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Abstract The nonlinear dynamics behavior ana-

lyzed, in this paper, consists in a pendulum vertically

excited on the support by a crank-shaft-slider mech-

anism. The novelty is the obtainment and analysis of a

mathematical model for the pendulum dynamics,

under an excitation of a crank-slider, which is based

on an extension of the mathematical model of the

classical parametric pendulums. Through the model-

ing, it was verified that the nonlinear dynamics of the

pendulum, excited by the crank-shaft-slider mecha-

nism approaches to that of harmonic excitation, when

one considered the length of the shaft is sufficient

larger than the radius of the crank. The nonlinear

dynamic analyses focused on observation of different

kinds of motion for different values of dimensionless

parameters of the adopted mathematical model. These

parameters, includes the frequency of excitation, the

amplitude and the geometry of the crank-shaft-slider

mechanism. The adopted method of analyses used

tools, such as, Lyapunov exponents, parameter space

plots, basins of attractions, bifurcation diagrams,

phase portraits, time histories and Poincaré sections.

The kinds of motion include results on fixed point,

oscillations, rotations, oscillations–rotations and chao-

tic motions.
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List of symbols

a Length of the crank rod

b Length of the shaft

e a over b length ratio

m Mass of pendulum

t Time

l Length of the pendulum

u Angle between b bar and vertical axis

h Angle of the crank rod

a Pendulum rotation angle

s Dimensionless time

x Ratio between excitation and natural frequency

x0 Natural frequency of the pendulum

k Maximum Lyapunov exponent

xp Position of pendulum in x coordinate

yp Position of pendulum in y coordinate

F Dimensionless parameter relating the angles h
and u

1 Introduction

The classical parametrically excited pendulum has

been vastly studied in the literature and it is verified

that the harmonic excitation on the pendulum might

provoke different kinds of motion in a simple pendu-

lum. This paper is concerned on a new model of the

dynamics of a parametric pendulum, excited vertically

on the pivot by a crank-shaft-slider mechanism.

In the past, it was observed that the periodic

excitation might lead to chaotic motions in the

parametric pendulum in Leven and Koch [1], where

the chaotic behavior appears after cascading bifurca-

tions, characterized by an appearance of a strange

attractor in the Poincaré section.

Rotating periodic motions were shown in Clifford

and Bishop [2] where it was found that we may be able

to achieve rotating solutions reducing the force

applied in a harmonic stable solution. In Clifford and

Bishop [3] the location of oscillatory orbits was found

with odd oscillatory periodic solutions through a

horseshoe structure formed by invariant manifolds of

two saddles.

Xu et al. [4] brought the idea of rotating periodic

motions explored in the sense of generate electricity

from the parametrically excited pendulum. The con-

cept of energy extraction from sea waves with the

parametric pendulum resulted in a patent application

[5]. A possible utility for the mechanism studied in the

present paper is also the energy extraction, although it

is enough when you use the classic parametric

pendulum for the energy extraction from the sea.

The new possibility is a conversion of rotation, i.e., the

rotation of the crank converted in the rotation of the

pendulum. A crank powered by the wind can produce

energy through the rotating of the pendulum. In Fig. 1,

the mechanism containing the crank-shaft-slider and

the pendulum is sketched.

In Brasil et al. [6], a crank-shaft-slider mechanism

without the pendulum is proposed for harvest energy

from sea waves. There is a slider which is a floating

body free to undergo vertical motions as excited by sea

waves where the crank is powered by this slider.

In Kecik and Warminski [7] two kinds of chaotic

motions are detected. They are the chaotic swings and

the chaotic motion constituted by swings and rotations

of the pendulum. The mechanism with a mass linked

to ground with a spring and damper shaking a

pendulum provided experimental results to confirm

the two kinds of chaotic motions.

An analysis involving a comparison between

experimental and theoretical robustness of rotating

solutions in a parametrically excited pendulum was

performed in Lenci and Rega [8]. The experimental

results demonstrated that rotations exist in a region

Fig. 1 Schematic diagram

of pendulum coupled to the

crank-slider mechanism
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which is smaller than the theoretical one. The reason is

that a birth of a highly periodic rotation within the

basin of attraction suddenly reduces its safe region.

