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Yield estimation is an important factor in a production process planning. In the case of citrus crops, can be
useful in industrial management and as guidance for farmers, showing a decisive role in the product
market strategies and cultivation practices. Several techniques are being studied for estimating citrus
crop yield. On the basis of the known correlation between the number of visible fruits in a digital image
and the total of fruits present in an orange tree, we developed a method for green fruit feature extraction
with a combination of the techniques of color model conversion, thresholding, histogram equalization,
spatial filtering with Laplace and Sobel operators and Gaussian blur. In addition, we built and tested
an algorithm to recognize and count them, with detection rates of false-positives of 3% in images acquired
in good conditions. It is possible to estimate the mean number of visible fruits in the trees within a tol-
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1. Introduction

Among the technology resources that are part of the modern
production processes aiming to improve management strategies
and crop yield, stand out the Global Positioning System (GPS), Geo-
graphic Information Systems (GIS), Remote Sensing (RS), Variable
Rate Technology (VRT), yield mapping and advances in sensors
and information technology. These improvements have enabled
farmers to see the field in a wide and detailed manner, helping
resource planning and diminishing its waste, taking into account
the variability observed in the field (Annamalai et al., 2004).

Citrus crops are known to show an alternated behavior regard-
ing its yield, as an outcome of plant’s intrinsic energy storage
mechanisms. These mechanisms generate a large temporal
variation with respect to fruit yield and fruit quality (Isagi et al.,
1997; Noguchi et al., 2003). Consequently, the known prediction
methods do not show satisfactory results, becoming more ineffi-
cient as the prediction period increases (Sakai et al., 2008). For that
reason, an efficient and practical sampling method is important, in
order to be applied regularly for a better follow up on the plants.

Knowledge and follow up on each plant individually have
becoming each time more important, since this alternated
behavior dynamic has a proved endogenous and individual source
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(Sakai et al., 2008). This makes it essential to a reasonable sampling
plan not to be destructive. Moreover, traditionally, procedures as
liming and fertilizing take into account soil and climate conditions,
leaving aside plants individual characteristics, treating them
uniformly. With the rise of precision agriculture, more specific
knowledge on the plants individually is gaining practical
advantages, being possible through detailed maps and equipment
capable of vary the application rates with spatial precision of
centimeters.

Important attempts on citrus yield prediction have been made.
Sakai et al. (2008) demonstrated that prediction was successful
for one-year forecasting in a season based on a very short ecological
time series, with relative root-mean-square error (RRMSE) of 0.678
and correlation coefficient (CC) of 0.734. Greater prediction time
increased the RRMSE to 0.993 and decreased the CC to 0.116, indi-
cation long-term unpredictability. A prediction system in real time
showed positive results (Annamalai et al., 2004) but only when the
fruits are in a more advanced maturation state because they are
segmented in the images by their color. In this stage, the application
of techniques to improve yield is not possible and there is not
enough time for market and industrial planning. The system pur-
posed by Triboni and Barbosa (2004) has the same disadvantage,
counting only the ripe fruits in the trees. There is also an Android
application that showed efficient for fruit counting in the same con-
ditions, with estimations up to 90% between the real yield values
and the ones estimated for individual trees (Gong et al., 2013).
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Leaves and fruits were analyzed for differences in the reflected
electromagnetic  spectrum through hyperspectral images
(Annamalai et al., 2004). Aerial images acquired with help of an
aerial model remotely piloted were used for fruit recognition
(MacArthur et al., 2006) and embedded sensors were used for
image acquisition and posterior processing for fruit recognition
and counting (Annamalai, 2004). Digital image processing methods
as the watershed transform were used for the segmentation of clus-
tered fruits (Chinchuluun et al., 2006), neural networks were used
in aerial hyperspectral images (Ye et al., 2006) and the number of
new leaves and floral flushes were studied, with help of vegetation
indices, for relation with the number of fruits through a least-
squares method for yield estimation, without positive results (Ye
et al, 2007). More recently, the performance of the TBVI
(Two-Band Vegetation Index) was reassessed (Ye et al., 2008), as
the green fruit detection through hyperspectral images (Okamoto
and Lee, 2009). The use of digital images for yield prediction in
citrus is promising, given that there is a functional relationship
between the number of visible fruits in the images and the total
number of fruits in the plants (Triboni and Barbosa, 2004).

