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Denis Gouvêa Ladeira1 and Edson D. Leonel2,3

1Departamento de F�ısica e Matem�atica, Univ. Federal de S~ao Jo~ao del-Rei, UFSJ, Rod. MG 443, Km 7,
Fazenda do Cadete, 36420-000 Ouro Branco, MG, Brazil
2Departamento de F�ısica, Univ. Estadual Paulista, UNESP, Av. 24A, 1515, Bela Vista, 13506-900 Rio Claro,
SP, Brazil
3Abdus Salam ICTP, 34100 Trieste, Italy

(Received 12 June 2012; accepted 5 December 2012; published online 28 December 2012)

Some dynamical properties of an ensemble of trajectories of individual (non-interacting) classical

particles of mass m and charge q interacting with a time-dependent electric field and suffering the

action of a constant magnetic field are studied. Depending on both the amplitude of oscillation of the

electric field and the intensity of the magnetic field, the phase space of the model can either exhibit:

(i) regular behavior or (ii) a mixed structure, with periodic islands of regular motion, chaotic seas

characterized by positive Lyapunov exponents, and invariant Kolmogorov–Arnold–Moser curves

preventing the particle to reach unbounded energy. We define an escape window in the chaotic sea

and study the transport properties for chaotic orbits along the phase space by the use of scaling

formalism. Our results show that the escape distribution and the survival probability obey

homogeneous functions characterized by critical exponents and present universal behavior under

appropriate scaling transformations. We show the survival probability decays exponentially for small

iterations changing to a slower power law decay for large time, therefore, characterizing clearly the

effects of stickiness of the islands and invariant tori. For the range of parameters used, our results

show that the crossover from fast to slow decay obeys a power law and the behavior of survival orbits

is scaling invariant. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772997]

The formalism of escape is used to study the dynamics

and hence the transport of charged particles in an accel-

erator. The model consists of a periodically time depend-

ent electric field limited to a certain region in space that

furnishes or absorbs energy of a particle. After the parti-

cle leaves the electric field region, a constant magnetic

field impels the particle to move in a circular trajectory.

This magnetic field is responsible for bringing the parti-

cle back to the electric field region leaving the energy

unchanged. The control parameters e and s represent the

amplitude of the time-dependent electric field and the

inverse of the magnetic field, respectively. The parameter

e defines the nonlinear strength while ps defines the time

that the particle spends in the magnetic region. The dy-

namics can be described by a two-dimensional nonlinear

mapping. Depending on both e and s, the phase space

presents either regular or mixed structure. For e ¼ 0, the

nonlinear term vanishes and the particle’s energy is con-

stant in time. For s ¼ 1; 3; 5;…, there is a strong correla-

tion between the frequency of oscillation of the electric

field and the intensity of the magnetic field, and as a con-

sequence, the motion of the particle is regular. For differ-

ent control parameters than those discussed, the phase

space presents mixed structure with islands of regular

motion surrounded by chaotic seas and invariant KAM

curves that prevent the particle from acquiring

unbounded energy gain. We study the escape of particles

through a hole in the phase space placed in the velocity

axis by considering the position of the lowest energy

KAM curve. An ensemble of trajectories evolves in time

from low energy until each reaches the escaping hole or a

maximum time. This formalism is used to study the trans-

port of particles though the chaotic region of the phase

space. We obtain both the histogram of exit times as well

as the survival probability as functions of n (number of

egresses from the region of the electric field). The sur-

vival probability decays exponentially for short n and,

due to the existence of sticky domains, it decays as a

power law for large n. Both the histogram of escape and

the survival probability are described using scaling

approach.

