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A B S T R A C T

As environments become increasingly degraded, mainly due to human activities, species are often subject to
isolated habitats surrounded by unfavorable regions. Since the pioneering work by Skellam [25] mathematical
models have provided useful insights into the population persistence in such cases. Most of these models,
however, neglect the sex structure of populations and the differences between males and females. In this work
we investigate, through a reaction-diffusion system, the dynamics of a sex-structured population in a single
semipermeable patch. The critical patch size for persistence is determined from implicit relationships between
model parameters. The effects of the various growth and movement parameters are also investigated.

1. Introduction

Population dynamics studies usually assume that a species is char-
acterized by a single sex-class of individuals, usually females. This ap-
proach is surely appropriate for hermaphrodite species and in systems
where population dynamics is determined by a single limiting sex [24].
However, as in many species males and females have quite distinct
demographic parameters and no sex dominates population dynamics,
these unstructured models become unrealistic and models that take into
account the dynamics of both sexes are needed [4].

Males and females can show, for instance, quite distinct dispersal
abilities, which can have a great impact on their spatial distributions.
To cite a few examples, dispersal of C. carcharias (white shark) is sex-
biased with philopatric (non-roving) females and roving males [21]; at
local scale, dispersal in the common vole M. arvalis is strongly male-
biased [10]. It has been suggested as a general result that in mammals
males usually disperse more frequently than females, while in birds
females are the most dispersive sex [11]. In human-altered environ-
ments sex-biased dispersal is thought to expose populations to an even
greater risk of extinction [6]. Individuals that used to disperse to other
sites in the landscape may not find suitable areas, resulting in increased
loss of the most dispersive gender. As a consequence, sex-biased dis-
persal may lead to biased sex-ratios in the natal population, leaving a
higher number of individuals unpaired.

Despite the increasing number of empirical studies on sex-related
effects, very few mathematical studies have analyzed the dynamics of
sex-structured populations in space. Miller et al. [20] derived an ex-
plicit expression for the speed of invasion of a two-sex integrodifference

model. The effect of sex-biased dispersal on the spreading speed was
then studied. Reaction-diffusion equations have also been used to study
the dynamics of sex-structured populations in space [1,14]. Jin et al.
[14] modeled populations with short reproductive seasons in patches of
limited sizes through a periodic impulsive reaction-diffusion system
with Dirichlet boundary conditions, and identified conditions for po-
pulation persistence.

Increasing degradation of natural areas frequently subject popula-
tions to habitats of limited size surrounded by unfavorable regions.
Since the pioneering work by Skellam [25], reaction-diffusion equa-
tions have become one of the most important mathematical tools in the
study of population persistence in such situations. Skellam posed the
“minimal size problem” of how large a patch must be to support a
population. For a single population with hostile boundaries, diffusion
constant d and intrinsic growth rate r, the critical size of a one-di-
mensional patch is =l π d r/c .

In this study we examine the minimal size problem for sex-struc-
tured populations. We model population dynamics through a reaction-
diffusion system with reproduction given by the standard harmonic
mean mating function [16,19]. We study the problem of species per-
sistence in a finite domain with semipermeable boundaries and show
how standard techniques in the analysis of monotone parabolic partial
differential equations can be used to find an implicit relation that de-
termines the critical patch size. In the limit of completely hostile
boundary conditions, this critical patch size can be expressed explicitly
in terms of model parameters. Moreover, we study how distinct males’
and females’ traits affect the critical patch size.
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2. The model

Growth in two-sex models is a process that involves pair formation
and the production of new offspring by females. The number of couples
for certain local female (f) and male (m) populations is given by the
mating (or birth) function B m f( , ). Several forms for B have been
proposed [12,20]. This function is usually required to follow some
desired properties [3,12]: it needs to be a positive, non-decreasing
function for all m, f≠ 0, as well as homogeneous, that is,
B B=am af a m f( , ) ( , ) for all a≠ 0. The harmonic mean function

B =
+

m f
mf

m f
( , )

2
(1)

follows all these properties and is free from the difficulties other
functions present [15]. The geometric mean B =m f mf( , ) and
minimum function B =m f m f( , ) min( , ) are other common mating
functions. The harmonic mean mating function is often considered the
least objectionable mating function [16]. Also, Miller and Inouye [19]
verified in a laboratory experiment that the harmonic mean mating
function best describes the growth of the bean beetle (Callosobruchus
maculatus) at low densities.
B can be easily modified to account for polygamous systems, in

which males or females can mate with more than one partner. If h re-
presents the number of females with which each male mates, also
known as the “harem” size, the number of “harems” formed is given by
B m f h( , / ) [24]. The number of paired females is then given by
Bh m f h( , / ). Polygynous, monogamous and polyandrous mating sys-

tems can be accommodated by setting h>1, =h 1 or h<1, respec-
tively.