However, those methods have several limitations, requiring
highly specialized labor or expensive equipment and generally a
low efficiency (Gong et al., 2013). In addition, some are not afford-
able by small farmers. All the cited methods need improvements,
considering that even in hyperspectral images the number of
false-positives is large, precluding its application in estimation
processes. Further studies are needed (Okamoto and Lee, 2009)
mainly because even with good results, low cost and easy applica-
tion for prediction with ripe fruits (Gong et al., 2013), it is still
necessary to enable the yield estimation with more time before
harvesting.

Texture analysis through digital image processing techniques
enables the generation of images that simulate a bas-relief effect,
as in bronze sculptures of famous artists as Donatello. The bas-
relief representation gives us a more enhanced notion of depths
and texture. Computerized techniques of bas-relief generation
are been studied and evaluated (Belhumeur et al., 1999; Cignoni
et al,, 1997; Ji et al., 2014). Regardless the limitation of the digital
image to be a visual representation in two dimensions, the main
concept of these images generation is the simulation of the effect
present in the sculpture of a solid material.

Obtaining those bas-relief representations from common digital
images involves several digital image processing procedures, as
border detection, image enhancement, spatial filtering and fusion,
among others (Durand and Dorsey, 2002; Paris and Durand, 2006;
Wang, 2011; Weiss, 2006). Border detection is one of the funda-
mental problems of digital image processing and computer vision,
being obtained by operators well known like the Laplacian, Sobel,
Robert’s cross operator, Prewitt’s and Canny’s (Wang, 2011). A
bas-relief representation of a common digital image would be
result of a combination from the above methods, for example.

Therefore, bas-relief representations are important for the
extraction of texture features of the objects in the image, what
becomes clear regarding the spherical shapes, that shows a region
of high brightness and other with low brightness, considering a
single source of illumination. The concept of texture is of extreme
importance in images, enabling the definition of measures of prop-
erties like smoothness, rugosity and regularity. Hence, texture can
be defined as the difference on the intensity pattern between
pixels in a neighborhood (Gonzalez and Woods, 2000).

After the texture analysis for feature extraction the next step is
the recognition and classification of those features. In this case, we
are interested in the classification of a region of the image as a fruit
or not. For that task, there are several reports of the use of machine
learning techniques as, for example, neural networks, also in the
recognition of orange fruits (Regunathan and Lee, 2005). Another

important method of machine learning is the Support Vector
Machines (SVMs). In a similar way of the neural networks, the
SVMs require a learning step and, after its training they become
a pattern classifier. This type of method has a wide application in
image processing, with positive results in the recognition and
classification of apples, applied in images treated with Otsu’s
thresholding (Otsu, 1975). The authors verified segmentation
errors ranging from 3 to 25% using a linear SVM and errors lower
than 2% using an adjustable method for the classifier.

SVMs are maximum margin classifiers. Instead of the
association of probability distribution models to the training
vectors, SVMs try to split the different classes finding the adequate
immediate borders between them. For this purpose, they build
separation hyperplanes in the separation region between those
classes (Keuchel et al., 2003).

This recognition method has large application in image process-
ing applied to agriculture. It is reported as the best method of
recognition and classification of oil palm areas in aerial images,
showing a good performance even with a small training set (Li
et al., 2015). It is also reported as one of the best methods in the
recognition and classification of different varieties of rapeseed
(Kurtulmus and Unal, 2015), and presented 100% of correct
classifications of mango fruits quality, overcoming all other tested
methods (Sa’ad et al,, 2015). There is also reports of its use in
flower cultivation, showing good results in the detection of
diseased rose leaves (Nagasai and Rani, 2015).

Early yield estimation of orange crops could enable the modifi-
cation of cultivation practices in order to increase fruit size and
quality, provide better planning for market and industrial process
and make possible the generation of precise yield maps to be used
in VRT. The objective of this work was to build and test an
algorithm for automatic counting of green fruits in digital images
of orange trees, on the basis of texture analysis and SVMs.

2. Materials and methods

The relationship between the number of visible fruits in the
images and the number of fruits counted by the algorithm was
evaluated through linear regression analysis. The 1328 images
were obtained with collaboration of Citrosuco Company in the
2011 crop year. All images were taken at 2 m of distance between
the end of the tree’s canopy and the camera, in field conditions, in
different hours of the day and several climate and lightning condi-
tions. Regular digital cameras were used (Sony DSC-W530) and
images were taken in a 2592 x 1944 pixels spatial resolution
(approximately 5 Megapixels), with flash always on and without
optical or digital zoom.

