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Theory of elasticity of the Abrikosov Aux-line lattice for uniaxial superconductors:
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In this paper, we consider the extension of the Brandt theory of elasticity of the Abrikosov Aux-line
lattice for a uniaxial superconductor for the case of parallel Aux lines. The results show that the effect of
the anisotropy is to rescale the components of the wave vector k and the magnetic field and order-
parameter wave vector cut off by a geometrical parameter previously introduced by Kogan.

I. INTRODUCTION

It is well known that the high-T, superconductors are
strongly anisotropic compounds. These materials can be
described by the Ginzburg-Landau (GL) equations in the
anisotropic form which involve the principal values M,.
(i =X, Y,Z) of the effective mass tensor M~ . The high-
T, superconductors are uniaxial (or nearly so} com-
pounds, so that we can take Mx =Mr&Mz, where Mz is
the effective mass along the Z direction (perpendicular to
the layer). The energy cost displacing the flux lines of a
uniaxial superconductor from their equilibrium
configuration is the major aim of this paper.

This effective-mass model can well desc'ibe the angular
dependence of the upper critical field. However, some re-
cent investigations have pointed out that the effective-
mass model cannot account for some unusual physical
properties of the strong anisotropic superconductors at a
microscopic level. Therefore, the expression "high-T,
superconductor" should be carefully interpreted
throughout this paper.

This paper is organized as follows. In Sec. II we
present the Abrikosov solution of the anisotropic linear
GL equations in a different (but equivalent} form from
those addressed in some previous works. In this sec-
tion no essential new result is presented. However, the
way in which we treat the problem will be much more
convenient for our purpose, because it is valid even for a
distorted Aux-line lattice. In Sec. III we then show how
the Abrikosov solution fails for a uniaxial superconduc-
tor in the short wave-vector limit. Finally, in Sec. IV we
remove the divergence of the order parameter and rnag-
netic field by using the same procedure as Brandt did in
his pioneering work for isotropic superconductors.

II. THE ABRIKOSOV SOLUTION

The starting point of the calculation is the GL phe-
nomenological free energy which in reduced units can be
written as

Pyy 1~ Pxy Pyz

p„=sin 0+ecos 0,
p, = (1—«)sin8 cos0 .

(2)

Near the upper critical field, the usual procedure is to
solve the eigenvalue (A. )-eigenvector (41 ) linear GL equa-
tion,

1 B
41 —4i =X%'i, (3)

i~ BxJ

with A= Aii=(8/2)zXr, B=(H)z, where ( )
denotes a spatial average.

Let us assume that all quantities in the vortex frame
are z independent. In this case, Eq. (3) becomes

1 B B 1 B By4 +—y + ——x —1 %, =A%, .
iK BX 2 EK By 2

(4)

In order to solve this equation, we first rewrite Eq. (4)
in terms of the creation and destruction operators F+
and F, respectively,

where

where d V=dX d Y dz is the element of volume, ~ is the
GL parameter, and p~x=p&~=1, pzz M/Mz e and
zero otherwise; MX=Mr=M; H=VX A, where A is
the vector potential.

Let us rotate the crystal frame (X, Y,Z ) through an
angle 0 about the Y axis onto the vortex frame (x,y, z )

(see Fig. 1 of Ref. 2). It can be easily shown that Eq. (1)
has the same form in the new system of coordinates with
X, replaced by x, and p,. by

p =cos 0+@sin O=y

+—/ei' —i+i'+H'
2

F+=y + + . + . yy, (6)
B 1 B ax a

ik Bx yipc By 2i y 2i

and R =~/y, 8 =y 8.
For magnetic fields close to 0,2 it is sufhcient to keep
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(7)

where g(x/y+iyy ) is some function which produces the
correct zeros of co&=~VI '~ and C is a constant of nor-
malization. It has been demonstrated by Kogan that
this function can be taken as the product of all
(x —x )Iy+iy(y —y, ) where (x,y, ) is the position of
the vth Aux line. Hence, we can write

p p BK
co& (x,y ) =C exp —(x /y +y y )

X Q [(x —x ) /y +y (y —y, ) ], (8)