Now we assume that individuals of both sexes move and reproduce
in a single one-dimensional habitat of size l. The local number of re-
producing females for given male (m) and female (f) densities is as-
sumed to be given by the harmonic mean mating function, Eq. (1).
Different mating systems are accommodated by properly introducing
the harem size (h) into the model, as described above. We also assume
that male and female diffusivities, dm and df respectively, are distinct in
general. Denoting time as t≥ 0 and spatial positions by ∈ −x l l[ /2, /2],
we write the reaction-diffusion system of equations for male and female
populations as:

∂
∂

= ∂
∂

+
+

−m
t

d m
x

c g
mf

m f h
μ m

2
/m m

2

2 (2)

∂
∂

=
∂
∂

+ −
+

−
f
t

d
f

x
c g

mf
m f h

μ f(1 )
2

/
,f f

2

2 (3)

where c∈ [0, 1] is the fraction of males at birth and g is the rate of
production of new offsprings per paired female, while μm and μf are the
male and female mortality rates, respectively.

At patch boundaries we impose semipermeable boundary conditions
[5,27]. We initially write these conditions in the form given by Van Kirk
and Lewis [27]:

∂
∂

± = ∓ ±m
x

l c m l( /2) ( /2)m (4)

∂
∂

± = ∓ ±
f
x

l c f l( /2) ( /2),f (5)

where parameters cm, f≥ 0 represent the enticement of individuals to
leave the patch. For =c 0m ( =c 0f ) no males (females) leave the patch
and we get no-flux conditions. In the limit cm, f→∞, individuals leave
the patch and never return.

We introduce the new scaled quantities:

= = = = =

= =

∼M m F
f
h

T gt X
g

d
x μ

μ
g

D
d
d

L
g

d
l

, , , , ,

, ,

m
m f

m f

f

m m

,
,

and rewrite the equations as:

∂
∂

= ∂
∂

+
+

− ∼M
T

M
X

c hMF
M F

μ M2
m

2

2 (6)

∂
∂

= ∂
∂

+ −
+

− ∼F
T

D F
X

c MF
M F

μ F(1 ) 2 .f

2

2 (7)

In this new scaling we can define the boundary permeability of males
and females as

=
⎛
⎝

+ ⎞
⎠

α
c

c1
.m f

m f
d
g

m f
d
g

,

,

,

m

m

Boundary conditions then read:

− ∂
∂

± = ∓ ±α M
X

L α M L(1 ) ( /2) ( /2)m m (8)

− ∂
∂

± = ∓ ±α F
X

L α F L(1 ) ( /2) ( /2).f f (9)

Parameters αm, f∈ [0, 1] control boundary permeability and can
represent both individual movement decisions [27] and the quality of
the exterior region [17]. In the limit =α 0m f, no individuals are lost
through the boundaries and we get no-flux conditions. Yet when

=α 1m f, we get hostile boundary conditions. In this case, every in-
dividual that hits a boundary leaves the patch and never returns.

The Eqs. (6)–(7) form a system of nonlinear partial differential
equations that is homogeneous, in the sense that if (M(X, T), F(X, T)) is
a solution to the system, then (sM(X, T), sF(X, T)), with s a given con-
stant, is a solution as well. Note also that there is no saturating me-
chanism in our mating function and therefore solutions either decrease
to zero or grow to infinity asymptotically. Accordingly, our model is
appropriate to investigate the growth of small populations and speci-
fically the critical size problem.

3. Results

Our goal is to derive persistence conditions for our sex-structured
model, i.e. conditions for which the population can grow. Persistence
conditions for problems without Allee effects are typically derived from
the linear stability of the trivial zero steady state solution [2]. When we
try to linearize Eqs. (6)–(7) around the (0, 0) state, though, we obtain
an indeterminacy in the sex-ratio of populations, =M F/ 0/0, which
leads to the mating function being undefined. In what follows below,
we obtain conditions for species persistence instead by finding parti-
cular exponential solutions for this system and determining conditions
for the growth of these solutions. Using results from maximum princi-
ples for parabolic partial differential equations, we then show that these
conditions imply persistence of the population for a general class of
initial conditions.

