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ABSTRACT
Impact craters help scientists to understand the geological history of
planetary bodies. The aim of this paper is to improve the existing
methodology for impact craters detection in images of planetary surfaces
using a new approach based on morphological image processing (MIP).
The improved methodology uses MIP followed by template matching
based on fast Fourier transform (FFT). In this phase, a probability volume is
generated based on the correlation between templates and images. The
analysis of this probability volume allows the detection of different size of
impact craters. We have applied the improved methodology to detect
impact craters in a set of images from Thermal Emission Imaging System
onboard the 2001 Mars Odyssey Space probe. The improved methodology
has achieved a crater detection rate of 92.23% which can be considered
robust, since results were obtained based on geomorphological features,
different illumination conditions and low spatial resolution. The achieved
results proved the viability of using MIP and template matching by FFT, to
detect impact craters from planetary surfaces.

KEYWORDS
Automatic detection; impact
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1. Introduction

Exploration of the solar system has been intensified in recent years. More than 100 probes were sent
in the space for planetary exploration; recent probes were sent to Mars. Besides Earth, Mars has
been the most studied planet, and so huge and wide-range space-imagery data-sets dedicated to
Mars are available (Alves & Vaz 2007). These images have shown the patterns, distributions and
morphological structures that compose the Martian surface. Detecting and counting of these struc-
tures, especially impact craters, allows us to understand the geological history of Mars (Molloy &
Stepinski 2007; Capitan & Wiel 2012; Kim et al. 2012; Luo et al. 2015).

Due to important geological information that impact craters carry, they represent the most stud-
ied features in the solar system. The study of this structure offers clues about the local composition
of the surface, and the detailed analysis of their morphology and distribution can provide relevant
information on the geological history of a planetary body (Wetzler et al. 2005). Counting craters in
remotely sensed images is the only tool that provides relative dating of remote planetary surfaces
(Urbach & Stepinski 2009). Unfortunately, these investigations are monotonous and time-consum-
ing tasks for humans, because they need to examine manually a wide range of information available
in the constantly growing imagery data-sets. Thus, there is the need of efficient and reliable algo-
rithms to detect these structures automatically.
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Automatic methods of detecting impact craters help experts rapidly obtaining information about
the planet when new data are acquired. The knowledge of the position, size and depth of impact cra-
ters can assist in the mission planning and even at the time of rovers landing (Yu et al. 2014). In
addition, it can facilitate the process of characterization of craters and the establishment of a degra-
dation degree. Marques and Pina (2015) have developed an algorithm to automatically delineate the
contour of impact craters using polar coordinates.

Salamuniccar et al. (2014) have developed a methodology to detect craters on Phobos, while
Pedrosa et al. (2015) developed an algorithm to detect craters on Mercury and Xie et al. (2013) pro-
posed a methodology to detect craters on Moon. In the case of Mars, various crater detection algo-
rithms (CDAs) have been proposed over the last decades to address the challenges related to the
automation of impact crater detection process. Each CDA adopts a different approach such as the
methodology presented by Martins et al. (2009) in which they use the boosting approach. This tech-
nique was initially used by Viola and Jones (2004) to face detection and presented relevant results
when it was used to detect impact craters. Efforts have been made to combined boosting approach
with other techniques for the purpose of detecting impact craters. Ding et al. (2011) used boosting
and transfer learning; Bandeira et al. (2012) jointed mathematical morphology (MM) and texture
features in combination with the boosting ensemble supervised learning algorithm to classification,
and Wang et al. (2015) integrated an improved sparse kernel density estimator into the Boost algo-
rithm to detect sub-kilometre craters. Urbach and Stepinski (2009) developed a CDA based on MM
and supervised machine leaning to detect sub-km craters in high resolution images. Burl and Wet-
zler (2011) employed some supervised learning algorithms to detect craters in Viking Orbiter
images. Cohen and Ding (2014) presented a method by using genetic algorithm to find a high per-
forming subset of features for a given classifier. Jin and Zhang (2014) developed a modified ada-
boosting approach to detect small size craters on Mars. Liu et al. (2012) combined active learning
with semi-supervised learning to build an adaptive learning system to automatically detect craters
from high resolution panchromatic planetary images. Yin et al. (2015) used Gist features to detect
craters on the images from Mars Orbiter Camera.

