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¢-meson—nucleus bound state energies and absorption widths are calculated for seven selected
nuclei by solving the Klein-Gordon equation with complex optical potentials. Essential input for

the calculations, namely the medium-modified K and K meson masses, as well as the density
distributions in nuclei, are obtained from the quark-meson coupling model. The attractive potential
for the ¢-meson in the nuclear medium originates from the in-medium enhanced KK loop in the
¢-meson self-energy. The results suggest that the ¢-meson should form bound states with all the
nuclei considered. However, the identification of the signal for these predicted bound states will
need careful investigation because of their sizable absorption widths.

I. INTRODUCTION

The properties of light vector mesons at finite baryon
density, such as their masses and decay widths, have
attracted considerable experimental and theoretical in-
terest over the last few decades. In part this has been
related to their imputed potential to carry information
on the partial restoration of chiral symmetry [TH3]. In
2007 the KEK-E325 collaboration reported a 3.4% mass
reduction of the ¢-meson [4] and an in-medium decay
width of ~ 14.5 MeV at normal nuclear matter density.
These conslusions were based upon the measurement of
the invariant mass spectra of ete™ pairs in 12 GeV p+A
reactions, whith copper and carbon being used as tar-
gets [4].

Even though this result may indicate a signal for par-
tial restoration of chiral symmetry in nuclear matter, it
is not possible to draw a definite conclusion solely from
this. In fact, recently, a large in-medium ¢-meson decay
width (>30 MeV) has been extracted at various experi-
mental facilities [5H9], without observing any mass shift.
It is therefore evident that the search for evidence of a
light vector meson mass shift in nuclear matter is indeed
a complicated issue and further experimental efforts are

required in order to understand the phenomenon better.
Indeed, the J-PARC E16 collaboration [10, 1] intends
to perform a more systematic study for the mass shift
of vector mesons with higher statistics than the above-
mentioned experiment at KEK-E325.

However, either complementary or alternative experi-
mental methods are desired. The study of the ¢-meson—
nucleus bound states is complementary to the invariant
mass measurements, where only a small fraction of the
produced ¢-mesons decay inside the nucleus and may be
expected to provide extra information on the ¢-meson
properties at finite baryon density. Along these lines and
motivated by the 3.4% mass reduction reported by the
KEK-E325 experiment, the E29 collaboration at J-PARC
has recently put forward a proposal [I4} [I5] to study the
in-medium mass modification of the ¢-meson via the pos-
sible formation of ¢-nucleus bound states [16, [17] using
the primary reaction pp — ¢¢. Furthermore, there is
also a proposal at JLab, following the 12 GeV upgrade,
to study the binding of ¢ (and 1) to *He [I8]. This new
experimental approach [I1] T6HI8] for the measurement
of the ¢ meson mass shift in nuclei, will produce a slowly
moving ¢-meson [I1],[T6HI8], where the maximum nuclear
matter effect can be probed. In this way, one may in-
deed anticipate the formation of a ¢-nucleus bound state,



where the ¢-meson is trapped inside the nucleus.

Meson-nucleus systems bound by attractive strong in-
teractions are very interesting objects (see Refs. [19] 20]
and references therein). First, they are strongly inter-
acting exotic many-body systems and to study them
serves, for example, to understand better the multi-gluon
exchange interactions, including QCD “van der Waals”
forces [21], which are believed to play a role in the binding
of the J/¥ and other exotic heavy-quarkonia to matter
(a nucleus) [I11, 17, 22H3T]. Second, they provide unique
laboratories for the study of hadron properties at finite
density, which may not only lead to a deeper understand-
ing of the strong interaction [IH3] but the structure of
finite nuclei as well [12] [13].