I. INTRODUCTION

As an attempt to explain the origin of high energy cos-

mic rays, Fermi proposed a simple model1 where charged

particles interact with time dependent magnetic fields. Such

interaction triggered a mechanism leading them to exhibit an

enormous energy growth. The phenomena of unlimited

energy gain, also known as Fermi acceleration (FA), is a sub-

ject of interest since the observation of such high energy par-

ticles and therefore applications of FA are observed in

different fields of science including plasma physics,2 astro-

physics,3,4 atomic physics,5 optics,6,7 and even in the well

known time dependent billiard problems.8

The model proposed by Fermi was latter modified to

simulate other systems, under different applications and

approaches. One of them9,10 assumes that the dynamics is

given by a classical particle (to denote the cosmic ray) con-

fined to bounce inside two rigid walls: one of them is
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periodic in time (simulating the time varying magnetic

fields) and the other is fixed (working as a returning mecha-

nism of the particle for a next collision). This version of the

model is known as Fermi-Ulam model (FUM). The dynam-

ics depends on a single control parameter which relates to

the relative amplitude of motion of the moving wall. For non

null control parameter, the structure of the phase space is

mixed leading to the observation of periodic islands sur-

rounded by a chaotic sea and invariant KAM curves (also

known in the literature as rotational invariant circle or invari-

ant spanning curve) which prevent the particle to accumulate

unbounded energy. For zero amplitude of motion of the

oscillating wall, the system is integrable.

Another version of the Fermi model consists of a classi-

cal particle that falls freely in a constant gravitation field and

collides with a periodically moving platform. In this model,

the returning mechanism is due to the gravitation field and it

is called bouncer or Fermi-Pustilnikov model (FPM).11 The

FPM can also be described in terms of dimensionless varia-

bles leading to a single control parameter that controls two

types of transition: (i) integrability to non-integrability and

(ii) limited to unlimited energy growth.12

Latter on, a hybrid version of the two models was pro-

posed13 and it presents properties of both models. In particu-

lar, properties of the FUM are recovered on the limit of

vanishing gravitational field and properties of the FPM are

observed in the limit of strong gravitation field. There is,

however, a range of control parameters where the Lyapunov

exponent passes by a maximum and it was interpreted as

being a competition between the two models to dominate

over the dynamics of the particle. A dissipative version of

this hybrid model was also discussed14 leading to the obser-

vation of boundary crisis and annihilation of fixed points.

In this paper, we study a type of Fermi accelerator

model that neither is a FUM, nor is a FPM. The model under

study is a modification of the so called cyclotron accelerator.

We have to emphasize however that the energies and veloc-

ities we are considering in this paper are far from the relativ-

istic domain. It is known in the literature however that the

cyclotron with an infinitesimal gap can be modeled exactly

by the Standard map (for specific discussions see Ref. 15 and

references therein). Indeed, cyclotrons find applications in

medicine, where production of therapeutic quantities of Au-

ger emitter from several different isotopes is important in tar-

geted radionuclide therapy of small tumors.16,17 Modern

cyclotrons developments are concerned to the production of

the standard isotopes and also new therapeutic isotopes.18

Applications of cyclotron accelerators include also techno-

logical processes, as ion beam lithography.19,20

The model under study here consists in the motion of a

classical particle with charge q and mass m that interacts

with a time dependent electric field in the presence of a con-

stant magnetic field. The electric field oscillates with ampli-

tude E0 and the magnetic field H is assumed to be uniform.

For null amplitude of oscillation of electric field, the energy

of the particle is constant. For E0 6¼ 0, the system becomes

non-integrable. With exception of specific values of H, the

phase space of the system presents a remarkably intricate

mixed structure for E0 6¼ 0. We observe periodic islands

surrounded by chaotic seas characterized by positive values

of Lyapunov exponent, and invariant KAM curves limiting

the energy gain of the particle. As we discuss ahead, this

model has a different re-injection mechanism as compared to

the FUM and FPM, leading therefore to interesting proper-

ties and scaling, that for the knowledge of the authors, were

not yet discussed in the literature. Our main goal on this

model is to understand and describe some scaling properties

of the chaotic sea, focusing specifically in the transport

properties.

We define an escape velocity in the chaotic sea as a frac-

tion of the velocity in the lowest energy invariant KAM

curve. Then we define an escape window as the region of

phase space between the escape velocity and this KAM

curve. Starting with very low energy, we let an ensemble of

particles to evolve along the phase space. Each initial condi-

tion (particle) is evolved individually until the entire ensem-

ble is considered. When the particles achieve the critical

velocity we stop the orbits (that would be equivalent to the

escape) and calculate average observables. It is know that,

for fully chaotic dynamics, the survival probability for the

orbits which last longer in the dynamics until escape through

the escape window presents an exponential decay.21 For

mixed structures, however, the stickiness responsible for

trapping particles near periodic islands and invariant tori pro-

duces a slower decay which may be a power law type22 or

stretched exponential.23

This paper is organized as follows. In Sec. II, we present

the details of the model and obtain the two-dimensional map-

ping that describes the dynamics of the particle. Then we use

Lyapunov exponents and show that the system presents a

chaotic sea for different combinations of values of control

parameters. We reserve the scaling discussion for Sec. III,

where we obtain the critical exponents and overlaps of the

escape distribution and surviving probability curves. We

present final discussions and remarks in Sec. IV.