For the CDA validation, most of the time a region in the image is selected, while many other sci-
entists use the global coverage and consequently generate crater catalogues. Salamuniccar and Lon-
caric (2008), for instance, proposed a method for integration of several existing catalogues to obtain
a unique craters catalogue which contains 57,633 craters. Stepinski et al. (2009) have presented an
automated system to catalogue impact craters using data from a digital elevation model (DEM) of
Mars. Their CDA allowed to generate a catalogue containing craters with size over 5 km; Salamunic-
car and Loncaric (2010) developed a methodology to detect Martian craters based on digital topog-
raphy data which employs fuzzy edge detection and Hough transform (Hough 1962; Rodionova
et al. 2000). Their algorithm uses several parameters to achieve greater accuracy, such as techniques
based on value and direction of gradient, and morphometric measurements, which enable to define
a diameter–depth relation; Salamuniccar et al. (2011) used a CDA to generate a catalogue with
125,130 craters greater than 2 km diameter.

CDAs are developed to search craters in optical and non-optical images. Non-optical image-based
methodologies have been suggested to avoid certain drawbacks presented by optical images. However,
DEM-based methodologies encounter problems with the low spatial resolution of the data-sets
(Bandeira et al. 2007). Hence, optical image-based methodologies still present advantages over non-
optical image-based methodologies since the data provided by optical range offer the widest amount of
information about Mars and other planetary bodies from solar system. This advantage has stimulated
researchers to pay more attention to the development of methodologies that deal with optical images.

Bandeira et al. (2007) proposed a methodology for impact crater recognition on Mars based on a
probability volume created by template matching. This methodology presents a satisfactory proce-
dure to reduce limitations caused by the low spatial resolution of images and shows efficient compu-
tational implementation. The first phase in Bandeira et al. (2007) significantly contributes to achieve
success. This phase identifies possible impact craters based on the analysis of shadows in the images.
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The presence and the length of these shadows depend on the angle of illumination used while
acquiring an image and the degradation degree of the craters as well. Moreover, mountains, rocks,
dunes and other structures also produce shadows. This limits the automated analysis of shadows,
and therefore, hampers greater accuracy in the detection of impact craters.

Although degraded impact craters do not produce shadows, it still preserves their circular con-
tours. Hence, it is appropriate to use this feature to find impact craters. So a first phase based on
morphological image processing (MIP), in contrast with shadow analysis, avoids the drawbacks pre-
sented when dealing with shadows. In addition, MIP remains underexplored in pre-processing
phases, and consequently, its potential for impact crater detection is almost unknown.

In this paper, we propose the use of MIP as an improved methodology for automatic detection of
impact craters in optical images of planetary surfaces. Unlike other methods, we have achieved suc-
cess in automatic detection of craters larger than 500 m in diameter in low resolution mosaic images,
which have not been catalogued yet. The most complete catalogue from Mars contains only craters
over 1 km generated manually (Robbins 2012). Therefore, our CDA has the ability to deal with large
areas covered by mosaic images, which holds different environmental conditions since each image
was taken individually under assorted time. Consequently, this improved methodology provided
better accuracy in the detection of impact craters, and apart from that, the MIP is found to be more
computationally efficient.

2. Data-set

The improved methodology was applied to detect craters from digital images obtained in 2002 by
the Thermal Emission Imaging System camera. These images are part of a mosaic that covers a total
area of about 83,300 km2 of the Utopia plain. The images of the mosaic contain 256 grey levels with
spatial resolution of 100 m/pixel. The size of each image is 500 £ 500 pixels. Our methodology was
tested using 48 images which comprises several image conditions, such as difference in contrast and
sharpness, saturation and blurring, presence of noise and different angles of illumination leading
varied shadows. Additionally, the data-set holds different reliefs with varying crater sizes and forms,
elevations and geological features.