3.1. Particular solutions

We seek solutions of the form:

=M X T M e V X( , ) ( )λT
0 (10)

=F X T F e V X( , ) ( ),λT
0 (11)

where M0 and F0 are given positive constants. As population densities
are always positive, we consider only real values of λ, and V(X)≥ 0.
Substituting these expressions into Eqs. (6) and (7), V(X) must satisfy
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simultaneously the two equations:

+ =d V
dX

δ V 0m

2

2
2

(12)

+ =d V
dX

δ V 0,f

2

2
2

(13)

where:

=
+

− −∼δ hc
σ

μ λ2
1m m

2

0 (14)

= ⎡
⎣⎢

−
+

− − ⎤
⎦⎥

∼δ
D

c σ
σ

μ λ1 2(1 )
1

.f f
2 0

0 (15)

In the above equations =σ M F/0 0 0. Note that V(X) must also satisfy
boundary conditions (8)–(9).

Solutions for Eq. (12) with negative δm
2 lead to real-valued ex-

ponential functions that do not satisfy the boundary conditions (8).
Therefore, δm is real and can be assumed non-negative without loss of
generality, so the solution of (12) can be written as:

= +V X P δ X Q δ X( ) sin( ) cos( ),m m (16)

where P and Q are constants to be determined. Applying conditions (8),
P and Q are obtained from the solution of the linear system:

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢ −

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

=P
Q

A B
A B

P
QA 0,

(17)

with A and B given by:

= − +A α δ δ L α δ L(1 ) cos( /2) sin( /2)m m m m m (18)

= − − +B α δ δ L α δ L(1 ) sin( /2) cos( /2).m m m m m (19)

System (17) admits nontrivial solutions only if =Adet( ) 0, so either
A or B is null. Note that if A and B are both null we must have

= − −δ α α[ /(1 )]m m m
2 2 contradicting the required positivity of δm

2 (see
above). If =A 0 (and hence B≠ 0), we must have =Q 0 and therefore:

=V X P δ X( ) sin( )m . This solution, however, changes sign at the origin.
By the positivity of V, we must have A≠ 0, and therefore =B 0. The
analysis for female Eq. (13) with boundary conditions (9) is completely
analogous. Positive solutions of the form (10)–(11) thus require:

⎛
⎝

⎞
⎠

=
−

δ L α
α δ

tan
2 1

1m m

m m (20)

⎜ ⎟
⎛
⎝

⎞
⎠

=
−

δ L α
α δ

tan
2 1

1 .f f

f f (21)

Since δtan (δL/2) spans the whole + for δ∈ [0, π/L) and
− ∈ +α α/(1 ) , each equation above always has a real root for δm, f in

the interval [0, π/L). This guarantees that, with this choice of δm, f, V(X)
is indeed positive in the domain −L L[ /2, /2]. On the other hand,
Eqs. (14) and (15) yield λ and σ0 in terms of δm and δf:

=
− − −

+ +

∼
∼σ

hc μ λ δ
μ λ δ

2 m m

m m
0

2

2 (22)

=
− − − + − +

+ −

∼ ∼
λ

hc c c μ δ hc μ Dδ
hc c

2 (1 ) (1 )( ) ( )
(1 )

.m m f f
2 2

(23)

Thus, for each set of parameters, the possible values of λ are de-
termined by transcendental Eqs. (20) and (21). Growth or decline of the
population is then determined by the sign of the largest λ (λ*).

Eqs. (20)–(21) present an infinite number of solutions but, since
(23) is decreasing in both δm

2 and δ ,f
2 λ* is determined by the smallest

values of δm and δf (assumed both positive), that is, the smallest positive
roots of Eqs. (20)–(21). In the following subsection we show that λ* also
determines the growth of general initial conditions.

3.2. Outcomes of general initial conditions

We begin by showing that the system (6)–(7) preserves the order of
solutions. This follows from the application of maximum principles for
parabolic pdes [2,22].

We write the system of Eqs. (6), (7) as:

∂
∂

− ∂
∂

=M
T

M
X

G M F( , )M
2

2 (24)

∂
∂

− ∂
∂

=F
T

D F
X

G M F( , )F
2

2 (25)

where

=
+

− = −
+

−

∼

∼

G M F c hMF
M F

μ M G M F c MF
M F

μ F

( , ) 2 and ( , ) (1 ) 2

.