At the moment the image was taken, it was identified regarding
the plants’ variety and age. Tests were performed in orange trees
from four varieties (Hamlin, Natal, Péra, Valéncia) in three groups
of ages (from 3 to 5 years old, from 6 to 10 years old or older than
11 years). Each plant was photographed twice (one image from
each accessible side of the canopy).

The automation of manual tasks is always very attractive
because brings up the potential of time saving and precision at
its execution. Consequently, the performance of a proposed
method should be tested against a well known and reliable
method. In this case, the automatic method was compared to the
visual manual counting, where all the images were counted by
human inspectors in digital monitors.

The manual counting on the images was helped by the develop-
ment of a software, in which the user just needed to click over the
fruits to increase an automatic counter. The results of this step
enabled the study of the relationship between the number of
visible fruits in the images and the outcome of the algorithm
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developed. The automatic method was applied to all of the
collected images from the 2011 crop, with exception only for those
cases where the image quality was very low, impairing the
algorithm performance significantly or even forbidding the manual
counting process.

All the procedures used in this work were developed on the
basis of the implementation of C++ methods, making use of the
Open Source Computer Vision library (OpenCV) (Bradski, 2015).
Feature extraction was constructed on the basis of texture analysis,
through the generation of bas-relief representations from common
two-dimension digital images.

2.1. Bas-relief representations

Bas-relief representations were obtained by the combination of
the techniques of color model conversion, thresholding, histogram
equalization, spatial filtering with Laplace and Sobel operators and
Gaussian blur (Fig. 1).

Considering the facts that the images were obtained in open
areas, susceptible to variations on the illumination conditions,
and the plant canopies are irregular, it is indispensable the adjust-
ment of brightness. Among the methods used for this purpose, the
most common are the log transformation and gray levels
histogram equalization (Gonzalez and Woods, 2000; Kurtulmus
et al., 2011; Savvides and Kumar, 2003), that have been applied
to the value layer of the HSV color model.

2.2. The Sobel operators

Sobel operators are gradient operators responsible for edges
detection in the horizontal and vertical directions, with the
advantage of providing, for once, the differentiation and smoothing
effects. Once derivation increases the noise of the image, the
smoothing effect is one attractive feature of these operators
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Fig. 1. Flowchart of the purposed algorithm for the generation of bas-relief
representations.

(Gonzalez and Woods, 2000). In a region of an image with size of
3 x 3 given by
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when Sobel operators are applied through spatial filtering by the
masks
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it yields the respective derivatives based on those masks:
Gy = (27 + 225 + 20) — (21 + 22, + 23)

and

Gy = (23 + 226 + 29) — (21 + 224 + 27)

in which values of z are the levels of gray of the overlapping pixels
by the masks in any position of the image. The calculations yield a
single value in the center of the mask being applied, and a new
value should be calculated for each pixel of the image, considering
its edge limitations together with the size of the mask. The result
after the calculations for all the pixels is a new image, highlighting
the edges found.

2.3. The Laplacian operator

The Laplacian of a two-dimensional f(x,y) is a second order
derivative given by:

o>f Pf

2 _ —

Vf = et ek
As in the case of the Sobel operators, this equation can be imple-

mented in the digital form in several ways. For the case of a region
of size 3 x 3, the most frequently used masks are:
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and
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where it defines the respective derivative equations from those
masks:

Vf = 425 — (2o + 24 + 26 + 2s)
and
szZSZsf(Z] +2p+23+24 +2Z6 +27 + 23 +Zg),

where again the values of z are the gray levels of the gray pixels
overlapped by the mask. The definition of the digital laplacian
requires that the associated coefficient with the central pixel is pos-
itive and the other external coefficients are negative. Besides that,
once this operator is a derivative, the summation of its coefficients
should be null. The result of the application of the mask is null in
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every case in which the not null neighboring coefficient presents
the same value as the central pixel.

However, even responding to transitions on pixels’ intensity,
the laplacian has little use in this form for edges detection. It hap-
pens because, for being a second order derivative filter, the opera-
tor is extremely sensible to noise in an unacceptable way. It is also
important to bring up that it produces double borders, incapacitat-
ing it to detect its directions. Therefore, the laplacian shows a sec-
ondary role as a detector to determine if a pixel is in the light or
dark side of a border (Gonzalez and Woods, 2000).