In Warminski and Kecik [9], it was carried out an

analysis of a system including a pendulum, a harmonic

oscillating mass in the support, a damper and a

nonlinear spring linking to the ground. It has been

verified that the motion of the oscillator, forced by an

external harmonic force, has been dynamically elim-

inated by the pendulum oscillations. The influence of

the nonlinear spring on the vibration absorption near

the main parametric resonance region has been

performed analytically.

An analysis of instabilities of an autoparametric

system is present in Warminski and Kecik [10]. A

nonlinear oscillator and a damped pendulum are

investigated in the main resonance. Analytical solu-

tions were obtained based on the Harmonic Balance

Method (HBM). The accuracy of the analytical results

was confirmed through numerical and experimental

results.

Using a perturbation method, the rotation solutions

were studied in Lenci et al. [11] considering the

undamped unforced Hamiltonian case as a basic

solution. The damping and excitation are small

perturbations. It was concluded the analytical method

is an accurate predictor for large amplitudes.

In Wang and Jing [12] it was implemented the

Lyapunov function method for projecting a controller

to a pendulum system with chaotic motion to a desired

periodic motion like period-1, period-2 and period-4.

The major advantage pointed in [11] was the time

Fig. 2 Basins of attraction for parameters: p = 0.5, x = 1.8 and c = 0.1. a e = 0, b e = 0.4, c e = 0.7, d e = 0.9

Table 1 Position of the

attractors (a, a0) for
different values of e

Oscillation period-2 Positive rotating Negative rotating

e = 0 (-1.66; 0.34) and (1.66; -0.34) (-1.15; 2.19) (1.15; -2.19)

e = 0.4 (-1.65; 0.37) and (1.65; -0.37) (-0.96; 2.26) (0.96; -2.26)

e = 0.7 (-1.64; 0.41) and (1.64; -0.41) (-0.81; 2.29) (0.81; -2.29)

e = 0.9 (-1.63; 0.44) and (1.63; -0.44) (-0.70; 2.30) (0.70; -2.30)
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consumption of control, which is shorter than the OGY

and SOGY methods.

It was proposed a control method for establishing a

periodic rotation in parametric pendulum based on a

delayed feedback control in Yokoi and Hikihara [13].

The proposed control could maintain the periodic

rotation in a certain range of delay with sufficient low

energy consumption. The experimentally obtained

results indicate that the frequency synchronization

overcomes the mistuned difference of delay in the

control method.

An extended experimental operation was carried

out in Lenci et al. [14] intending to obtain the

conditions for rotations of the pendulum excited by

waves. The rotational behavior was found for different

values of amplitude and frequency, showing robust-

ness in the parameter space. The same robustness

could be associated to initial conditions of position and

velocity of the pendulum. In general, the experimental

results were considered a preliminary proof of the

concept presented in [4, 5] is practical feasible.

In Litak et al. [15] dynamic responses of the

parametric pendulum were obtained experimentally.

Recurrence plots technique was performed with time

histories in order to find out the kind of motion using

only a few cycles. The method based on recurrence

quantification analysis (RQA) was able to differentiate

oscillations, rotations and the transient chaotic motions.

In Alevras et al. [16] it was analyzed the dynamics

of two pendulums on a block linked to a base with a

damper and a spring. The base is excited by a

sinusoidal force, thus provoking a stochastic paramet-

ric excitation of the pendulums. The system mounted

intended to explore the idea of extracting energy from

sea waves. The numerical analysis focused on the

establishment of rotation and in the synchronization.

Yang [17] presented a self-learning terminal slid-

ing-mode control for the synchronization and anti-

synchronization between two chaotic rotating pendu-

lums with different periods of harmonic parametric

excitation. The conditions for stable synchronizations

are executed through the Lyapunov stability theorem.

De Paula et al. [18] applied the extended time-

delayed control method in order to maintain stable ro-

tational solutions in a pendulum-shaker control system.