M m F

f

This system is cooperative as it can be readily seen that >∂
∂ 0G

F
M and

>∂
∂ 0G

M
F . In addition, GM(M, F) and GF(M, F) are continuous functions

with continuous first derivatives of their variables.
With these properties established, along with boundary conditions

(8,9), this system satisfies the hypotheses of the comparison theorem
1.20 in [2]. This theorem implies that, given two solutions

=S M X T F X T( ( , ), ( , ))2 2 2 and =S M X T F X T( ( , ), ( , ))1 1 1 of (6,7) subject
to boundary conditions (8,9) such that initially we have

≥M X M X( , 0) ( , 0)2 1 (26)

≥F X F X( , 0) ( , 0)2 1 (27)

in = ∈ −X L LΩ { ( /2, /2)} and either

± ≥ ±M L T M L T( /2, ) ( /2, )2 1 (28)

± ≥ ±F L T F L T( /2, ) ( /2, )2 1 (29)

or

± ± − ∂
∂

± ≥ ± ± − ∂
∂

±α M L T α M
X

L T α M L T α M
X

L T( /2, ) (1 ) ( /2, ) ( /2, ) (1 ) ( /2, )m m m m2
2

1
1

(30)

± ± − ∂
∂

± ≥ ± ± − ∂
∂

±α F L T α F
X

L T α F L T α F
X

L T( /2, ) (1 ) ( /2, ) ( /2, ) (1 ) ( /2, ),f f f f2
2

1
1

(31)

for ∈T T(0, ], where >T 0 is any given instant of time, then

≥M X T M X T( , ) ( , )2 1 (32)

≥ ×F X T F X T T( , ) ( , ) in Ω (0, ],2 1 (33)

and the ordering of solutions is maintained.
We use this ordering property to show that the largest λ in (23), λ*,

also determines the growth or decline of solutions to the system evol-
ving from general initial conditions. Suppose that for a given set of
parameters we have λ*> 0, so that solutions (10)–(11) grow with time.
Given initial conditions M(X, 0) and F(X, 0) that are strictly positive in
Ω, M0 and F0 can always be taken small enough in a way that M(X,
0)≥M0 V(X) and F(X, 0)≥ F0 V(X) for X∈Ω. As the solutions evolved
from these initial conditions satisfy boundary conditions, conditions
(30)–(31) are clearly satisfied. Thus, the ordering of solutions is pre-
served and it follows that solutions obtained from initial conditions M
(X, 0) and F(X, 0) also increase with time. In a similar way, if λ*< 0 we
can choose M0 and F0 large enough so that M(X, 0)≤M0 V(X) and F(X,
0)≤ F0 V(X) in Ω. In this case the decline of solutions (10)–(11) imply
the decline of general solutions.

At first, the reasoning above does not apply for initial conditions
that have zeros in the domain, as in this case the only way of bounding
these functions below by initial conditions of (10)–(11) is making

= =M F 00 0 . This case, however, can be accommodated by applying the
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following basic result from maximum principles.
The system of Eqs. (6), (7) can be rewritten as:

∂
∂

− ⎡
⎣⎢

∂
∂

− ⎤
⎦⎥

=
+

≥∼M
T

M
X

μ M c hMF
M F
2 0m

2

2 (34)

∂
∂

− ⎡
⎣⎢

∂
∂

− ⎤
⎦⎥

= −
+

≥∼F
T

D F
X

μ F c MF
M F

(1 ) 2 0.f

2

2 (35)

Given the conditions above, the maximum principle (see Theorem 1.17
in [2]) states that if M (F) attains a minimum value ≤M 0min ( ≤F 0min )
at a point (X0, T0) in × TΩ (0, ], then ≡M X T M( , ) min ( ≡F X T F( , ) min )
on Ω×(0, T0]. This shows that any solution to our system with initial
conditions that contains zeros in the domain becomes strictly positive at
T>0 and the reasoning described earlier applies. We have thus shown
that persistence in this system is in general determined by the sign of
λ*.