Figure 1 shows four images to illustrate some of the conditions found in the 48 images that com-
pose data-set. The mosaic is composed by images captured at different time, so it presents difference
related with illumination, which is evidenced by different shadow positions inside the craters. These
variations are clearly seen in the image (Figure 1(a)). Some of images show difference in contrast
(Figure 1(b)). Besides these variations, different sizes of craters show different degradation levels.
Some craters are perfectly bowl-shaped, others have an oval form, showing different amounts of
shadow, but others are smaller and shallower. In addition, there are differences in relation to the
sharpness within the same image, because there are some regions with noise, saturation and blur-
ring. These features can be seen from Figure 1(c,d). These variations are important and allow us to
evaluate the most efficient and independent algorithm for the inherent variations in the image.

3. The improved methodology

The improved methodology employs digital image processing and features recognition techniques to
detect impact craters from planetary surface images. This methodology comprises three phases: can-
didate selection based on MIP which removes noises and finds probable craters; template matching
based on fast Fourier transform (FFT) that establishes correlations among candidates and templates
of various dimensions to create a probability volume (three-dimensional (3D) matrix); crater detec-
tion which analyses the probability volume to find dimensions and locations of impact craters. The
improved methodology differs from that presented by Bandeira et al. (2007) since we have replaced
the original candidate selection phase with our new phase using MIP. Figure 2 shows different
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components of our methodology. The image processing was performed using the set of morphologi-
cal operators available in the MM toolbox in Matlab.

3.1. Candidate selection based on MIP

The candidate selection is based on MIP, and is intended to convey that different components of the
improved methodology apply concepts of MM to perform digital image processing. We refer to
MM the set of methods developed by George Matheron and Jean Serra in 1964, which transforms
and analyses structures within digital images (Matheron 1975; Serra 1982; Soille 2003).

The basic principle of MM is to use a geometric form known as structuring element (SE) to probe
a digital image, quantifying the mode in which this element fits within this image (Dougherty &
Lotufo 2003). This element is a mask which probes the image to be processed. Usually the size
adopted for SE is 3 £ 3, 5 £ 5 or 9 £ 9. Thus, it is possible to select structural information from
the image, marking locations at which the SE fits within the digital image. By choosing the size and
the shape of the SE, we can control the type of structural information to be selected. In other words,

Figure 1. Examples of different conditions present in the images from the data-set used.
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the SE is a known set which is compared to an unknown image set, through some transformations
which take into account the neighbourhood of the pixel and the connectivity given by the SE.

MM has two fundamental operations:
Erosion: The erosion of an image containing a given set A, through a SE B, is the minimum value

between the translations (displacement) of the image by the SE. Mathematically, the erosion of a set
A by a set B (SE) is denoted by AQB and is defined by AQB ¼ x;Bx�Af g, where Bx denotes a trans-
lation of the set B by x, in other words Bx ¼ bþ x; b 2 Bf g.

Dilation: The opposite of erosion, the dilation of an image containing a set A by a given SE B, is
the maximum value between the translation of the image by the SE. The dilation of a set A by a set
B (SE) is denoted by A� B and defined by A� B ¼ ðAcQB�Þc, where c denotes the complement of
the set and B� ¼ �b; b 2 Bf g.

However, to improve MIP applications, erosion and dilation are often used together to compose
more complex operations, such as opening, closing, morphological gradient, watershed transform, etc.

In our pre-processing phase, we apply MIP to fit SEs within digital images to select structures that
seem to be craters (candidates). The selection of candidates depends on the application of a MIP-
based algorithm described in four steps as follows.