The method is based on stabilizing some unstable peri-

odic orbits in the chaotic attractor. Afterwards, the

period doubling bifurcation is prevented in order to

Fig. 3 Parameter space plot a e = 0, b e = 0.4, c e = 0.9
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extend the frequency range where there is a period-1

rotating orbit.

Szemplinska-Stupnicka and Tyrkiel [19] studied

the twin-well oscillator, the parametric pendulum and

the pendulum driven by an external harmonic force.

Chaos is preceded by two and only two asymmetric

periodic attractors, where they are simultaneously

annihilated through the period-doubling-crisis. It was

concluded that the appearance of chaos is not neces-

sarily related to the escape from potential well. It

would be a combination of crossing the potential

barrier and an oscillatory component. In [19] authors

divided chaotic motions in different kinds: oscillating

chaos, rotating chaos and tumbling chaos, in which the

tumbling chaos involves oscillations and rotations at

same time.

Warminski et al. [20] analyzed a non-ideal para-

metrically and self-exciting model by numerical and

analytical methods. The authors verified an interaction

between parametric and external excitation which

leads to a synchronization. In a comparison, the ideal

model exhibited a sort of internal loop in the region of

main parametric resonance, while the synchronization

had been obtained in the non-ideal model.

In Lenci and Rega [21] it was explored the idea of

dynamical integrity. The concept of safe basin is

reviewed. The method is based on drawing the basin of

attraction as a function of a varying parameter, in a

Fig. 4 Graphics for x = 1.8 and e = 0. a Bifurcation diagram, b Lyapunov exponents

Fig. 5 Graphics for x = 1.8 and e = 0.4. a Bifurcation diagram, b Lyapunov exponents
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way that one could see ‘‘erosion profiles’’. Consider-

ing the dynamical integrity decreases while amplitude

of excitation increases. A control method was applied

with the purpose to shift the erosion toward larger

excitation amplitudes.

In Belato et al. [22, 23] a non-ideal pendular model

was analyzed. The mechanism was a crank-shaft-

slider, which excited horizontally the pendulum sup-

port. The crank was powered by an electric motor

supplying energy to the pendulum. In [22] it was

observed that near the fundamental resonance the

pendulum exhibited multi-periodic, quasi-periodic

and chaotic motion. The loss of stability occurred

after a saddle-node bifurcation, when the pendulum

approaches to the angle p/2. In [23] it was found that in

the low frequencies the system presented few basins of

attraction with solutions of greater amplitude, chaotic

or multi-periodic. Also, the system presented a

boundary-crisis-bifurcation with sequences of

interruptions.

Hsieh and Shaw [24] analyzed the dynamic stability

of a crank-shaft-slider mechanism where the shaft is

considered flexible and the crank is rigid and rotates

with constant speed. The results focused on the

nonlinear effects which arise from the finite deforma-

tions in the rod. An analytical approach is carried out

using the method of multiple scales.

An experimental analysis of the crank-shaft-slider

mechanism is developed in Halbig and Beale [25]. The

purpose was to analyze the behavior of a flexible shaft

Fig. 6 Graphics for x = 1.8 and e = 0.9. a Bifurcation diagram, b Lyapunov exponents

Fig. 7 Graphics for x = 0.9 and e = 0. a Bifurcation diagram, b Lyapunov exponents
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in a steady state of high speedy crank. The bending of

the shaft was studied for different values of the speed

and the radius of the crank. The results obtained

demonstrated a period doubling and response ampli-

fication attributed to the rod flexibility.

InWauer andBührle [26] the samemechanismwith a

flexible rod was analyzed with a non-ideal source of

energy. The speedy of crank is no more constant. A DC

motor is responsible for the source of energy which is

dissipated by the flexible shaft. The results pointed that

the fluctuations may be prevented through an appropri-

ate choice of themotor and the system. Transient startup

and rundown are also considered in the numerical

simulation. Especial attentionwas given to the influence

of flexibility in the dynamic response of system.

