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Abstract We investigate the braneworld gravity starting
from the non-conservative gravitational field equations in a
five-dimensional bulk. The approach is based on the Gauss–
Codazzi formalism along with the study of the braneworld
consistency conditions. The effective gravitational equations
on the brane are obtained and the constraint leading to a brane
energy-momentum conservation is analyzed.

1 Introduction

Despite the ubiquity of dissipative processes in the real world,
it is intriguing to notice their absence in the standard for-
mulations of the principle of least action. In the traditional
classical mechanics, dissipative phenomena are handled by
means of the Rayleigh dissipation function which comes into
play through an extra term in the Euler-Lagrange equations,
where one does not abandon however the underlying vari-
ational formalism, so that the Lagrangian of the system is
kept untouched [1]. A first effort attempting to construct,
within the classical mechanics context, a full formalism to
describe dissipative systems from the perspective of a princi-
ple of least action dates back to the Herglotz’s work [2]. In his
approach he argue that it would be possible to describe a phys-
ical system endowed with dissipation by assuming an action-
dependent Lagrangian. For instance, when considering a lin-
ear dependence on the action he has shown the appearance
of a typical velocity-proportional frictional term in the corre-
sponding equations of motion derived from such Lagrangian.
Almost ninety years separated the pioneer Herglotz’s contri-
bution from a covariant extension of his formalism, which
was just recently accomplished by Lazo et al. [3]. From this
covariant formulation the authors constructed a new theory of
gravity consisting of a set of modified field equations along
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with a non-conservation for the energy-momentum tensor.
They make a discussion on the possible consequences of this
“geometric” dissipation effects on the cosmological scenario,
pointing out that these new degrees of freedom can account
for the dark energy content in the universe. Besides, they add
an study on the gravitational waves propagation within this
theory.

In a very recent paper, a more complete investigation
of cosmological aspects in this non-conservative gravity is
performed [4]. At the background level, the authors show
an equivalence between this non-conservative cosmology
with the bulk viscous model in the Eckart’s formalism [5,6].
Whereas at the perturbative level, they verified that the lin-
ear perturbations indicate a possible way out to alleviate the
problems faced by the viscous cosmology.

Braneworld models have attracted the attention of the sci-
entific community due its possible application to the hierar-
chy problem [7]. Soon after the appearance of such a pos-
sibility, the gravitational aspects of these models started to
be under investigation. In particular, a systematic study per-
formed by means of the Gauss–Codazzi formalism [8,9]
made possible a broad range of applications of braneworld
scenarios in gravitation and cosmology. From among the sev-
eral interesting prospects resulting from this investigation,
in the context of braneworld gravity, is the impossibility of
covariant conservation of the brane stress tensor when matter
is present in the bulk [10]. The main purpose of this paper is
to investigate the physical consequences of such a geometric
induced non-conservation of the energy-momentum on the
construction of braneworld models.

After a short introduction highlighting some of the main
aspects of non-conservative gravity in Sect. 2, we apply in
Sect. 3 the Gauss–Codazzi formalism assuming that the bulk
gravity is governed by its precepts. It is shown that the non-
conservative aspect of the bulk gravity can counterbalance
the bulk matter effect leading to a covariant conservation of
the brane stress-tensor. It is also shown a complete gravita-
tional effective field equation, along with a corrected four-
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dimensional gravitational ‘constant’, which now acquires a
dependence upon the coordinates. In Sect. 4 we approach
non-conservative braneworld models with the aid of the well
known braneworld sum rules, a complete formalism result-
ing in a one-parameter family of consistency conditions. It
is shown that, in this specific context, it is possible to derive
an extension of the Randall–Sundrum model without using
a negative brane tension. In the final Section we conclude
emphasizing the possible applications in cosmology.