3.1.1. Highlight
Our pre-processing phase starts smoothing images by applying a maximum and a minimum volume,
defined, respectively, as vmax and vmin operators. Volume is a criterion that combines shape and contrast.
This criterion takes into account the volume level of a component, and the sum of all areas of the level
components above it, including itself. It can also be demonstrated by the integral of the umbra of the sig-
nal above the level component (Dougherty & Lotufo 2003). Vmax removes peaks with a volume smaller
than a defined value. Vmin removes valleys with a volume smaller than a defined value. Vmax is defined
as 120 and vmin = 30. We have chosen these values since they allow the elimination of geological features
which are not of our interest in this work, such as small dunes, stones, small holes caused by secondary
impacts and so on. The example of smoothing applied is presented in Figure 3(a).

3.1.2. Edge detection
For greyscale images, the gradient increases the difference among grey levels and enhances the edges
of the craters. The arithmetic difference between the dilation and the erosion by a SE B defines the
morphological gradient (Soille 2003). The morphological gradient is denoted by r:

rB ¼ dB � eB (1)

where d represents dilation and e represents erosion.

Figure 2. Diagram of the proposed methodology.
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We applied the gradient (Figure 3(b)) using a disk with 5 pixels of radius as a SE, since it was the
most suitable SE to enhance the edges of the craters in our images.

3.1.3. Filtering
The goal of this step is to eliminate objects that do not correspond to impact craters. The area-clos-
ing connects areas below a stipulated threshold. We used 300 pixels as the threshold for this filter,
since this value enables filling the interior of the targets. The area-closing is defined as:

fλ ¼
î

fBiðf Þ
� �

(2)

where f represents the closing.

Figure 3. Result from MIP phase. Examples of each main step applied: (a) smoothing; (b) gradient; (c) watershed transform;
(d) final MIP result without removing craters on the borders from image.
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We reduce noises in the images by applying the opening filter. The opening g of an image f by a
SE B is denoted by gBðf Þ and is defined as the erosion of f by B followed by the dilation with the
reflected SE �B :

gBðf Þ ¼ d�B eBðf Þ½ � (3)

This filter uses a disk with 5 pixels of radius as the SE to eliminate small noise-grain radii.
The opening filter reduces noise, but also degrades the edges of large craters. We applied the clos-

ing filter to connect these edges and recover the original shape of the craters.
The closing f of an image f by a SE B is denoted by fBðf Þ and is defined as the dilation of f with a

SE B followed by erosion with the reflected SE �B :

fBðf Þ ¼ e�B dBðf Þ½ � (4)

This filter uses a disk with 3 pixels of radius as the SE to better round the edges of the craters.
Some groups of candidates were grouped as single candidates, since a relatively small distance

among them results from the filtering. These groups were separated in the segmentation step.

3.1.4. Segmentation
Morphological watershed transform from markers separates one candidate from another. It starts by
obtaining the markers from regional maxima which are determined by the distance function.
Regional maxima consist of maximum values surrounded by lower values of grey. These maxima
are determined from the distance function which calculates the distance of each object’s pixel in
relation to the closest pixel belonging to the background. The result of the distance function allows
us to determine maximum values due to its grey scale image. The higher values correspond to the
most distant pixels in the background. Next, the distance function is inverted to convert regional
maxima into new regional minima. These new images containing the regional minima were used as
input by the morphological watershed transform.

Hence, the watershed associated with the set of regional minima M ¼ [ i2Rmi of an image f is
the complement of the union of all the retention basins Cf ðmiÞ (Pr�eteux 1993):

WLðf Þ ¼ [
i2R

Cf ðmiÞ
� �c

(5)

The watershed considers the image as a topographic surface, to see which markers work as holes
punched in each regional minimum. While performing the watershed, this topographic surface is
flooded from below, by letting the water rise from each hole, at a uniform rate across the image.
Dams are built to avoid the merging due to the rising water coming from distinct holes. When the
only visible structures above the waterlines are the top of these dams, the required watershed lines
have been located and the watershed transform is finished (Frigo & Johnson 1998; Dougherty &
Lotufo 2003). The overlap of each step of the watershed application is shown in Figure 3(c). The
final results of pre-processing phase are presented in Figure 3(d).