This operator shows a more general use of localization of the
edges through its zero cross property, based on the convolution
of the image by the laplacian of a two-dimensional Gaussian func-
tion given by:

Vix,y) =

1 X2 +y2 242
202

_ —7'50'4 e 202
where ¢ is the standard deviation (Marr and Hildreth, 1980).

2.4. Fruit feature extraction

The most complex and challenging step of digital image pro-
cessing is the segmentation of the desired characteristic. This gets
even more difficult when the image acquisition occurs in non stan-
dardized conditions (Zhao et al., 2015). It was possible to highlight
the fruits in the images of orange trees canopies through a combi-
nation of the techniques of color model conversion, thresholding,
Gaussian blur and spatial filtering with Laplace and Sobel masks.
The images took in the field showed a large amount of strange ele-
ments that needed to be removed before the procedures of recog-
nition and counting of the fruits, as the soil, the sky and the weeds.
In addition, the fruits are easily confused with the leaves of the
tree.

The prevailing color of green fruits in orange trees is very sim-
ilar to the leaves, what ruled out this parameter of the segmenta-
tion attempts. For consequence, the H (Hue) and S (Saturation)
components of the color model were not used in the pre-
processing for feature extraction. On the other hand, the V (Value)
component brings very important information about brightness,
being for that reason the selected one for fruit feature extraction.

Histogram equalization is largely used in digital image process-
ing applied to agriculture. Its properties of contrast stretching are
used in the detection of diseases in cotton leaves (Warne and
Ganorkar, 2015), for example. In the case of the citrus images, it
showed good results in the standardization of the illumination
from the images taken in very different conditions.

The next step is when texture analysis takes place, by means of
the use of the Laplace and Sobel filters. Those techniques consist
basically on the convolution of the image by predefined kernels
(or masks). Hence, a pixel or a group of pixels with neighbors pre-
senting similar levels of gray represent a smooth texture region
(low frequency) and pixels with neighbors presenting levels of gray
very different represent a harsh texture region (high frequency). In
the case of the citrus canopies, the fruits can be classified as
smoother regions (low frequencies) than the leaves, what enabled
its segmentation. The Sobel high-pass filter was used in the hori-
zontal direction because of the illumination pattern of the fruits
(which have an approximately spherical shape), characterized by
a high value of brightness in the upper half and a low value in
the lower visible half.

The soil was removed through thresholding applied to the Hue
component of the HSV color model. The numerical scale of this
component makes it possible to identify pixels by its colors. In
the case of the soil, it has a very different color value from the rest
of the image, being safely removed based on its reddish coloring.

Part of the sky was also removed based on very high values of
the brightness component in the images.

The bas-relief representation is now built as a combination of
the above techniques. As noticeable in Fig. 2, the fruits are
highlighted as in bas-relief sculptures, with its upper half brighter
and its lower half darker. The automatic generation of these
representations enables the use of method of recognition and
interpretation for the number of visible fruits estimation, defining
the first step of the development of the automatic system for citrus
yield estimation.

2.5. Fruit counting

2.5.1. Spatial masks

The bas-relief representation highlights the spherical shapes in
a particular manner. When there is a single illumination source
from a superior position, it determines a well defined brightness
pattern: the visible part of the upper semi-sphere showing a high
brightness value and the visible part of the lower semi-sphere a
low value. This enabled the definition of two spatial masks, capable
of detecting the fruits in the pre-processed images, from several
dimensions. The main principle is the ratio between the upper
and the lower parts which, in the case of the fruits, outcomes
higher values than in the rest of the image in most of cases, acting
as a preliminary classifier.

2.5.2. Support Vector Machines (SVMs)
After the first step of identification, the use of more robust
methods for fruit recognition becomes necessary, considering that

Fig. 2. Bas-relief representation of an orange tree highlighting the green fruits on
the basis of texture and brightness analysis.
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the orange tree images present countless shapes, positions and
textures of leaves, that can be confounded with fruits, even in
the bas-relief representations. Therefore, SVMs where chosen for
the next step, the fruits recognition.