2 A toolkit on non-conservative gravity

As discussed in the introduction in the Ref. [2] Herglotz real-
ized the possibility of incorporating dissipative systems into
the principle of least action by means of an action-dependent
Lagrangian as follows

S =
∫

L(x, ẋ, S)dt, (1)

where x = x(t) denotes the path that extremises the action
S. Such a condition leads to a generalized version of the
Euler-Lagrangian equation

d

dt

∂L
∂ ẋ

− ∂L
∂x

− ∂L
∂S

∂L
∂ ẋ

= 0. (2)

We can illustrate how the description of dissipative pro-
cesses can emerge from (2) by considering a simple case
where the Lagrangian has a linear dependence in the action
L = mẋ2

2 − U (x) − γ
m S, which results in a equation of

motion endowed with a typical friction termγ ẋ . In the covari-
ant generalization of this formalism introduced in [3], the
authors propose a gravitational theory given by the follow-
ing extended Einstein–Hilbert Lagrangian

L = √−g(R − λμs
μ) + Lm, (3)

where sμ denotes an action-density field, while λμ is a param-
eter encoding the emerging dissipative effects. According to
what is shown in [3], sμ shall disappear during the extrem-
isation of the action, so that it does not show up in the field
equations. The coupling four-vector λμ may be in general
coordinate-dependent, although we shall concentrate in the
simplest case, in which its components are constant. The
term λμsμ can be interpreted as a covariant generalization of
the classical linear action-dependence mentioned a few lines
above.1 This non-conservative theory of gravity presents the
following set of field equations

(5)Gμν(R) + (5)Gμν(K) = κ2
5Tμν, (4)

1 The Ref. [4] brings a more detailed discussion about the choice (3).

where κ2
5 is the gravitational coupling constant in five dimen-

sions, (5)Gμν(ξ) is the Einstein tensor associated to the ten-

sorial quantity ξ , and Kμν = λα	α
μν − 1

2

(
λν	

α
μα +λμ	α

να

)
.

The five-vector λμ is the responsible for the geometric non-
conservation, since the covariant divergence of (4) shall not
vanish for a non-null λμ.

3 Applying the Gauss–Codazzi formalism

As already remarked in the Introduction, we shall start assum-
ing a five-dimensional bulk whose gravitational interaction
is governed by non-conservative gravity, i.e., in five dimen-
sions the field equation is given by Eq. (4). In order to
project the geometric relevant quantities on the brane and
find the effective gravitational equation in four dimensions,
we implement the well known Gauss–Codazzi formalism,
starting from Gauss equation

(4)Rα
βγ δ = (5)Rμ

νρσq
α
μq

ν
βq

ρ
γ q

σ
δ + K α

γ Kβδ − K α
δ Kβγ , (5)

relating (projecting) the five-dimensional curvature to its
four-dimensional counterpart. The tensor Kμν is the extrinsic
curvature. Regarding Eq. (5) some words are in order. The
five-dimensional line element is understood as

ds2 = qμνdx
μdxν + dr2, (6)

where qrr = 0 and r is the index of the fifth dimension.
Besides, one denotes gμν = qμν + nμnν , where nμ is a uni-
tary vector orthogonal everywhere on the brane, provided it
is orientable. In terms of (the variation of) nμ the extrinsic

curvature reads Kμν = qα
μq

β
ν ∇αnβ . It is clear from these

choices that from 0 to 4 in the indexes we are restricted to the
brane, leaving the last index value to the extra dimension.
Notice that the physical content of Eq. (5) may be simply
stayed as follows: the brane curvature is given by the projec-
tion of the bulk curvature, also having into account the way
the brane is embedded in the bulk.

After some manipulation it is possible to write (5) as

(4)Gβδ(R) = (5)Rνσq
ν
βq

σ
δ − 1

2
qβδ

(5)Rνσq
νσ

+KKβδ − KαβK
α
δ − 1

2
(K 2 − Kαγ K

αγ )qβδ

+1

2
qβδ

(5)Rμ
νρσ nμn

ρqσν − Ẽβδ, (7)

where Ẽβδ = (5)Rμ
νρσnμnρqν

βq
σ
δ . Directing the calculation

to make contact with the approaches existing in the literature,
we shall make use of the five-dimensional Weyl tensor,Cα

βρδ ,
along with usual algebraic manipulations in terms of what we
have
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(4)Gβδ(R) = (5)Gνσ (R)qν
βq