The MIP step applied also removes craters that are on the boundary of the image, since only
whole candidates are selected for the next step. The white structures represent all candidates in the
image. The goal of this step is to eliminate objects that do not correspond to impact craters. The
area-closing connects areas less than a stipulated threshold. We used 300 pixels as the threshold for
this filter, since this value allows filling the interior of the targets.

3.2. Template matching based on FFT

This phase seeks circular features within image, because impact craters have roughly circular shapes.
Therefore, circular shapes are used as templates to search and match candidates within images. Each
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template is presented as a white crown surrounded by a black square background. Figure 4 shows
three examples of used templates. The diameters of the templates vary from 5 to 100 pixels, consid-
ering the external edge of the crown, since crowns of different sizes represent the distinct natural
dimensions of the impact craters. The internal radius of the crown is half the external radius for all
templates. There is a template for each radius. Each template must be cross-correlated with the scene
of the image, from the template with 5 pixels to the 100 pixels template. This phase evaluates corre-
spondence between templates and the scene of the image of Figure 3. There are consequently corre-
lations between templates and selected candidates within the image. These correlations are
calculated by FFT, multiplying the FT of the image by the complex conjugate of the FT of each tem-
plate (Frigo & Johnson 1998; Gonzalez & Woods 2010). The FFT allows low computational
effort when compared with the Hough transform (Bandeira et al. 2007). This is a very important
consideration when large amounts of images need to be examined. Figure 5 presents the results
achieved from correlations between the image of Figure 3 and a template with radius of 10 pixels
(Figure 5(a)), and a template with a radius of 20 pixels (Figure 5(b)).

The results of correlations were normalized between 0% and 100%. This is performed by dividing
each achieved result by the number of white pixels in the template. Each new value represents the
probability p of a pixel (u, v) to be in the middle of an impact crater of radius r. Therefore, Figure 5
reveals achieved probabilities of correlations between an image and a template with a radius of

Figure 4. Three examples of templates used to match impact craters within an image: (a) template of radius 10 pixels; (b) template
of radius 20 pixels; (c) template of radius 30 pixels.

Figure 5. Digital image achieved from correlation between a template and impact craters within an image, by considering: (a) a
template with a radius of 10 pixels; (b) a template with a radius of 20 pixels.
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10 pixels (Figure 5(a)) and a template with a radius of 20 pixels (Figure 5(b)). Thus, from Figure 5,
the higher the probability values are, the brighter are the pixels.

All information generated by the second phase process is stored in a 3D array, called probability
volume (Bandeira et al. 2007), consisting of n plans, which contains u £ v elements. Each plan is
generated by a different template. Thus, the probability volume consists of planes that represent the
probability of each pixel being the centre of a crater with radius r. Through the probability volume,
it is possible to identify the pixels with a high chance of being the centre of a crater.

3.3. Crater detection

The analysis of the probability volume created from the results of the template matching enables
detection of impact craters in images. Circular shapes produce unique signatures in the probability
volume. Therefore, the internal structure of this volume can be used to detect impact craters and
determine their dimensions.

Once again, MIP was employed for impact craters identification using regional maxima. According
to Soille (2003), a regional maximaM of an image f is a set of connected pixels having the same value t,
and whose external boundary pixels have a value less than t. The regional maxima can be achieved from
the morphological reconstruction by dilation Rd

f , which is defined as the geodesic dilation of a marker
image g with respect to g iterated until stability is reached. This is shown in Equation (6) (Soille 2003):

Rd
f ðgÞ ¼ dif ðgÞ (6)

where i is such that dðiÞf ðgÞ ¼ d
ðiþ1Þ
f ðgÞ.