3.3. Critical patch sizes

We now investigate the effects of the various parameters on the
critical patch size, Lc. If L< Lc, λ*<0 and the population is eliminated.
For L> Lc we have λ*>0 and the population can grow. We compute Lc
by numerically determining the patch size for which λ* changes sign.
As λ is decreasing in both δm

2 and δf
2 we use the smallest roots of (20)

and (21), to compute λ* from (23).

Fig. 1a shows the critical patch size as a function of the fraction of
males at birth, c. Lc is minimized at intermediate fraction c. As we have
set =D 2 (so =d d2f m), the minimum occurs for a ratio lower than half.
Thus, persistence is enhanced when the more dispersive sex, females in
this case, has a larger fraction of individuals at birth. The critical patch
size is an increasing function of the mortality rates of both populations
(see Fig. 1b) and a decreasing function of “harem size” (see Fig. 1c).

When h becomes very large, the dynamics is completely determined
by females. The critical patch size is then given by the single species
threshold [5,17]:

=
− −

⎛

⎝
⎜ − − −

⎞

⎠
⎟∼ ∼L D

c μ
α

α
D
c μ

2
2(1 )

arctan
1 2(1 )

.c
f

f

f f (36)

This expression is obtained by taking the limit h→∞ and =λ 0 in
Eq. (23), from which we determine δf. Lc is then obtained after sub-
stituting the expression for δf in (21). Note that (36) corresponds to the
critical patch size of a single population with diffusion constant D and
intrinsic growth rate = − − ∼r c μ2(1 ) ,f subject to boundary conditions
(9). The effect of the scaled diffusivity, D, is shown in Fig. 1d. The
critical patch size increases with the diffusivity of females.

Finally, Fig. 2a-c illustrate how boundary permeabilities affect Lc. In
panel Fig. 2a female permeability αf is kept constant while we change
αm. In panel Fig. 2b we do the reverse. Both permeabilities are varied in
panel Fig. 2c maintaining them equal to each other. As expected, the
increase of permeability of males and females increases the critical

Fig. 1. Critical patch size as a function of: (a) fraction of males at birth, (b) mortality rates, (c) “harem size” and (d) the scaled diffusivity D. Except when being
varied, we use the parameter values: =D 2, =c 0.5, =h 1 and = =∼ ∼μ μ 0.1m f . In all panels = =α α 0.5m f .
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patch size. Because we have set the female diffusion rate larger than for
males ( =D 2), the female permeability has a stronger effect on Lc when
varied alone (see Fig. 2b).

3.4. Hostile boundary conditions

Completely hostile boundary conditions for males and females are
obtained when = =α α 1m f . In this limit population densities are null at
boundaries and every individual that hits a boundary leaves the patch
and never returns. We show below that an explicit expression for the
critical patch size can be obtained in this case.

Taking the limit = →α α 1m f in Eqs. (20) and (21) yields that the
first (smallest) positive root δm (δf) tends to π/L, which corresponds to
the first asymptote of the tangent function. Plugging this result into (23)
and imposing the criticality condition =λ 0, we obtain the following
critical patch size:

= − +
− − − −∼ ∼L π c hcD

hc c c μ hcμ
(1 )

2 (1 ) (1 )
.c

m f (37)

4. Discussion

The differences between male’s and female’s traits are often ne-
glected in population dynamics studies. On the other hand, the

importance of sex-specific characteristics and the role of males in po-
pulation growth have been increasingly acknowledged [23]. In this
study we analyzed a two-sex model in a single patch with semiperme-
able boundaries. Finding particular solutions and using maximum
principles for parabolic partial differential equations, we derived im-
plicit expressions for the critical patch size. As far as we know, this
study provides the first derivation of the critical patch size of a two-sex
model with continuous movement and reproduction.

Our results show that the qualitative dependence of the critical
patch size on the parameters of the model matches the biological ex-
pectations. Lc is minimized at intermediate fraction of males at birth
and grows infinitely large as mortality rates increase. The minimum size
of the patch is a decreasing function of the “harem” size h and an in-
creasing function of the scaled female diffusivity D. Highly permeable
patches – large αm and αf – require larger patch sizes for the population
to persist.

We have limited our analysis to the case of a harmonic mean mating
function (Eq. (1)). Surely, this mating function does not accomodate all
the rich variety of mating systems encountered in nature. However, it
follows all the desired properties of a mating function and has been
widely applied in the ecological literature [15,16,20]. It is therefore a
suitable choice to study the basic effects of space limitation on sex-
structured populations. From a mathematical perspective, this function
allowed us to obtain particular solutions on the form (10)–(11) and
simple relations for the critical patch size.