σ
δ + KKβδ − KαβK

α
δ

−1

2
(K 2 − Kαγ K

αγ )qβδ

−Eβδ − 1

3
(5)Rσνq

ν
βq

σ
δ

− 2

3
qβδ

[
(5)Gαγ (R)nαnγ + 3

8
(5)R

]

+ 4

3
qβδ

(5)Rσνn
σnν , (8)

where Eβδ = Cμ
νρσnμnρqν

βq
σ
δ . Now it is possible to write

down the five-dimensional quantities by means of Eq. (4).
Hence Eq. (8) reads

(4)Gβδ(R) = 2

3
κ2

5

{
Tμνq

μ
β q

ν
δ + qβδ(Tμνn

μnν

− 1

4
T )

}
− 2

3
Kμν(q

μ
β q

ν
δ + nμnνqβδ)

+ 5

12
qβδK + KKβδ − KαβK

α
δ

− 1

2
(K 2 − Kαγ K

αγ )qβδ − Eβδ . (9)

Imposing Z2 symmetry, a quite familiar orbifold charac-
teristic of braneworld models [7,10], one has the behavior
of the unitary orthogonal vector nμ �→ −nμ when crossing
the brane. As a matter of fact, since the extrinsic curvature
is quadratic in the Gauss equation, the minus sign is not rel-
evant. The complete expression for the extrinsic curvature
is obtained by means of the appropriated junction condi-
tions. Following a procedure akin to the one presented in
(the Appendix of) Ref. [11], we shall think of the brane as
a hypersurface orthogonally riddled by geodesics in such a
way that the brane act as a truly interface between r > 0
and r < 0. In this vein, one is able to define the follow-
ing brackets [Q] = limr→0+ Q − limr→0+ Q for any ten-
sorial quantity Q. Expressing, then, the relevant quantities
by means of the Heaviside distribution, its derivatives and
products must fulfill the rules of the distributional calculus,
from which the Israel–Darmois junctions conditions arise.
It is to be noticed, however, that Kμν does not have second
derivatives in the metric and therefore both junction condi-
tions are nothing else but the usual ones. Thus, attributing a
energy-momentum tensor of the form

Tμν = −�gμν + Sμνδ(r) + T̃μν, (10)

the extrinsic curvature reads, as usual, Kμν = − κ2
5
2

(
Sμν −

1
3qμνS

)
. In Eq. (10) � is the bulk cosmological constant, Sμν

the energy-momentum tensor on the brane, and T̃μν stands
for any other eventual stress in the bulk. By its turn, Sμν

can also be decomposed into −vqβδ + τβδ separating out
the brane vacuum energy, v (in the case of a homogeneous
and isotropic brane), usually called the brane tension, from

the stress-tensor on the brane, τβδ . Taking advantage of Eq.
(10) along with (9) one arrives at the effective gravitational
equation on the brane given by

(4)Gβδ = −�4qβδ + Fβδ − 2

3
Kμνq

μ
β q

ν
δ

+8πGN τβδ − Eβδ + κ4
5 πβδ, (11)

where

�4 = κ2
5

2

(
� + κ2

5

6
v
)

+ K
4

− 2

3
Kμνq

μν, (12)

Fβδ = 2κ2
5

3

{
T̃μνq

μ
β q

ν
δ + qβδ

(
T̃μν − T̃

4

)}
, (13)

πβδ = −1

4
τα
β ταδ + 1

12
ττβδ + 1

8
qβδτ

αγ ταγ − 1

24
qβδτ

2,

(14)