II. THE MODEL AND PHASE SPACE PROPERTIES

The model under consideration consists of a classical

particle of mass m and electrical charge q that interacts with

a time-dependent electric field denoted by ~Eðt0Þ, where t0 is

the variable time. Moreover, the particle suffers the action of

a constant magnetic field ~H ¼ Hẑ, where ẑ is a unity vector

that points at increasing z direction. We assume the electric

field varies according to ~Eðt0Þ ¼ E0cosðxt0 þ /0Þx̂ and it

acts only in the region between x¼ 0 and x¼ d. The quantity

E0 denotes the amplitude, x is the frequency, /0 is the initial

phase of oscillation of the electric field, and x̂ corresponds to

the unity vector pointing at increasing x direction. By defini-

tion, ~Eðt0Þ and ~H are orthogonal vectors. This system can be

thought as a modification of the cyclotron accelerator, where

the frequency x of ~Eðt0Þ is not necessarily the cyclotron fre-

quency, namely - ¼ qH=m. We stress however the energies

and velocity we are considering in this paper are low enough

so that the model is not in the relativistic domain. The verti-

cal lines in Fig. 1 represent the boundaries of the region

where the time dependent electric field, which is generated

by a pair of electrodes, is confined. Depending on the
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velocity and control parameters, the particle can: (i) enter in

and leave from the electric field region at the same side or;

(ii) enter in from a side and leave out from the other side.

Figure 1 illustrates pieces of two possible trajectories.

During the time that the particle is immerse in the region

where electric field acts, a force ~Fðt0Þ ¼ q~Eðt0Þ accelerates

the particle. Depending on the velocity of the particle and

phase of oscillation of the electric field, the particle can gain

or lose energy from the field. Regarding ŷ is perpendicular to

x̂, if the initial velocity of particle includes a component par-

allel to ŷ; vy;0, this component is not affected by the electric

force. In this case vy ¼ vy;0, all the times the particle leaves

the field ~Eðt0Þ. Therefore, we consider the situation where

vy;0 ¼ 0. From the second Newton’s law, we obtain the fol-

lowing expression for the position of the particle in the elec-

tric field region

xðt0Þ ¼ xi þ vi �
E0q

xm
sinðxt0i þ /0Þ

� �
ðt0 � ti

0Þ

� E0q

x2m
½cosðxt0 þ /0Þ � cosðxt0i þ /0Þ�; (1)

where xi and vi are the corresponding position and velocity

of particle at instant t0i ¼ t0n þ T0. Dissipation is not consid-

ered in this paper.

To describe the dynamics of the system, we obtain a

mapping P that furnishes the velocity of the charged particle

and phase of electric field at instants the particle leaves the

region x 2 ½0; d�. We suppose that at the instant t0n, the parti-

cle leaves the electric field region with velocity ~vðt0nÞ ¼~vn.

Then a magnetic field forces the particle to move in a circu-

lar trajectory with a constant angular velocity - ¼ qH=m.

The particle describes a semicircle during the fixed time

interval T0 ¼ pm=Hq. At the instant t0n þ T0, the particle is

therefore re-injected into the electric field region with veloc-

ity ~vðt0n þ T0Þ ¼ �~vn. The field ~H does not change the par-

ticle’s energy. It works as a mechanism that injects the

particle back to the field ~Eðt0Þ. We assume the motion of the

particle inside the electric field region occurs along a straight

line. These considerations furnish good approximation in the

limit of small d. We must say that the electromagnetic field

created due to the acceleration of the charged particle is dis-

regarded in this paper.