In Goudas et al. [27] the crank-shaft-slider mech-

anism is also under a non-ideal forcing. The crank is

supported by compliant bearings. The bearings are

considered firstly with linear stiffness, nonlinear

stiffness and, finally, hydrodynamics bearings. The

mechanism is also compared in dynamics with con-

stant speed of the crank and with a non-ideal source of

energy. In the obtained results, the crank-to-rod length

ratio demonstrated impact in the dynamic of the

system, while the moment of inertia had practically no

effect.

In the mathematical model developed for the

present paper, the crank-shaft-slider mechanism is

analyzed as an extension of the classical parametric

pendulum presented in [1–4]. The length of crank

Fig. 8 Graphics for x = 0.9 and e = 0.4. a Bifurcation diagram, b Lyapunov exponents

Fig. 9 Graphics for x = 0.9 and e = 0.9. a Bifurcation diagram, b Lyapunov exponents
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divided by the length of the shaft appears at the final

formulae as a perturbation on the classical dynamic

equation of the parametric excited pendulum used in

the literature.

The modeling of the system analyzed here is

described in the article followed by an analysis for

different dimensionless parameters. Some differences

in the pendulum dynamics are observed for the

comparison between the classical parametric excita-

tion and due to the crank-shaft-slider.

1.1 Vibrating system description and governing

equations of motions

The mechanism investigated, here, consists of a rigid

weightless rod of length l with a mass m in the end

vertically excited by a crank-slider mechanism. The

link a is also a weightless rod which rotates with a

constant angular velocity whilst the pendulum joint

goes up and down moved by the link b. In brief, the

uniquemass considered is the bob at the extreme of the

pendulum. An illustration is represented in Fig. 1.

The unique degree of freedom is given by the angle

of the pendulum a. To write down the Lagrangian

function of the mechanism, the position of the mass

mwas written in terms of the coordinates a, h and u in

Eq. (1):

xp ¼ l sin a

yp ¼ �a cos h� b cosu� l cos a
ð1Þ

Taking into account the trigonometric relation

between h and u we may substitute in Eq. (1) what

Fig. 10 Time history, phase portrait and Poincaré section for x = 1.8 and e = 0. a p = 0.5, b p = 0.95, c p = 1.15, d p = 1.5,

e p = 2.8
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is written in terms of u. The value of cos u will be

substituted by the right side of Eq. (2):

cosu ¼ 1� a2

b2
sin2ðhÞ

� �1=2

ð2Þ

Derivation with respect to the time t, thus the

velocities are given by Eq. (3):

_xp ¼ l _a cos a

_yp ¼ a _h sin hþ a2 _h sin h cos h

b 1� a2

b2
sin2 h

� �1=2 þ l _a sin a
ð3Þ

Introducing a dimensionless variable F in Eq. (4),

dependent on h and its respective derivative, similarly

to Belato et al. [22]:

F ¼ sin hþ a sin h cos h

b 1� a2

b2
sin2 h

� �1=2
_F ¼ _h cos hþ a _h cosð2hÞ

b 1� a2

b2
sin2 h

� �1=2

þ a3 _h sin2ð2hÞ
4b3 1� a2

b2
sin2 h

� �3=2

ð4Þ

Therefore the velocities in Eq. (3) are rewritten in

Eq. (5) employing the F function:

_xp ¼ l _a cos a

_yp ¼ a _hF þ l _a sin a
ð5Þ

The kinetic energy T and the potential energy V in

form of xp and yp coordinates are written in Eqs. (6)

and (7):

T ¼ 1

2
m _x2p þ _y2p

� �
ð6Þ

V ¼ mgyp ð7Þ

The kinetic energy T and the potential energy V of

the examined system in terms of h and a coordinates

are written, respectively, in the Eqs. (8) and (9):

T ¼ 1

2
m l2 _a2 cos2 aþ a _hF þ l _a sin a

� �2
� 	

ð8Þ

V ¼ �mgl cos a

� mgb 1� a2

b2
sin2 h

� �1=2

�mga cos h ð9Þ

Through the prior forms of kinetic and potential

energy we apply Lagrange’s equation with respect to

the coordinate a:

d

dt

oL

o _a
� oL

oa
¼ GNC

a ð10Þ

Fig. 10 continued
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The term in the right-hand side of Eq. (10) stands

for the nonconservative force present in the motion.