and GN = κ2
5 v/48π . There are many relevant points appear-

ing in the Eqs. (11)–(14). First let us evince the terms which
are usual in the effective equations [8]. The tensors Fβδ ,
Eβδ , πβδ , and the effective Newton constant GN are the
same of they counterpart when the projection starts from
pure Einstein equation in five dimensions. In Eqs. (11) and
(12) the novelty is, of course, encoded in Kμν and its trace.
A special attention has to be paid to the Eq. (12), which
shows an interesting aspect arising in the implementation of
braneworld models within such a non-conservative gravita-
tional theory. This equation carries an effective cosmological
constant which now becomes a function of the coordinates
due to the terms inherited from the modified gravity. This
feature is attractive from the cosmological point of view, as
a time-dependent cosmological “constant” makes possible a
construction of a model of universe where the components
of the dark sector are able to interact each other, exchanging
energy and momentum [17–26]. This class of cosmologies
usually comes into play as an attempt of addressing the so-
called “coincidence problem” [27]. Obviously, in the well
behaved limit of a vanishing Kμν the usual brane effective
equations are recovered. An important characteristic appear-
ing in the projected equations is shown when investigating
the conservative law expressed in the Codazzi equation

DνK
ν
μ − DμK = (5)Rρσn

σqρ
μ, (15)

where Dμ is the covariant derivative with respect to qμν.
From (4) it can be readily verified that

(5)Rρσn
σqρ

μ = κ2
5Tρσn

σqρ
μ − Kρσn

σqρ
μ, (16)

and hence Eq. (15) gives

Dντ
ν
μ =

( 2

κ2
5

Kρσ − T̃ρσ

)
nσqρ

μ. (17)
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Notice that Eq. (17) is to be analyzed in order to investi-
gate the conservation of the brane stress-tensor. Usually, the
existence of a non vanishing T̃μν is the responsible for the
energy-momentum exchange between the brane and the bulk
and, of course, for a null T̃μν the brane stress tensor is (covari-
antly) conserved. HereKμν also shares this characteristic and
even in the absence of T̃μν the non conservative gravity term
act as the responsible for the brane-bulk energy-momentum
exchange. It must be stressed, however, that the non conser-
vative character of braneworld models with stresses in the
bulk and of the gravity theory at hand may cancel each other,
provided that

Kμν = κ2
5

2
T̃μν. (18)

These are a set of first order equations concerning bulk quan-
tities (metric and energy-momentum content). This result
comes exclusively from the non conservative gravity frame-
work.

We shall finalize this section pointing out that Eq. (18)
must be implemented for any (braneworld) model builder
who want to ensure conservation of the brane stress tensor in
the context studied here. It shall imprint a severe constraint
on the model in question. In the next section we dedicate
more attention to this question, not by investigating a par-
ticular model, but instead appreciating the consequences of
(18) which are to be shared by any model constructed in such
a scope.

4 Braneworld sum rules

In trying to find out consistency conditions for braneworlds
whose orbifold character is present, i.e., whose internal space
is indeed compact, it was conceived an important formal-
ism giving the necessary rules to be fulfilled by the plethora
of models conceived since the publication of [7]. This for-
malism was presented in Ref. [12], generalized in Ref. [13],
and studied under several different aspects [14–16]. We shall
depict here the main relevant aspects for our purposes. When
thinking of possible using the braneworld sum rules in the
non-conservative gravity context a word of warning is in
order. It seems possible, though nontrivial, to find out the
generalized partial traces coming from (4) and thus to achieve
the consistency conditions accordingly. Nevertheless, as we
want to deal with non-conservative gravity theory in the bulk,
we are going to use the standard protocol.

For booking keep purposes we start with a D-dimensional
bulk. Besides it is indeed more profitable to change the nota-
tion a bit making explicit the separation between bulk, brane,
and internal space. The line element reads

ds2 = gMNdX
MdXN = kmn(r)dr

mdrn

+W 2(r)hμνdx
μdxν, (19)

where M = {m, μ} stands for the whole bulk index whose
coordinates are denoted by XM . The brane has (p+1) dimen-
sion and is covered by coordinates xμ. Noticed that already
we separated out the warp factor W (r) contribution. Finally,
the (D− p− 1)−dimensional internal space is described by
kmn . Also, in order to make utterly clear the different geo-

metrical quantities we denote by ˜̃A internal space quantities,

while ¯̄A stands for a brane quantities. Thus it can be readily
verified that

Rμν = ¯̄Rμν − hμν

W p−1 ∇2W p+1, (20)