Before we present the mapping, it is appropriate to

define the following set of dimensionless variables:

t ¼ xt0; T ¼ xT0 ¼ ps; / ¼ tþ /0

X ¼ x

d
; e ¼ q

mx2d

� �
E0;

V ¼ v

xd
; s ¼ xm

q

� �
H�1:

(2)

For this set of dimensionless variables, the model

presents only two relevant control parameters, namely e and

s. For fixed values of d, x, and the ratio q/m, the parameter e
denotes the dimensionless amplitude of oscillation of electric

field, while s represents the inverse of the dimensionless

magnetic field.

It is important to mention that the returning time T to

the region where electric field acts does not depend on the

velocity of the particle, different from the FUM and FPM. In

the FUM, the returning time is T / 1=V therefore diverging

in the limit of vanishing V. One can conclude that the phase

of the moving wall, between collisions in the FUM and for

small V, is highly uncorrelated therefore producing the cha-

otic sea. On the other hand, such a time is T / V in the FPM

producing uncorrelated phases upon collisions for the limit

of large V. This loss of correlation leads the particle to expe-

rience Fermi acceleration.

In terms of the above variables, the two-dimensional

mapping is written as

P :
Vnþ1 ¼ �Vn þ eðsin /nþ1 � sinð/n þ psÞÞ
/nþ1 ¼ /n þ psþ DT nþ1mod2p;

�
(3)

where DT nþ1 ¼ xDT 0nþ1 is the interval of time at which the

particle moves in the electric field. The term DT nþ1 corre-

sponds to the smallest solution of f ðDT nþ1Þ ¼ 0, where

f ðDT nþ1Þ is

f ðDT nþ1Þ ¼ � Dnþ1 � ½Vn þ e sinð/n þ psÞ�DT nþ1

�e½cos/nþ1 � cosð/n þ psÞ�: (4)

The quantity Dnþ1 ¼ ½Xðtnþ1Þ � Xðtn þ TÞ� represents the

displacement of the particle with respect to the position at

instants when it enters and leaves the region where the elec-

tric field is acting. When the particle moves from the right to

left and crosses the electric field, we have Dnþ1 ¼ �1. For

the opposite situation, we have Dnþ1 ¼ 1. Depending on the

values of parameters and velocity, the particle enters and

leaves the region where electric field acts at the same place,

then Dnþ1 ¼ 0. We used bisection method to solve Eq. (4)

and an accuracy equals to 10�8 for the numerical solutions.

A higher accuracy was tested, say 10�13, and same results

were obtained. Moreover, the simulations were carried out

under double precision floating point representation.

The energy of the particle changes while it is immerse

in the electric field. Such a field is the external excitation

that introduces non-linearity to the motion of the particle.

The parameter e defines the strength of this non-linearity.

FIG. 1. Pieces of two possible orbits in the proposed model. The upper tra-

jectory illustrates a situation where the particle enters into and leaves from

the electric field region at x¼ 0. The lower trajectory illustrates a situation

where the particle enters into the electric field at the left side and leaves this

region at x¼ d.
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For e ¼ 0 we have Vnþ1 ¼ �Vn and, therefore, the system is

integrable. For e 6¼ 0, the dynamics is governed by a nonlin-

ear term and the system experiences a transition from inte-

grable to non-integrable regime. The phase space presents an

intricate mixed structure containing periodic islands, chaotic

parts characterized by positive Lyapunov exponents, and

invariant KAM curves separating different portions of the

phase space. Figure 2 shows the phase space of the system

for different values of the control parameters e and s. The

size of the chaotic seas is limited by KAM curves that pre-

vent the particle to acquire unlimited energy gain. We see

also that the variation of the control parameters affects both

the position of the islands and the size of the chaotic region.

Many other KAM curves exist beyond the smallest energy

KAM curves. The phase space of the mapping preserves the

following measure dl ¼ VdVd/ given the determinant of

the Jacobian matrix is det J ¼ Vn=Vnþ1 (see Appendix for

details).

The chaotic dynamics was characterized by the Lyapu-

nov exponents. To guarantee a good convergence of the posi-

tive Lyapunov exponent, we defined an average k that is

written as

kðe; sÞ ¼ 1

M

XM

j¼1

k1ð/0; j;V0; jÞ;

where we considered an ensemble of M¼ 10 different initial

conditions chosen in the chaotic sea and k1ð/0; j;V0; jÞ is the

positive Lyapunov exponent obtained for each initial condi-

tion / ¼ /0; j; V ¼ V0; j. Each initial condition was evolved

n ¼ 108 times. Figure 3(a) shows the average Lyapunov

exponent as function of s for e ¼ 10�2, where the error bars

represent the standard deviation calculated for the ensemble.