This force opposes to the motion of the pendulum in

direction a and might be due to the friction in the joint

which supports the pendulum or can be due to the

viscosity of the medium. The friction opposing to the

movement of the slider was not considered in the

modeling because its motion is determined by the

velocity and geometry of the crank and the shaft. The

friction coefficient is represented by letter c and the

generalized force in Eq. (11) has dimension of torque.

GNC
a ¼ �cl2 _a ð11Þ

Calculating the derivatives in Eq. (10) the resultant

differential equation is in Eq. (12):

ml2€aþ mal _h _F sin aþ mgl sin a ¼ �cl2 _a ð12Þ

Dimensionless time s is inserted through terms

introduced in Eq. (13):

x0 ¼
ffiffiffiffiffiffiffi
g=l

p
s ¼ x0t

dF

ds
¼ 1

x0

dF

dt

da
ds

¼ 1

x0

da
dt

d2a
ds2

¼ 1

x2
0

d2a
dt2

dh
ds

¼ 1

x0

dh
dt

¼ x

ð13Þ

From here on, the derivatives with respect to time

t will be represented with a dot on the symbol, while

Fig. 11 Time history, phase portrait and Poincaré section forx = 0.9 and e = 0. a p = 0.8, b p = 1.5, c p = 2.5, d p = 3.6, e p = 4.4
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the apostrophe means a derivative with respect to the

dimensionless time s.
Substituting in Eq. (12) the terms with derivatives

with respect to t for terms with derivatives with respect

to s and afterwards dividing the whole equation for

mlx0
2, the dimensionless equation will be obtained:

a00 þ c

mx0

a0 þ sin a ¼ � a

l
xF0 sin a ð14Þ

The Eq. (14) turns into the classical parametric

pendulum equation [1–4] when the ratio a over b is

negligible. That will become explicit in the next steps.

Dimensionless parameters need to be inserted to

give a better form and allow an appropriate compar-

ison with the classical parametrically-excited pendu-

lum in the manner it is analyzed in literature. These

parameters are in Eq. (15):

p ¼ a

l
x2

e ¼ a

b

c ¼ c

mx0

ð15Þ

When the parameter e equals zero, the dimension-

less Eqs. (14) and (16) turns into the equation found in

[1–4]. It also means that when the maximum angle of

u approaches zero, the excitation by the crank-shaft-

slider becomes a harmonic excitation similarly to the

classical parametrically excited pendulum. However,

if the value of e is not negligible, the final dynamic

equation for this mechanism is exactly represented by

the Eq. (16):

a00 þ ca0 þ sina

�
1þ pcosðxsÞ

þ e
p cosð2xsÞ

1� e2 sin2ðxsÞ
� �1=2 þ e3

p sin2ð2xsÞ
4 1� e2 sin2ðxsÞ
� �3=2

#

¼ 0 ð16Þ

2 Numerical results

2.1 Basins of attractions

For each attractor in a dynamical system, there is a set

of initial conditions leading to it. This set of initial

conditions is called the basin of attraction of a

determined attractor. In the case of the parametric

pendulum, those initial conditions are the initial

angular position and the initial velocity of the

Fig. 11 continued
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pendulum. Basins of attractions are useful to show

how different values in initial conditions lead to

different kinds of motion. An analysis considering

basins of attraction for the parametric pendulum is

developed in Xu et al. [4].

The building process consists in initially investigate

how much time is necessary to obtain a steady state in

the dynamics of the pendulum. Afterwards, varying

the initial conditions for the position a from -p to p
and the velocity a0 from -4 to 4, using the fixed

parameters p = 0.5, x = 1.8 and c = 0.1, it was

verified that the regime was reached in most of cases in

300 times the excitation period. That was the time

elapsed for results plotted in Fig. 2a, b, c. An

exception for Fig. 2d, it was necessary 600 times the

excitation period to stabilize in e equals to 0.9.