Rmn = ˜̃Rmn − p + 1

W
∇m∇nW, (21)

where ˜̃R, ∇m , and ∇2 are constructed out from kmn .
Now, with the aid of the partial traces Rμ

μ = W−2hμνRμν

and Rm
m = kmn Rmn it is possible to write

∇ · (Wα∇W )

= Wα+1

p(p + 1)

[
α( ¯̄RW−2 − Rμ

μ) + (p − α)(
˜̃R − Rm

m )
]
,

(22)

where α is a simple parameter, a freedom in the observance of
the Leibniz rule ∇ · (Wα∇W ) = Wα+1[αW−2∇W · ∇W +
W−1∇2W ]. The values attributed to α at the end of the for-
malism shall give rise to a one-parameter family of consis-
tency conditions. The key observation in applying the formal-
ism in the context of non-conservative gravity is to derive the
partial traces out from Eq. (4). Hence we have

Rμ
μ = κ2

5

D − 2

(
(D − p − 3)Tμ

μ − (p + 1)Tm
m

)
− Kμ

μ,

(23)

Rm
m = κ2

5

D − 2

(
(p − 1)Tm

m − (D − p − 1)Tμ
μ

)
− Km

m ,

(24)

where Kμ
μ and Km

m are defined as previously were their coun-
terparts Rμ

μ and Rm
m . They can be put in an explicit form as

Kμ
μ = W−2λα(∂μhμα − hμν∂αhμν), (25)

Km
m = λb∂mkbm − λmkab∂mkab − 2(p + 1)λm∂m(ln W ).

(26)

The first two terms of (26) shall eventually be discarded when
making contact with Eq. (6). We shall return to these equa-
tions later. By now we remember that in a compact internal
space the left-hand side of Eq. (22) vanish upon integration.
Therefore, taking back (23) and (24) into (22), we have
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∮
Wα+1

{
α ¯̄RW−2 − (p − α)

˜̃R + α K̃μ
μ + (p − α)K̃m

m

+ κ2
5

D − 2

(
Tμ

μ [2α + (D − p − 1)(p − 2α)]

+ Tm
m p[2α − p + 1]

)}
= 0. (27)

The energy-momentum tensor (10) may be suitable gen-
eralized to the sum rules formalism as

TMN = −�GMN −
∑
i

T (i)P[GMN ](i)�(D−p−1)(r − ri )

+T̃MN , (28)

where, as usual in the sum rules formalism, P[GMN ](i)
denotes the pull-back of the bulk metric on the i th-brane,
T (i) is the tension of the i th-brane and � is the generalization
of the Dirac distribution localizing the brane in the internal
space. These terms shall be simplified in the five-dimensional
case. From (28) Tμ

μ and Tm
m follows straightforwardly and,

hence, Eq. (27) may be recast in the form

∮
Wα+1

{
α ¯̄RW−2 + (p − α)

˜̃R − [γ + (D − p − 1)β]�

+ αKμ
μ + γ κ2

5

p + 1
T̃μ

μ + (p − α)Km
m

+ βκ2
5 T̃

m
m − κ2

5 γ
∑
i

T (i)�(D−p−1)(r − ri )

}
= 0, (29)

where β = p(2α−p+1)
D−2 and γ = p+1

D−2 [(p−2α)(D− p−1)+
2α]. Now it is possible to implement the particularizations we
are interested, relating the formalism with the previous sec-
tion. In this vein, we set D = 5, p = 3 leading immediately

to ˜̃R = 0. Eq. (29) then reads
∮

Wα+1
{
α ¯̄RW−2 − 2�(α + 1)

+ αKμ
μ + (3 − α)Km

m + κ2
5 T̃

μ
μ + 2(α − 1)κ2

5 T̃
m
m

}

= 4κ2
5

∑
i

T (i). (30)

Equation (30) provides a one parameter family of consistency
conditions. Notice that in the appropriate limit λM → 0 the
usual sum rules are recovered [13], as expected.