For s ¼ 1, the cyclotron frequency coincides with the fre-

quency of the electric field. As a consequence, the trajectories

FIG. 2. These plots display the phase

space of the system for different control

parameters: (a) e ¼ 10�2 and s ¼ 0:5,

(b) e ¼ 10�2 and s ¼ 1:35, (c) e ¼ 10�3

and s ¼ 0:35 and (d) e ¼ 2� 10�2 and

s ¼ 0:9.
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present a strong correlation with the electric field and no

region of chaotic motion is observed. Such parameter config-

uration leads the Lyapunov exponent to assume null value.

The same applies for s equals to other odd values. For s not

odd, the trajectories lose correlation with the electric field

yielding the particle to present chaotic motion. Similarly, for

a fixed value of s, the average Lyapunov exponent for differ-

ent values of e was also accounted, as shown in Fig. 3(b) for

s ¼ 0:9. We observe in Fig. 3(a) there is no apparent correla-

tion between k and s. On the other hand, Fig. 3(b) shows that

k roughly decreases from k ¼ 0:8 till k ¼ 0:4, while the pa-

rameter e increases a thousand times. Regarding the values of

s and e in Fig. 3, the chaotic sea is characterized by the aver-

age Lyapunov exponent hki ¼ 0:6660:08.

To illustrate the influence of the parameters e and s on

the position of the lowest energy invariant KAM curve, we

show in Figs. 4(a)–4(c) three different plots for the approxi-

mated location of the lowest invariant KAM curve for a set

of three different e considering different orders of magnitude.

The size of the chaotic sea is relatively small when the pa-

rameter s is near any odd value. The curves in Fig. 4 were

constructed following the procedure: (i) We divided the /
range ½0; 2pÞ in 103 intervals of same size and we evaluated

a single trajectory of an initial condition located at the cha-

otic sea. Such initial condition was iterated 109 times. (ii)

We collected the greatest positive value of velocity and the

smallest negative velocity for each / interval. The plot of

such data furnishes an approximated location of the lowest

energy KAM curve.

We evaluated the average of the absolute value of veloc-

ity on the invariant KAM curves, namely Vinv, for differentFIG. 3. These plots illustrate the average Lyapunov exponent as function of:

(a) s for constant e ¼ 10�2 and; (b) as function of e for fixed s ¼ 0:9.

FIG. 4. This figure shows the position of the lowest energy invariant KAM curves for different values of e and considering: (a) s ¼ 1:1; (b) s ¼ 1:5; and (c)

s ¼ 2.
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combinations of parameters e and s. Figure 5 displays the

results for s ¼ 1:1; s ¼ 1:5 and s ¼ 2. We observe for all

the situations that Vinv / ef, with f � 0:5.