Hard margin SVMs define linear limits from linearly separable
data. Let T be a training set with n observations, x; € X its respec-
tive labels y; € Y in which X is the data space and Y = {-1,+1}.
T is linearly separable if it is possible to split the data into classes
+1 and —1 through a hyperplane given by:

fx)=w-x+b=0

where w - x is the scalar product of the vectors, w € X is the vector
normal to the described hyperplane, H%H is the distance from the
hyperplane to the origin, with b € R. This enables the calculation
of a signal function g(x) = sgn(f(x)) to be used for obtaining the

classifications (Lorena and Carvalho, 2007):

+1ifw-x+b>0
-1ifw-x+b<0.

g(x) = sgn(f(x)) = {

The limits of the separation margins of the data should be
calculated given some restrictions which assure that there is no
training data between the margins, what is the origin of the name
of this SVM as a hard margin SVM. The final step for the definition
of these limits for classification falls in a quadratic optimization
problem, which has a wide and established mathematical theory
(Scholkopf and Smola, 2002). Since the objective function being
minimized is convex and the points that satisfy the restrictions
form a convex set, the problem has a global minimum. This type
of problem can be solved with the introduction of a Lagrangian
function, considering the restrictions to the objective function
associated to parameters named Lagrange multipliers o;, as
exposed by:

] n
L(w, b, o) =5 [[Wi[* = > oi(y;(w - x; + b) —1).
i=1

2.5.3. The Hough transform

The Hough transform (Hough, 1962) brings up an efficient
approach to the recognition of lines in images. Considering the
point (x;,y;) and a line y; = ax; + b, infinite lines pass through
(xi,y;) satisfying the line’s equation, for different values of a and
b. However, it is possible to rewrite this line as b = —x;a +y and,
as the values of x; and y; are known, its new representation in
the parameter space (axis x and y replaced by a and b) is given that
each point (x;,y;) describes a corresponding line. When three or
more lines intercept in a single point (a’,b’), the corresponding
points (x;,y;) belong to a same line y; = ax; + b.

Now, considering the equation of a circle

x—c)+y-a)=d,

the Hough transform application occurs in an analogous way. The
basic difference is the presence of three parameters (c;, ¢, e c3), that
will produce a three-dimensional parameter space. The procedure
then is to increment c¢; and ¢, and find the c; that solves the circle
equation, followed by the update of a corresponding accumulator
(Gonzalez and Woods, 2000).

2.5.4. Algorithm strategy for fruit recognition

Five different classifiers were defined for fruit detection because
of the several conditions in which images were taken, as for exam-
ple different canopy sizes and different fruit sizes. Either the pre-
liminary classifiers (based on spatial masks) or the SVMs were
subdivided (Fig. 3). This enabled a more efficient training of the
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Fig. 3. Flowchart of the fruit recognition algorithm in bas-relief representation
images of orange trees.

SVMs, increasing significantly its detection power without increas-
ing the number of false-positives.

The algorithm testing showed that the lower the distance
between the camera and the plant canopy, the greater the number
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Fig. 4. Linear regression for the relationship between the number of fruits obtained
by the algorithm and the number of fruits found by the inspectors in the manual
counts of images from 591 orange trees (1182 images). Data from the 2011 crop
year.
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of false-positives detected. Those cases occurred mainly in the
detection patterns of lower dimensions, confusing leaves (larger
in these cases) with fruits. For that reason, a rule was implemented
to disregard the counting results of those patterns depending on
the amount of fruits detected by the patterns of higher sizes.

Lastly, all the detected fruits were stored in a binary image as
circles with radius proportional to the size of the pattern of the
detection. Consequently, the fruits recognized by more than one
pattern size resulted in overlapping white circles in that image,
avoiding multiple counting of a single fruit. This binary image
was the subjected to the Hough circles detector (Yuen et al.,
1989) and the final number of fruits is equal to the number of
detected circles. The method was tested on a computer with
Unix-based operating system, 2.4 GHz Intel Core i5 processor and
8 GB 1600 MHz DDR3 RAM.
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2.5.5. Number of required images for visual fruit number estimation

After the model fitting, the proportional deviations from the
estimates were calculated, in order to find out the needed number
of images to estimate the mean number of visible fruits per tree in
a population, given a tolerated error rate D in percentage of
the mean. The calculations were made based on sample size
determination and given by Thompson (1992):

t2s2
=5

where t is the value of Student’s t with n — 1 degrees of freedom at
the o = 5% level of probability, s? is the variance of the proportional
deviations and D is the tolerated error for the mean estimation.
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Fig. 5. Linear regression for the relationship between the number of fruits counted by the algorithm and those visually counted by the inspectors in images of 591 plants

(1182 images) stratified by age groups. Data from the 2011 crop year.
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Fig. 7. Linear regression for the relationship between the number of fruits counted by the algorithm and those visually counted by the inspectors in images of 591 plants
(1182 images) stratified by the combinations between varieties and age groups. Data from the 2011 crop year.