P&(x,y ) = g arctan +const,
(x —x, )

where Pi is the phase of %I '.
Let us now define the supervelocity as Qs= As —(1/~)VPi. Inserting Eq. (9) into this definition

we find

B 1 zX(r —r )
Qs(x, y)= —zxr ——g [(x —x, )'/y'+y'(y —y )']

(10)

By taking the gradient of Eq. (8) we will have the ex-
pressions

1 ~~1 — x (x —x, )/yy, [(x —x )/y+y(y —y )]B~ +2+

only the lowest eigenvalue A, =(B/y I~ —1) which corre-
sponds to I'" 0'&=0. The solution of this equation may
be found by replacing (x,y), B, and a. in the isotropic
case by (x /y, yy ), B, and R. We then obtain

T

BK
%I '(x,y)=C exp —(x /y +y y ) g(x/y+iyy),

a di6'erent approach. They have interpreted H~ as a
consequence of a current which Bows along the vortex,
even when the system approaches H, &.

Let us mention some features of the present derivation.
(1) It can be extended to the case in which the fiux lines

are displaced from their equilibrium positions. This situ-
ation is of fundamental importance to the theory of elas-
ticity of the Aux-line lattice.

(2) The equilibrium lattice structure can be determined.
As can be seen in Eq. (7), the order parameter appears
with x and y rescaled by 1/y and y, respectively. This
means that if the structure of the lattice for the isotropic
superconductor is a triangular lattice with periods (1,0)
and ( I/2, +3/2), then that for an anisotropic supercon-
ductor will be ( y, 0) and ( y /2, v'3/2y ). Campbell
et al. , in a very recent study of the structure of a uniaxi-
al layered crystal, have found the same result by working
out the GL free energy in the London regime. This result
has also been con6rmed by Petzinger and Warren by us-
ing a better sophisticated mathematical apparatus than
the present one.

(3) As can be seen from Eq. (8), co& (and consequently
the free energy) is not invariant under rotation about the
z axis. This new feature of the free energy also occurs in
the London regime.

III. DIVERGENCE OF coI AND H

Up to this point we have not taken into account any
distortion of the Aux-line lattice. However, as was ob-
served in Sec. II, our previous derivation of Eqs. (7)—(14)
is still valid even when the Aux lines are displaced from
their equilibrium positions. Let us denote by
s„=(s",s~,z) the displacement of the vth fiux line from
the initial regular fiux position R =(X„Y„z)parallel to
the z axes. If we introduce r,=R„+s, in Eq. (8) and then
expand it in powers of s, we obtain

co, (x,y)=co„(x,y)(1+rl/2) +o(s ),
1 la) where

Bcpl y'(y —y. )'
Bky y+2g-

[(x x)'/y'+—y'(y —y, )']

(1 lb)

The combination of Eqs. (10) and (11) yields

s",(x —x )/y +y s~(y —y )
il(x, y ) = —2 + [(x —x ) /y +y (y —y ) ]

and co„(x,y ) is given by Eq. (8) with r =R .
By taking a periodic displacement field

ik.R
s =Re(soe "),

ga= —zX x+ yBx y4 By
2K'�( (12) with k=(k, k~, 0), in Appendix A we find

A straightforward manipulation of the second GL
equation and Eq. (12) yields the well-known results

(~i )
M, =B+

2K

i(k+~) s,e""+""
rl(x, y ) =Re 2BR

[y (k +EC ) +(k +X@) /y ]

(18)

(14)

where y=p, /2Ky . This equation for the transverse
field was previously found by Kogan and Clem by using

where K is the reciprocal lattice vector and is given by
K=m bi+ n bz with bi = (2m. /v'3 )[(v'3 /y )x—

yy ],
bz =(4' /&3 )y y ( m, n integers).