Fig. 2. Minimum patch size as a function of: (a) males boundary permeability, αm; (b) females boundary permeability, αf and (c) boundary permeabilities of both
sexes while keeping =α αm f . Parameters are: =D 2, =c 0.5, =h 1 and = =∼ ∼μ μ 0.1m f . We have =α 0.5f in (a) and =α 0.5m in (b).
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A closer inspection on the equations reveals that as long as the
mating function is homogeneous (i.e. B B=am af a m f( , ) ( , )) parti-
cular solutions can be found. For instance, in the model

B
∂
∂

= ∂
∂

+ −m
t

d m
x

c g m f μ m( , )m m

2

2 (38)

B
∂
∂

=
∂
∂

+ − −
f
t

d
f

x
c g m f μ f(1 ) ( , ) ,f f

2

2 (39)

the ansatz =m x t m e v x( , ) ( ),λt
0 =f x t f e v x( , ) ( )λt

0 leads to

∂
∂

+ =v
x

δ v 0m

2

2
2

(40)

∂
∂

+ =v
x

δ v 0,f

2

2
2

(41)

where

B
= ⎡

⎣⎢
− − ⎤

⎦⎥
δ

cg σ
σ

μ λ
d

( , 1) 1
m m

m

2 0

0 (42)

B= − − − =δ c g σ μ λ
d

σ m f[(1 ) ( , 1) ] 1 , / .f f
f

2
0 0 0 0

(43)

Similarly as in Eqs. (22) and (23), we can solve (42) and (43) for λ and
σ0 to determine persistence conditions. Our procedure therefore is ap-
plicable, in principle, to a general class of homogeneous mating func-
tions. For other forms of B m f( , ), however, the determination of σ0
from (42) and (43) may not be as simple as in the harmonic mean case.

In [1] the following non-homogeneous (i.e.B B≠am af a m f( , ) ( , ))
mating function was derived:

B =
+ +

m f
ρmf

ρT m f
( , )

1 ( )
,

c (44)

where ρ is the search rate and Tc is the coupling time. If this mating
function is used in Eqs. (2), (3), instead of the harmonic mean, a bis-
table behavior is introduced in the system. Then, when persistence is
possible, either elimination or the unbounded growth of both sexes are
obtained, depending on the initial conditions. In this case the notion of
a critical patch size is slightly different. A well-defined question is if
there exists a patch size below which even an infinitely large initial
population would go extinct. We argue that, since function (44) cor-
responds to the harmonic mean when populations are large, this critical
size corresponds to Lc derived from our model, after a redefinition of
constants.

Another related aspect of spatial population dynamics which has
been poorly investigated in sex structured models is the speed of spatial
spread. Miller et al. [20] obtained the speed of invasion of a two-sex
integrodifference model in homogeneous space. Ashih and Wilson [1]
studied a two-sex reaction-diffusion model with two female classes,
unpaired and fertilized, and calculated the rate of spatial spread in the
limit of low gestation times. We are not aware of any calculation of the
invasion speed for the basic two-sex reaction-diffusion model given by
Eqs. (2), (3). The assumption of traveling wave solutions

= −M M V X CT( )0 and = −F F V X CT( )0 is only compatible with no
dispersal bias (results not shown), =D 1. As a matter of fact, the dif-
ference between diffusivities produces a spatially dependent sex-ratio at
the leading edge of invasion and the assumption of a constant

= =σ M F M F/ /0 0 no longer holds. These questions are left for further
studies.

In our analysis, the population of each sex was considered homo-
geneous and therefore a homogeneous mixing between males and fe-
males was assumed. The subdivision of populations in different sub-
groups and the consideration preferential mixing between the

subgroups have shown to induce major effects on the dynamics of
epidemiological models [7–9]. We conjecture that the inclusion of such
effects can affect the critical-patch size of two-sex populations.

The development of spatial two-sex population models is still in its
beginnings. As new empirical studies on the dispersal of sex-structured
populations emerge [13,26], new models that incorporate greater rea-
lism will be needed. The consideration of other spatial arrangements,
for example, can bring a better connection to empirical results. Our
contribution paves the way for a broader understanding of sex-related
effects. Finally, we suggest that in a space composed of many patches,
consideration of sex-specific edge behavior by using the framework
presented in [18] may reveal interesting results.
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