III. SCALING PROPERTIES FOR THE TRANSPORT
ON THE CHAOTIC SEA

Let us now concentrate more specifically on the trans-

port properties through the chaotic sea limited by the KAM

curves of lowest energy. To do so, we study the evolution of

an ensemble of different initial conditions chosen at low ve-

locity V0 ¼ e and with random phases /0 2 ½0; 2pÞ. We

evolve each initial condition in time until it reaches a win-

dow of escape located inside the chaotic sea. We must stress

however that there is no real escape of particles from the

system. Indeed, the escape window is basically a specific

position in the phase space were an ensemble of particles is

let to evolve. When the escape happens, we collect the num-

ber of iterations spent and a new initial condition starts. We

allow the particle to evolve up to a maximum of 109 itera-

tions, if it does not escape before. Due to the stickiness and

trapping near periodic regions, if a trajectory reaches the

maximum iterations number, then a new initial condition

starts. It is interesting to mention a historical paper of Kar-

ney24 where stickiness was addressed. Indeed, he showed

that depending on the control parameter, the correlation

function may decay as a power law or as an exponential. Af-

ter his historical paper, a galaxy of results was discussed for

different types of systems. Results include anomalous cha-

otic transport for a Hamiltonian system with hyperbolic fixed

points25 and transport properties by the investigation of the

first and second momenta for a standard-like map.26

In our case, we define the escape window as the region

of phase space located below the lowest energy KAM curve

(LEKAMC) and above a value of velocity that we define as

Vesc. We define the value of Vesc in terms of the LEKAMC

as Vesc ¼ g Vs, where Vs denotes the absolute value of low-

est velocity along the LEKAMC and g is a constant. For this

paper, we use g¼ 0.7, although other values can also be cho-

sen. As discussed in Ref. 29, the value of the escape velocity

influences the time the particle spends until it reaches such a

value but the universal features are unaltered with respect to

g. The arrows on right side of each phase space of Fig. 2 rep-

resent the values Vesc for those values of parameters. Given

we want to consider large portions of chaotic components to

study transport along such region, from now on we fix s ¼ 2

and describe some properties as functions of n and e.
Evolving the simulation over an ensemble of M different

initial conditions, we obtain the number H(n) of orbits that

satisfies the condition jVnj > Vesc at each iteration number n.

This quantity depends on the size of the ensemble. To avoid

such a dependence, we regard the normalized observable

hðnÞ ¼ HðnÞ
M

:

This quantity is the escape distribution of particles. The

observable h(n) fluctuates largely for small size of the en-

semble. So we used ensembles of M ¼ 107 different initial

conditions. Figure 6(a) shows a plot of h(n) vs. n for different

values of e.
We observe that each curve of h exhibit an initial growth

regime reaching a maximum value hmax. After that, it

decreases approaching zero asymptotically. We define nx as

the value of n where h � hmax. It is clear from the figure that

the smaller the parameter e, the greater nx. An immediate con-

sequence is that when e decreases, the longer the simulation.

To obtain an accurate value of nx, we consider that the

portion near the peak of the curve h(n) is locally described

by a quadratic function. The coefficients of such a curve are

FIG. 5. The figure shows the average of the absolute values of the velocity

of the KAM curves as function of e for three different values of s. The best

fits furnish Vinv / ef with f � 0:5.

FIG. 6. (a) shows the plot of the normalized number of escaping orbits at the

iteration n for different values of e and fixed s ¼ 2. (b) displays the overlap

of all curves shown in (a) onto a single plot, after a suitable rescaling of the

axis.
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obtained by a quadratic fit. Moreover, the maximum is easily

obtained by setting the derivative to zero; this gives a good

approximation for nx. Figure 7(a) shows a plot of nx vs e.
The best fit to the numerical data furnishes nx / ez with

z ¼ �0:9860:02. This result is in remarkably well agree-

ment with those obtained for a periodically corrugated wave-

guide.30 We obtained also the corresponding value of hmax

for each curve of Fig. 6(a), as it is displayed in Fig. 7(b). We

suppose that hmax / ec where a fitting gives c ¼ 0:9560:05.

From the results shown in Figs. 7(a) and 7(b), we sup-

pose that the quantity h can be formally described in terms

of a scaling relation of the type

hðn; eÞ ¼ lhðlan; lbeÞ; (5)

where l is a scaling factor, a and b are scaling exponents. For

l ¼ e�1=b, the above equation becomes

hðn; eÞ ¼ e�1=bf ðe�a=bnÞ; (6)

where f ðe�a=bnÞ ¼ hðe�a=bn; 1Þ. For n � nx, near h ¼ hmax,

the above expression furnishes

nx / ea=b:

Moreover,

hðnx; eÞ / e�1=b:

Considering the two different expressions for the scaling fac-

tors, we have that z¼ a/b and c ¼ �1=b. Therefore, we

obtain a ¼ �z=c ¼ 1:0360:06 and b¼�1.05 6 0.06. When

these exponents are conveniently applied to rescale the axes

of Fig. 6(a), all curves are overlapped onto a single plot, as

shown in Fig. 6(b).

As far we discussed the results for escaping orbits, let us

now concentrate to describe the behavior of the orbits that

survive longer (do not escape) as function of n. We define

gsurvðnÞ ¼
Nsurv

M
;

where the quantity gsurv represents the normalized number of

orbits that do not escape until time n. Figure 8(a) shows a

plot of gsurv vs: n for different values of parameter e. As it is

expected, gsurv is essentially one for small n and it decreases

for increasing n.