It is more convenient for plotting that the motions

are stable, instead of chaotic. In this way, each

beginning point of a region is more likely to reach a

specific attractor. It means that the regions from

different attractors hardly ever will overlap one

another. Concerning the method of constructing the

basins of attraction, it was used the Poincaré maps to

find the attractors. The attractors found in this paper

corroborates with Xu et al. [4] for the case of e equals
zero. Varying the e value, the same attractor consid-

ering the kind of motion is found, where the difference

was a small displacement.

The attractors are a period-2 oscillation and two

attractors of period-1 rotation. Those rotational attrac-

tors are each one to a direction. One rotates to the

positive direction and the other to the negative direction.

Fig. 12 Time history, phase portrait and Poincaré section for x = 1.8 and e = 0.4. a p = 0.95, b p = 1.8, c p = 2.7, d p = 2.8,

e p = 3.5

1312 Meccanica (2016) 51:1301–1320

123



Afterwards the initial conditions were tested for the

interval of -p to p for position and -4 to 4 for

velocity, using a step of 0.01. The period-2 oscillating

attractors were marked with squares in the graphic and

the rotating period-1 with circles. For each picture,

there were two period-1 rotating attractors represented

in the respective region. The positive rotating region is

plotted in black and the negative in red. The region in

green is the area of attraction of the period-2

oscillation attractor.

The basins of attractions were built based on some

fixed parameters and varying the e. Using the param-

eters p = 0.5,x = 1.8 and c = 0.1, it was verified that

even varying the value of e, the attractors in the phase
portrait will nearly maintain a constant position as one

may see in Table 1. The attractors were obtained by

Poincaré sections. The position for rotating solutions

could be found displacing the angular position to the

interval between-p and p, considering zero as the rest
position. Otherwise, the basin of attraction could not

consider rotational solutions.

The method used to integrate the differential

equation was the 4th order Runge–Kutta and the time

step is the period of x divided by 400. As mentioned,

the positions of the attractors obtained demonstrate not

varying so much whist varying the e parameter.

2.2 Parameter space plot

A parameter space plot is a diagram, which represents

the distribution of different kinds of motion when two

or more parameters of the system are varied. In this

study, the analysis was done by observing different

bifurcation diagrams for x between 0.5 and 3.5, in

every 0.2 or 0.1 when necessary. In each bifurcation

diagram the value of p was varied from 0 to 4.5. Any

possibility of change of kind of motion was analyzed

with Poincaré sections, phase portraits and time

histories. Therefore the results could indicate that

some regions of kinds of motions might bymarked. On

the other hand, some regions could not be associated to

any type.

The Lyapunov exponents were also worked out

intending to aid the parameter plot construction. The

numerical method present in Wolf et al. [28] was the

algorithm used.

At the three Fig. 3a, b, c the regions were divided in

R1 for period-1 rotation, R2 for period-2 rotation, O2

for period-2 oscillation, C for chaotic result, Or2 for

period-2 oscillation–rotation and finally U meaning

‘‘uncertain’’ for the regions where different kinds of

motion occurs in narrow zones, hence not allowing to

establish a pattern. The results obtained in Fig. 3a are

Fig. 12 continued
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very similar to the parameter plot presented in Xu et al.

[4], while the Fig. 3b, c are originals (new) and

demonstrate the region of uncertain results increases

as the parameter e increases, when it is considered the
presence of the crank-shaft-slider mechanism.

2.3 Bifurcation diagrams and Lyapunov

exponents

Bifurcation diagrams were used to construct the

parameter space plots with many values for x from

0.5 to 3.5. Among these diagrams, it is more important

to point those correspondents to the resonant regions.

According Butikov [29] the resonant regions for the

classical parametrically excited pendulum are found in

the series X/x0 = 2/n, for n = 1, 2, 3…, where the X
is the external exciting frequency and x0 the natural

frequency, that is why it was chosen the values x
equals 1.8 and 0.9 for a more detailed analysis.