So, the regional maximum is defined as follows (Soille 2003):

RMAXðf Þ ¼ f � Rd
f ðf � 1Þ (7)

The regional maxima show impact crater features and also other structural features, which can be
wrongly interpreted as craters. In order to minimize this problem, extreme values are extended.
Adjacent elements of the regional maxima may show probability of being in the middle of a crater
or combined with other features. These extended maxima are calculated in two steps, first, in the
maxima, all heights less than a given value h are suppressed, applying the h-maxima transform as
defined by Equation (8) (Soille 2003):

HMAXhðf Þ ¼ Rd
f ðf � hÞ (8)

The regional maxima of the h-maxima transformation is called extended maxima EMAXh and is
defined as follows (Soille 2003):

EMAXhðf Þ ¼ RMAX EMAXhðf Þ½ � (9)

3D connectivity is considered for this calculus and each element of the probability volume is com-
pared with a neighbour’s 26 pixels. There are signatures of impact craters in the horizontal planes of
the probability volume for each radius. Each radius holding extended maxima have been analysed.

The area-opening transform (Soille 2003) removes connected components whose area, in num-
ber of pixels, is smaller than a given threshold value λ, so this operator eliminates small objects to be
markers of craters, based on a given proportion of r:

gλ ¼V
i

Bi is connected and cardðBiÞ ¼ λf g (10)
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Equation (10) shows that the area opening can be achieved by the union of all openings with con-
nected SEs whose size in number of pixels equals λ.

The classic circularity index (CI) allows to eliminate non-circular objects (Bandeira et al. 2007):

CI ¼ 4pArea=Perimeter2 (11)

All weak crater candidates whose roundness is outside the range 0.9–1.7 were discarded. Each
centre of mass of the remaining objects represents a central point with coordinates (x, y) of a crater,
radius r and probability p (p corresponds to the confidence level of each detection). This phase anal-
yses every plane of the volume where the maxima shows a probability of at least 20%, since craters
are rarely expressed for probabilities lower than 20%. Figure 6 shows the final result having an image
containing varying craters.

Figure 6. Craters detected in four test images. True detections are shown by double line circles, false detections by dashed line
circles and missed craters by simple line circles.
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4. Results

The improved methodology was applied to detect impact craters automatically in an imagery data-
set. The results were evaluated establishing a comparison with a manually built Ground Truth (GT).
The GT enabled us to carry out a quantitative evaluation of the improved methodology. The evalua-
tion is based on three indicators, presented, respectively, by Equations (12)–(14).

TDRp ¼
TDp

GT

� �
� 100 (12)

FDRp ¼
FDp

TDp þ FDp

� �
� 100 (13)

Q ¼ TDp

TDp þ FNþ FDp

� �
� 100 (14)

From Equation (12), TDRP shows true detection rate, TDP is the number of true detections for a
minimum probability P and GT is the Ground Truth. From Equation (13), FDRP means false detec-
tion rate, FDP is the number of false detections for a minimum probability P, TDP the number of
true detections and FDP the number of false detections. In addition, Equation (14) considers the
false negative (FN) pixels that are the number of craters present in GT which was not detected by
methodology. Bandeira et al. (2007) used Equations (12) and (13) the first time for detection of cra-
ters, and Shufelt and McKeown (1993) used Equation (14) which allowed to evaluate the quality of
CDA performance. Based on the aforementioned matrix, our methodology shows detection rates
for maxima with probability of at least 20%: TDR20 = 92.23% and FDR20 = 23.57%. In other words,
the improved methodology shows detection of 3462 craters in the set of 48 images from a mosaic. It
is important to mention that the CDA found craters with sizes larger than 500 m in diameter.
Figure 7 summarizes the measure reached by the performance of the algorithm. The result is rele-
vant considering the most complete catalogue from Mars which contains craters over 1 km long
(Robbins & Hynek 2012).

There are 3753 GT craters in the selected area for the test. The improved methodology automati-
cally detected 3462 impact craters with 71.82% algorithm performance showing better performance
of algorithm compared with previous CDA. Considering the difficulty of detecting craters in mosaic
data due to different environmental conditions and the low resolution of the data, our CDA shows
improved performance for crater detection.