We observe that gsurv presents two different decay

regimes, as illustrated in Fig. 8(b). In the initial regime, gsurv

decays exponentially, i.e., gsurv ¼ c1expðb1nÞ, where c1 is a

constant and b1 is an exponent. For large enough n, the curves

of gsurv decay according to a power law of type gsurv ¼ c2nb2 ,

where c2 is a constant and b2 is an exponent. The inset in Fig-

ure 8(b) shows, in a log-linear plot, the details of the initial

decay regime and the crossover when the exponential decay

becomes a power law decay. As discussed in Ref. 21, the ex-

ponential decay is mostly observed when a particle is moving

along a chaotic region where no periodic islands are

observed. In our model, this chaotic component corresponds

to the region below the islands and exponential decay domi-

nates over the survival orbits. However, when the particle is

FIG. 7. (a) illustrates the crossover nx as function of e. The best fit furnishes

nx / ez with z¼�0.98 6 0.02. (b) illustrates the maximum values of h as

function of e. The best fit furnishes hmax / ec with c ¼ 0:9560:05.

FIG. 8. (a) displays the normalized number of remaining orbits (do not

escape) as function of n and different values of e; (b) illustrates the decay of

the quantity gsurv showing evidently two regimes.
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increasing energy, the periodic islands start to be visible by the

particle leading, therefore, to trapping and consequently to

stickiness. This dynamical regime, as discussed in Ref. 22, pro-

duces a decay characterized by a power law type. We observe

a changeover from one kind of decay to another one as the ve-

locity of the particle increases. For each curve of gsurv, there is

a value n ¼ nc characterizing the changeover from exponential

to power law decay. Fitting the two decays property, we obtain

the coefficients c1; c2; b1 and b2 for each gsurv curve. We find

the values nc for each value of e and the best fit to the numerical

data furnishes nc / ea with a ¼ �0:9260:05, as shown in Fig.

9(a). It is important to mention that this type of behavior for the

survival probability was already observed before. Indeed, for

some Hamiltonian systems, the escape is described by a sur-

vival probability of exponential type for short time and a power

law for long enough time.27 Similar behavior was also

observed for the recurrence time, where an exponential decay

and a power law decay coexist.28

In our approach, this behavior changing from exponential

to power law decay can also be described via the scaling for-

malism, as we have made before. The exponent obtained

from the crossover plot in Fig. 9(a) allows us to rescale con-

veniently the axis and overlap the curves of survival probabil-

ity shown in Fig. 8(a) onto a single plot as shown in Fig. 9(b).

This result gives strong evidences that the survival probability

is scaling invariant with respect to the parameter e.

Recent results discussed for a time-dependent potential

well29 considered the dynamics as a function of three effec-

tive control parameters. In our case, keeping fixed the param-

eter s, we have only the liberty to consider variation of the

control parameter e. Therefore, for short n and low energy, if

the transport of particles along the chaotic sea was similar to

the so called normal Brownian diffusion, the number of

entrances of the particles in the region of the active electric

field required to diffuse on average until an escaping velocity

had to be proportional to V2
esc. However, the dynamical expo-

nents of both nx and nc are z ffi a � �1. We observe in Figs.

7(a) and 9(a) that nc is roughly thirty times greater than nx

for each value of e. This result means that hmax occurs before

the transition from exponential to power law decay of surviv-

ing probability gsurv. As discussed before, Vinv / ef; f � 1=2

(Fig. 5). As Vesc is a fraction of invariant KAM curve, it is

natural to write Vesc / e1=2. Moreover, we obtained hmax /
ec; c � 1 (Figure 7(b)). These expressions furnish hmax /
V2

esc and nx / V�2
esc . Thus, we have that the trajectories in the

chaotic sea do not evolve as a normal Brownian diffusion.

There are regions at low energy of phase space where very

small islands of regular motion leads the trajectories to expe-

rience stickiness from time to time.29 It was recently studied

as an application of a double well potential in chemistry

regarding the survival probability and the escape process

from one well to the other one due to noise.31 Indeed, the

survival probability was shown to be exponential when the

escape from one well to the other one is quick while long

trapping leads the survival probability to change from expo-

nential to a power law. For the results,29 considering large n,

depending on the control parameters, the decay curve can

exhibit more complicate regimes including stretched expo-

nential.23 For the range of control parameters considered

in the present paper, and for the interval of simulation, the

stretched exponential behavior was not observed.