The mass shift of the ¢-meson in a nucleus is di-
rectly connected with the possible existence of an attrac-
tive potential between the ¢-meson and the nucleus, the
strength of which is expected to be of the same order as
that of the mass shift. From a practical point of view,
the important question is whether this attraction, if it
exists, is sufficient to bind the ¢ to a nucleus. A sim-
ple argument can be given as follows. One knows that
for an attractive spherical well of radius R and depth
Vo, the condition for the existence of a nonrelativistic s-
wave bound state of a particle of mass m is V{ > 8’;2};2.
Using m = mg, where mj is the ¢-meson mass at nor-
mal nuclear matter density found in Ref. [4] and R =5
fm (the radius of a heavy nucleus), one obtains Vj > 2
MeV. Therefore, the prospects of capturing a ¢-meson
seem quite favorable, provided that the ¢-meson can be
produced almost at rest in the nucleus.

An initial calculation of possible ¢-nucleus bound
states was carried out in Ref. [32] for a few nuclei. How-
ever, the theoretical potential on which this study was
based [33] was too weak, with only two bound states be-
ing found. In order to remedy this, the real part of the
potential was scaled, without any theoretical basis, so as
to simulate a 3% mass reduction of the ¢-meson, that is,
approximately equal to that reported in Ref. [4]. This
(scaled) potential was mainly used to study the sensitiv-
ity of the formation spectra to the potential strength [33].
Here, it was found that, as expected, whether or not the
formation of the ¢-meson bound state is possible depends
on the strength of the attractive potential between the
¢-meson and the nucleus.

In previous work [34] we studied the ¢-meson mass
shift and decay width in nuclear matter, based on an ef-
fective Lagrangian approach, by evaluating the KK loop
contribution in the ¢ self-energy, with the in-medium K
and K masses explicitly calculated by the quark-meson
coupling (QMC) model [35]. Here we extend our previous
initial study [34] to seven selected nuclei, showing details
of the calculated nuclear potential and computing the ¢-
nucleus bound state energies and absorption widths by
solving the Klein-Gordon equation. The nuclear density
distributions for heavy nuclei studied (except for *He), as
well as the medium modification of the K and K masses,
are explicitly calculated using the QMC model [30].

This paper is organized as follows. In Section [[] we
briefly discuss the computation and present results for
the mass shift and decay width of the ¢-meson in infinite
(symmetric) nuclear matter. Using the results of Sec-
tion [T} together with the density profiles of the nuclei to
be studied, in Section [[TI] we present results for the real
and imaginary parts of the scalar ¢-nucleus potentials,
as well as the corresponding bound state energies and
absorption widths. Finally, Section [[V] is devoted to a
summary and discussion.

II. ¢$-MESON SELF-ENERGY IN INFINITE
NUCLEAR MATTER

K

FIG. 1: KK-loop contribution to the ¢-meson self-energy.

The ¢-meson property modifications in nuclear matter,
such as its mass and decay width, are strongly correlated
to its coupling to the KK channel, which is the dominant
decay channel in vacuum. Therefore, one expects that a
significant fraction of the density dependence of the ¢-
meson self-energy in nuclear matter might arise from the
in-medium modification of the K K-loop in the ¢-self-
energy intermediate state.

Here we use the effective Lagrangian approach of
Ref. [37] and briefly review the computation of the ¢-
meson self-energy in vacuum and in nuclear matter [34].
The lowest-order interaction Lagrangian in the ¢KK
coupling constant g4, without the term in gq% arising from
the covariant derivative involving the ¢-meson [37,[38] (or
“the gauge term”), is given by

Loxie = i900" [K(0,K) ~ OF)K], (1)
KT —
where we use the convention K = ( 0 ) and K =

(K - FO) for the isospin doublets. For more detailed

discussions on the interaction Lagrangian with the co-
variant derivative involving the ¢-meson see Ref. [34].
The scalar self-energy for the ¢-meson, II,(p), is com-
puted from Eq. by evaluating the KK loop in Fig.
For a ¢-meson at rest the scalar self-energy is given by

: 8 o [d¢
ills(p) = ~395 o { Dk(q)Dk(q—p), (2)
where Dk (q) = (q2 —m% + ie)_1 is the kaon propaga-

tor; p = (p° = m¢,6) is the ¢-meson four-momentum



vector at rest, with my the ¢-meson mass; mg (= myp) is
the kaon mass; and g4 = 4.539 is the coupling constant,
which we determined [34] from the experimental value
for the ¢ — KK decay width in vacuum, corresponding
to the branching ratio of 83.1% of the total decay width
(4.266 MeV) [39].

