices of z ,k and �. Two straightforward examples are: First,
etting z=0 in �10�,

�3� k

N
,
i�2

N
� =

1
�N

�
j=0

N−1

�3� j

N
,

i

N�2�exp�2�i

N
jk� , �12�

nd, according to Eq. �7�, the �3-function on the left-hand side has width �, while the one under
he action of the DFT has width �−1. This property is the obvious discrete counterpart of the
ell-known behavior of the Gaussian function under the usual Fourier transform.

The case k=0, by its turn, after some manipulation gives

�3�Nz,iN�2� =�N

�2 �
j=0

N−1

�3�z +
j

N
,
i�2

N
� .

. Application

With the above results it is possible to generalize the result of Ref. 6 in a straightforward way.
ntroducing

fn�j,�� =�N

�

 �n

�tn�3� j

N
−

�

�
�t,

i�2

N
�exp�t2�


t=0
,

ts DFT can be directly calculated,

fn�k,�� =
1

�N
�
j=0

N−1

exp�2�i

N
jk� fn�j,�� ,

fn�k,�� =
1
��

�n

�tn �
j=0

N−1

exp�2�i

N
jk�
�3� j

N
−

�

�
�t,

i�2

N
�exp�t2�


t=0
,

nd use of Eq. �11� together with change of variables from t to it leads to

fn�k,�� = �N�in �n

�tn
�3� k

N
−

�t

��
,

i

N�2�exp�t2�

t=0

,

hus

fn�k,�−1� = in�
j=0

N−1

exp�2�i

N
jk� fn�j,�� , �13�

hich reproduces Eq. �1� for �=1. From this relation, most identities obtained in Ref. 6 may also
e generalized.

. TWO VARIABLE’S DFT

Yet another generalization of the main result of Ref. 6 regards a two variable DFT, which, for
he sake of briefness, here it will be merely verified. Apart from the obvious product solution

fm�j�fn�l�, if one considers the quantity
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Fm,n�j,l� = �
k=0

N−1

fm�k�fn�k − l�exp�2�i

N
jk� ,

hich obeys

�Fm,n�j,l��* = Fm,n�j,l�exp�2�i

N
jl� ,

se of Eq. �1�, and some simple manipulations lead to the nontrivial result

	Fm,n�j,l�	2 =
�− i�m+n

N
�

a,b=0

N−1

	Fm,n�a,b�	2exp�2�i

N
�ma + nb�� .

s in the one variable case, these states obey

�
j,l=0

N−1

	Fm,n�j,l�	2	Fm�,n��j,l�	2 = 
m,m�
n,n�, m + n � m� + n��mod 4� ,

hich imply a multitude of relations involving derivatives of the �3-functions �or the Hermite
olynomials�. Motivated by the preceding section, it should be investigated whether this relation
olds for m+n=m�+n��mod 4�.

I. FURTHER RELATIONS INVOLVING THE WIDTH

So far it has been seen that to break up the infinite sum present in the definition of the Jacobi

3-function leads to interesting properties of this very function. In order to further explore this
echnique, from Eq. �7� it is straightforward to write

�3� z

L
,
i�2

L
� =

�L

�
�

�=−�

�

exp�− L�� z

�L
+

�

�
�2� , �14�

ith L a positive real number. Choosing � integer, it is possible to break the sum over �� into
odulo � equivalence classes

�3� z

L
,
i�2

L
� =

�L

�
�
j=0

�−1

�
=−�

�

exp�− L�� z

�L
+

j + �

�
�2� ,

�3� z

L
,
i�2

L
� =

�L

�
�
j=0

�−1

�
=−�

�

exp�− L�� z + jL

�L
+ �2� ,

nd the infinite sum can be identified as a �3,

�3� z

L
,
i�2

L
� =

1

�
�
j=0

�−1

�3� z + jL

�L
,

i

L
� . �15�

t is quite interesting to set z=z� above and observe that

�3� z�

L
,
i�2

L
� =

1

�
�
j=0

�−1

�3� z

L
+

j

�
,

i

L
� ,
hich, for the particular case �=2 gives the well-known result
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�3�2z

L
,
4i

L
� =

1

2
��3� z

L
,

i

L
� + �3� z

L
+

1

2
,

i

L
�� ,

�3�2z

L
,
4i

L
� =

1

2
��3� z

L
,

i

L
� + �4� z

L
,

i

L
�� .

imilar reasoning would lead to the complementary relation

�3� z

L
,

i

L
� =

1

�
�
j=0

�−1

�3� z

�L
+

j

�
,

i

L�2� . �16�

nd again, the particular case �=2 gives

�3� z

L
,

i

L
� =

1

2
��3� z

2L
,

i

4L
� + �4� z

2L
,

i

4L
�� .

quations �15� and �16� can be combined to provide an alternative width inversion relation

�3� z�

L
,
i�2

L
� =

1

�2 �
j,j�=0

�−1

�3� z

�L
+

j�

�
+

j

�2 ,
i

L�2� .

II. CONCLUSIONS

The results here presented seem to argue in favor of one basic point: The Jacobi �3-function,
ogether with the DFT, plays, in finite dimensional spaces, the same role played by the Gaussian
unction in conjunction with the usual Fourier transform. Concerning quantum mechanics,
chwinger has already noted that, if the families of eigenstates of two different observables are
onnected via DFT, then those observables share a maximum degree of incompatibility.5 In this
onnection, the width inversion relation obeyed by the fn�j ,�� functions strongly suggests that one
ay be able to construct, for finite dimensional spaces, states which behavior resembles that of the

ontinuous minimum uncertainty states.
However, such a reasoning meets an important hindrance if one considers that the orthogo-

ality of the DFT’s eigenstates ultimately fails. It is a fact, however, that with increasing N it
ecomes, in a numerical sense, true, and in this case the N→� limit is reached, as witty as it may
ound, somewhere near one dozen. This fact may illustrate a true finite dimensional idiosyncrasy,
r it might lead one to look for the possibility of finding different sets of DFT’s eigenstates, an
ssue which is a matter of current research.
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