3. Results and discussion
3.1. Comparison between automatic and manual counting methods

Fig. 4 shows the overall performance of the method presenting
the results of the linear regression. This model fit was obtained
from 1182 images of 591 trees. Two hundred images of 100 plants
were removed from the initial set for being in bad conditions for

the automatic counting and even for the manual evaluations too.
Each dot in the chart represents the summation of the counts of
two images taken from the same tree found by the algorithm in
the x axis and the summation of the visual manual counts found
by the inspectors in the y axis.

Among the factors that could interfere with the algorithm per-
formance, major importance was given to the age and the variety
of the plants. An age effect was expected due to the size of the
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plant, in which the distinctness of the fruits inside the canopy, the
number of fruits occluded by the leaves and the fruit size could be
affected, even with a fixed distance from the plant canopy. Regard-
ing varieties, some would present more fruits only recognizable by
human inspectors inside the canopy than others. Those age and
variety effects can be observed in Fig. 5 and in Fig. 6.

Therefore, still regarding Fig. 5, it becomes possible to identify a
difference for age group 1 (3-5 years old). Basically, the intercept
of this model was less than the other age groups due to the number
of fruits not recognized by the algorithm but counted by the
inspectors manually. These fruits would be the partially occluded,
that are not evident enough to be accounted by the algorithm but
are recognizable by the human capabilities.

With respect to the varieties, the stratification is also interesting
mainly because of the structural difference between the plants. For
that reason, all the combinations between varieties and groups of
age were studied individually seeking more precise models, as
shown in Fig. 7. These results show that the linear regression is
capable of representing the relationship between automatic and
manual methods in 11 of the 12 combinations. The exception is
for Natal with age between 3 and 5 years, probably because of
the low number of points available for model fitting and testing.

Values of the coefficient of determination for the fit (R*) ranged
from 0.19 (Péra from 3 to 5 years old) to 0.74 (Natal with age equal
or older than 11 years) (Fig. 7).

3.2. Methods benchmarking

Both methods were benchmarked for comparison regarding the
time spent on its execution. In the manual approach, the most of
the time was spent in the recognition and identification step by
the inspectors, making the effect of computational resources negli-
gible (Table 1).

The automatic method provided a reduction on time spent of
approximately 85% in comparison with the manual method and a
reduction of about 90% in comparison with the method of
Kurtulmus et al. (2011). The time savings here presented would
be extremely important for practical purposes, enabling the use
of a greater number of images for the estimation of the total num-
ber of fruits per plant.

3.3. Algorithm performance

The algorithm was not able to detect all fruits in the images.
Moreover, there were detections of parts of the image that were
not fruits, being called false-positives. These errors are mostly a
consequence of the uneven light conditions, image quality, absent
or not enough flash light in the moment of image taking, distance
between the camera and the plant canopy, irregular plant canopies
and variable fruits sizes. The measured algorithm performance is
available in Table 2.

The results of the performance evaluation of the algorithm
points to the fact that the percentage of correct identifications were
constant and the amount of false-positives were low. False-positive
rates greater than the observed here were reported by Kurtulmus
et al. (2011) in their method, reaching up to 40.3%, which confirms
a better performance of the here proposed method. It also is worth
mentioning that our results take into account a final set of 1182
images, after the removal of only the low quality images, i.e. the
ones with indistinguishable fruits or blurred by camera motion.
This contrasts with the cited work that reports results only in two
images taken in different conditions: sunny and shadow side.

As a concern with the effect of the quality of the image (dark
image, blurred image, direct light on the lens, etc.), they were
grouped into four distinct groups: very good, good, regular and
bad. The detection rates kept around 50% when the image quality

Table 1
Descriptive statistics of the time spent in seconds by the manual and automatic fruit
counting methods in 1182 orange trees images.

Statistic Manual Automatic
Mean 64.9 9.79
Median 63.2 9.80
Minimum 49.8 8.50
Maximum 94.7 11.8
Standard deviation 131 0.31
Coefficient of variation 20% 3%
Table 2

Algorithm performance evaluation for the detection of green fruits in images of
orange trees through the percentage of correct identifications + the standard error of
the mean grouped by varieties and age groups in 1182 individual images. Data from
the 2011 crop year.