In trying to describe our universe in the four-dimensional

brane, one is able to set ¯̄R = 0. From the plethora of possibili-
ties arising from Eq. (30) the condition coming from α = −1
deserves to be highlighted. Usually, this choice reveals the
necessity (or not) of a negative brane tension in the model.
Using a standard bulk scalar field �(r) whose stress tensor
reads

T̃μν = −W−2hμν

(1

2
∇� · ∇� + V (�)

)
, (31)

T̃mn = ∇m�∇n� − kmn

(1

2
∇� · ∇� + V (�)

)
, (32)

it is possible to rewrite Eq. (30) as∮ {
− Kμ

μ + 4Km
m − 4κ2

5 (∇�)2
}

= 4κ2
5

∑
i

T (i), (33)

from which we see the possibility of a smooth extension
of the Randall–Sundrum model without the necessity of a
negative brane tension. This is indeed an attractive aspect for
braneworld modeling in this non-conservative framework.

We are now in position to analyze from the sum rules
perspective the peculiar output resulting from out previous
section investigation, namely: the possibility of the (covari-
ant) conservation of the brane stress-tensor provided that the
constraint (18) is verified. Notice that by taking advantage of
Eq. (18) we have

4Km
m − Kμ

μ = 2κ2
5 (∇�)2 (34)

and, from (33), it becomes clear the impossibility of the previ-
ously alluded smooth extension. Therefore, for braneworlds
built under the auspices of the non-conservative gravity one
has either conservation of the brane energy-momentum ten-
sor or choose a non-negative brane tension context.

We finalize pointing out that the sum rules might also be
suitable to imprint some conditions on the λA vector too.
For instance, by working with a particular case in which
λA = (0, λr ), then from Eqs. (25) and (26) we have Kμ

μ = 0
and Km

m = −4λr∂r (ln W ). Hence (33) leads to the following
condition (again choosing α = −1)

∮ {
4λr

d(lnW )

dr
+ κ2

5

(
d�

dr

)2}
= −κ2

5

∑
i

T (i), (35)

and a constant λr would also make impossible to preclude
from a negative brane tension (note that in this case the
first integral in the left-hand side of (35) indeed vanishes).
It shows that the vector engendering the non-conservation
may not be a completely free variable if one wish to
study braneworld models without negative brane tension.
We remark parenthetically that similar statements arise even
given up of exclusively positive brane tension and use the
constraint (18) along with the bulk scalar field and the sim-
ple choice λA = (0, λr ). In fact, as Kμ

μ = 0 one is forced to
conclude that V < 0, a definitely odd scenario.

5 Conclusion

The study we have performed exhausted the formal approach
concerning braneworld scenarios based upon non-
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conservative gravity. It is important to emphasize that even
in the most rudimentary approach, the result encoded in Eqs.
(11)–(12) is promising from the cosmological point of view.
In fact, in a context in which the πμν can be disregarded
(notice the κ4

5 coefficient), the bulk has no additional stresses,
and the geometrical setup carries symmetries enough to set
Eμν = 0, the remaining effective field equation has some
properties potentially interesting at cosmological level.

We have analyzed a possible braneworld setup based upon
a gravitational theory recently proposed where dissipative
effects are introduced in the least action principle. We used
this framework to generalize the consistency conditions to
be obeyed by any viable braneworld model. We have shown
that these non-conservative terms appearing in the new con-
sistency relations open the possibility of relaxing the nega-
tive tension condition verified in the Randall–Sundrum con-
text, so avoiding an undesirable property which plagues some
braneworld models. Besides, we have seen through Eq. (12)
that this model of gravity provides a braneworld scenario
with a running effective cosmological “constant”. As such
this novel aspect is promising for cosmology as it can make
feasible the emerging of interactions between dark energy
and dark matter [17–26].

Our study also shows that the model investigated is
allowed to have a standard conservation law for the energy-
momentum tensor on the brane even with a non-zero stress
in the bulk. On the other hand, we have seen that it is also
possible to exist exchange of energy between the brane and
the bulk, even if there is no stress in the bulk. The cosmolog-
ical consequences of the possibilities arising in the present
study shall be investigated in a future opportunity.
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