Bifurcation diagrams are followed by Lyapunov

exponents to ensure the chaotic behavior for some

regions. The results for Lyapunov exponents were

acquired from the last 10 % of elapsed time in 1000

times the excitation period. For each value of p it was

taken the greatest numerical value of Lyapunov

exponent k in that last 10 % of the time elapsed. The

step used in varying the parameter p was 0.001, this

was enough to represent a good amount of points in

Lyapunov exponents graphic as so as in bifurcation

diagrams. However, the time executed for bifurcation

Fig. 13 Time history, phase portrait and Poincaré section for x = 0.9 and e = 0.4. a p = 1.1, b p = 1.8, c p = 2.5, d p = 3.0,

e p = 4.5
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diagrams was chosen at 300 times the excitation

period, because more time, in general, did not exhibit

different features in graphics.

2.3.1 Frequency x = 1.8

For the parameter x equal to 1.8 it was observed an

enlargement of the region with chaotic behavior

comparing the Figs. 4, 5 and 6. Increasing the value

of e, the chaotic region increases accordingly. In

common, the bifurcation show that for higher values of

p the pendulum will exhibit rotating solutions, what

may also be observed in the parameter space plots.

2.3.2 Frequency x = 0.9

For the frequency associated to the parameter x equal

to 0.9 it was not observed a spread of the chaotic

region comparing Figs. 7 and 8. Indeed, it might be

seen a change of place for the chaotic region and

others kinds of motion. Very narrow regions of chaos

are present near p equals to 1.1, 1.8 and 3.4 in Fig. 7,

for x = 0.9 and e = 0. In Fig. 8 one can see larger

regions of chaos in 2.6 and 4.2, but they are in different

places of the chaotic regions in Fig. 7. In Fig. 9 the

chaotic regions are considerably larger than in Figs. 7

and 8, however, they also do not have the same chaotic

area.

2.4 Time histories, phase portraits and Poincaré

sections

The idea in this section is to analyze the kind of

motion for each zone in bifurcation diagrams.

Therefore it would be necessary the usage of time

histories, phase portraits and Poincaré sections. For

example, looking at the bifurcation diagram one

cannot distinguish a period-1 rotation from a period-

2 oscillation.

Figure 10 illustrates time histories, phase portraits

and Poincaré sections for parameters x = 1.8 and

e = 0. In Fig. 10a, for p equals 0.5, the result is a

period-2 oscillation of the pendulum. A period-1 pure

rotation was found in Fig. 10b, as well as in Fig. 10e,

for p equal to 0.95 and 2.8, respectively. In Fig. 10c, a

period-2 pure rotation occurs for p equal to 1.15 and a

chaotic attractor is found for p equal to 1.5, similarly to

that in Xu et al. [4].

Times histories, phase portraits and Poincaré sec-

tions forx = 0.9 and e = 0 are represented in Fig. 11.

Period-2 oscillations–rotations occur in Fig. 11b, c. A

period-1 oscillation appears for p equal to 0.8 in

Fig. 13 continued
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Fig. 11a. A period-1 pure rotation occurs in Fig. 11d

and the chaotic attractor takes place in Fig. 11e.

For x = 1.8 and e = 0.4 results are plotted in

Fig. 12. As previously, the period-2 oscillation

appears in Fig. 12a for p equal to 0.95. A chaotic

attractor may be observed in Fig. 12b and pure

rotations can be seen in Fig. 12c, d, e. For x = 0.9

and e = 0.4, period-2 oscillations–rotations are in

Fig. 13b, d. A chaotic attractor is present in Fig. 13c

for p equals 2.5 and a period-1 oscillation–rotation

occurs in Fig. 13e. A pure oscillation period-1 is

present in Fig. 13a.

Figure 14 brings the results for x = 1.8 and

e = 0.9, where chaotic attractors can be found in

Fig. 14c, e, but in different shapes. Period-2 pure

rotations are in Fig. 14b, d. The period-2 oscillation

attractor in Fig. 14a exhibits a more deformed orbit in

comparison with the phase portrait in Fig. 10a.