For k «Eio, Eq. (17) may be written in an approxi-
mated form as follows:



THEORY OF ELASTICITY OF THE ABRIKOSOV FLUX-LINE. . . 5211

rl(x, y ) =Re 2B@so.
ik + iK

KWO +
V.s(r) s(r).Vco~(r)=2BR (19)

co„(r)
where, on going from the first to the second line, we have
used the following identity:

Vco„(r) = —2BR g e'K'
Keo K

(20)

co, (x,y)=co„[r—s(r)] I+2BR +o(s ),V.s(r) 2

k
(21)

H, (x,y )=B+ (co„)—co„[r—s(r)]

+co„[r—s(r)]B +o(s ) .
—V s(r) z

k
(22)

If we compare these results with the isotropic
equivalents we will see that the effect of the anisotropy is
to replace k, B, and ~ by k, B, and K.

To proceed, let us now solve for H~. Operating on
both sides of Eq. (14) with c) /By and using V H =0 we ob-
tain

which can be found from Eq. (11) by taking r,=R,
and using Eq. (2) of Appendix A. In Eq. (19)
k=(yk„, k~ /y, 0) and s(r) is a smooth displacement field
given by Eq. (17) with R, replaced by r.

The substitution of Eq. (19) into Eqs. (13) and (15) gives

where coK is the Fourier component of co~ (x,y ).
According to Eqs. (21), (22), (25), and (26), the order

parameter and the magnetic field diverge as 1/k
Brandt has removed this unphysical divergence by em-
ploying an exhaustive variational method. This question
will be left to the next section. '

IV. REMOVAL OF THE DIVERGENCE

In this section we calculate the excess free energy asso-
ciated with the small displacement field s(r) of the fiux
lines. Before we carry this out we still have to perform
some preliminary calculations. If one introduces
4'= &coe'~ in Eq. (1), one obtains

, i j 4K' +i xj

+—
CO CO+ H1 2 2

2
(27)

VXh= —co[(y Q„+p,g, )x+Q~y

+(p„g,+p, g )z] . (28)

The corresponding minimum free energy can be evalu-
ated by substituting Eq. (28) into Eq. (27),

Let us define h=H —Bz=VX( A —As)=VX Ai, .
Hence, the superfiuid velocity is Q = Ah +Qii and
(H )=(h )+B . If we now minimize the free energy
with respect to Ah we find

8 CO(

VH =y
Bp

Similarly we have

(23) F= f dU gp; +cog&g)
4K co

+ co co h h +B1 2 2

2 B (29)

K (k+K )
H„(x,y)=y g co& +g e' '+o(s )

~~o K (k+ K)

K
=y g cox(1+g),

KWP +
K K (k„+K„)(k +K )

Hy(x, y )= y g coK 2
+ 9 (k+ )2

KWO K

E„E+o(s )=y g coK(1+Fy),
K~o

(26)

We will solve Eqs. (23) and (24) by neglecting varia-
tions of co&(x,y) in Eq. (19), which allows us to take
rl =r)(x,y ) =28%V s(r)/k . T.his is equivalent to saying
that we are interested only in the slowly varying parts of
the magnetic field. Brandt has called this approximation
a local average, i.e., only those terms associated with
K=0 are considered. Therefore, if one introduces
co&=co&(1+g) in Eqs. (23) and (24), by using Fourier
transforming one easily obtains

where hs obeys the same equation as (28) with Q re-
placed by Qs. Notice that Eq. (29) is still valid when the
order parameter and the magnetic field are z dependent.

To show how the divergence of the physical properties
evaluated in the preceding section can be removed by us-
ing a variational technique first proposed by Brandt,
several steps must be taken. First of all, we modulate the
amplitude of the order parameter by multiplying the
linear solution co& by a smooth function ( I+y), where q&

is of first order in s. Secondly, we solve the second GL
equation for h and h~. The strategy is to set h =ho+4„
Ap = Ap+ Ai where hi and A, are the fluctuations
about the mean field solutions ho and Ap, resPectively.
At this stage, in addition to those local averages men-
tioned above, we will make some approximations which
consist in neglecting any contribution of the vector po-
tential A& associated with the transverse field. We will
also neglect the Auctuations h&z. These approximations
will not affect the mean field free energy, just the elastic
one. Finally, we evaluate the free energy in terms of tp

and treat it as a variational parameter.
Having this policy in mind, from Eq. (28) we may write
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1 Bh, 1BI,
Q = —— Qy=—

co y4 B
' ~ co Bx

If one now substitutes Eq. (30) into"