The integral in Eq. is divergent but it will be reg-
ulated using a phenomenological form factor, with cutoff
parameter Ag, as in Refs. [34] [40]. The sensitivity of the
results to the cutoff value is analyzed below. The mass
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FIG. 2: ¢-meson mass shift (upper panel) and decay width
(lower panel) in symmetric nuclear matter for three values of
the cutoff parameter Ax.

and decay width of the ¢-meson in vacuum (my and I'y),
as well as in nuclear matter (mj, and I'}), are determined
self-consistently in Ref. [34] from

m3 = (m})” + Rlly(m3), (3)
r, = —n;%mmé)- (4)

The nuclear density dependence of the ¢-meson mass
and decay width is driven by the intermediate state
kaon and antikaon interactions with the nuclear medium.
This effect enters through mj, in the kaon propagators
in Eq. . The in-medium mass, mj., is calculated
within the QMC model [34], which has proven to be very
successful in studying the properties of hadrons in nuclear
matter and finite nuclei. For a more complete discussion
of the model see Refs. [35, 41, 42]. Here we just make
a few necessary comments. In order to calculate the in-

medium properties of K and K, we consider infinitely
large, uniformly symmetric, spin-isospin-saturated nu-
clear matter in its rest frame, where all the scalar and
vector mean field potentials, which are responsible for
the nuclear many-body interactions, become constant in
Hartree approximation [34]. We also recall that, to cal-
culate the in-medium K K-loop contributions to the ¢-
meson self-energy, the isoscalar-vector w mean field po-
tentials arise both for the kaon and antikaon. However,
they have opposite signs and cancel each other. Equiva-
lently, they can be eliminated by a variable shift in the
loop calculation [35] 411 [42].

In Fig. |2, we present the ¢-meson mass shift (upper
panel) and decay width (lower panel) as a function of
the nuclear matter density, pp, for three values of the
cutoff parameter Ax. As can be seen, the effect of the in-
medium kaon and antikaon mass change yields a negative
mass shift for the ¢-meson. This is because the reduction
in the kaon and antikaon masses enhances the K K-loop
contribution in nuclear matter relative to that in vac-
uum. For the largest value of the nuclear matter density,
the downward mass shift turns out to be a few percent
at most for all values of Ax. On the other hand, we see
that I'} is very sensitive to the change in the kaon and
antikaon masses: it increases rapidly with increasing nu-
clear matter density, up to a factor of ~ 20 enhancement
for the largest value of pg. At normal nuclear matter
density, pg, we see that the negative kaon and antikaon
mass shift of 13% [34] induces a downward mass shift
of the ¢-meson of just ~ 2% , while the broadening of
the ¢-meson decay width is an order-of-magnitude larger
than its vacuum value. These results support a small
downward mass shift and a large broadening of the de-
cay width of the ¢-meson in a nuclear medium. Further-
more, they open experimental possibilities for studying
the binding and absorption of ¢-meson in nuclei. Al-
though the mass shift found in this study may be large
enough to bind the ¢-meson to a nucleus, the broadening
of its decay width will make it difficult to observe a signal
for the ¢-nucleus bound state formation experimentally.
We explore this further in the following section.

III. ¢-NUCLEAR BOUND STATES

In this section we discuss the situation where the ¢-
meson is placed in a nucleus. The nuclear density dis-
tributions for 12C, 160, 4°Ca, *¥Ca, ?°Zr, and 2°®Pb are
obtained using the QMC model [36]. For *He, we use the
parametrization for the density distribution obtained in
Ref. [43]. Then, using a local density approximation we
calculate the ¢-meson complex potentials for a nucleus
A, which can be written as

Voa(r) = Uglr) = 5 Ws(r), )

where r is the distance from the center of the nucleus and
Us(r) = Amy(pp(r)) = my(pp(r)) — me and We(r) =
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I'y(pp(r)) are, respectively, the ¢-meson mass shift and
decay width in a nucleus A. Asusual, pp(r) is the baryon
density distribution for the particular nucleus.