Finally, for x = 0.9 and e = 0.9, the obtained

results are in Fig. 15. There is a period-1 oscillation in

Fig. 15a and another in Fig. 15b. For p equals 3.65 and

4.2 the dynamic behavior obtained was the period-2

oscillation–rotation. The chaotic attractor may be

encountered for p equals 3.0 in the Fig. 15c.

In a comparison among graphics from Figs. 10, 11,

12, 13, 14 and 15, we can observe that pure rotational

orbits were not found in Figs. 13 and 15, both with

frequency in x equals 0.9, and e equals 0.4 and 0.9,

respectively. That is coherent with the results found in

the ‘‘parameter plots’’, where one can observe that

Fig. 14 Time history, phase portrait and Poincaré section for x = 1.8 and e = 0.9. a p = 0.9, b p = 1.25, c p = 2.5, d p = 3.7,

e p = 4.5
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rotational regions become narrower when the param-

eter e increases. In common, from Fig. 10 to the

Fig. 15, chaotic motion occurs for all values ofx and e
used when varying the parameter p. Only a change in

the shape of the chaotic attractor was observed. In

Table 2 the types of motion were enrolled relating

with the parameters x and e considering results

encountered during the variation of p.

Fig. 14 continued

Table 2 Types of motion

for values of the parameters

x and e

x = 1.8 x = 0.9

e = 0 Oscillation period-2 Oscillation period-1

Rotation period-1 Rotation period-1

Rotation period-2 Oscillation–rotation period-2

Chaotic motion Chaotic motion

e = 0.4 Oscillation period-2 Oscillation period-1

Rotation period-1 Oscillation–rotation period-1

Rotation period-2 Oscillation–rotation period-2

Rotation period-4 Chaotic motion

Chaotic motion

e = 0.9 Oscillation period-2 Oscillation period-1

Oscillation–rotation period-2 Oscillation–rotation period-2

Chaotic motion Chaotic motion
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3 Conclusion

The different kinds of motion take place for different

values of e. A greater value of e for x = 1.8 provokes

a clear increase of chaotic region in the bifurcation

diagram. For the frequency x = 0.9, an alteration of

the e causes just a displacement of the chaotic interval.

However, the main difference is consisted in the

increase of complexity observed on parameter plots

and bifurcations diagrams. The parameter space plots

for e equals 0.4 and 0.9 show an increase of uncertain

regions in comparison with e equals zero. The

bifurcation diagrams demonstrate the kinds of motion

are associated with more narrow regions when e is

bigger. In general, results become more complex as

the value of e enlarges and the x goes down.

The basin of attraction suggests the symmetry for

the pendulum is maintained while varying the param-

eter e. The opposite of what happens in the case of the
nearly parametric pendulum of Horton et al. [30],

when the value of the eccentricity of the elliptical

excitation may cause a break of symmetry in the basin

of attraction. Rotational regions in basin of attraction

are present for different values of e, however, the
rotational regions shrink whilst the value of e gets

bigger.

The future works aimed at addressing the main

issues of the newly developed topic of dynamical

integrity. The basic idea is that, sometimes, classical

(Lyapunov) stability is not enough for practical

purposes since there are cases in which the basin of

attraction around a stable solution is so small to be

Fig. 15 Time history, phase portrait and Poincaré section for x = 0.9 and e = 0.9. a p = 0.5, b p = 1.9, c p = 3.0, d p = 3.65,

e p = 4.2
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useless for practical purposes. This is particularly true

close to bifurcations, and calls for a detailed analysis

of basins structure and basins evolutions, which is the

scope of dynamical integrity measures and erosion

profiles. As demonstrated through the numerical

results for certain parameters the system has a chaotic

behavior, in order to keep the system on a periodic

orbits previously defined, in future work will be

considered the application of SDRE and OLFC

controls. The SDRE (State Dependent Riccati Equa-

tion) and OLFC (Optimal Linear Feedback Control)

techniques are recommended for nonlinear systems

and successfully used in the suppression of chaotic

behavior in the works [31–38] justifying its future

application on the model studied in this work.
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