Figure 6 shows the results of our methodology applied to four images from our data-set. Among
the data-set used, the best results achieved were those shown in Figure 6(d) which achieved around

Figure 7. CDA results. (a) Number of craters detected by CDA and GT; (b) performance of the CDA.
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97.10% and 12.86% for true and false detection rates, respectively. The rates for a probability of at
least 20% for these four images are presented in Table 1. The correct choice of probability level is
important, since if the level is increased, it can lead to the elimination of false detections, but it can
also reduce the true detections. Thus, the value 20 was the best value to balance TDRp and FDRp.

5. Discussion

In this paper, we have presented an improved methodology for automatic impact crater detection on
Mars, based on MIP and template matching. We proposed the application of a pre-processing phase
based on MIP to improve an available methodology for automatic detection of impact craters in
optical images of planetary surfaces.

We have also shown the results achieved by the improved methodology when applied to an opti-
cal imagery data-set. Although the optical images present different conditions of illumination, vary-
ing geomorphological settings and low spatial resolution, the improved methodology shows very
high detection rates. The improved methodology reached a crater detection rate of 92.23%, in con-
trast it shows a false detection rate of 23.57%, which is considered reasonable for this type of data,
since the data-sets are from mosaic composition holding individual images taken at different times
and thus they have different environmental conditions. These results are promising and it’s in line
with crater impact detection literature (Bandeira et al. 2007; Bue & Stepinski 2007; Martins et al.
2009; Salamuniccar & Loncaric 2010; Bandeira et al. 2012). We recognize the importance of com-
paring our results to the state of art in crater detection methodologies. Unfortunately, it is hard to
establish appropriate comparisons between the improved methodology and other published crater
detection methodologies since each one has demonstrated its performance using a different imagery
data-set. However, we have used an imagery data-set similar to the data-set used by Bandeira et al.
(2007) to establish a closer comparison. For this comparison, we reached better results since the
improved methodology enables to detect craters for maxima below a probability of 30%, which was
not found by Bandeira et al. (2007). This results mainly from the use of our pre-processing phase
based on MIP. In contrast with the shadow analysis used by Bandeira et al. (2007), our pre-process-
ing phase avoids the drawbacks presented while dealing with shadows, such as irregular sizes and
shapes of shadows that limit better results.

The success of MIP as part of the improved methodology results from a suitable choice of mor-
phological operators, SE and threshold values from among those tested. The benefits of using MIP
to increase crater detection rates have been previously suggested by Bandeira et al. (2007).

On the other hand, template matching is efficient when used to find circular features within an
image. This technique is important in the detection process, since craters have roughly circular
shape. Moreover, FFT increased efficiency by calculating the correlation between images and tem-
plates in the frequency domain which is better compared to other techniques that carried out the
same correlation in the space domain. The FFT also reduces computational efforts, which is impor-
tant when examining large number of images. As a result, we are able to perform a fast, automatic
and non-tedious impact craters detection algorithm. Moreover, with a single methodology, we car-
ried out the detection of a large number of impact craters in images with great range of terrains on
the surface of Mars.

Table 1. Detection rates for the data-set examples.

Image GT TDp TDR20 FDp FDR20
a 61 53 86.89 12 18.46
b 62 56 90.32 5 8.20
c 100 95 95 14 12.84
d 69 67 97.10 9 11.84
Total 292 271 92.81 40 12.86
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6. Conclusions

We conclude that our work has achieved its goal, since the improved methodology efficiently applies
MIP and template matching using FFT to detect impact craters, and enables to achieve important
final results.

By analysing the results achieved from the improved methodology, we also conclude that MIP is
an efficient tool, when applied, first, to select crater candidates and to help the detection of impact
craters.

Finally, our improved methodology can be applied for mapping of Martian craters in order to
contribute to a greater understanding of the geological history of Mars and other planets.
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