(30)
2 4 2B y By

Vco B 1 B
X +P

Bx y Bp

=8+h, — + 5~(r —r„) .2'
(32)

(VXQ), =H, — +5&(r—r ),
K

we obtam

(31) By multiplying both sides by co, the second term of the
resulting equation will vanish because co(r„)=0. Next, if
we insert h, =ho, +h&, with ho, =(&co& —co)/2X we then
find

B 1 B
2

+ 4 2 ~1z COh lzBx g By

Vco B 1 B

(2) 4 By

B 1 B 12+ 4 2 6)
y By (3) co

2
Bco 1 Bco

Bx y By

'2

+2~KCO +CO~Oz
(4)

(33)

Upon using the following identity
'22

+
Bx y& By

—coI y + =28Kcoi,
Bx p By

(34)

with co=co&(1+y), (3) becomes
r 2 2

(3)=
2K

1 B 1

Bx' y" By' ( I+p)
By 1 By

y4 By

As stated in Sec. III, the approximations which will be used here are co„=& co„&, co= & co„&(1+g+(p). Therefore,
up to first order in s we have

(1)=—&co&h„,

(2)=0,

(3)
2K

B' 1 B'
2 y4 B 2

(4) ~&~& —~' &~&'( + )'9

where we have used &co„&= &co &+o(s~).
Inserted in Eq. (33), these yield

y + h„—y &co&h„=, B' 1 B' , &co &

Bx g By 2K

Using the periodicity of g, y, and h &„we obtain

y'&

2~ k'+y'&~&

B2 1 B2y'', + ', ', +-y'& &(&++) .
Bx f By

(35)

(36)

By starting from Eq. (31) with Q and H, replaced by Q~ and 8, respectively, a similar method produces

~a&z 0' .
2K

Finally, in Appendix B we find for the excess free energy

(37)

F., =F Fc=, (cc)'[(2ic' —()1+—2 2ic'y'()c(P ))](( + )')c+)——F, k'( F'c
4K 4K y

where Fo is the mean field free energy

Fo= —&co&(1 B/ y~)Ic+ &co&~[(2R ——1)P+1—21c y Pi(P I)]+B—1

k g
k 2+k (38)

(39)
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(
(1 8—/»y )2»

[(2» —1)P+1—2» y P, (P 1—)]
(40)

P, is constant of order unity [cf. Eq. (B7)],
P= (cez) /(co)', and k„'=yz(co).

Now the expressions of (co) and q& which give the
minimum of Fo and F,&

are

2(kq )e=o

(kq )e=.rz

(ka )e=o [(2» /e —1)P+1]
(kq )e „rz [(2» —1)P+ 1]

(47)

(48)

kq, q

k +k

where

kq, =y (co)[(2» —1)P+1—2» y P, (P—1)]

=2» y (1 B/»y—)

=2» y (1 8 I»)—.

Hence, the excess free energy is

F„=F—F,= —,', (k)([V ( )]'),

(41)

(42)

(43)

For a layered superconductor e ( 1, so that
(kq, )e=o&(kq, )e „rz. For most of the high-T, supercon-
ductors» ))1, which implies [(ki, )e o/( k& )e rz]
=1/e' ) 1, or even (ki, )e o)(kh)e rz .In con-
clusion, the length scale of the order parameter (magnetic
field) is larger (smaller) for the external magnetic field

pointing along the Z axis than in the Cu-0 plane. In oth-
er words, as the direction of the applied magnetic field
varies continuously from 0=0 to 0=m/2, an increasing
of the magnetic field length scale is compensated by a de-
creasing of the order-parameter length scale.

where the compression modulus is

28 (1—kh/kq, )
cl (k)=

(1+k /kq, )(1+k /ki, )
(44)

Notice that the cut off wave vectors k~ and k& depend
on the orientation of the magnetic field. Notice also that
they could never be obtained from the equivalent isotro-
pic expressions by a simple substitution of K by an
effective k, since they appear rescaled by the geometrical
parameter y. In addition, in the expression for (co) ap-
pears a new term which depends on the structure of the
equilibrium lattice, namely, 2» y p&(p —1).