Let us now discuss the results obtained for this paper.

The mixed structure observed in the phase space led us to

obtain a positive Lyapunov exponent for the chaotic sea. The

size of the chaotic sea is dependent on the control parameters

and it scales with the nonlinear parameter e as e1=2 for the

values of control parameter s used in the paper. The chaotic

sea appears coexisting with periodic islands. If the escaping

hole is placed below the periodic islands, the survival proba-

bility is observed to be exponential, according to the results

present in the literature.25,26,28 The survival probability was

also shown to decay exponentially in the Henon-Heiles

potential for high energy rising the predictability of the sys-

tem.32 On the other hand, when the position of the hole is

moved in the phase space in such a way that periodic islands

exist, the orbits have the chance of getting trapped during the

dynamics. The temporary trapping leads to anomalous diffu-

sion25 and the survival probability suffers a changeover to a

slower decay. Indeed, in our results, we observe a change to

power law decay. Several results observed in the literature

also noticed this changeover.28,31 A universality was pro-

posed recently for the recurrence time27 and power law

decay was observed in different regions of the phase space

for 2-D Hamiltonian systems33–36 and for higher degrees of

freedom Hamiltonian systems.37

FIG. 9. (a) shows the numerical data of crossover of gsurv. The best fit fur-

nishes nc / ea with a ¼ �0:9260:05. Appropriate scaling transformation

overlaps the gsurv curves onto a single plot, as displayed in (b).
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As a further work, we plan to investigate the dynamics

of the system in the transition from regular to chaotic trajec-

tories, observed near odd values of the parameter s. It is also

our plan to consider the dynamics under the presence of dis-

sipation due to the motion of the particle in a viscous fluid.

When such a dissipation acts on the particle attractors are

observed in phase space.

IV. CONCLUSIONS

We studied some dynamical properties for an ensemble

of non-interacting particles in an accelerator of charged par-

ticles. In terms of dimensionless variables, the system

presents two control parameters: (i) e that is related to the

amplitude of oscillation of the electric field and; (ii) s associ-

ated to the magnetic field. The parameter e defines the

strength of the non-linearity and the parameter s defines the

re-injection time of particle in the electric field. When s
assumes odd values, the trajectories in phase space present

strong correlation with the oscillating electric field and,

therefore, chaotic regions are not observed. Such a correla-

tion does not occur for non odd values of s and the phase

space presents chaotic trajectories coexisting with regions of

regular motion and invariant KAM curves. The transition

from regular to chaotic orbits near odd values of s is difficult

to be characterized mainly due to the relative small size of

chaotic sea in this transition.

We proposed a homogeneous function leading to the

scaling exponents that describe the escape and transport of

particles through the chaotic sea. We used this scaling

description to overlap all the curves of the escape distribu-

tion onto a single plot.

The survival probability, which characterizes the dy-

namics of the orbits that last longer in the dynamics until

reach the escape limit, presents two decay regimes. For short

values of n, the quantity gsurv decays exponentially while it is

a power law for large n, marking clearly the existence of

sticky orbits in phase space. Appropriate scaling transforma-

tions overlap all curves of gsurv onto a single plot.
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APPENDIX: JACOBIAN MATRIX COEFFICIENTS

The coefficients of the Jacobian matrix are given by

J ¼

@Vnþ1

@Vn

@Vnþ1

@/n

@/nþ1

@Vn

@/nþ1

@/n

0
BB@

1
CCA;

where

@Vnþ1

@Vn
¼ �Vnþ1 þ e cos/nþ1DT nþ1

Vnþ1

;

@Vnþ1

@/n

¼ e
Vnþ1

f½�Vn þ e cosð/n þ psÞDT nþ1�cos /nþ1

�Vnþ1cosð/n þ psÞg;

@/nþ1

@Vn
¼ DT nþ1

Vnþ1

;

@/nþ1

@/n

¼ �Vn þ e cosð/n þ psÞDT nþ1

Vnþ1
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