In Figure [3| we present the ¢-meson potentials calcu-
lated for the seven nuclei selected, for three values of the
cutoff parameter A g, 2000, 3000 and 4000 MeV. One can
see that the depth of the real part of the potential, Ug(r),
is sensitive to the cutoff parameter, varying from -20 MeV
to -35 MeV for “He and from -20 MeV to -30 MeV for
208PY. In addition, one can see that the imaginary part
does not vary much with different values of Ax. These
observations may well have consequences for the feasi-
bility of experimental observation of the expected bound
states.

A = 2000 A = 3000 Ag = 4000
E T/2 E T/2 E T/2
sHe 1s n(-0.8) n n(-14) n| -1.0(-3.2) 83
$C 1s| -21(-4.2) 10.6] -6.4 (-7.7) 11.1| -9.8 (-10.7) 11.2
PO 1s| -4.0(-5.9) 12.3] -8.9 (-10.0) 12.5|-12.6 (-13.4) 12.4
1p n(n) n n(n) n n(-1.5) n
Ca 1s| -9.7 (-11.1) 16.5|-15.9 (-16.7) 16.2|-20.5 (-21.2) 1
Ip| -1.0 (-3.5) 12.9] -6.3 (-7.8) 13.3]-10.4 (-11.4) 1
1d n(n) n n(n) n n(-14) n
#Ca 15]-10.5 (-11.6) 16.5-16.5 (-17.2) 16.0(-21.1 (-21.6) 15.6
Ip| -2.5(-4.6) 13.6] -7.9 (-9.2) 1 -120(129) 13.6
1d n(n) n n (-0.8) n| -2.1(-3.6) 11.1
PZr 1s|-12.9 (-13.6) 17.1-19.0 (-19.5) 16.4|-23.6 (-24.0) 15.8
Ip| -7.1 (-8.4) 15.5|-12.8 (-13.6) 15.2|-17.2 (-17.8) 14.8
1d| -0.2 (-2.5) 13.4| -5.6 (-6.9) 13.5| -9.7 (-10.6) 13.4
2s n(-1.4) n| -34(-5.1)12.6| -7.4 (-8.5) 12.7
2p n(n) n n(n) n n(-1.1) =n
i[]st 1s |-15.0 (-15.5) 17.4]-21.1 (-21.4) 16.6|-25.8 (-26.0) 16.0
1p|-11.4 (-12.1) 16.7|-17.4 (-17.8) 16.0|-21.9 ( 22.2) 15
1d| -6.9 (-8.1) 15.7|-12.7 (-13.4) 15.2|-17.1 (-17.6) 14.
2| -5.2 (-6.6) 15.1|-10.9 (-11.7) 14.8|-15.2 (-15.8) 14. 5
2p n(-1.9) n| -4.8 (-6. )1 8.9 (-9.8) 13.4
2d n(n) n n (-0.7) n| -2.2(-3.7) 11.9
TABLE I: ¢-nucleus single-particle energies, E, and half

widths, I'/2, obtained with and without the imaginary part
of the potential, for three values of the cutoff parameter Ag.
When only the real part is included, where the corresponding
single-particle energy E is given inside brackets, I' = 0 for
all nuclei. “n” indicates that no bound state is found. All

quantities are given in MeV.