Because (Hi) =0, even for anisotropic superconduc-
tors, we have only one compression modulus. This can
be easily seen if we write it in the local limit (k~0) as'
cI =8 d Fo(B)/dB . On the other hand, cI =c» —

c&&,

where c66 is the shear modulus of the Aux lines. There
are some indications, both from theoretical and experi-
mental ' investigation, that suggest there are several c»
and c66 elastic coe%cients. However, their difference is
always the same and is given by Eq. (44).

Let us now investigate how the scales of the Auctua-
tions of the order parameter and the magnetic field
behave with the orientation of the external magnetic field.
Since y(0=0) = 1, y(0=m /2) =e', »(0=0)=»,
»(0=mr/2)=»le', and y(0=0, m/2)=0, we have

V. SUMMARY

We have extended the Brandt theory of elasticity of the
Abrikovos Aux-line lattice for a uniaxial superconductor
with the external magnetic field in an arbitrary direction.
We have also paved the way for the generalization of this
theory taking into account the tilting effects (this problem
will be left to a future contribution).
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(k~)e=o

(kq )e= rz

(k7)e=o

(kh)e= rz

1 8 IH,2(0)—
1 8 IH, 2(m /2)—

1 8/H~z(0) [(2» /e 1)p+ 1],rz
1 8 IH, 2(m/2) [(2—» —1)P+ 1]

(45)

which can also be written in an integral form,

X 2/y2+ yz~ 2
~„, ye. +e, /yy

y'e.'+ e,'/y'

To proceed in our derivation of Eq. (18) we will also
need to use the following identity:

(46) g e =(2m) n g 52(k —K), (A3)

where H, z(0) =»(0). If the intensity of the external mag-
netic field is such that the ratio 8/H, z(0) remains con-
stant for any 0, then

where n =8 /ctpo=B»/2' =B»/2mis the numbers o.f fiux-
01ds.

Upon using Eqs. (17) and (A3) we find
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~
~d q sq. so

y q„+q +q /y~

d q '9'so
=Re 2f z ze 'q'(2m) n g5 (lc —q+K. )

2~ y'q.'+q,'/y'

i(K+K) soe'"+=Re 28k
[y ( k„+E„)+(k +E ) /y ]

APPENDIX B

Upon using Eq. (34) and local averages, we have

(~)=(~),
—,'& '&=-,'O& &'&~1+(&+&)'j&,

2
8co Bco

~"'J4 ~ Bx BxK CO Xg'

1 4 Bco Bco

4K co
y

22

Bq Bcot By+2(1+q))co) y +
Bx Bx By By

1
) (1+q)) y +

4ic co (1+q )

r '2

+ 2 4 ~f' +
Bx By

2

y'. Bcor Bqr 1 B~i Bq(1+%) 2BFccol+y + +2 y +
4K Bx y~ By

~ Bx Bx y~ By c}y
r '2

, a~
(1+y) Bx y~ By

( )+y(~) pBri+ 1 Bri +2 pBri Bq+ 1 BqBq
4s co Bx; Bxj 21cy 4s Bx y By Bx Bx y By By

By 1 hg

)Bx y By

y&;, a'ai= ty'(a")'+(aS)'i

2
Bcol

Bx

2

1+ 4
y By

(1+q) — z
B col 1

2 2 2BKMI+y 2 2+ 24K y Bx y By

( ) (wl, 2'ry 1 iP~
l4 2 2 $~2 y2 Qy2(XI;,~&kQk) =,

h~, h, =, (&co& —co+ & co&y) (co) co+q+—I y'&~&q
4K k +y co

g k

k '+ y'& cu & l(h~, h, ) = co —(co) 1+(rI+y)1

K

(A4)

(81)

(82)

(83)

(84)
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The transverse component of the magnetic Beld h~ may
be found by solving V h =y B ro/By and V h
= —y ~B~co/BxBy whose solution is given by Eqs. (25)
and (26) with rI replaced by (g+ y). We then find

K

K(WO) K(%0)
(87)

Now, if we integrate by parts the third term of the
right-hand side of Eq. (83) and then using the periodicity
of rI and rp we arrive at Eq. (38).
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