Stratum Images Correct False-positives (%)
identifications (%)

General 1182 49.03 £1.42 14.68 £ 0.52

Variety

Hamlin 187 4427 +1.29 11.24 £ 0.89

Natal 154 46.48 +1.78 14.22 £1.29

Péra 355 52.21+1.94 17.75 £ 0.91

Valéncia 486 49.32 £2.99 13.96 £ 0.90

Age group

3-5years old 248 53.53+2.03 17.27 £1.02

6-10 years old 374 47.30 £ 1.02 12.66 £ 0.78

11 years old or more 560 48.22 +2.73 14.86 + 0.84

Table 3

Algorithm performance evaluation for the detection of green fruits in images of
orange trees through the percentage of correct identifications * the standard error of
the mean grouped by image quality in 1182 individual images. Data from the 2011
crop year.

Stratum Images Correct identifications (%) False-positives (%)
General 1182 49,03 £ 1,42 14,68 £ 0,52
Image quality

Very good 281 46,63 £ 0,74 3,20+0,21

Good 349 44,74 £0,93 8,34+ 0,41
Regular 464 51,06 + 1,54 20,90+ 0,71

Bad 88 62,91 +16,45 42,40 £3,70

was not bad, being greater in the last case. The false-positive rates
increased considerably in the direction of the decrease of image
quality, together with the standard deviation of the mean (Table 3),
clarifying the effect of performance decrease as lower the image
quality gets. It is also worth bringing attention to the ‘very good’
group, made by 281 images and with a false-positive detection rate
of approximately 3%, the lowest ever reported for green fruit
counting in orange trees to the best of our knowledge. The
algorithm was capable of detecting fruits with diameter ranging
from 20 to 45 pixels in the images, which were resized to
1024 x 768 pixels.

An example of the algorithm application in a ‘very good’ image
is available in Fig. 8. It becomes clear the capacity of recognition of
the fruits in the plant’s canopy. Nevertheless, improvements are
still needed aiming to increase the correct identifications rate,
what would be necessary to achieve a better precision in the
estimation of total fruits per plant.

Finally, we calculated the number of required images to
perform an estimation of the visible fruits per plant using the
algorithm. Since the use of specific models for each combination
of varieties with age groups would outcome more precise results,
the obtained values for a precision of 5, 10, 15 and 20% are avail-
able in Table 4.
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Fig. 8. Green fruit detection in an image of a Valéncia orange tree of age group 1
(from 3 to 5 years old).

Table 4
Number of required images for mean visible fruits estimation in orange trees for the
tolerated error of 5, 10, 15 e 20% for each combination between varieties and age
groups.

Stratum Images Sample units

5% 10% 15% 20%
General 1182 278 70 30 18
Varieties x age groups
Hamlin x 3-5 years old 54 140 36 16 8
Hamlin x 6-10 years old 70 46 12 6 2
Hamlin x 11 or more years old 60 48 12 6 2
Natal x 3-5 years old 18 208 52 24 14
Natal x 6-10 years old 66 386 96 42 24
Natal x 11 or more years old 66 62 16 6 4
Péra x 3-5 years old 58 824 206 92 52
Péra x 6-10 years old 102 112 28 12 6
Péra x 11 or more years old 186 254 64 28 16
Valéncia x 3-5 years old 116 338 84 38 22
Valéncia x 6-10 years old 130 88 22 10 6
Valéncia x 11 or more years old 256 458 114 50 28

In the case of Hamlin from 6 to 10 years old and Hamlin with
11 years or mode are presented the best results of the algorithm.
In these cases, it is possible to estimate the mean number of visible
fruits with a precision of 5% with only 48 images. It means that, if
100 samples are taken with 48 images each from an orange trees
population of the Hamlin variety with 6 years or more, in 95 of
them t,_sy the value of the mean number of visible fruits would
be within the interval of the population mean * 5%. It is important

to point out that this procedure would take approximately 470 s
(7.8 min) to complete, without any human interaction.

4. Conclusions

We developed a method for green fruit feature extraction in
digital images of orange trees. In addition, we built and tested an
algorithm to recognize and count them, with detection rates of
false-positives of 3% in images acquired in good conditions. It is
possible to estimate the mean number of visible fruits in the trees
within a tolerated error of 5% with up to 46 images and taking
approximately 8 min.
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