Using the ¢-meson potentials obtained in this man-
ner, we next calculate the ¢-meson—nuclear bound state
energies and absorption widths for the seven nuclei se-
lected. Before proceeding, a few comments on the use
of Eq. @ are in order. In this study we consider the
situation where the ¢-meson is produced nearly at rest.
Then, it should be a very good approximation to neglect
the possible energy difference between the longitudinal
and transverse components of the ¢-meson wave function
Y. After imposing the Lorentz condition, 9,4} = 0, to

solve the Proca equation becomes equivalent to solving
the Klein-Gordon equation

(=V2 4 ® +2uV (7)) ¢(7) = E2¢(P), (6)

where = mgma/(me+ma) is the reduced mass of the
¢-meson-nucleus system with mg (m4) the mass of the
¢-meson (nucleus A) in vacuum, and V(7) is the complex
¢-meson-nucleus potential of Eq. . We solve the Klein-
Gordon equation using the momentum space methods
developed in Ref. [44]. Here, Eq. (6] is first converted to
momentum space representation via a Fourier transform,
followed by a partial wave-decomposition of the Fourier-
transformed potential. Then, for a given value of angu-
lar momentum, the eigenvalues of the resulting equation
are found by the inverse iteration eigenvalue algorithm.
The calculated bound state energies (E) and widths (T'),
which are related to the complex energy eigenvalue £ by
E=RE—pand I = —23¢E, are listed in Table[[| for three
values of the cutoff parameter A, with and without the
imaginary part of the potential, Wy(r).

We first discuss the case in which the imaginary part
of the ¢-nucleus potential, Wy(r), is set to zero. The re-
sults are listed inside brackets in Table[ll From the values
shown in brackets, we see that the ¢-meson is expected to
form bound states with all the seven nuclei selected, for
all values of the cutoff parameter Ax = 2000,3000 and
4000 MeV. (For the variation in the potential depths due
to the Ag values, see Fig. ) However, the bound state
energy is obviously dependent on A, increasing as Ax
increases.

Next, we discuss the results obtained when the imagi-
nary part of the potential is included. Adding the absorp-
tive part of the potential, the situation changes apprecia-
bly. From the results presented in Table [ we note that,
for the largest value of the cutoff parameter Ax = 4000
MeV which yields the deepest attractive potentials, the
¢-meson is expected to form bound states in all the nu-
clei selected, including the lightest “He nucleus. How-
ever, in this case, whether or not the bound states can
be observed experimentally, is sensitive to the value of
the cutoff parameter Ax. One also observes that the
width of the bound state is insensitive to the values of
Ak for all nuclei. Furthermore, since the so-called dis-
persive effect of the absorptive potential is repulsive, the
bound states disappear completely in some cases, even
though they were found when the absorptive part was
set to zero. This feature is obvious for the *He nucleus,
making it especially relevant to the future experiments,
planned at J-PARC and JLab using light and medium-
heavy nuclei [IT], T6HIS].

We here comment that we have also solved the
Schréedinger equation with the potential Eq. with
and without its imaginary part for the single-particle en-
ergies and widths, and compared with those given in Ta-
ble [l The results found in both cases are essentially the
same.



IV. SUMMARY AND DISCUSSION

We have calculated the ¢-meson—nucleus bound state
energies and absorption widths for various nuclei. The
¢-meson—nuclear potentials were calculated using a local
density approximation, with the inclusion of the KK
meson loop in the ¢-meson self-energy. The nuclear
density distributions, as well as the in-medium K
and K meson masses, were consistently calculated by
employing the quark-meson coupling model. Using the
¢-meson—nuclear complex potentials, we have solved
the Klein-Gordon equation in momentum space, and
obtained ¢-meson—nucleus bound state energies and
absorption widths. Furthermore, we have studied the
sensitivity of the results to the cutoff parameter Ag
in the form factor at the ¢ — KK vertex appearing in
the ¢-meson self-energy. We expect that the ¢-meson
should form bound states for all seven nuclei selected,
provided that the ¢-meson is produced in (nearly)
recoilless kinematics. This feature, is even more obvious
in the (artificial) case where the absorptive part of the
potential is ignored. Given the similarity of the binding
energies and widths reported here, the signal for the
formation of the ¢-nucleus bound states may be difficult
to identify experimentally. Therefore, the feasibility of

observation of the ¢-meson—nucleus bound states needs
further investigation, including explicit reaction cross
section estimates.
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